EA025931B1 - Амфифильная макромолекула и ее применение - Google Patents

Амфифильная макромолекула и ее применение Download PDF

Info

Publication number
EA025931B1
EA025931B1 EA201490338A EA201490338A EA025931B1 EA 025931 B1 EA025931 B1 EA 025931B1 EA 201490338 A EA201490338 A EA 201490338A EA 201490338 A EA201490338 A EA 201490338A EA 025931 B1 EA025931 B1 EA 025931B1
Authority
EA
Eurasian Patent Office
Prior art keywords
formula
mol
amphiphilic macromolecule
amphiphilic
structural unit
Prior art date
Application number
EA201490338A
Other languages
English (en)
Other versions
EA201490338A1 (ru
Inventor
Цзиньбэнь Ван
Сяохой Сюй
Сюэфын Ши
Юйчунь Хань
Илинь Ван
Хайкэ Янь
Original Assignee
Бейдзин Цзюньлунь Жуньчжун Сайенс Энд Текнолоджи Ко., Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бейдзин Цзюньлунь Жуньчжун Сайенс Энд Текнолоджи Ко., Лимитед filed Critical Бейдзин Цзюньлунь Жуньчжун Сайенс Энд Текнолоджи Ко., Лимитед
Publication of EA201490338A1 publication Critical patent/EA201490338A1/ru
Publication of EA025931B1 publication Critical patent/EA025931B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2652Nitrogen containing polymers, e.g. polyacrylamides, polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • C08F12/28Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/02Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings
    • C08F232/04Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having no condensed rings having one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • C09K8/604Polymeric surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/607Compositions for stimulating production by acting on the underground formation specially adapted for clay formations
    • C09K8/608Polymer compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/46Water-loss or fluid-loss reducers, hygroscopic or hydrophilic agents, water retention agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • C04B24/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • C04B24/2694Copolymers containing at least three different monomers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • C08F220/346Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links and further oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate
    • C08F220/365Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate containing further carboxylic moieties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Lubricants (AREA)
  • Treatment Of Sludge (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Настоящее изобретение представляет амфифильную макромолекулу и ее применение. Амфифильные макромолекулы содержат повторяющиеся структурные звенья: структурные звенья для регулирования молекулярной массы, молекулярно-массового распределения и эффектов свойств заряда, высоко стерически затрудненные структурные звенья и амфифильные структурные звенья, которые подходят для таких областей, как бурение скважин на нефтяных месторождениях, цементирование скважин, образование разрывов, сбор и транспортировка сырой нефти, очистка сточных вод, переработка шлама и производство бумаги и т.д., и могут применяться в качестве нефтевытесняющего агента в способе повышения нефтеотдачи, понизителя вязкости тяжелой нефти, жидкости для гидроразрыва, стабилизатора неустойчивых глин, агента для очистки сточных вод, удерживающей добавки и осушающей добавки или упрочняющего агента для бумажного производства и т.д.

Description

Область техники, к которой относится изобретение Данное изобретение относится к амфифильной макромолекуле и ее применению, и данная амфифильная макромолекула применима для разработки нефтяных месторождений, цементирования нефтяных скважин, гидравлического разрыва пласта, сбора и транспортировки неочищенной нефти, очистки сточных вод, обезвреживания нефтяных шламов и производства бумаги, и ее можно использовать в качестве агента для интенсификации нефтедобычи и нефтевытесняющего агента, понизителя вязкости тяжелой сырой нефти, жидкости для гидроразрыва пласта, стабилизатора неустойчивых глин, агента для очистки сточных вод, удерживающей добавки, осушающей добавки и упрочняющего агента для производства бумаги.
Предшествующий уровень техники
Вязкость раствора и стабильность вязкости полимера, применяемого для добычи нефти третичными методами, представляют собой важные индикаторы для определения эффекта его применения. Температура резервуара, степень минерализации пластовой воды и нагнетаемой воды непосредственно влияют на загущающую способность раствора полимера. В случае частично гидролизованного полиакриламида, несмотря на то, что он обладает очевидным загущающим действием в пресной воде, гидродинамический радиус макромолекул полимера уменьшается при увеличении температуры резервуара, степени минерализации пластовой воды и нагнетаемой воды, в то же время, повышение величины адсорбции данного полимера на поверхности горной породы также уменьшает действительную концентрацию раствора, приводя к снижению вязкости раствора. Амфифильная макромолекула представляет собой важный класс водорастворимых полимеров; при введении небольшого количества гидрофобных групп в гидрофильные макромолекулярные цепи возникает внутримолекулярное или межмолекулярное гидрофобное взаимодействие, приводящее к образованию из макромолекул стерической сшитой структуры, и, таким образом, она обладает замечательным загущающим эффектом. Увеличивая содержание гидрофобных групп в макромолекулярной цепи или повышая молекулярную массу, можно до некоторой степени противодействовать воздействию высокой температуры и высокой минерализации, однако это также может привести к ухудшению растворяющей способности полимера, значительному увеличению времени растворения, легкой механической деструкции макромолекулярной цепи при сдвиговых напряжениях и легкой адсорбции на горной породе и другим проблемам. Кроме того, при повышении температуры пласта и степени минерализации воды данные проблемы становятся особенно серьезными.
Залежи тяжелой нефти стали одним из важных природных источников стратегического замещения, но их сложно разрабатывать. Основной причиной является то, что тяжелая нефть имеет высокую вязкость, высокое содержание смолы, смолисто-асфальтеновых веществ или воска, имеет низкую текучесть в пласте, скважине и нефтепроводе. Кроме того, вследствие большого соотношения подвижностей нефть-вода, это также приведет к быстрому прорыву воды в добывающую скважину, высокому содержанию воды и быстрому накоплению пластового песка и другим серьезным проблемам, оказывающим отрицательное влияние на нефтедобычу.
В настоящее время для поддержания загущающих свойств и стабильности вязкости раствора полимера и для повышения его способности эмульгировать тяжелую нефть дисперсия и снижение вязкости имеют большое значение для повышения выработки тяжелой нефти и максимизации отбора потенциальной подземной остаточной сырой нефти.
Краткое описание изобретения
В следующем аспекте данного изобретения, если не определено иначе, аналогичная переменная группа и молекулярная и структурная формула имеют те же определения.
Настоящее изобретение относится к амфифильной макромолекуле. Данная амфифильная макромолекула содержит повторяющиеся звенья, описанные ниже: структурное звено А для регулирования молекулярной массы, молекулярно-массового распределения и характеристики заряда, стерически затрудненное структурное звено В и амфифильное структурное звено С.
При этом структурное звено А имеет структуру формулы (2)
где Κι представляет собой Н или метильную группу;
К2 и К3 независимо выбирают из группы, состоящей из Н и С1 -С3 алкильной группы;
Κ4 выбирают из группы, состоящей из Н и метильной группы;
От представляет собой -ОН или -Ο-Να';
т и η представляют собой молярную концентрацию структурных звеньев во всей амфифильной макромолекуле, и т составляет от 70 до 99 мол.%, η составляет от 1 до 30 мол.%.
- 1 025931
В одном из вариантов осуществления структурное звено А включает мет(акриламидное) мономерное звено Αι и мет(акриловое) мономерное звено А2. Предпочтительно структурное звено А одновременно включает в себя мет(акриламидное) мономерное звено А! и мет(акриловое) мономерное звено А2. В данной области техники молекулярную массу амфифильной макромолекулы можно выбрать по необходимости, предпочтительно данную молекулярную массу можно выбрать в интервале 1000000-20000000.
Предпочтительно, исходя из 100 мол.% всей амфифильной макромолекулы, молярная концентрация мет(акриламидного) мономерного звена А1 составляет 70-99 мол.%, предпочтительно 70-90 мол.%, более предпочтительно 70-78 мол.%.
Предпочтительно молярная концентрация мономерного звена мет(акриловой) кислоты А2 во всем амфифильном полимере составляет 1-30 мол.%, предпочтительно 1-28 мол.%, а более предпочтительно 20-28 мол.%.
В другом варианте осуществления в формуле (2), К13 предпочтительно представляют собой Н, а Ог предпочтительно представляет собой -Ο-Να'.
В другом варианте осуществления стерически затрудненное структурное звено В включает, по меньшей мере, структуру О, где структура О представляет собой циклическую углеводородную структуру, образованную двумя соседними атомами углерода основной цепи, или выбрана из структуры формулы (3), и стерически затрудненное структурное звено В необязательно включает в себя структуру формулы (4)
В формуле (3) К5 представляет собой Н или метильную группу, предпочтительно Н, Кб представляет собой радикал, выбранный из группы, состоящей из структур формул (5) и (6)
СН,—О(СНДСН, /г
-о-сн \
снг—О(СН,/,СЩ ,сн3—О(снраси, сн,—о—сн
СНг—О(СН,)аСН;
формула (5) сн2 — О(СН2),СО0СН2СН3 — ΝΗ—С сн3 — 0(СН2)2СООСН2СН3 сн2 — О(СН2)2С0ОСН3СН3 формула (б).
где в формуле (5) а представляет собой целое число от 1 до 11, предпочтительно 1-7; в формуле (4) К7 представляет собой Н;
К3 выбирают из Н, -§О3Н и ее солей, -(СН2)2СН3С1, -СН2Ы+(СН3)2(СНОДСН3С1- или -СН2М+(СН3)2(СН2)2М+(СН3)2(СН2)ПСН3С1-;
ξ и σ соответственно представляют собой целые числа от 1 до 15, предпочтительно 1-11. Предпочтительно стерически затрудненное структурное звено В включает в себя структуру О и структуру формулы (4).
В другом варианте осуществления циклическую углеводородную структуру, полученную на основе двух соседних атомов углерода основной цепи, выбирают из группы, состоящей из
Предпочтительно молярная концентрация структуры О в стерически затрудненном структурном звене В во всей амфифильной макромолекуле составляет 0,02-2 мол.%, предпочтительно 0,02-1,0 мол.%, более предпочтительно 0,1-0,5 мол.%.
Предпочтительно молярная концентрация структуры формулы (4) в стерически затрудненном структурном звене В во всей амфифильной макромолекуле составляет 0,05-5 мол.%, предпочтительно 0,1-2,5 мол.%, более предпочтительно 0,1-1,5 мол.%.
В другом варианте осуществления стерически затрудненное структурное звено В имеет структуру
- 2 025931 формулы (7)
В формуле (7) определение С соответствует описанному выше, предпочтительно представляет собой структуру формулы (3)
определения Е7 и Е8 приведены в формуле (4), х и у представляют собой молярные концентрации структурных звеньев во всей амфифильной макромолекуле, и х составляет 0,02-2 мол.%, предпочтительно 0,02-1,0 мол.%, более предпочтительно 0,1-0,5 мол.%, у составляет 0,05-5 мол.%, предпочтительно 0,1-2,5 мол.%, а более предпочтительно 0,1-1,5 мол.%.
В другом варианте осуществления амфифильное структурное звено С имеет структуру формулы (8)
-(-СНз-С-)-
формула (8) ,
В формуле (8) Е9 представляет собой Н или метильную группу;
Ею представляет собой -Х'(СН;);(СН;).СН;\. Х((С1 М..С11;);\ или -Х'(СН;)((СН;).СН;);\ ; г представляет собой целое число от 3 до 21;
представляет собой целое число от 2 до 9;
представляет собой целое число от 3 до 15;
\- представляет собой С1- или Вг-.
Предпочтительно г составляет от 3 до 17, 8 составляет от 2 до 5, ΐ составляет от 3 до 11. Предпочтительно молярная концентрация амфифильного структурного звена С во всей амфифильной макромолекуле составляет 0,05-10 мол.%, предпочтительно 0,1-5,0 мол.%, более предпочтительно 0,5-1,5 мол.%.
В другом варианте осуществления амфифильная макромолекула имеет структуру формулы (9)
В формуле (9) определения Е4, т и η описаны в формуле (2); определения Е7, Е8, С, х и у описаны в формуле (7); определения Е9 и Е10 описаны в формуле (8);
ζ представляет собой молярную концентрацию данного структурного звена во всей амфифильной макромолекуле, и ζ составляет 0,05-10 мол.%, предпочтительно 0,1-5,0 мол.%, более предпочтительно 0,5-1,5 мол.%.
Конкретно, в настоящем изобретении предоставлено высокомолекулярное соединение, имеющее структуру формул (1)-(\)
- 3 025931
- 4 025931
- 5 025931
- 6 025931
Молекулярная масса описанной выше амфифильной макромолекулы составляет от 1000000 до 20000000, предпочтительно от 3000000 до 13000000.
Определение молекулярной массы М проводят следующим образом: внутреннюю вязкость [η] измеряют при помощи вискозиметра Уббелоде, известного в данной области техники, затем полученное значение внутренней вязкости [η] используют в следующем уравнении для получения требуемой молекулярной массы М:
- 7 025931
Μ=802[η]125.
Амфифильную макромолекулу согласно настоящему изобретению можно получить известными в данной области способами, например полимеризацией структурного звена для регулирования молекулярной массы, молекулярно-массового распределения и характеристики заряда, стерически затрудненного структурного звена и амфифильного структурного звена в присутствии инициатора. Способ полимеризации может представлять собой способ любого типа, известный в данной области, например такой как суспензионная полимеризация, эмульсионная полимеризация, полимеризация в растворе, полимеризация осаждением и т.д.
Типичный способ получения является следующим: каждый из описанных выше мономеров диспергируют или растворяют в водной системе при перемешивании, мономерную смесь полимеризуют при помощи инициатора в атмосфере азота, получая амфифильную макромолекулу. Для получения амфифильной макромолекулы данного изобретения можно использовать все применимые методы, известные на настоящий момент.
Все мономеры для получения амфифильной макромолекулы могут быть коммерчески доступными или могут быть получены, исходя непосредственно из методов предшествующего уровня техники, а синтез некоторых мономеров подробно описан в конкретных примерах.
Описание чертежей
На фиг. 1 показана зависимость вязкости от концентрации амфифильных макромолекул, полученных в примерах 1-5 данного изобретения, в растворе соли со степенью минерализации 1х104 мг/л при температуре 60°С.
На фиг. 2 показана зависимость вязкости от температуры амфифильных макромолекул, полученных в примерах 1-5 данного изобретения, в растворе соли со степенью минерализации 1х104 мг/л при концентрации 1750 мг/л.
Подробное описание изобретения
Далее настоящее изобретение иллюстрировано приведенной ниже совокупностью конкретных примеров, однако, данное изобретение не ограничено следующими примерами.
Пример 1.
В данном примере описан синтез амфифильной макромолекулы формулы (I)
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 78%, 20%, 0,25%, 0,5%, 1,25%. Смесь перемешивали до полного растворения, а затем добавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 8, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 18°С, через 5 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 970х 104.
Пример 2.
В данном примере описан синтез амфифильной макромолекулы формулы (II)
- 8 025931
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 75%, 23%, 0,25%, 0,25%, 1,5%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 8, после этого в течение 40 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 22°С, через 5 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 1030х 104.
Пример 3.
В данном примере описан синтез амфифильной макромолекулы формулы (III)
Метод синтеза мономера
состоял в следующем:
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а мо- 9 025931 лярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 73%, 26%, 0,1%, 0,1%, 0,8%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 9, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 25°С, через 6 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 620х 104. Пример 4.
В данном примере описан синтез амфифильной макромолекулы формулы (IV)
- 10 025931
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 75%, 23%, 0,1%, 0,4%, 1,5%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 9, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в нем кислорода. В реактор добавляли инициатор в атмосфере газообразного азота, и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 25°С, через 6 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 390х 104.
Пример 5.
В данном примере описан синтез амфифильной макромолекулы формулы (V)
Метод синтеза мономера
состоял в следующем:
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 78%, 21%, 0,1%, 0,1%, 0,8%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 8, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 25°С, через 6 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 390х 104.
Пример 6.
В данном примере описан синтез амфифильной макромолекулы формулы (VI)
- 11 025931
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 73,5%, 25%, 0,5%, 0,5%, 0,5%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 8, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 45°С, через 3 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 680х 104.
Пример 7.
В данном примере описан синтез амфифильной макромолекулы формулы (VII)
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 75%, 23%, 0,25%, 0,25%, 1,5%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 9, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 55 °С, через 3 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 690х 104.
Пример 8.
В данном примере описан синтез амфифильной макромолекулы формулы (VIII)
- 12 025931
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 70%, 28%, 0,15%, 0,75%, 1,1%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 8, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 55 °С, через 3 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 390х 104.
Пример 9.
В данном примере описан синтез амфифильной макромолекулы формулы (IX)
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 75%, 23,5%, 0,5%, 0,5%, 0,5%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 8, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали. Реакцию проводили при температуре 50°С, через 2,5 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 430х 104.
Пример 10.
В данном примере описан синтез амфифильной макромолекулы формулы (X)
- 13 025931
Синтез амфифильной макромолекулы в данном примере проводили следующим образом.
Сначала в реактор помещали воду из расчета 3/4 от общей массы реакционной системы, затем в реактор помещали также различные мономеры из расчета 1/4 от общей массы реакционной системы, а молярные концентрации т, п, х, у, ζ для каждого из повторяющихся звеньев составляли соответственно 74%, 23%, 0,5%, 1,5%, 1%. Смесь перемешивали до полного растворения, а затем прибавляли агент для регулирования рН, чтобы довести значение рН реакционного раствора примерно до 8, после этого в течение 30 мин вводили газообразный азот для удаления содержащегося в ней кислорода. В реактор добавляли инициатор в атмосфере газообразного азота и продолжали пропускание газообразного азота еще в течение 10 мин, затем реактор герметизировали.
Реакцию проводили при температуре 50°С, через 2 ч реакция завершалась полной конверсией. После сушки полученного продукта получали порошкообразную амфифильную макромолекулу.
Молекулярная масса данной амфифильной макромолекулы составляла 560х 104.
Примеры измерений
Пример измерения 1.
Для приготовления растворов амфифильной макромолекулы различной концентрации использовали раствор соли со степенью минерализации 1х104 мг/л и определяли зависимость между концентрацией, температурой и вязкостью раствора. Результаты приведены на фиг. 1 и фиг. 2.
Из данных фигур видно, что растворы амфифильной макромолекулы примеров 1-5 все еще обладают благоприятной способностью увеличивать вязкость в условиях высокой температуры и высокой степени минерализации. Стерически затрудненное звено в амфифильной макромолекуле уменьшало вращательную степень свободы в основной цепи и повышало жесткость макромолекулярной цепи, что затрудняло сгибание данной макромолекулярной цепи и приводило к ее вытягиванию, увеличивая, таким образом, гидродинамический радиус макромолекулы; в то же время, амфифильные структурные звенья связывались друг с другом, образуя микродомен за счет внутри-или межмолекулярного взаимодействия, повышая, таким образом, способность раствора значительно увеличивать вязкость в условиях высокой температуры и высокой степени минерализации.
Пример измерения 2.
Способ испытания: при температуре испытания 25°С в пробирку на 50 мл с пробкой помещали 25 мл образцов электрообезвоженной сырой нефти из трех нефтяных месторождений, затем туда добавляли 25 мл водных растворов амфифильной макромолекулы различной концентрации, полученных в дистиллированной воде. Пробку пробирки уплотняли, затем пробирку встряхивали вручную или при помощи вибрационной камеры 80-100 раз в горизонтальном направлении, а амплитуда встряхивания должна была превышать 20 см. После достаточного встряхивания пробку ослабляли. Скорость снижения вязкости для сырой нефти рассчитывали по следующему уравнению:
χί , вязкость образца сырой нефти-вязкость после смешивания
Скорость снижения вязкости (%) ---—-------- х 100 · вязкость образца сырой нефти
- 14 025931
Экспериментальные результаты снижения вязкости тяжелой нефти при помощи амфифильной макромолекулы, полученной в примерах 6-10 (соотношение нефть-вода 1:1, 25°С)
Объемное отношение нефть-вола (1:1) Образец нефти 1 Скорость снижения вязкости (%) Образец нефти 2 Скорость снижения вязкости (%) Образец нефти 3 Скорость снижения вязкости (%)
Температура испытания (25°)
Начальная вязкость (мПа'с) 1800 6700 18000
Пример 6 400 мг/л 850 52,78 2300 65,67 4700 73,89
600 мг/л 550 69,44 1475 77,99 2350 86,94
800 мг/л 340 81,11 975 85,45 1250 93,06
1000 мг/л 280 84,44 750 88,81 950 94,72
1200 мг/л 220 87,78 650 90,30 825 95,42
Пример 7 400 мг/л 910 49,44 2400 64,18 4450 75,28
600 мг/л 590 67,22 1600 76,12 2100 88,33
800 мг/л 450 75,00 1175 82,46 1050 94,17
1000 мг/л 340 81,11 830 87,61 890 95,06
1200 мг/л 260 85,56 680 89,85 780 95,67
Пример 8 400 мг/л 820 54,44 2050 69,40 4250 76,39
600 мг/л 470 73,89 1370 79,55 1975 89,03
800 мг/л 315 82,50 850 87,31 1325 92,64
1000 мг/л 230 87,22 675 89,93 930 94,83
1200 мг/л 200 88,89 590 91,19 850 95,28
Пример 9 400 мг/л 925 48,61 2270 66,12 4700 73,89
600 мг/л 630 65,00 1420 78,81 2550 : 85,83
800 мг/л 450 75,00 940 85,97 1480 91,78
1000 мг/л 380 78,89 680 89,85 1050 94,17
1200 мг/л 340 81,11 530 92,09 880 95,11
Пример 10 400 мг/л 820 54,44 1900 71,64 5100 71,67
600 мг/л 530 70,56 1250 81,34 2900 83,89
800 мг/л 390 78,33 825 87,69 1890 89,50
1000 мг/л 305 83,06 650 90,30 1400 92,22
1200 мг/л 260 85,56 575 91,42 1175 93,47
В таблице показано, что амфифильные макромолекулы примеров 6-10 оказывали положительное влияние на снижение вязкости для всех трех образцов нефти. При повышении концентрации раствора амфифильной макромолекулы скорость снижения вязкости возрастала. А в случае, когда концентрация раствора амфифильной макромолекулы была одинаковой, скорость снижения вязкости возрастала при увеличении вязкости образца нефти. Предполагается, что амфифильная макромолекула могла бы значительно понижать вязкость сырой нефти за счет синергетического эффекта между стерически затрудненным структурным звеном и амфифильным структурным звеном, которое могло бы эффективно эмульгировать и диспергировать сырую нефть.
Промышленная применимость
Амфифильную макромолекулу данного изобретения можно применять при бурении скважин на нефтяных месторождениях, цементировании скважин, образовании разрывов, сборе и транспортировке сырой нефти, очистке сточных вод, переработке шлама и производстве бумаги и ее можно применять в качестве агента интенсификации нефтедобычи и нефтевытесняющего агента, понизителя вязкости тяжелой нефти, жидкости для гидроразрыва, стабилизатора неустойчивых глин, агента для очистки сточных вод, удерживающей добавки и осушающей добавки и упрочняющего агента для производства бумаги.
Амфифильная макромолекула данного изобретения особенно подходит для добычи сырой нефти, например ее можно применять в качестве полимера для интенсификации вытеснения нефти и понизителя вязкости для тяжелой нефти. При ее применении в качестве нефтевытесняющего агента она обладает превосходным загущающим эффектом даже в условиях высокой температуры и высокой минерализации и, таким образом, может повысить выработку сырой нефти. При применении в качестве понизителя вязкости для тяжелой нефти она способна значительно снизить вязкость тяжелой нефти и уменьшить ее
- 15 025931 гидравлическое сопротивление в пласте и стволе скважины за счет эффективного эмульгирования и диспергирования тяжелой нефти.

Claims (16)

  1. ФОРМУЛА ИЗОБРЕТЕНИЯ
    1. Амфифильная макромолекула, отличающаяся тем, что содержит в качестве повторяющихся звеньев структурное звено А для регулирования молекулярной массы, молекулярно-массового распределения и характеристики заряда, стерически затрудненное структурное звено В и амфифильное структурное звено С, при этом структурное звено А имеет структуру формулы (2) где Κι представляет собой Н или метильную группу;
    К2 и К3 независимо выбирают из группы, состоящей из Н и С1 -С3 алкильной группы;
    К4 выбирают из группы, состоящей из Н и метильной группы;
    Ог представляет собой -ОН или -Ο-Να';
    т и п представляют собой молярную концентрацию структурных звеньев во всей амфифильной макромолекуле, т составляет от 70 до 99 мол.%, п составляет от 1 до 30 мол.%;
    стерически затрудненное структурное звено В включает структуру О и структуру формулы (4), где структура О представляет собой циклическую углеводородную структуру, полученную на основе двух соседних атомов углерода основной цепи, или выбрана из структуры формулы (3) где в формуле (3) К5 представляет собой Н или метильную группу;
    Кб представляет собой радикал, выбранный из группы, состоящей из структур формулы (5) и формулы (6) сн,—о—сн /
    сн \
    СН?— О1СН,)аСН} сн,—о—сн /
    \
    СН2 — О( СН2)2СООСН2СН3 .СН, О(СНр„СН., ~ΝΗс-Си2-О(СН2)2СООСН2СН3
    СН,—О(СНДСН, формула(5)
    СН, — О(СН,),СООСН ,сн3 формула (6).
    где в формуле (5) а представляет собой целое число от 1 до 11; в формуле (4) К7 представляет собой Н;
    К8 выбирают из группы, состоящей из Н, -§О3Н и ее солей, -(СН2)2СН3С1, -СНЛ (С11;НС1М СН;С1 и -СН2Щ(СН3)2(СН2)2^(СН3)2(СН2)пСН32С1-;
    ξ и σ соответственно представляют собой целые числа от 1 до 15;
    при этом циклическую углеводородную структуру, полученную на основе двух соседних атомов углерода в основной цепи, выбирают из группы, состоящей из а амфифильное структурное звено С имеет структуру формулы (8)
    - 16 025931 к<, —(-сн2-с^— сн2
    Кю формула(8) где в формуле (8) К9 представляет собой Н или метильную группу;
    Кю представляет собой -М+ССНэМСНзХСНэХ- -\'((СН;)..С1 ЫХ или -\'(СН;)((СН;).СН;);Х ; г представляет собой целое число от 3 до 21;
    8 представляет собой целое число от 2 до 9;
    1 представляет собой целое число от 3 до 15;
    X- представляет собой С1- или Вг-.
  2. 2. Амфифильная макромолекула по п.1, отличающаяся тем, что структурное звено А включает мет(акриламидное) мономерное звено А1 и/или мет(акриловое) мономерное звено А2.
  3. 3. Амфифильная макромолекула по п.2, отличающаяся тем, что, исходя из 100 мол.% всей амфифильной макромолекулы, молярная концентрация мет(акриламидного) мономерного звена А1 составляет 70-99 мол.%, а молярная концентрация (мет)акрилового мономерного звена А2 составляет 1-30 мол.%.
  4. 4. Амфифильная макромолекула по п.1, отличающаяся тем, что, исходя из 100 мол.% всей амфифильной макромолекулы, молярная концентрация структуры О составляет 0,02-2 мол.%, а молярная концентрация структуры формулы (4) составляем 0,05-5 мол.%.
  5. 5. Амфифильная макромолекула по п.1, отличающаяся тем, что, исходя из 100 мол.% всей амфифильной макромолекулы, молярная концентрация структуры формулы (8) составляет 0,05-10 мол.%.
  6. 6. Амфифильная макромолекула по п.1, в которой стерически затрудненное структурное звено В включает структуру О, где структура О выбрана из структуры формулы (3)
    1’
    4-сщ-с·)формула(З) где в формуле (3) К5 представляет собой Н.
  7. 7. Амфифильная макромолекула по п.1, отличающаяся тем, что стерически затрудненное структурное звено В имеет структуру формулы (7) где в формуле (7) определение О соответствует описанному в п.1; определения К7 и К8 описаны в формуле (4);
    х и у соответственно представляют собой молярные концентрации структурных звеньев во всей амфифильной макромолекуле, х составляет от 0,02 до 2 мол.%, у составляет от 0,05 до 5 мол.%.
  8. 8. Амфифильная макромолекула по п.1, отличающаяся тем, что имеет структуру формулы (9) где в формуле (9) К4 выбирают из группы, состоящей из Н и метильной группы; т и η представляют собой молярную концентрацию структурных звеньев во всей амфифильной макромолекуле, т составляет от 70 до 99 мол.%, η составляет от 1 до 30 мол.%;
    - 17 025931 определения С, К7, К8, х и у соответствуют описанным в формуле (7); определения К9 и К.10 описаны в формуле (8);
    ζ представляет собой молярную концентрацию данного структурного звена во всей амфифильной макромолекуле, ζ составляет от 0,05 до 10 мол.%.
  9. 9. Амфифильная макромолекула по п.1, представляющая собой соединение формул (1)-(Х)
    - 18 025931
    - 19 025931 причем т, п, х, у и ζ в формулах (1)-(Х) соответственно представляют собой молярные концентрации структурных звеньев во всей амфифильной макромолекуле, в которой т составляет от 70 до 99 мол.%, п составляет от 1 до 30 мол.%, х составляет от 0,02 до 2 мол.%, у составляет от 0,05 до 5 мол.%, ζ составляет от 0,05 до 10 мол.%.
  10. 10. Амфифильная макромолекула по любому из пп.1-9, отличающаяся тем, что ее молекулярная масса составляет от 1000000 до 20000000.
  11. 11. Применение амфифильной макромолекулы по любому из пп.1-10 при сборе и транспортировке сырой нефти.
  12. 12. Применение амфифильной макромолекулы по любому из пп.1-10 при очистке сточных вод.
  13. 13. Применение амфифильной макромолекулы по любому из пп.1-10 в качестве агента повышения нефтедобычи и нефтевытесняющего агента.
  14. 14. Применение амфифильной макромолекулы по любому из пп.1-10 в качестве понизителя вязкости тяжелой нефти.
  15. 15. Применение амфифильной макромолекулы по любому из пп.1-10 при переработке шлама.
  16. 16. Применение амфифильной макромолекулы по любому из пп.1-10 в качестве жидкости для гидроразрыва.
EA201490338A 2011-07-26 2011-09-16 Амфифильная макромолекула и ее применение EA025931B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102103193A CN102382242B (zh) 2011-07-26 2011-07-26 一种两亲高分子及其用途
PCT/CN2011/001576 WO2013013354A1 (zh) 2011-07-26 2011-09-16 一种两亲高分子及其用途

Publications (2)

Publication Number Publication Date
EA201490338A1 EA201490338A1 (ru) 2014-05-30
EA025931B1 true EA025931B1 (ru) 2017-02-28

Family

ID=45822122

Family Applications (1)

Application Number Title Priority Date Filing Date
EA201490338A EA025931B1 (ru) 2011-07-26 2011-09-16 Амфифильная макромолекула и ее применение

Country Status (9)

Country Link
US (1) US9738741B2 (ru)
EP (1) EP2738189B1 (ru)
CN (1) CN102382242B (ru)
CA (1) CA2842783C (ru)
DK (1) DK2738189T3 (ru)
EA (1) EA025931B1 (ru)
ES (1) ES2630738T3 (ru)
MY (1) MY166452A (ru)
WO (1) WO2013013354A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593276B2 (en) 2012-12-21 2017-03-14 Halliburton Energy Services, Inc. Reversibly coagulatable and redispersable polymer including at least one monomer including a switchable-amphiphilic functional group and methods of using the same
CN104371061B (zh) 2013-08-14 2016-08-17 中国石油化工股份有限公司 一种阳离子聚合物及其在堵漏剂中的应用
CN105646777A (zh) * 2015-12-29 2016-06-08 四川光亚聚合物化工有限公司 一种疏水缔合聚合物及其制备方法
CN106701053A (zh) * 2016-12-08 2017-05-24 北京百特泰科能源工程技术有限公司 一种高分子原油活化剂及其制备方法与应用
CN106675543B (zh) * 2017-02-17 2018-06-01 中国石油大学(华东) 一种盐增黏水溶性两亲聚合物驱油剂
CN110317295B (zh) * 2018-03-29 2021-06-11 中国石油化工股份有限公司 一种活性分子降粘剂及其制备方法
CN109705263A (zh) * 2019-01-22 2019-05-03 刘忠 一种稠油降粘剂
CN116257740B (zh) * 2023-05-16 2023-08-04 中海油天津化工研究设计院有限公司 一种海洋石油油气水生产大数据处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653584A (en) * 1985-05-30 1987-03-31 The Standard Oil Company Maleimide-modified bioresistant polymers and enhanced oil recovery method employing same
US4702319A (en) * 1986-12-29 1987-10-27 Exxon Research And Engineering Company Enhanced oil recovery with hydrophobically associating polymers containing sulfonate functionality
CN101492515A (zh) * 2009-01-23 2009-07-29 成都理工大学 丙烯酰胺改性接枝共聚物及其制备方法和用途
CN101781386A (zh) * 2009-12-31 2010-07-21 中国科学院化学研究所 一种两亲高分子驱油剂的制备方法
CN101798503A (zh) * 2010-01-05 2010-08-11 西南石油大学 一种用于提高采收率的新型聚合物驱油剂及其应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279500A (ja) * 1996-04-16 1997-10-28 Sanyo Chem Ind Ltd 紙用防滑剤もしくはサイズ剤
CN1314720C (zh) * 2004-12-13 2007-05-09 大连广汇化学有限公司 高分子量两性高分子的制备方法
FR2914647B1 (fr) * 2007-04-05 2011-10-21 Rhodia Recherches Et Tech Copolymere comprenant des unites betainiques et des unites hydrophobes et/ou amphiphiles,procede de preparation,et utilisations.
CN101284893B (zh) * 2008-06-06 2010-10-27 成都理工大学 梳型两亲水溶性共聚物及其制备方法和用途
CN101570697B (zh) * 2009-06-01 2013-01-02 中国科学院化学研究所 一种原油破乳剂
WO2011068837A2 (en) * 2009-12-01 2011-06-09 Lubrizol Advanced Materials, Inc. Hydrolytically stable multi-purpose polymers
CN102382243B (zh) 2011-07-26 2013-03-27 中国科学院化学研究所 一种两亲高分子和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4653584A (en) * 1985-05-30 1987-03-31 The Standard Oil Company Maleimide-modified bioresistant polymers and enhanced oil recovery method employing same
US4702319A (en) * 1986-12-29 1987-10-27 Exxon Research And Engineering Company Enhanced oil recovery with hydrophobically associating polymers containing sulfonate functionality
CN101492515A (zh) * 2009-01-23 2009-07-29 成都理工大学 丙烯酰胺改性接枝共聚物及其制备方法和用途
CN101781386A (zh) * 2009-12-31 2010-07-21 中国科学院化学研究所 一种两亲高分子驱油剂的制备方法
CN101798503A (zh) * 2010-01-05 2010-08-11 西南石油大学 一种用于提高采收率的新型聚合物驱油剂及其应用

Also Published As

Publication number Publication date
EP2738189A1 (en) 2014-06-04
CN102382242B (zh) 2013-10-23
CA2842783C (en) 2016-03-29
US20140316092A1 (en) 2014-10-23
DK2738189T3 (en) 2017-02-20
CA2842783A1 (en) 2013-01-31
ES2630738T3 (es) 2017-08-23
EP2738189A4 (en) 2015-08-19
WO2013013354A1 (zh) 2013-01-31
US9738741B2 (en) 2017-08-22
MY166452A (en) 2018-06-27
EP2738189B1 (en) 2016-11-09
EA201490338A1 (ru) 2014-05-30
CN102382242A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
EA025931B1 (ru) Амфифильная макромолекула и ее применение
EA025834B1 (ru) Амфифильная макромолекула и ее применение
EA026294B1 (ru) Амфифильная макромолекула и ее применение
US10266617B2 (en) Cationic copolymer and use thereof in lost circulation additive
Cao et al. Application of amino-functionalized nanosilica in improving the thermal stability of acrylamide-based polymer for enhanced oil recovery
RU2494135C2 (ru) Инжекционная композиция для скважин на основе биоцида и способы обработки скважин
EA025880B1 (ru) Амфифильная макромолекула и ее применение
US20100204362A1 (en) Novel multifunctional azo initiators for free radical polymerizations: uses thereof
BR112019028277A2 (pt) composições de polímero de alta estabilidade com compostos de siloxano-poliéter para aplicações de recuperação de óleo intensificadas
CN106590614A (zh) 一种速溶型耐盐高粘降阻剂及其制备方法
Zhou et al. Preparation and properties of bifunctional associative polymer with twin tail and long chain structure for shale gas fracturing
CN117355593A (zh) 2-丙烯酰胺基-2-甲基丙烷磺酸聚合物及其用途

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AM MD TJ