DK159852B - PROCESS FOR THE PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE OR BASIC SALTS OR IN VIVO EASY HYDRAULIZABLE ESTERS - Google Patents
PROCESS FOR THE PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE OR BASIC SALTS OR IN VIVO EASY HYDRAULIZABLE ESTERS Download PDFInfo
- Publication number
- DK159852B DK159852B DK092680A DK92680A DK159852B DK 159852 B DK159852 B DK 159852B DK 092680 A DK092680 A DK 092680A DK 92680 A DK92680 A DK 92680A DK 159852 B DK159852 B DK 159852B
- Authority
- DK
- Denmark
- Prior art keywords
- dioxide
- acid
- compound
- hydrogen
- ethyl
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D499/00—Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Communicable Diseases (AREA)
- Pharmacology & Pharmacy (AREA)
- Oncology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Cosmetics (AREA)
Description
iin
DK 159852 BDK 159852 B
Den foreliggende opfindelse angår en særlig fremgangsmåde til fremstilling af penicillansyre-1,1-dioxid eller estre deraf med den almene formel «00The present invention relates to a particular process for the preparation of penicillanic acid 1,1-dioxide or esters thereof of the general formula
5 'ί V »%CHJ5 'ί V »% CHJ
0 ·% C00R1 eller et farmaceutisk acceptabelt basesalt deraf, hvor 10 er hydrogen eller en in vivo let hydrolyserbar esterdannende gruppe, hvilken fremgangsmåde er ejendommelig ved det i krav l's kendetegnende del anførte.0 ·% C00R1 or a pharmaceutically acceptable base salt thereof, wherein 10 is hydrogen or an in vivo readily hydrolyzable ester-forming group, characterized by the characterizing part of claim 1.
Penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf er anvendelige som beta-lactamasein-15 hibitorer og som midler, der fremmer effektiviteten af visse beta-lactam-antibiotica, når sidstnævnte anvendes til behandling af bakterieinfektioner hos pattedyr, navnlig mennesker.Penicillanic acid 1,1-dioxide and in vivo readily hydrolyzable esters thereof are useful as beta-lactamasein inhibitors and as agents promoting the efficacy of certain beta-lactam antibiotics when the latter is used to treat bacterial infections in mammals, especially humans. .
Fra dansk fremlæggelsesskrift nr. 155.740 er det 20 kendt at fremstille penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf ved oxidation af penicil-lansyre eller estre deraf, hvorhos disse udgangsforbindelser kan fremstilles ved debromering af tilsvarende 6-brom-penicillansyrederivater. Sammenlignet med denne 25 kendte proces fører fremgangsmåden ifølge den foreliggende opfindelse, der også som udgangsforbindelser anvender 6-halogenpenicillansyre-derivater, til bedre udbytter af penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf, hvilket er dokumenteret nedenfor.From Danish Patent Specification No. 155,740, it is known to prepare penicillanic acid 1,1-dioxide and in vivo readily hydrolyzable esters thereof by oxidation of penicillanic acid or esters thereof, wherein these starting compounds can be prepared by debromating similar 6-bromo-penicillanic acid derivatives . Compared to this known process, the process of the present invention, which also uses, as starting compounds, 6-halo-penicillanic acid derivatives, leads to better yields of penicillanic acid 1,1-dioxide and in vivo easily hydrolyzable esters thereof, as documented below.
30 6-Halogenpenicillansyrer findes omtalt af Cigna- rella et al,, Journal of Organic Chemistry, 22, 2668 (1962), og i US-patentskrift nr. 3.206.469, og hydrogeno-lyse af 6-halogenpenicillansyrer til penicillansyre findes omtalt i britisk patentskrift nr. 1.072.108.30 6-Halo-penicillanic acids are disclosed by Cignarella et al., Journal of Organic Chemistry, 22, 2668 (1962), and in U.S. Patent No. 3,206,469, and hydrogenolysis of 6-halo-penicillanic acids for penicillanic acid is disclosed in British Patent Specification No. 1,072,108.
35 Harrison et al., Journal of the Chemical SocietyHarrison et al., Journal of the Chemical Society
DK 159852 BDK 159852 B
(London), Perkin I, 1772 (1976) omtalers (a) oxidation af 6,6-dibrompenicillansyre med 3-chlorperbenzoesyre til dannelsen af en blanding af de tilsvarende a- og β-sul-foxider, (b) oxidation af methyl-6,6-dibrompenicillanat 5 med 3-chlorperbenzoesyre til dannelse af et methyl-6,6-dibrompenicillanat-1,1-dioxid, (c) oxidation af methyl-6-a-chlorpenicillanat med 3-chlorperbenzoesyre til dannelse af en blanding af de tilsvarende <x-cg β-sulfoxider, og (d) oxidation af methyl-6-brompenicillanat med 3-chlor-perbenzoesyre til dannelse af en blanding af de tilsvarende a- og 8-sulfoxider.(London), Perkin I, 1772 (1976) mentioned (a) oxidation of 6,6-dibrompenicillanic acid with 3-chloroperbenzoic acid to form a mixture of the corresponding α- and β-sulphoxides, (b) oxidation of methyl 6,6-dibrompenicillanate 5 with 3-chloroperbenzoic acid to form a methyl 6,6-dibrompenicillanate-1,1-dioxide; (c) oxidation of methyl 6-a-chlorpenicillanate with 3-chloroperbenzoic acid to form a mixture of and (d) oxidation of methyl 6-brompenicillanate with 3-chloro-perbenzoic acid to form a mixture of the corresponding α- and 8-sulfoxides.
Clayton, Journal of the Chemical Society (London), (C), 2123, (1969), omtaler: (a) fremstilling af 6,6-di-brom- og 6,6-diiodpenicillansyre, (b) oxidation af 6,6-15 dibrompenicillansyre med natriumperiodat til dannelse af en blanding af de tilsvarende sulfoxider, (c) hydrogeno-lyse af methyl-6,6-dibrompenicillanat til dannelse af methyl-6-a-brompenicillanat, (d) hydrogenolyse af 6,6-dibrompenicillansyre og dens methylester til dannelsen 20 af penicillansyre og dens methylester, og (e) hydrogenolyse af en blanding af methyl-6,6-diiodpenicillanat og methyl-6-a-iodpenicillanat til dannelse af rent methyl-6-a-iodpenicillanat.Clayton, Journal of the Chemical Society (London), (C), 2123, (1969) discloses: (a) preparation of 6,6-di-bromo- and 6,6-diiodo-penicillanic acid, (b) oxidation of 6, 6-15 dibrompenicillanic acid with sodium periodate to form a mixture of the corresponding sulfoxides, (c) hydrogenolysis of methyl 6,6-dibrompenicillanate to give methyl 6-a-brompenicillanate, (d) hydrogenolysis of 6.6 dibrompenicillanic acid and its methyl ester for the formation of penicillanic acid and its methyl ester; and (e) hydrogenolysis of a mixture of methyl 6,6-diiodo-penicillanate and methyl 6-a-iodo-penicillanate to form pure methyl-6-a-iodo-penicillanate.
Fremgangsmåden ifølge den foreliggende opfindelse 25 til fremstilling af penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf med ovenstående almene formel I er ejendommelig ved, at a) en forbindelse med den almene formel 30 Y * vvCH3The process of the present invention 25 for the preparation of penicillanic acid 1,1-dioxide and in vivo easily hydrolyzable esters thereof of the above general formula I is characterized in that a) a compound of the general formula 30 Y * vvCH3
““Λ-T P'CBj (ID“Λ-T P'CBj (ID
35 J-H-35 J-H-
o' COORo 'COOR
DK 159852 BDK 159852 B
3 eller et farmaceutisk acceptabelt basesalt deraf, hvor R er som ovenfor defineret for R^ eller er en sædvanlig penicillincar-boxy-beskyttende gruppe, og X og Y hver er valgt blandt hydrogen, chlor, brom og iod med den betingelse, at når 5 X og Y er ens, skal de begge være brom, bringes i kontakt med et reagens valgt blandt al-kalimetalpermanganater, jordalkalimetalpermanganater og organiske peroxycarboxylsyrer, til dannelse af en forbindelse med den almene formel 10 Y H- °'. /° _CH, X‘‘‘<U3i^CH3 (III)3 or a pharmaceutically acceptable base salt thereof, wherein R is as defined above for R 2 or is a conventional penicillin carboxy protecting group, and X and Y are each selected from hydrogen, chlorine, bromine and iodine with the condition that when X and Y are the same, they must both be bromine, contacted with a reagent selected from alkali metal permanganates, alkaline earth metal permanganates and organic peroxycarboxylic acids, to form a compound of the general formula 10 H H +. / ° _CH, X '' '<U3i ^ CH3 (III)
0 S C OCR0 S C OCR
15 eller et basesalt deraf, hvor X, Y og R er som ovenfor defineret, og b) produktet fra trin a) dehalogenereres ved katalytisk hydrogenolyse i et inert opløsningsmiddel, ved et tryk 20 i området fra 1 til 100 kg/cm*, i nærværelse af 0,01 til 2,5 vægti af en hydrogenolyse-katalysator, ved en temperatur i området fra 0 til 60°C og ved et pH i området fra 4 til 9, hvorhos en ved R eventuelt tilstedeværende beskyt-25 telsesgruppe fjernes under eller efter trin a) eller trin b), og at, om ønsket, en opnået forbindelse med formlen (I), hvor R^ er hydrogen, esterificeres til en tilsvarende forbindelse, hvor R1 er en in vivo let hydrolyserbar esterdannende gruppe, eller en opnået forbindelse med 30 formlen (I), hvor R1 er en in vivo let hydrolyserbar esterdannende gruppe, hydrolyseres til en tilsvarende forbindelse, hvor R^ er hydrogen, eller en vundet forbindelse med formlen (I) overføres i et farmaceutisk acceptabelt basesalt deraf.15 or a base salt thereof, wherein X, Y and R are as defined above, and b) the product of step a) is dehalogenated by catalytic hydrogenolysis in an inert solvent, at a pressure 20 in the range of 1 to 100 kg / cm the presence of 0.01 to 2.5 wt. of a hydrogenolysis catalyst, at a temperature in the range of 0 to 60 ° C and at a pH in the range of 4 to 9, wherein a protecting group present at R is removed below or after step a) or step b) and, if desired, an obtained compound of formula (I) wherein R 1 is hydrogen is esterified to a corresponding compound wherein R 1 is an in vivo readily hydrolyzable ester forming group, or a obtained compound of formula (I), wherein R 1 is an in vivo readily hydrolyzable ester forming group, hydrolyzed to a corresponding compound wherein R 1 is hydrogen or a won compound of formula (I) is transferred into a pharmaceutically acceptable base salt thereof.
44
DK 159852 BDK 159852 B
I trin b) er hydrogenolysekatalysatoren fortrinsvis til stede i en mængde fra ca. 0,1 til ca. 1,0 vægtprocent, baseret på forbindelsen med formlen III.In step b), the hydrogenolysis catalyst is preferably present in an amount of from ca. 0.1 to approx. 1.0% by weight based on the compound of formula III.
Den foretrukne betydning af X og Y er brom, og de 5 foretrukne reagenser til gennemførelse af trin (a) er kaliumpermanganat og 3-chlorperbenzoesyre.The preferred meaning of X and Y is bromine and the 5 preferred reagents for carrying out step (a) are potassium permanganate and 3-chloroperbenzoic acid.
I det tilfælde, hvor X og Y begge er chlor, er forbindelsen med formlen II vanskelig at vinde. I det tilfælde, hvor X og Y begge er iod, forløber trin (a) 10 ved fremgangsmåden ifølge opfindelsen uhensigtsmæssigt langsomt.In the case where X and Y are both chlorine, the compound of formula II is difficult to obtain. In the case where X and Y are both iodine, step (a) 10 of the process according to the invention proceeds inappropriately slowly.
Forskellen mellem den omhandlede fremgangsmåde til fremstilling af penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf og den fra ovennævnte 15 danske fremlæggelsesskrift nr. 155.740 kendte fremstillingsmetode for sådanne penicillansyrederivater kan illustreres ved følgende skema:The difference between the present process for the preparation of penicillanic acid-1,1-dioxide and in vivo readily hydrolyzable esters thereof and the known method of preparation of such penicillanic acid derivatives from the above-mentioned Danish Patent Specification No. 155,740 can be illustrated by the following scheme:
Y HY H
x'·/-CH3 20 J I CH3 (C-N-1, J i 1 nCOOR1 / "\ 25 ϊ 8 ‘y* g *·../_V·' CH3 I^S . -CH, J J I CH3 j J T P' CH, 30 111 /ΠΙΑ _CH3 35 JZJ_TCH3 ! '--.COOR1x '· / -CH3 20 JI CH3 (CN-1, J i 1 nCOOR1 / "\ 25 ϊ 8' y * g * · ../_ V · 'CH3 I ^ S. -CH, JJI CH3 j JTP' CH , 30 111 / ΠΙΑ _CH3 35 JZJ_TCH3! '-. COOR1
DK 159852 BDK 159852 B
5 hvor r\ X og Y er som ovenfor defineret.5 where r \ X and Y are as defined above.
Som det fremgår bliver der ved den kendte proces først dehalogenereret og derefter oxideret, mens der ved den omhandlede fremgangsmåde først oxideres og derefter 5 dehalogenereres.As can be seen, the known process first dehalogenates and then oxidizes, while in the process according to the invention it is first oxidized and then dehalogenated.
Ved den kendte fremstillingsproces er ved trin IIIA -> I det bedste opnåede udbytte på 78% (Eksempel 1), der angår fremstilling af penicillansyre-1,1-dioxid ved oxidation af natriumsaltet af penicillansyre.In the known manufacturing process, at stage IIIA -> I, the best yield is 78% (Example 1), which relates to the preparation of penicillanic acid 1,1-dioxide by oxidation of the sodium salt of penicillanic acid.
10 Der er i fremlaeggelsesskriftet ikke angivet noget udbytte for fremstillingen af penicillansyre-udgangsma-terialet ved debromeringstrinnet II -> IIIA. Med henblik på sammenligning er der derfor gennemført følgende sammenligningseksempel : 15 Fremstilling af penicillansyre:In the disclosure no yield is reported for the preparation of the penicillanic acid starting material at the debromination step II -> IIIA. Therefore, for comparison purposes, the following comparative example has been carried out: Preparation of penicillanic acid:
Til en omrørt opløsning af 1095,2 g 6-a-brompeni-cillansyre i 2177 ml methanol blev der sat 622 ml vand.To a stirred solution of 1095.2 g of 6-α-brompenic-cillanic acid in 2177 ml of methanol was added 622 ml of water.
Den opnåede opløsning blev afkølet til 20°C, pH blev indstillet på 7,2 med 4N natriumhydroxid, og derefter blev 20 der tilsat 550 g 5% palladium-på-kul-katalysator. Blandingen blev derefter rystet i en hydrogenatmosfære ved et tryk på ca. 5 kg/cm , indtil hydrogenoptagning ophørte. Katalysatoren blev frafiltreret og vasket med en blanding af 2177 ml methanol og 622 ml vand. Vaskevæsker-25 ne og filtratet fra filtreringen blev samlet og fortyndet til et volumen på 18 liter med vand. Den herved opnåede blanding blev ekstraheret med dichlormethan, og ekstrakterne blev vasket med vand efterfulgt af mættet natrium-chloridopløsning. Dichlormethanopløsningen blev tørret 50 med magnesiumsulfat og inddampet i vakuum, hvorved der blev opnået 275,6 g (35% udbytte) af penicillansyre.The resulting solution was cooled to 20 ° C, the pH was adjusted to 7.2 with 4N sodium hydroxide, and then 550 g of 5% palladium-on-carbon catalyst was added. The mixture was then shaken in a hydrogen atmosphere at a pressure of approx. 5 kg / cm until hydrogen uptake ceased. The catalyst was filtered off and washed with a mixture of 2177 ml of methanol and 622 ml of water. The washings and filtrate from the filtration were collected and diluted to a volume of 18 liters with water. The resulting mixture was extracted with dichloromethane and the extracts were washed with water followed by saturated sodium chloride solution. The dichloromethane solution was dried 50 with magnesium sulfate and evaporated in vacuo to give 275.6 g (35% yield) of penicillanic acid.
Det samlede udbytte ved den kendte proces II -> IIIA -> I er således højst på ca. 27%.Thus, the total yield of the known process II -> IIIA -> I is no more than approx. 27%.
For fremgangsmåden ifølge den foreliggende opfin-35 delse kan der på grundlag af nedenstående Eksempler forventes et totaludbytte II -> III -> I på mindst 53% (jvf. Eksempler 1+8, Eksempler 12+13 og Eksempler 17+21).For the process of the present invention, based on the Examples below, a total yield II -> III -> I of at least 53% can be expected (cf. Examples 1 + 8, Examples 12 + 13 and Examples 17 + 21).
Fremgangsmåden ifølge den foreliggende opfindelse 6The method of the present invention 6
DK 159852 BDK 159852 B
fører således til udbytter, der er omtrent det dobbelte af de ved den kendte syntesevej opnåelige udbytter.thus, yields about twice the yields obtained by the known synthetic route.
Mellemproduktforbindelserne med den almene formel III og deres basesalte, hvor X, Y og R er som ovenfor 5 defineret, er hidtil ukendte forbindelser.The intermediate compounds of general formula III and their base salts, wherein X, Y and R are as defined above, are novel compounds.
Et foretrukket mellemprodukt er 6,6-dibrompeni-cillansyre-1,1-dioxid, dvs. forbindelsen med formlen III, hvor X og Y er brom, og R1 er hydrogen.A preferred intermediate is 6,6-dibrompenicillanic acid 1,1-dioxide, i.e. the compound of formula III wherein X and Y are bromine and R1 is hydrogen.
De i den foreliggende beskrivelse omtalte slut-10 forbindelser og mellemprodukter er betegnet som derivater af penicillansyre, der er repræsenteret ved følgende strukturelle formel: ' 1 ,CH,The final compounds and intermediates referred to in the present specification are referred to as penicillanic acid derivatives represented by the following structural formula:
" 'COOH"'COOH
20 I derivater af penicillansyre angiver binding med brudt linie af en substituent til den bicycliske kerne, at substituenten ligger under kernens plan. En sådan substituent siges at være i o-konfiguration. Omvendt angiver binding med fuld linie af en substituent til den bicycli-25 ske kerne, at substituenten ligger over kernens plan.In penicillanic acid derivatives, a broken line bond of a substituent to the bicyclic nucleus indicates that the substituent is below the core plane. Such a substituent is said to be in o-configuration. Conversely, full line binding of a substituent to the bicyclic nucleus indicates that the substituent is above the plane of the nucleus.
DK 159852 BDK 159852 B
77
Sidstnævnte konfiguration omtales som 8-konfiguration.The latter configuration is referred to as 8 configuration.
Gruppen X har således α-konfiguration, og gruppen Y har 8-konfiguration i formlen II.Thus, group X has α-configuration and group Y has 8-configuration of formula II.
I den foreliggende beskrivelse er der, når er 5 en in vivo let hydrolyserbar esterdannende gruppe, tale om en gruppe, der er tænkt afledt af en alkohol med form-1 1 len R -OH, således at delen COOR i en sådan forbindelse med formlen I repræsenterer en estergruppe. Endvidere er R^ af en sådan art, at gruppen COOR^ let fraspaltes in 10 vivo under frigøring af en fri carboxygruppe (COOH). Det vil sige, at R^ er en gruppe af en sådan type, at når en forbindelse med formlen I, hvor R^ er en in vivo let hydrolyserbar esterdannende gruppe, udsættes for pattedyrblod eller -væv, bliver forbindelsen med formlen I, hvor 15 R er hydrogen, let dannet. Grupperne R er velkendte på penicillin-området. I de fleste tilfælde forbedrer de penicillinforbindelsens absorptionsegenskaber. Yderligere skal R1 være af en sådan art, at den bibringer en forbindelse med formlen I farmaceutisk acceptable egenskaber, 20 og at den frigør farmaceutisk acceptable fragmenter, når den fraspaltes in vivo. Grupperne R^ er velkendte og i-dentificeres let af fagmanden på penicillinområdet. Se for eksempel tyske offentliggørelsesskrift nr. 2.517.316. Specifikke eksempler på grupper for R1 er 3-phthalidyl, 25 4-crotonolactonyl, y-butyrolacton-4-yl og grupper med formlerne:In the present specification, when 5 is an in vivo readily hydrolyzable ester-forming group, this is a group which is intended to be derived from an alcohol of the formula 11 of R-OH, so that the part COOR in such a compound of the formula You represent an ester group. Furthermore, R 1 is such that the COOR 3 group is readily cleaved in vivo with the release of a free carboxy group (COOH). That is, R 1 is a group of such a type that when a compound of formula I wherein R 1 is an in vivo readily hydrolyzable ester-forming group is exposed to mammalian blood or tissue, the compound of formula I wherein R is hydrogen, easily formed. The groups R are well known in the art of penicillin. In most cases, they improve the absorption properties of the penicillin compound. In addition, R1 must be of such a nature that it provides a compound of formula I with pharmaceutically acceptable properties and releases pharmaceutically acceptable fragments when cleaved in vivo. The groups R 1 are well known and readily identified by one of skill in the art of penicillin. See, for example, German Publication No. 2,517,316. Specific examples of groups for R 1 are 3-phthalidyl, 4-crotonolactonyl, γ-butyrolacton-4-yl and groups of the formulas:
R2 O R2 OR2 O R2 O
i II 4 I II 4 -C-O-C-R og -C-O-C-O-R’in II 4 I II 4 -C-O-C-R and -C-O-C-O-R '
30 r3 P30 r3 P
V VIV VI
2 3 hvor R og R hver er hydrogen eller alkyl med 1-2 C- atomer, og R^ er alkyl med 1-5 C-atomer. Foretrukne 1 35 grupper for R er imidlertid alkanoyloxymethyl med 3-7 C-atomer,l-(alkanoyloxy)ethyl med 4-8 C-atomer, 1-methyl-l-(alkanoyloxy)ethyl med 5-9 C-atomer, alkoxycarbonyl-oxymethyl med 3-6 C-atomer, 1-(alkoxycarbonyloxy)ethyl med 4-7 C-atomer, 1-methyl-1-(alkoxycarbonyloxy)ethyl 8Wherein R and R are each hydrogen or alkyl of 1-2 C atoms and R 1 is alkyl of 1-5 C atoms. However, preferred groups for R are alkanoyloxymethyl of 3-7 C atoms, 1- (alkanoyloxy) ethyl of 4-8 C atoms, 1-methyl-1- (alkanoyloxy) ethyl of 5-9 C atoms, alkoxycarbonyl -oxymethyl with 3-6 C atoms, 1- (alkoxycarbonyloxy) ethyl with 4-7 C atoms, 1-methyl-1- (alkoxycarbonyloxy) ethyl 8
DK 159852 BDK 159852 B
med 5-8 C-atomer, 3-phthalidyl, 4-crotonolactonyl og γ-butyrolacton-4-yl.with 5-8 C atoms, 3-phthalidyl, 4-crotonolactonyl and γ-butyrolacton-4-yl.
3-Phthalidyl, 4-crotonolactonyl og γ-butyrolac-ton-4-yl refererer til strukturer VII, VIII og IX. Bølge-5 linierne skal angive hver af de to epimere eller en blanding deraf.3-Phthalidyl, 4-crotonolactonyl and γ-butyrolactone-4-yl refer to structures VII, VIII and IX. The wave-5 lines must indicate each of the two epimers or a mixture thereof.
- y> 'Φ o o 0- y> 'Φ o o 0
vil VIII IXwill VIII IX
15 Trin (a) af fremgangsmåden ifølge opfindelsen in debærer oxidation af sulfidgruppen i en forbindelse med formlen II til en sulfongruppe, hvorved dannes en forbindelse med formlen III. Til denne reaktion kan der som nævnt anvendes alkalimetalpermanganater, såsom natrium-20 og kaliumpermanganat, jordalkalimetalpermanganater, såsom calcium- og bariumpermanganater, og organiske peroxy-carboxylsyrer, såsom pereddikesyre og 3-chlorperbenzoesy-re.Step (a) of the process of the invention injects oxidation of the sulfide group of a compound of formula II to a sulfone group, thereby forming a compound of formula III. As mentioned, for this reaction, alkali metal permanganates such as sodium and potassium permanganate, alkaline earth metal permanganates such as calcium and barium permanganates, and organic peroxycarboxylic acids such as peracetic acid and 3-chloroperbenzoic acid may be used.
25 Når en forbindelse med formlen II, hvor X, Y og R* er som ovenfor defineret, oxideres til den tilsvarende forbindelse med formlen III under anvendelse af et metal-permanganat, gennemføres reaktionen sædvanligvis ved at behandle forbindelsen med formlen II med fra ca. 0,5 til 30 ca. 10 molære ækvivalenter, fortrinsvis fra ca. 1 til ca.When a compound of formula II wherein X, Y and R * are as defined above is oxidized to the corresponding compound of formula III using a metal permanganate, the reaction is usually carried out by treating the compound of formula II with from 0.5 to 30 approx. 10 molar equivalents, preferably from ca. 1 to approx.
4 molære ækvivalenter af permanganatet i et passende, over for reaktionen indifferent opløsningsmiddelsystem.4 molar equivalents of the permanganate in an appropriate inert solvent system reaction.
Et passende, over for reaktionen indifferent opløsningsmiddelsystem er et sådant, der ikke på ugunstig måde sam-35 virker hverken med udgangsmaterialerne eller med produktet, og vand er almindeligt benyttet. Om ønsket kan der tilsættes et co-opløsningsmiddel, der er blandbart med vand, men som ikke vil samvirke med permanganatet, såsomA suitable solvent inert to the reaction is one which does not adversely interact neither with the starting materials nor with the product, and water is commonly used. If desired, a water-miscible co-solvent may be added but will not interact with the permanganate such as
DK 159852 BDK 159852 B
9 tetrahydrofuran. Reaktionen kan gennemføres ved en temperatur inden for området fra ca. -30°C til ca. 50°C, og den gennemføres fortrinsvis fra ca. -10° til ca. 10°C.9 tetrahydrofuran. The reaction can be carried out at a temperature within the range of from ca. -30 ° C to approx. 50 ° C, and it is preferably carried out from ca. -10 ° to approx. 10 ° C.
Ved ca. 0°C er reaktionen i almindelighed fuldendt i lø-30 bet af kort tid, f.eks. i løbet af en time. Selvom reaktionen kan gennemføres under neutrale, basiske eller sure betingelser, foretrækkes det at anvende et pH inden for området fra ca. 4 til ca. 9, fortrinsvis 6-8. Det er imidlertid væsentligt at vælge betingelser, hvorunder de-35 komponering af Ø-lactamringsystemet af forbindelsen med formlen II eller III undgås. Det er ofte fordelagtigt at pufre reaktionsmediets pH i nærheden af neutralitet. Produktet udvindes ved sædvanlig teknik. Ethvert overskud af permanganat bliver i almindelighed dekomponeret ved anvendelse af natriumbisulfit, og hvis produktet ikke befinder sig i opløsning, bliver det derefter indvundet ved filtrering. Det fraskilles fra mangandioxld ved at eks-5 trahere det over i et organisk opløsningsmiddel og fjerne opløsningsmidlet ved fordampning. Hvis produktet befinder sig i opløsning ved reaktionens afslutning, isoleres det ved sædvanlig opløsningsmiddelekstraktion.At about. 0 ° C, the reaction is generally completed in a short period of time, e.g. within an hour. Although the reaction may be carried out under neutral, basic or acidic conditions, it is preferred to use a pH within the range of from ca. 4 to approx. 9, preferably 6-8. However, it is essential to select conditions under which de-composing the β-lactam ring system of the compound of formula II or III is avoided. It is often advantageous to buffer the pH of the reaction medium in the vicinity of neutrality. The product is recovered by conventional techniques. Any excess permanganate is generally decomposed using sodium bisulfite, and if the product is not in solution, it is then recovered by filtration. It is separated from manganese dioxide by extracting it into an organic solvent and removing the solvent by evaporation. If the product is in solution at the end of the reaction, it is isolated by usual solvent extraction.
Når en forbindelse med formlen II, hvor X, Y og R* 10 er som ovenfor defineret, oxideres til den tilsvarende forbindelse med formlen III ved anvendelse af en peroxy-carboxylsyre, gennemføres reaktionen sædvanligvis ved at behandle forbindelsen med formlen II med fra ca. 1 til ca. 6 molære ækvivalenter, og fortrinsvis ca. 2,2 molære 15 ækvivalenter af oxidationsmidlet i et reaktions-indifferent organisk opløsningsmiddel. Typiske opløsningsmidler er chlorerede carbonhydrider, såsom dichlormethan, chloroform og 1,2-dichlorethan, og ethere, såsom diethylether, tetrahydrofuran og 1,2-dimethoxyethan. Reaktionen gennem-20 føres normalt ved en temperatur på fra ca. -30° til ca.When a compound of formula II wherein X, Y and R * 10 are as defined above is oxidized to the corresponding compound of formula III using a peroxycarboxylic acid, the reaction is usually carried out by treating the compound of formula II with from 1 to approx. 6 molar equivalents, and preferably approx. 2.2 molar equivalents of the oxidant in a reaction-inert organic solvent. Typical solvents are chlorinated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane, and ethers such as diethyl ether, tetrahydrofuran and 1,2-dimethoxyethane. The reaction is usually carried out at a temperature of from ca. -30 ° to approx.
50°C, fortrinsvis fra ca. 15° til ca. 30°C. Ved ca. 25°C anvendes almindeligvis reaktionstider fra ca. 2 til ca.50 ° C, preferably from ca. 15 ° to approx. 30 ° C. At about. Reaction times of about 25 ° C are generally used. 2 to approx.
1010
DK 159852 BDK 159852 B
16 timer. Produktet isoleres normalt ved at fjerne opløsningsmidlet ved fordampning i vakuum. Reaktionsproduktet kan renses ved sædvanlige, på området velkendte metoder. Alternativt kan det anvendes direkte i trin (b) uden y-5 derligere rensning.16 hours. The product is usually isolated by removing the solvent by evaporation in vacuo. The reaction product can be purified by conventional methods well known in the art. Alternatively, it can be used directly in step (b) without further purification.
Trin (b) ved fremgangsmåden ifølge opfindelsen er en dehalogeneringsreaktion. En hensigtsmæssig metode til gennemførelse af denne omdannelse er at omrøre eller ryste en opløsning af en forbindelse med formlen III under 10 en hydrogenatmosfære, eller hydrogen blandet med et indifferent fortyndingsmiddel, såsom nitrogen eller argon, i nærværelse af en hydrogenolyse-katalysator. Egnede opløsningsmidler for denne hydrogenolyse-reaktion er de, der i det væsentlige opløser udgangsforbindelsen med 15 formlen III, men som ikke selv undergår hydrogenering el ler hydrogenolyse. Eksempler på sådanne opløsningsmidler omfatter ethere, såsom diethylether, tetrahydrofuran, di-oxan og 1,2-dimethoxyethan, lavmolekylære estre, såsom ethylacetat og butylacetat, tertiære amider, såsom N,N-20 dime thyl formamid, Ν,Ν-dimethylacetamid og N-methylpyrro-lidon, vand og blandinger deraf. Yderligere er det almindeligt at pufre reaktionsblandingen, således at der opereres ved et pH inden for området fra ca. 4 til ca. 9, fortrinsvis fra ca. 6 til ca. 8. Borat- og phosphat-puf-25 fere er almindeligt anvendt. Indføring af det luftformige hydrogen i reaktionsmediet foregår sædvanligvis ved at gennemføre reaktionen i en forseglet beholder indeholdende forbindelsen med formlen III, opløsningsmidlet, katalysatoren og hydrogenet. Trykket inden i reaktionsbehol-30 deren kan variere fra 1 til 100 kg/cm Det foretrukne trykområde, når atmosfæren inden i reaktionsbeholderen er 2 i det væsentlige rent hydrogen, ligger fra 2 til 5 kg/cm . Hydrogenolysen gennemføres ved en temperatur på fra 0°C til 6*0oC, fortrinsvis fra 25°C til 50°C. Når der an-35 vendes de foretrukne temperatur- og tryk-værdier, forløber hydrogenolysen i almindelighed i løbet af nogle fåStep (b) of the process of the invention is a dehalogenation reaction. An appropriate method for carrying out this conversion is to stir or shake a solution of a compound of formula III under a hydrogen atmosphere, or hydrogen mixed with an inert diluent such as nitrogen or argon, in the presence of a hydrogenolysis catalyst. Suitable solvents for this hydrogenolysis reaction are those which essentially dissolve the starting compound of formula III but which do not themselves undergo hydrogenation or hydrogenolysis. Examples of such solvents include ethers such as diethyl ether, tetrahydrofuran, dioxane and 1,2-dimethoxyethane, low molecular weight esters such as ethyl acetate and butyl acetate, tertiary amides such as N, N-20-dimethylformamide, Ν, dim-dimethylacetamide and N -methylpyrro-lidone, water and mixtures thereof. Further, it is common to buffer the reaction mixture so that it is operated at a pH within the range of approx. 4 to approx. 9, preferably from ca. 6 to approx. 8. Borate and phosphate buffers are commonly used. The introduction of the gaseous hydrogen into the reaction medium is usually carried out by carrying out the reaction in a sealed container containing the compound of formula III, the solvent, the catalyst and the hydrogen. The pressure within the reaction vessel may range from 1 to 100 kg / cm. The preferred pressure range when the atmosphere inside the reaction vessel is 2 substantially pure hydrogen is from 2 to 5 kg / cm. The hydrogenolysis is carried out at a temperature of from 0 ° C to 6 ° C, preferably from 25 ° C to 50 ° C. When the preferred temperature and pressure values are used, the hydrogenolysis generally proceeds within a few minutes.
DK 159852 BDK 159852 B
11 timer, f.eks. fra 2 timer til 20 timer. De ved denne hy-drogenolysereaktion anvendte katalysatorer er af den på området for denne art omdannelser velkendte type, og typiske eksempler er de ædle metaller, såsom nikkel, palla-5 dium, platin og rhodium. Katalysatoren er til stede i en mængde på fra 0,01 til 2,5 vægtprocent, fortrinsvis fra 0,1 til 1,0 vægtprocent, baseret på forbindelsen med formlen III. Det er ofte hensigtsmæssigt at suspendere katalysatoren på en indifferent bærer. En særligt hen-10 sigtsmæssig katalysator er palladium suspenderet på en indifferent bærer, såsom kul.11 hours, e.g. from 2 hours to 20 hours. The catalysts used in this hydrogenolysis reaction are of the type well known in the art for this type of conversion, and typical examples are the precious metals such as nickel, palladium, platinum and rhodium. The catalyst is present in an amount of from 0.01 to 2.5% by weight, preferably from 0.1 to 1.0% by weight, based on the compound of formula III. It is often convenient to suspend the catalyst on an inert carrier. A particularly suitable catalyst is palladium suspended on an inert carrier such as coal.
Når det ønskes at fremstille en forbindelse med i formlen I, hvor R er hydrogen, kan en forbindelse med formlen II, hvor R1 er hydrogen, underkastes trin (a) og 15 (b) fra den omhandlede fremgangsmåde. Fremgangsmåden om fatter med andre ord oxidation efterfulgt af dehalogene-rering, af et 6-halogen- eller 6,6-dihalogen-derivat af penicillansyre med en fri carboxygruppe ved 3-stillingen. Ifølge et yderligere aspekt ved opfindelsen er det imid-20 lertid muligt at begynde hver af trin (a) og (b) med car-boxygruppen ved 3-stillingen blokeret med en sædvanlig penicillincarboxy-beskyttende gruppe. Den beskyttende gruppe kan fjernes under eller efter trin (a) eller trin (b) under regenerering af den fri carboxygruppe. I denne 25 henseende kan der anvendes forskellige beskyttelsesgrupper, der er almindeligt benyttet på penicillin-området, til at beskytte 3-carboxygruppen. De væsentlige krav til beskyttelsesgruppen er, at den skal kunne bindes til den pågældende forbindelse med formlen II eller III og kunne 30 fjernes fra den pågældende forbindelse med formlen I eller III under anvendelse af betingelser, hvorunder β-lac-tam-ringsystemet forbliver i det væsentlige intakt. For hvert af trinnene (a) og (b) er typiske eksempler tetra-hydropyranylgruppen, trialkylsilylgrupper, benzylgruppen, 35 substituerende benzylgrupper (f.eks. 4-nitrobenzyl), benzhydrylgruppen, 2,2,2-tri-chlorethylgruppen, t.-butyl-gruppen og phenacylgruppen. Selv om alle beskyttelses- 12When it is desired to prepare a compound of formula I wherein R is hydrogen, a compound of formula II wherein R 1 is hydrogen may be subjected to steps (a) and 15 (b) of the present process. In other words, the process of oxidation followed by dehalogenation of a 6-halogen or 6,6-dihalogen derivative of penicillanic acid with a free carboxy group at the 3-position. According to a further aspect of the invention, however, it is possible to begin each of steps (a) and (b) with the carboxy group at the 3-position blocked by a conventional penicillin carboxy protecting group. The protective group may be removed during or after step (a) or step (b) during regeneration of the free carboxy group. In this regard, various protecting groups commonly used in the penicillin field can be used to protect the 3-carboxy group. The essential requirements of the protecting group are that it must be capable of being bound to the particular compound of formula II or III and be removable from that compound of formula I or III using conditions under which the β-lac taming system remains in it. essentially intact. For each of steps (a) and (b), typical examples are the tetrahydropyranyl group, trialkylsilyl groups, the benzyl group, substituting benzyl groups (e.g. 4-nitrobenzyl), the benzhydryl group, 2,2,2-trichloroethyl group, t.- butyl group and phenacyl group. Although all protective 12
DK 159852 BDK 159852 B
grupper ikke er anvendelige i alle situationer, vil en særlig gruppe, der kan anvendes i en særlig situation, let kunne vælges af fagmanden. Se endvidere US-patent-skrifter nr. 3.632.850 og nr. 3.197.466, britisk patent-5 skrift nr. 1.041.985, Woodward et al., Journal of the American Chemical Society, 88, 852 (1966), Chauvette, Journal of Organic Chemistry 36, 1259 (1971), Sheedan et al., Journal of Organic Chemistry, 2£, 2006, (1964) og "Cephalosporin and Penicillins, Chemistry and Biology", 10 udgivet af H.E. Flynn, Academic Press, Inc., 1972. Peni- cillincarboxy-beskyttelsesgruppen fjernes på sædvanlig måde, under hensyntagen til β-lactam-ringsystemets labilitet.groups not applicable in all situations, a particular group that can be used in a particular situation can be readily selected by one of ordinary skill in the art. See also U.S. Patent Nos. 3,632,850 and 3,197,466, British Patent No. 1,041,985, Woodward et al., Journal of the American Chemical Society, 88, 852 (1966), Chauvette , Journal of Organic Chemistry 36, 1259 (1971), Sheedan et al., Journal of Organic Chemistry, £ 2, 2006, (1964) and "Cephalosporin and Penicillins, Chemistry and Biology", 10 published by H.E. Flynn, Academic Press, Inc., 1972. The penicillin carboxy protecting group is removed in the usual manner, taking into account the lability of the β-lactam ring system.
6-a-Chlorpenicillansyre og 6-a-brom-penicillansyre fremstilles ved diazotering af 6-aminopenicillansyre i 15 nærværelse af henholdsvis saltsyre og hydrogenbromidsyre, (Journal of Organic Chemistry, 21_, 2668 (1962)). 6-a-Iod-penicillansyre fremstilles ved diazotering af 6-aminopenicillansyre i nærværelse af iod, efterfulgt af hydroge-nolyse (Clayton, Journal of the Chemical Society (C), 20 2123 (1969)). 6-p-Chlorpenicillansyre, 6-(3-brompenicil-lansyre og 6-iodpenicillansyre fremstilles ved reduktion af henholdsvis 6-chlor-6-iodpenicillansyre, 6,6-dibrompe-nicillansyre og 6,6-diiodpenicillansyre med tri-n-butyl-tinhydrid. 6-Chlor-6-iodpenicillansyre fremstilles ved 25 diazotering af 6-aminopenicillansyre i nærværelse af iod-chlorid, 6,6-dibrompenicillansyre fremstilles ved fremgangsmåden ifølge Clayton, Journal of the Chemical Society (London) (C) 2123 (1969), og 6,6-diiodpenicillansyre fremstilles ved diazotering af 6-aminopenicillansyre i 30 nærværelse af iod.6-α-Chlorpenicillanic acid and 6-α-bromo-penicillanic acid are prepared by diazotizing 6-aminopenicillanic acid in the presence of hydrochloric acid and hydrobromic acid, respectively (Journal of Organic Chemistry, 21, 2668 (1962)). 6-α-Iodine penicillanic acid is prepared by diazotizing 6-aminopenicillanic acid in the presence of iodine, followed by hydrogenolysis (Clayton, Journal of the Chemical Society (C), 21,223 (1969)). 6-p-Chlorpenicillanic acid, 6- (3-brompenicillanic acid and 6-iodopenicillanic acid are prepared by reduction of 6-chloro-6-iodopenicillanic acid, 6,6-dibromepicillanic acid and 6,6-diiodpenicillanic acid with tri-n-butyl 6-Chloro-6-iodopenicillanic acid is prepared by diazotizing 6-aminopenicillanic acid in the presence of iodine chloride, 6,6-dibrompenicillanic acid is prepared by the method of Clayton, Journal of the Chemical Society (London) (C) 2123 (1969 ), and 6,6-diiodo-penicillanic acid is prepared by diazotizing 6-aminopenicillanic acid in the presence of iodine.
De forbindelser med formlen I, II og III, hvor er hydrogen, er sure og vil danne salte med basiske midler. Disse salte kan fremstilles ved standardteknik, såsom ved at bringe de sure og basiske komponenter i kon-35 takt, sædvanligvis i et støkiometrisk forhold, i et vandigt, ikke-vandigt eller delvis vandigt medium, som eg net. De udvindes derefter ved filtrering, ved udfældning DK 159852 8 13 med et ikke-opløsningsmiddel efterfulgt af filtrering, ved afdampning af opløsningsmidlet eller, i tilfælde af vandige opløsninger, ved lyofilisering, som egnet. Basiske midler, der passende kan anvendes ved saltdannelse, 5 tilhører både den organiske og uorganiske type, og de omfatter ammoniak, organiske aminer, alkalimetalhydroxi-der, -carbonater, -bicarbonater, -hydrider og -alkoxider, såvel som jordalkalimetalhydroxider, -carbonater, -hydrider og -alkoxider. Repræsentative eksempler på sådanne 10 baser er primære aminer, såsom n-propylamin, n-butylamin, anilin, cyclohexylamin, benzylamin og octylamin, sekundære aminer, såsom diethylamin, morpholin, pyrrolidin og piperidin, tertiære aminer, såsom triethylamin, N-ethyl-piperidin, N-methylmorpholin og 1,5-diazabicyclo[4.3.0]-15 non-5-en, hydroxider, såsom natriumhydroxid, kaliumhydroxid, ammoniumhydroxid og bariumhydroxid, alkoxider, såsom natriummethoxid og kaliumethoxid, hydrider, såsom calci-umhydrid og natriumhydrid, carbonater, såsom kaliumcarbo-nat og natriumcarbonat, bicarbonater, såsom natriumbicar-20 bonat og kaliumbicarbonat, og alkalimetalsalte af langkædede fede syrer, såsom natrium-2-ethylhexanoat. Foretrukne salte af forbindelsen med formlen I er natrium-, kalium- og triethylamin-saltene.The compounds of formula I, II and III which are hydrogen are acidic and will form salts with basic agents. These salts can be prepared by standard techniques, such as by contacting the acidic and basic components, usually in a stoichiometric ratio, in an aqueous, non-aqueous or partially aqueous medium, such as a grid. They are then recovered by filtration, by precipitation with a non-solvent followed by filtration, by evaporation of the solvent or, in the case of aqueous solutions, by lyophilization, as appropriate. Basic agents which can be suitably used in salt formation are both organic and inorganic, and include ammonia, organic amines, alkali metal hydroxides, carbonates, bicarbonates, hydrides and alkoxides, as well as alkaline earth metal hydroxides, carbonates, hydrides and alkoxides. Representative examples of such bases are primary amines such as n-propylamine, n-butylamine, aniline, cyclohexylamine, benzylamine and octylamine, secondary amines such as diethylamine, morpholine, pyrrolidine and piperidine, tertiary amines such as triethylamine, N-ethylpiperidine , N-methylmorpholine and 1,5-diazabicyclo [4.3.0] -15 non-5ene, hydroxides such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and barium hydroxide, alkoxides such as sodium methoxide and potassium ethoxide, hydrides such as calcium hydride and sodium hydride carbonates such as potassium carbonate and sodium carbonate, bicarbonates such as sodium bicarbonate and potassium bicarbonate, and alkali metal salts of long chain fatty acids such as sodium 2-ethyl hexanoate. Preferred salts of the compound of formula I are the sodium, potassium and triethylamine salts.
Forbindelsen med formlen I, hvor R^ er hydrogen, og 25 saltene deraf er aktive som antibakterielt middel af mediumstyrke både in vitro og in vivo, og forbindelser med formlen I, hvor R1 er en in vivo let hydrolyserbar esterdannende gruppe, er aktive som antibakterielle midler af mediumstyrke in vivo. Minimum-hæmningskoncentrationer 30 (MIC-værdier) for penicillansyre-l,l-dioxid over for adskillige mikroorganismer er vist i Tabel I.The compound of formula I wherein R 1 is hydrogen and its salts are active as medium-strength antibacterial agents both in vitro and in vivo, and compounds of formula I wherein R 1 is an in vivo readily hydrolyzable ester-forming group are active as antibacterial agents. medium strength agents in vivo. Minimum inhibition concentrations 30 (MIC values) for penicillanic acid 1,1-dioxide against several microorganisms are shown in Table I.
1414
DK 159852 BDK 159852 B
Tabel ITable I
Antibakteriel aktivitet in vitro af penicillan-syre-1,1-dioxid.In vitro antibacterial activity of penicillanic acid 1,1-dioxide.
5 Mikroorganisme MIC (mcg/ml)Microorganism MIC (mcg / ml)
Staphylococcus aureus 100Staphylococcus aureus 100
Streptococcus faecalis 200Streptococcus faecalis 200
Streptocuccus pyogenes 100Streptocuccus pyogenes 100
Escherichia coli 50 10 Pseudomonas aeruginosa 200Escherichia coli 50 10 Pseudomonas aeruginosa 200
Klebsiella pneumoniae 50Klebsiella pneumoniae 50
Proteus mirabilis 100Proteus mirabilis 100
Proteus morgani 100Proteus morgani 100
Salmonella typhimurium 50 15 Pasteurella multocida 50Salmonella typhimurium 50 15 Pasteurella multocida 50
Serratia marcescens 100Serratia marcescens 100
Enterobacter aerogenes 25Enterobacter aerogenes 25
Enterobacter clocae 100Enterobacter clocae 100
Citrobacter freundii 50 20 Providencia 100Citrobacter freundii 50 20 Providencia 100
Staphylococcus epidermis 200Staphylococcus epidermis 200
Pseudomonas putida 200Pseudomonas putida 200
Hemophilus influenzae 50Hemophilus influenzae 50
Neisseria gonorrhoeae 0,312 25Neisseria gonorrhoeae 0.312 25
Den antibakterielle aktivitet in vitro af forbindelsen med formlen I, hvor er hydrogen, og dens salte, gør dem anvendelige som industrielle antimikrobielle midler, for eksempel ved vandbehandling, slimbekæmpelse, ma-30 lingpræservering og træpræservering, samt til lokal anvendelse som desinfektionsmidler. Når disse forbindelser anvendes til lokal påføring, er det ofte hensigtsmæssigt at blande den aktive bestanddel med en ikke-toxisk bærer, såsom vegetabilsk olie eller mineralolie eller en blødgø-35 rende creme. Den kan også opløses eller dispergeres i flydende fortyndingsmidler eller opløsningsmidler, såsom vand, alkanoler, glycoler eller blandinger deraf. I de fleste tilfælde er det passende at anvende koncentratio- DK 159852 ΰ 15 ner af den aktive bestanddel på fra ca. 0,1 til ca. 10 vægtprocent baseret på den totale komposition.The in vitro antibacterial activity of the compound of formula I, wherein hydrogen is and its salts, makes them useful as industrial antimicrobial agents, for example in water treatment, slime control, paint preservation and wood preservation, and for local use as disinfectants. When these compounds are used for topical application, it is often convenient to mix the active ingredient with a non-toxic carrier such as vegetable oil or mineral oil or an emollient cream. It may also be dissolved or dispersed in liquid diluents or solvents such as water, alkanols, glycols or mixtures thereof. In most cases, it is appropriate to use concentrations of the active ingredient of from approx. 0.1 to approx. 10% by weight based on the total composition.
Aktiviteten in vivo af forbindelserne med formlen I, hvor R1 er hydrogen eller en in vivo let hydrolyser-5 bar esterdannende gruppe, og salte deraf, gør dem egnede til bekæmpelse af bakterieinfektioner hos pattedyr, inklusive mennesker, både ved oral og parenteral anvendelse. Forbindelserne vil finde anvendelse til bekæmpelse af infektioner forårsaget af påvirkelige bakterier hos 10 mennesker, f.eks. infektioner forårsaget af stammer af Neisseria gonorrhoeae.The in vivo activity of the compounds of formula I wherein R 1 is hydrogen or an in vivo readily hydrolyzable ester forming group, and salts thereof, make them suitable for controlling bacterial infections in mammals, including humans, both by oral and parenteral use. The compounds will be used to control infections caused by susceptible bacteria in 10 people, e.g. infections caused by strains of Neisseria gonorrhoeae.
Ved terapeutisk anvendelse af en forbindelse med formlen I eller et salt deraf til et pattedyr, navnlig mennesker, kan forbindelsen anvendes alene, eller den 15 kan være blandet med farmaceutisk acceptable bærere eller fortyndingsmidler. Den kan anvendes oralt eller parenteral t, dvs. intramuskulært, subcutant eller intra-peritonealt. Bæreren eller fortyndingsmidlet vælges på basis af den tilsigtede anvendelsesmåde. Når der for eks-20 empel er tale om oral anvendelse, kan forbindelsen anvendes i form af f.eks. tabletter, kapsler, bolcher, pastiller, pulvere, sirupper, elixirer, vandige opløsninger og suspensioner , i overensstemmelse med farmaceutisk standardpraksis. Mængdeforholdet mellem aktiv be-25 standdel og bærer vil afhænge af den aktive bestanddels kemiske natur, opløselighed og stabilitet såvel som af den tilsigtede dosis. Farmaceutiske kompositioner indeholdende et antibakterielt middel med formlen I vil imidlertid i almindelighed indeholde fra ca. 20% til ca. 95% 30 aktiv bestanddel. I tilfælde af tabletter til oral anvendelse omfatter sædvanligt benyttede bærere lactose, natriumcitrat og salte af phosphorsyre. Forskellige disintegrationsmidler, såsom stivelse, og smøremidler, såsom magnesiumstearat, natriumlaurylsulfat og talkum, er al-35 mindeligt anvendt i tabletter. Til oral anvendelse i kapselform er anvendelige fortyndingsmidler lactose og høj-molekylære polyethylenglycoler. Når der kræves vandige 16In the therapeutic application of a compound of formula I or a salt thereof to a mammal, in particular humans, the compound may be used alone or it may be mixed with pharmaceutically acceptable carriers or diluents. It can be used orally or parenterally, ie. intramuscularly, subcutaneously or intraperitoneally. The carrier or diluent is selected based on the intended application. In the case of, for example, oral use, the compound can be used in the form of e.g. tablets, capsules, bolches, lozenges, powders, syrups, elixirs, aqueous solutions and suspensions, in accordance with standard pharmaceutical practice. The amount ratio of active ingredient to carrier will depend on the chemical nature, solubility and stability of the active ingredient as well as the intended dose. However, pharmaceutical compositions containing an antibacterial agent of formula I will generally contain from 20% to approx. 95% active ingredient. In the case of tablets for oral use, commonly used carriers include lactose, sodium citrate and phosphoric acid salts. Various disintegrating agents such as starch and lubricants such as magnesium stearate, sodium lauryl sulfate and talc are commonly used in tablets. For oral use in capsule form, useful diluents are lactose and high molecular weight polyethylene glycols. When aqueous 16 is required
DK 159852 BDK 159852 B
suspensioner til oral anvendelse, kan den aktive bestanddel være kombineret med emulgerings- og suspensionsmidler. Om ønsket kan der tilsættes visse sødemidler og/eller smags/duftstoffer. Til parenteral anvendelse, der om-5 fatter intramuskulær, intraperitoneal, subcutan og intravenøs anvendelse, fremstilles sædvanligvis sterile opløsninger af den aktive bestanddel, og opløsningernes pH-værdi indstilles og pufres passende. Til intravenøs anvendelse skal den totale koncentration af opløste stoffer 10 være styret således, at præparatet gøres isotonisk.suspensions for oral use, the active ingredient may be combined with emulsifying and suspending agents. If desired, certain sweeteners and / or flavors / fragrances can be added. For parenteral use comprising intramuscular, intraperitoneal, subcutaneous and intravenous use, sterile solutions of the active ingredient are usually prepared and the pH of the solutions adjusted and buffered appropriately. For intravenous use, the total concentration of solutes 10 must be controlled so that the preparation is made isotonic.
Lægen vil i sidste instans bestemme den egnede dosis af en forbindelse med formlen I til en given patient, og denne dosis kan forventes at variere efter alder, vægt og respons for den pågældende patient såvel som efter ar-15 ten og graden af patientens symptomer. Forbindelsen vil normalt blive anvendt oralt i doser inden for området fra ca. 10 til ca. 200 mg pr.kg legemsvægt pr.dag og parente-ralt i doser fra ca. 10 til ca. 400 mg pr.kg legemsvægt pr.dag. Disse tal er imidlertid kun illustrerende, og i 20 nogle tilfælde kan det være nødvendigt at anvende doser uden for nævnte grænser.The physician will ultimately determine the appropriate dose of a compound of formula I for a given patient, and this dose may be expected to vary by age, weight and response for that patient as well as the nature and degree of the patient's symptoms. The compound will normally be used orally in doses in the range of about 10 to approx. 200 mg per kg body weight per day and parenterally in doses from approx. 10 to approx. 400 mg per kg body weight per day. However, these figures are illustrative only and in some cases doses outside the above limits may be required.
iin
Forbindelserne med formlen I, hvor R er hydrogen eller en in vivo let hydrolyserbar esterdannende gruppe, eller et salt deraf, forstærker den antibakterielle ef-25 fektivitet af β-lactam-antibiotica in vivo. De sænker den mængde antibioticum, der er nødvendig for at beskytte mus over for et ellers letalt inokulum af visse β-lactamase-producerende bakterier. Denne evne gør dem værdifulde til co-anvendelse sammen med β-lactam-antibiotica ved behand-30 lingen af bakterieinfektioner hos pattedyr, navnlig mennesker. Ved behandlingen af en bakterieinfektion kan nævnte forbindelse med formlen I være sammenblandet med nævnte β-lactam-antibioticum, og de to midler anvendes således samtidigt. Alternativt kan nævnte forbindelse med form-35 len I anvendes som et separat middel under et behandlingsforløb med et β-lactam-antibioticum. I nogle tilfælde er det fordelagtigt at give patienten en præ-dosis af forbindelsen med formlen I, før behandling med et β-lac-tam-antibioticum indledes.The compounds of formula I wherein R is hydrogen or an in vivo easily hydrolyzable ester forming group, or a salt thereof, enhance the antibacterial efficacy of β-lactam antibiotics in vivo. They lower the amount of antibiotic needed to protect mice against an otherwise lethal inoculum of certain β-lactamase-producing bacteria. This ability makes them valuable for co-use with β-lactam antibiotics in the treatment of bacterial infections in mammals, especially humans. In the treatment of a bacterial infection, said compound of formula I may be admixed with said β-lactam antibiotic and the two agents are thus used simultaneously. Alternatively, said compound of formula I can be used as a separate agent during a course of treatment with a β-lactam antibiotic. In some cases, it is advantageous to give the patient a pre-dose of the compound of formula I before initiating treatment with a β-lac-tam antibiotic.
DK 159852 BDK 159852 B
17 Når der anvendes penicillansyre-l,l-dioxid, et salt eller en in vivo let hydrolyserbar ester deraf for at forstærke effektiviteten af β-lactam-antibioticum, er der fortrinsvis tale om anvendelse i komposition med far-5 maceutiske standard-bærestoffer og -fortyndingsmidler. Kompositionsmetoderne omtalt ovenfor til anvendelse af penicillansyre-l,l-dioxid eller en in vivo let hydrolyserbar ester deraf som et antibakterielt middel i form af en enkelt enhed kan anvendes, når der tilsigtes co-10 anvendelse sammen med et andet β-lactam-antibioticum. En farmaceutisk komposition omfattende en farmaceutisk acceptabel bærer, et β-lactam-antibioticum og penicillan-syre-l,l-dioxid eller en in vivo let hydrolyserbar ester deraf vil normalt indeholde fra ca. 5 til ca. 80% af den 15 farmaceutisk acceptable bærer efter vægt.When penicillanic acid 1,1-dioxide, a salt or an in vivo readily hydrolyzable ester thereof is used to enhance the efficacy of β-lactam antibiotic, it is preferably used in composition with standard pharmaceutical carriers and -fortyndingsmidler. The compositional methods discussed above for the use of penicillanic acid 1,1-dioxide or an in vivo readily hydrolyzable ester thereof as a single unit antibacterial agent may be used when co-use is contemplated with another β-lactam antibiotic. . A pharmaceutical composition comprising a pharmaceutically acceptable carrier, a β-lactam antibiotic and penicillanic acid-1,1-dioxide or an in vivo readily hydrolyzable ester thereof will normally contain from ca. 5 to approx. 80% of the 15 pharmaceutically acceptable carrier by weight.
Når der anvendes penicillansyre-l,l-dioxid eller en in vivo let hydrolyserbar ester deraf i kombination med et andet β-lactam-antibioticum, kan sulfonen anvendes ‘ oralt eller parenteralt, dvs. intramuskulært, subcutant 20 eller intraperitonealt. Selvom lægen i sidste instans vil bestemme den dosis, der skal anvendes til en patient, vil forholdet mellem de daglige doser af penicillansyre-1,1-dioxid eller salt eller ester deraf og β-lactam-antibioticum normalt ligge inden for området fra ca. 1:3 til ca.When penicillanic acid 1,1-dioxide or an in vivo readily hydrolyzable ester thereof is used in combination with another β-lactam antibiotic, the sulfone may be used orally or parenterally, i.e. intramuscularly, subcutaneously or intraperitoneally. Although the physician will ultimately determine the dose to be used in a patient, the ratio of the daily doses of penicillanic acid 1,1-dioxide or salt or ester thereof to the β-lactam antibiotic will usually be within the range of about 5%. 1: 3 to approx.
25 3:1. Når der anvendes penicillansyre-l,l-dioxid eller salt eller in vivo let hydrolyserbar ester deraf i kombination med et andet β-lactam-antibioticum, vil den daglige orale dosis af hver komponent normalt ligge inden for området fra ca. 10 til ca. 200 mg pr.kg legemsvægt, og den daglige parenterale dosis af hver komponent vil normalt ligge fra ca. 10 til ca. 400 mg pr.kg legemsvægt.25 3: 1. When penicillanic acid-1, l-dioxide or salt or in vivo readily hydrolyzable ester thereof is used in combination with another β-lactam antibiotic, the daily oral dose of each component will usually be in the range of about 5%. 10 to approx. 200 mg per kg body weight, and the daily parenteral dose of each component will usually range from approx. 10 to approx. 400 mg per kg body weight.
Disse tal er imidlertid kun illustrerende, og i nogle tilfælde kan det være nødvendigt at anvende doser uden for disse grænser.However, these figures are illustrative only and in some cases doses outside these limits may be required.
Typiske β-lactam-antibiotica, sammen med hvilke penicillansyre-l,l-dioxid og dens in vivo let hydrolyserbare estre kan co-anvendes, er: 35Typical β-lactam antibiotics, along with which penicillanic acid-1,1-dioxide and its in vivo easily hydrolyzable esters can be used, are:
DK 159852BDK 159852B
18 6-(2-Phenylacetamido)penicillansyre, 6-(D-2-amino-2-phenylacetamido)penicillansyre, 6- (2-carboxy-2-phenylacetamido)penicillansyre, og 7- (2-[l-tetrazolyl]acetamido)-3-(2-[5-methyl-l,3,4- 5 thiadiazolyl]thiomethyl)-3-desacetoxymethylcepha- losporansyre.6- (2-Phenylacetamido) penicillanic acid, 6- (D-2-amino-2-phenylacetamido) penicillanic acid, 6- (2-carboxy-2-phenylacetamido) penicillanic acid, and 7- (2- [1-tetrazolyl] acetamido ) -3- (2- [5-methyl-1,3,4-thiadiazolyl] thiomethyl) -3-desacetoxymethylcephalosporanoic acid.
Typiske mikroorganismer, over for hvilke den anti-bakterielle aktivitet af de ovennævnte β-lactam-antibio-tica forstærkes, er: 10 Staphylococcus aureus,Typical microorganisms against which the anti-bacterial activity of the above β-lactam antibiotics are enhanced are: 10 Staphylococcus aureus,
Haemophilus influenzae,Haemophilus influenzae,
Klebsiella pneumoniae ogKlebsiella pneumoniae and
Bacteroides fragilis.Bacteroides fragilis.
Som bekendt for fagmanden på området, er nogle (3-15 lactam-forbindelser effektive, når de anvendes oralt eller parenteralt, mens andre kun er effektive, når de anvendes parenteralt. Når penicillansyre-l,l-dioxid, et salt deraf eller en in vivo let hydrolyserbar ester deraf skal anvendes simultant (dvs. co-blandet) med et (3-20 lactam-antibioticum, der kun er effektivt ved parenteral anvendelse, vil det være påkrævet med en kombinationskomposition, der er egnet for parenteral anvendelse. Når pe-nicillansyre-l,l-dioxidet eller en ester deraf skal anvendes simultant (co-blandet) med et β-lactamantibioti-25 cum, der er effektivt enten oralt eller parenteralt, kan der fremstilles kombinationer, der er egnede til enten oral eller parenteral anvendelse. Endvidere er det muligt at anvende præparater af penicillansyre-l,l-dioxid eller salt eller ester deraf oralt, samtidig med at der indgi-30 ves yderligere β-lactam-antibioticum parenteralt, og det er også muligt at anvende præparater af penicillansyre- 1,1-diox id eller salt eller ester deraf parenteralt, samtidig med at det yderligere (3-lactam-antibioticum anvendes oralt.As is known to those skilled in the art, some (3-15 lactam compounds are effective when used orally or parenterally, while others are effective only when used parenterally. When penicillanic acid 1,1-dioxide, a salt thereof or In vivo readily hydrolyzable ester thereof should be used simultaneously (i.e. co-blended) with a (3-20 lactam antibiotic effective only in parenteral use), it will be required with a combination composition suitable for parenteral use. the picicillanic acid 1,1-dioxide or an ester thereof should be used simultaneously (co-mixed) with a β-lactam antibiotic effective either orally or parenterally, combinations suitable for either oral or Furthermore, it is possible to use preparations of penicillanic acid 1, 1-dioxide or salt or ester thereof orally, while administering additional β-lactam antibiotics parenterally, and it is also possible to use preparations. rates of penicillanic acid 1,1-dioxide or salt or ester thereof parenterally, while the additional (3-lactam antibiotic) is used orally.
35 Yderligere detaljer vedrørende anvendelse og synte tisering af forbindelser med formlen I findes i DOS nr. 2.824.535.Further details regarding the use and synthesization of compounds of formula I are provided in DOS No. 2,824,535.
DK 159852 BDK 159852 B
1919
Opfindelsen beskrives nærmere gennem følgende eksempler. Infrarøde (IR) spektre er målt som kaliumbromid-plader (KBr-plader), og diagnostiske absorptionsbånd er angivet i bølgetal (cm . Kernemagnetiske resonansspek-5 tre (NMR) er målt ved 60 MHz for opløsninger i deutero-chloroform (CDCl^), perdeuteroacetone (CD^COCDj), perdeu-terodimethylsulfoxid (DMSO-dg) eller deuteriumoxid (DjO), og spidspositioner er udtrykt i dele pr. million (ppm) nedad fra tetramethylsilan eller natrium-2,2-dimethyl-2-10 silapentan-5-sulfonat. De følgende forkortelser for spidsformer er anvendt: s: singlet, d: dublet, t: triplet, q: kvartet, m: multiplet.The invention is further described by the following examples. Infrared (IR) spectra are measured as potassium bromide plates (KBr plates) and diagnostic absorption bands are indicated in wavelengths (cm. Nuclear magnetic resonance spectra (NMR) are measured at 60 MHz for solutions in deuterochloroform (CDCl , perdeuteroacetone (CD2 COCDj), perdeuterodimethylsulfoxide (DMSO-dg) or deuterium oxide (DjO), and peak positions are expressed in parts per million (ppm) downward from tetramethylsilane or sodium 2,2-dimethyl-2-10 silapentane. The following abbreviations for tip forms are used: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet.
Eksempel 1 15 6-a-Brompenicillansyre-l,1-dioxid.Example 1 6-α-Brompenicillanic acid 1,1-dioxide.
Til en omrørt blanding af 560 ml vand, 300 ml di-chlormethan og 56,0 g 6-a-brompenicillansyre blev der sat 4N natriumhydroxidopløsning, indtil der var opnået et stabilt pH på 7,2. Dette krævede 55 ml natriumhydro-20 xid. Blandingen blev omrørt ved pH 7,2 i 10 minutter og blev derefter filtreret. Lagene blev adskilt, og den organiske fase blev bortkastet. Den vandige fase blev derefter hurtigt under omrøring hældt i en oxiderende blanding, der var fremstillet som følger: 25 I en 3 liters beholder blev der blandet 63,2 g ka- liumpermanganat, 1.000 ml vand og 48.0 g eddikesyre. Denne blanding blev omrørt i 15 minutter ved 20°C og blev derefter afkølet til 0°C.To a stirred mixture of 560 ml of water, 300 ml of dichloromethane and 56.0 g of 6-a-brompenicillanic acid was added 4N sodium hydroxide solution until a stable pH of 7.2 was reached. This required 55 ml of sodium hydroxide. The mixture was stirred at pH 7.2 for 10 minutes and then filtered. The layers were separated and the organic phase was discarded. The aqueous phase was then rapidly poured with stirring into an oxidizing mixture prepared as follows: In a 3 liter container, 63.2 g of potassium permanganate, 1,000 ml of water and 48.0 g of acetic acid were mixed. This mixture was stirred for 15 minutes at 20 ° C and then cooled to 0 ° C.
Efter at 6-a-brompenicillansyreopløsningen var sat 30 til den oxiderende blanding, holdtes et kølebad ved -15¾ rundt om reaktionsblandingen. Den indre temperatur steg til 15°C og faldt derefter til 5°C over en periode på 20 minutter. På dette tidspunkt blev der i løbet af 10 minutter under omrøring ved ca. 10°C tilsat 30,0 g natrium-33 bisulfit. Efter yderligere 15 minutter blev blandingen filtreret, og pH af filtratet blev sænket til 1,2 ved tilsætning af 170 ml 6N saltsyre. Den vandige fase blevAfter the 6-a-brompenicillanic acid solution was added to the oxidizing mixture, a cooling bath was maintained at -15 ° around the reaction mixture. The internal temperature rose to 15 ° C and then dropped to 5 ° C over a period of 20 minutes. At this point, stirring was performed at ca. 10.0 C added 30.0 g of sodium 33 bisulfite. After a further 15 minutes, the mixture was filtered and the pH of the filtrate was lowered to 1.2 by the addition of 170 ml of 6N hydrochloric acid. The aqueous phase became
DK 159852 BDK 159852 B
20 ekstrateret med chloroform og derefter med ethylacetat.20 extracted with chloroform and then with ethyl acetate.
Både chloroformekstrakterne og ethylacetatekstrakterne blev tørret under anvendelse af vandfrit magnesiumsulfat og blev derefter inddampet i vakuum. Chloroformopløsnin-5 gen gav 10,0 g (16% udbytte) af titelforbindelsen. Ethyl-acetatopløsningen gav 57 g af en olie, der blev tritureret under hexan. Der fremkom et hvidt fast stof. Det blev frafiltreret, hvorved vandtes 41,5 g (66% udbytte) af titelforbindelsen, smp. 134°C (dek.).Both the chloroform extracts and the ethyl acetate extracts were dried using anhydrous magnesium sulfate and then evaporated in vacuo. The chloroform solution gave 10.0 g (16% yield) of the title compound. The ethyl acetate solution yielded 57 g of an oil which was triturated under hexane. A white solid appeared. It was filtered off to give 41.5 g (66% yield) of the title compound, m.p. 134 ° C (dec.).
10 Analyse: beregnet for C8H10BrNO5S: C: 30,78, H: 3,23, Br: 25,60, N: 4,49, S:10,27% fundet: C: 31,05, H: 3,24, Br: 25,54, N: 4,66, S: 10,21% 15 Eksempel 2Analysis: Calculated for C 8 H 10 BrNO 5 S: C: 30.78, H: 3.23, Br: 25.60, N: 4.49, S: 10.27% found: C: 31.05, H: 3.24 , Br: 25.54, N: 4.66, S: 10.21% Example 2
Oxidation af 6-a-chlorpenicillansyre og 6-a-iodpe-nicillansyre med kaliumpermanganat ved fremgangsmåden ifølge Eksempel 1 gav henholdsvis 6-a-chlorpenicillansy-re-l,l-dioxid og 6-a-iodpenicillansyre-l,l-dioxid.Oxidation of 6-alpha-chlorpenicillanic acid and 6-alpha-iodopicillanic acid with potassium permanganate by the procedure of Example 1 gave 6-alpha-chlorpenicillanic acid -1,1-dioxide and 6-alpha-iodopenicillanic acid -1,1-dioxide, respectively.
2020
Eksempel 3 6-8-Chlorpenicillansyre-l,1-dioxid.Example 3 6-8-Chlorpenicillanic acid 1,1-dioxide.
En oxiderende opløsning blev fremstillet ud fra 185 mg kaliumpermanganat, 0,063 ml 85% phosphorsyre og 25 5 ml vand. Denne oxiderende opløsning blev dråbevis sat til en opløsning af 150 mg natrium-6-3-chlorpenicillanat i 5 ml vand ved 0-5°C, indtil purpurfarven af kaliumper-manganatet var vedrarende. Omtrent halvdelen af den oxiderende opløsning var nødvendig. På dette tidspunkt blev 30 kaliumpermanganatfarven fjernet ved tilsætning af fast natriumbisulfit, og reaktionsblandingen blev derefter filtreret, og pH blev indstillet på 1,8. Lagene blev adskilt, og det vandige lag blev ekstraheret yderligere med ethylacetat. De samlede ethylacetatlag blev vasket 35 med vand, tørret og inddampet i vakuum, hvorved vandtes 118 mg af titelforbindelsen. NMR-spektret (i CD^COCD^) viste absorption ved 5,82 (d, IH), 5,24 (d, IH), 4,53 (s, IH), 1,62 (s, 3H) og 1,50 (s, 3H) ppm.An oxidizing solution was prepared from 185 mg of potassium permanganate, 0.063 ml of 85% phosphoric acid and 25 ml of water. This oxidizing solution was added dropwise to a solution of 150 mg of sodium 6-3-chlorpenicillanate in 5 ml of water at 0-5 ° C until the purple color of the potassium permanganate was softened. About half of the oxidizing solution was needed. At this point, the potassium permanganate color was removed by the addition of solid sodium bisulfite and the reaction mixture was then filtered and the pH was adjusted to 1.8. The layers were separated and the aqueous layer was further extracted with ethyl acetate. The combined ethyl acetate layers were washed with water, dried and evaporated in vacuo to give 118 mg of the title compound. The NMR spectrum (in CD2 COCD2) showed absorption at 5.82 (d, 1H), 5.24 (d, 1H), 4.53 (s, 1H), 1.62 (s, 3H) and 1 , 50 (s, 3H) ppm.
DK 159852 BDK 159852 B
2121
Det ovennævnte produkt blev opløst i tetrahydrofu-ran, og der blev tilsat et lige så stort volumen vand. pH-Værdien blev indstillet på 6,8 med fortyndet natriumhydroxid, tetrahydrofuranen blev fjernet ved inddampning 5 i vakuum, og den resterende vandige opløsning blev frysetørret. Herved vandtes natriumsaltet af titelforbindelsen.The above product was dissolved in tetrahydrofuran and an equal volume of water was added. The pH was adjusted to 6.8 with dilute sodium hydroxide, the tetrahydrofuran was removed by evaporation 5 in vacuo and the remaining aqueous solution was freeze-dried. Thereby the sodium salt of the title compound was won.
Eksempel 4 10 6-{i-Brompenicillansyre-l, 1-dioxid.Example 4 6- {i-Brompenicillanic acid 1,1-dioxide.
Til en opløsning af 255 mg natrium-6-3-brompeni-cillanat i 5 ml vand blev der ved 0-5°C sat en opløsning fremstillet ud fra 140 mg kaliumpermanganat, 0,11 ml 85% phosphorsyre og 5 ml vand ved 0-5°C. pH-Værdien blev bi-15 beholdt mellem 6,0 og 6,4 under tilsætningen. Reaktionsblandingen blev omrørt ved pH 6,3 i 15 minutter, og derefter blev den purpurfarvede opløsning dækket med ethyl-acetat. pH-Værdien blev indstillet på 1,7, og 330 mg na-triumbisulfit blev tilsat. Efter 5 minutter blev lagene 20 adskilt, og det vandige lag blev ekstraheret yderligere med saltopløsning, tørret (MgSO^) og inddampet i vakuum. Herved vandtes 216 mg af titelforbindelsen som hvide krystaller. NMR-spektret (i D2O) viste absorptioner ved 5,78 (d, IH, J = 4Hz), 5,25 (d, IH, J = 4Hz), 4,20 (s, IH), ^ 1,65 (s, 3H) og 1,46 (s, 3H) ppm.To a solution of 255 mg of sodium 6-3-brompenic-cillanate in 5 ml of water was added at 0-5 ° C a solution prepared from 140 mg of potassium permanganate, 0.11 ml of 85% phosphoric acid and 5 ml of water at 0 -5 ° C. The pH was maintained between 6.0 and 6.4 during the addition. The reaction mixture was stirred at pH 6.3 for 15 minutes and then the purple solution was covered with ethyl acetate. The pH was adjusted to 1.7 and 330 mg of sodium bisulfite was added. After 5 minutes, the layers 20 were separated and the aqueous layer was further extracted with brine, dried (MgSO 4) and evaporated in vacuo. Thereby, 216 mg of the title compound were obtained as white crystals. The NMR spectrum (in D 2 O) showed absorptions at 5.78 (d, 1H, J = 4Hz), 5.25 (d, 1H, J = 4Hz), 4.20 (s, 1H), 1.65 ( s, 3H) and 1.46 (s, 3H) ppm.
Eksempel 5 6-3-Iodpenicillansyre-l,1-dioxid.Example 5 6-3-Iodpenicillanic acid 1,1-dioxide.
Oxidation af 6-3-iodpenicillansyre med kaliumper- O Λ manganat ved fremgagsmåden ifølge Eksempel 4 gav 6-3-iod-penicillansyre-1,1-dioxid.Oxidation of 6-3-iodo-penicillanic acid with potassium per-O Λ manganate in the procedure of Example 4 gave 6-3-iodo-penicillanic acid 1,1-dioxide.
Eksempel 6Example 6
Pivaloyloxymethyl-6-a-brompenicillanat-l,1-dioxid.Pivaloyloxymethyl 6-alpha-bromopenicillanate-l, 1-dioxide.
Til en opløsning af 394 mg pivaloyloxymethyl-6-α-brompenicillanat i 10 ml dichlormethan blev der sat 400 mg 3-chlorperbenzoesyre ved 0-5°C. Reaktionsblandingen blev omrørt ved 0-5°C i 1 time og derefter ved 25°C i 24 22To a solution of 394 mg of pivaloyloxymethyl-6-α-brompenicillanate in 10 ml of dichloromethane was added 400 mg of 3-chloroperbenzoic acid at 0-5 ° C. The reaction mixture was stirred at 0-5 ° C for 1 hour and then at 25 ° C for 24 hours
DK 159 852 BDK 159 852 B
timer. Den filtrerede reaktionsblanding blev inddampet til tørhed i vakuum, hvorved vandtes titelforbindelsen.hours. The filtered reaction mixture was evaporated to dryness in vacuo to give the title compound.
Eksempel 7 5 Fremgangsmåden fra Eksempel 6 blev gentaget, med den undtagelse at pivaloyloxymethyl-6-(3-brompenicillana-tet blev erstattet med: 3- phthalidyl-6-a-chlorpenicillanat, 4- crotonolactolyl-6-3-chlorpenicillanat, 10 Y-butyrolacton-4-yl-6-a-brompenicillanat, acetoxymethyl-6-[3-brompenicillanat, pivaloyloxymethy1-6-β-brompenic i1lanat, hexanoyloxymethyl-6-a-iodpenicillanat, 1-(acetoxy)ethyl-6-f3-iodpenicillanat, 15 1-(isobutyryloxy)ethyl-6-a-chlorpenicillanat, 1-methyl-l- (acetoxy) ethyl-6-(3-chlorpenicillanat, 1-methyl-l-(hexanoyloxy)ethyl-6-a-brompenicillanat, methoxycarbonyloxymethyl-6-a-brompenicillanat, propoxyc arbonyloxymethy1-6-β-brompenicilianat, 20 1-(ethoxycarbonyloxy)ethyl-6-a-brompenicillanat, 1-(butoxycarbonyloxy)ethyl-6-a-iodpenicillanat, 1-methyl-l-(methoxycarbonyloxy)ethyl-6-3~iodpenicillanat og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-6-a-chlorpenicil-25 lanat.Example 7 The procedure of Example 6 was repeated except that the pivaloyloxymethyl-6- (3-brompenicillanate was replaced by: 3-phthalidyl-6-α-chloropenicillanate, 4-crotonolactolyl-6-3-chloropenicillanate, 10 Y -butyrolacton-4-yl-6-a-brompenicillanate, acetoxymethyl 6- [3-brompenicillanate, pivaloyloxymethyl 1-6-β-brompenic illanate, hexanoyloxymethyl-6-a-iodopenicillanate, 1- (acetoxy) ethyl-6-β iodo-penicillanate, 1- (isobutyryloxy) ethyl-6-a-chloropenicillanate, 1-methyl-1- (acetoxy) ethyl-6- (3-chloropenicillanate, 1-methyl-1- (hexanoyloxy) ethyl-6-a-brompenicillanate , methoxycarbonyloxymethyl 6-a-brompenicillanate, propoxyc arbonyloxymethyl 1-6-β-brompenicilianate, 1- (ethoxycarbonyloxy) ethyl 6-a-brompenicillanate, 1- (butoxycarbonyloxy) ethyl 6-a-iodopenicillanate - (methoxycarbonyloxy) ethyl 6-3-iodo-penicillanate and 1-methyl-1- (isopropoxycarbonyloxy) ethyl-6-a-chloro-penicillanate.
Herved vandtes: 3- phthalidyl-6-a-chlorpenicillanat-l,1-dioxid, 4- crotonolactonyl-6-fS-chlorpenicillanat-l, 1-dioxid, Y-butyrolacton-4-yl-6-a-brompenicillanat-l,1-dioxid, 30 acetoxymethyl-6-3-brompenicillanat-l,1-dioxid, pivaloyloxymethyl-6-&-brompenicillanat-l,1-dioxid, hexanoyloxymethyl-6-a-iodpenicillanat-l,1-dioxid, 1-(acetoxy)ethyl-6-3-iodpenicillanat-l,1-dioxid, 1-(isobutyryloxy)ethyl-6-a-chlorpenicillanat-l,1-dioxid, 35 1-methyl-l- (acetoxy) ethyl-6-|3-chlorpenicillanat-l, 1-dioxid, 1-methyl-l-(hexanoyloxy)ethyl-6-a-brompenicillanat-l,l-dioxid,There were thus obtained: 3-phthalidyl-6-a-chloropenicillanate-1,1-dioxide, 4-crotonolactonyl-6-β-chloropenicillanate-1,1-dioxide, Y-butyrolacton-4-yl-6-a-brompenicillanate-1 , 1-dioxide, acetoxymethyl-6-3-brompenicillanate-1,1-dioxide, pivaloyloxymethyl-6 - & - brompenicillanate-1,1-dioxide, hexanoyloxymethyl-6-a-iodophenicillanate-1,1-dioxide, 1- (acetoxy) ethyl 6-3-iodopenicillanate-1,1-dioxide, 1- (isobutyryloxy) ethyl-6-a-chloropenicillanate-1,1-dioxide, 1-methyl-1- (acetoxy) ethyl-6- 3-Chloro -penicillanate-1,1-dioxide, 1-methyl-1- (hexanoyloxy) ethyl-6-a-brompenicillanate-1,1-dioxide,
DK 159852 BDK 159852 B
23 methoxycarbonyloxymethyl-6-a-brompenicillanat-l, 1-dioxid, propoxycarbonyloxymethyl-6-|3-brompenicillanat-l, 1-dioxid, 1- (ethoxycarbonyloxy) ethyl-6-a-brompenicillanat-l,l-dio-xid, 5 1-butoxycarbonyloxy) ethyl-6-a-iodpenicillanat-l, 1-dioxid, 1-methyl-l- (metoxycarbonyloxy) ethyl-6-p-iodpenicillanat- 1,1-dioxid og 1-methyl-l- (isopropoxycarbonyloxy) ethyl-6-a-chlorpenicil-lanat-1,1-dioxid.23 methoxycarbonyloxymethyl-6-a-brompenicillanate-1,1-dioxide, propoxycarbonyloxymethyl-6-, 3-brompenicillanate-1,1-dioxide, 1- (ethoxycarbonyloxy) ethyl-6-a-brompenicillanate-1,1-dioxide (1-Butoxycarbonyloxy) ethyl 6-a-iodopenicillanate-1,1-dioxide, 1-methyl-1- (methoxycarbonyloxy) ethyl-6-p-iodopenicillanate-1,1-dioxide and 1-methyl-1- isopropoxycarbonyloxy) ethyl 6-a-chlorpenicilanate-1,1-dioxide.
1010
Eksempel 8Example 8
Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.
Til 100 ml vand blev der sat 9,4 g 6-a-brompenicil-lansyre-1,1-dioxid ved 22°C efterfulgt af tilstrækkelig 15 4N natriumhydroxidopløsning til at nå et stabilt pH på 7,3. Til den resulterende opløsning blev der sat 2,25 g 5% palladium-på-kul efterfulgt af 6,9 g dikaliumphosphat-trihydrat. Denne blanding blev derefter rystet under en atmosfære af hydrogen ved et tryk varierende fra 3,5 til 20 1,8 kg/cm2. Da hydrogenoptagningen ophørte, blev de faste stoffer frafiltreret, og den vandige opløsning blev dækket med 100 ml ethylacetat. pH-Værdien blev langsomt sænket fra 5,0 til 1,5 med 6N saltsyre. Lagene blev adskilt, og den vandige fase blev ekstraheret med yderlige-25 re ethylacetat. De samlede ethylacetatlag blev vasket med saltopløsning, tørret under anvendelse af vandfrit magnesiumsulfat og inddampet i vakuum. Inddampningsresten blev tritureret under ether, og det faste materiale blev derefter indsamlet ved filtrering. Herved vandtes 4,5 g (65% 50 udbytte) af titelforbindelsen.To 100 ml of water was added 9.4 g of 6-a-brompenicil-lanoic acid 1,1-dioxide at 22 ° C followed by sufficient 15 4N sodium hydroxide solution to reach a stable pH of 7.3. To the resulting solution was added 2.25 g of 5% palladium on charcoal followed by 6.9 g of dicalcium phosphate trihydrate. This mixture was then shaken under an atmosphere of hydrogen at a pressure ranging from 3.5 to 20 1.8 kg / cm 2. When hydrogen uptake ceased, the solids were filtered off and the aqueous solution was covered with 100 ml of ethyl acetate. The pH was slowly lowered from 5.0 to 1.5 with 6N hydrochloric acid. The layers were separated and the aqueous phase was extracted with additional ethyl acetate. The combined ethyl acetate layers were washed with brine, dried using anhydrous magnesium sulfate and evaporated in vacuo. The residue was triturated under ether and the solid was then collected by filtration. This gave 4.5 g (65% 50 yield) of the title compound.
Analyse: beregnet for c8huno5s: C: 41,20, H: 4,75, N: 6,00, S: 13,751 fundet: C: 41,16, H: 4,81, N: 6,11, S: 13,51%.Analysis: Calculated for C 18 H 25 O: C: 41.20; H: 4.75; N: 6.00; S: 13.751 Found: C: 41.16; H: 4.81; N: 6.11; S: 13 , 51%.
DK 159852 BDK 159852 B
2424
Eksempel 9Example 9
Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.
Hydrogenolyse af hver af: β-α-chlorpenicillansyre-l,1-dioxid, 5 β-α-iodpenicillansyre-l,1-dioxid, 6-3-chlorpenicillansyre-l,1-dioxid, 6-&-brompenicillansyre-l,1-dioxid og 6-3-iodpenicillansyre-l,1-dioxid ved fremgangsmåden ifølge Eksempel 8 gav penicillansyre-10 1,1-dioxid.Hydrogenolysis of each of: β-α-chlorpenicillanic acid-1,1-dioxide, 5-β-α-iodopenicillanic acid-1,1-dioxide, 6-3-chlorpenicillanic acid-1,1-dioxide, 6 - & - brompenicillanic acid-1, 1-dioxide and 6-3-iodo-penicillanic acid-1,1-dioxide by the method of Example 8 gave penicillanic acid-1,1-dioxide.
Eksempel 10Example 10
Pivaloyloxymethyl-penicillanat-1,1-dioxid.Pivaloyloxymethyl penicillanate 1,1-dioxide.
Til en opløsning af 1,0 g pivaloyloxymethyl-6-α-15 brompanicillanat-1,1-dioxid i 10 ml methanol blev der sat 3 ml 1M natriumbicarbonat og 200 mg 10% palladium-på-kul. Reaktionsblandingen blev rystet kraftigt under en atmosfære o af hydrogen ved et tryk på ca. 5 kg/cm , indtil hydrogenoptagningen ophørte. Blandingen blev derefter filtreret, 20 og hovedparten af methanol blev fjernet ved inddampning i vakuum. Vand og ethylacetat blev sat til inddampnings-resten, og pH blev indstillet til 8,5. Lagene blev adskilt, og det organiske lag blev vasket med vand, tørret (Na2S0^) og inddampet i vakuum. Herved vandtes titelfor-25 bindeisen.To a solution of 1.0 g of pivaloyloxymethyl-6-α-15-bromopanicillanate-1,1-dioxide in 10 ml of methanol was added 3 ml of 1M sodium bicarbonate and 200 mg of 10% palladium-on-charcoal. The reaction mixture was shaken vigorously under an atmosphere o of hydrogen at a pressure of ca. 5 kg / cm until hydrogen uptake ceased. The mixture was then filtered, and the majority of methanol was removed by evaporation in vacuo. Water and ethyl acetate were added to the evaporation residue and the pH was adjusted to 8.5. The layers were separated and the organic layer was washed with water, dried (Na 2 SO 4) and evaporated in vacuo. The title compound was thus won.
Eksempel 11Example 11
Hydrogenolyse af det pågældende 6-halogenpenicil-lansyreester-1,1-dioxid fra Eksempel 7 ved fremgangsmåden 30 ifølge Eksempel 10 gav de følgende forbindelser: 3- phthalidyl-penicillanat-l,1-dioxid, 4- crotonolactonyl-penicillanat-l,1-dioxid, Y-butyrolacton-4-yl-penicillanat-l,1-dioxid, acetoxymethyl-penicillanat-1,1-dioxid, 3 5 pivaloyloxymethyl-penicillanat-1,1-dioxid, hexanoyloxymethyl-penicillanat-1,1-dioxid, 1-(acetoxy)ethyl-penicillanat-1,1-dioxid, 1-(isobutyryloxy)ethyl-penicillanat-1,1-dioxid,Hydrogenolysis of the respective 6-halo-penicillanoic acid ester-1,1-dioxide from Example 7 by the procedure of Example 10 gave the following compounds: 3-phthalidyl-penicillanate-1,1-dioxide, 4-crotonolactonyl-penicillanate-1,1 -dioxide, Y-butyrolacton-4-yl-penicillanate-1,1-dioxide, acetoxymethyl-penicillanate-1,1-dioxide, pivaloyloxymethyl-penicillanate-1,1-dioxide, hexanoyloxymethyl-penicillanate-1,1-dioxide , 1- (acetoxy) ethyl-penicillanate-1,1-dioxide, 1- (isobutyryloxy) ethyl-penicillanate-1,1-dioxide,
DK 159852 BDK 159852 B
25 1-methyl-l-(acetoxy)ethyl-penicillanat-1,1-dioxid, 1-methyl-l-(hexanoyloxy)ethyl-penicillanat-1,1-dioxid, methoxycarbonyloxymethyl-penicillanat-1,1-dioxid, propoxycarbonyloxymethyl-penicillanat-1,1-dioxid, 5 1-(ethoxycarbonyloxy)ethyl-penicillanat-1,1-dioxid, 1-(butoxycarbonyl)ethyl-penicillanat-1,1-dioxid, 1-methyl-l- (methoxycarbonyloxy) ethyl-penicillanat-1,1-dioxid og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-penicillanat-1,Ι-ΙΟ dioxid.1-methyl-1- (acetoxy) ethyl-penicillanate-1,1-dioxide, 1-methyl-1- (hexanoyloxy) ethyl-penicillanate-1,1-dioxide, methoxycarbonyloxymethyl-penicillanate-1,1-dioxide, propoxycarbonyloxymethyl -penicillanate-1,1-dioxide, 1- (ethoxycarbonyloxy) ethyl-penicillanate-1,1-dioxide, 1- (butoxycarbonyl) ethyl-penicillanate-1,1-dioxide, 1-methyl-1- (methoxycarbonyloxy) ethyl -penicillanate-1,1-dioxide and 1-methyl-1- (isopropoxycarbonyloxy) ethyl-penicillanate-1,1-ΙΟ dioxide.
Eksempel 12Example 12
Pivaloyloxymethyl-6-a-brompenicillanat-l,1-dioxid.Pivaloyloxymethyl 6-alpha-bromopenicillanate-l, 1-dioxide.
En oxiderende opløsning blev fremstillet ved at 15 kombinere 4,26 g kaliumpermanganat, 2,65 g 85% phosphor-syre og 40 ml vand. Blandingen blev omrørt i 1 time, og den blev derefter langsomt i løbet af 20 minutter ved 5-10°C sat til en omrørt opløsning af 5,32 g pivaloyloxy-methyl-6-a-brompenicillanat i 70 ml acetone og 10 ml 20 vand. Blandingen blev omrørt ved 5°C i 30 minutter, og 100 ml ethylacetat blev tilsat. Efter yderligere 30 minutter blev en opløsning af 3,12 g natriumbisulfit i 30 ml vand tilsat i løbet af 15 minutter ved ca. 10°C. Omrøring blev fortsat i yderligere 30 minutter ved 5°C, og 25 blandingen blev derefter filtreret. Den organiske fase blev fraskilt og vasket med mættet natriumchloridopløsning. Det tørrede organiske lag blev inddampet, hvorved vandtes 5,4 g af titelforbindelsen som en olie, der langsomt krystalliserede. NMR-spektret (i CDCl^) viste ab-30 sorptioner ved 5,80 (q, 2H), 5,15 (d, IH) , 4,75 (d, IH), 4,50 (s, IH), 1,60 (s, 3H), 1,40 (s, 3H) og 1,20 (s, 9H) ppm.An oxidizing solution was prepared by combining 4.26 g of potassium permanganate, 2.65 g of 85% phosphoric acid and 40 ml of water. The mixture was stirred for 1 hour and then slowly, over 5 minutes at 5-10 ° C, was added to a stirred solution of 5.32 g of pivaloyloxy-methyl-6-a-brompenicillanate in 70 ml of acetone and 10 ml. water. The mixture was stirred at 5 ° C for 30 minutes and 100 ml of ethyl acetate was added. After a further 30 minutes, a solution of 3.12 g of sodium bisulfite in 30 ml of water was added over 15 minutes at ca. 10 ° C. Stirring was continued for an additional 30 minutes at 5 ° C and then the mixture was filtered. The organic phase was separated and washed with saturated sodium chloride solution. The dried organic layer was evaporated to give 5.4 g of the title compound as an oil which slowly crystallized. The NMR spectrum (in CDCl3) showed absorptions at 5.80 (q, 2H), 5.15 (d, 1H), 4.75 (d, 1H), 4.50 (s, 1H), 1.60 (s, 3H), 1.40 (s, 3H) and 1.20 (s, 9H) ppm.
Eksempel 13 35 Pivaloyloxymethyl-penicillanat-1,1-dioxid.Example 13 Pivaloyloxymethyl penicillanate-1,1-dioxide.
En opløsning af 4,4 g pivaloyloxymethyl-6-a-brom-penicillanat-1,1-dioxid i 60 ml tetrahydrofuran blev sat til 0,84 g natriumbicarbonat i 12 ml vand. OpløsningenA solution of 4.4 g of pivaloyloxymethyl-6-a-bromo-penicillanate-1,1-dioxide in 60 ml of tetrahydrofuran was added to 0.84 g of sodium bicarbonate in 12 ml of water. The solution
DK 159852 BDK 159852 B
26 blev rystet under en atmosfære af hydrogen i nærværelse af 2,0 g 5% palladium-på-kul ved 47-51 psig. Reaktionsblandingen blev derefter filtreret, og filterresten blev vasket med 100 ml ethylacetat og 25 ml vand. Kombinatio-5 nen af filtrat og vaskevæsker blev fraskilt. Det organiske lag blev vasket med mættet natriumchlorid, tørret (MgS04) og inddampet, hvorved vandtes titelforbindelsen som en olie. Denne olie blev opløst i ethylacetat (20 ml).26 was shaken under an atmosphere of hydrogen in the presence of 2.0 g of 5% palladium on charcoal at 47-51 psig. The reaction mixture was then filtered and the filter residue was washed with 100 ml of ethyl acetate and 25 ml of water. The combination of filtrate and washings was separated. The organic layer was washed with saturated sodium chloride, dried (MgSO 4) and evaporated to give the title compound as an oil. This oil was dissolved in ethyl acetate (20 ml).
Til opløsningen blev der langsomt sat hexan (100 ml), og 10 bundfaldet blev frafiltreret. Udbytte: 2,4 g. NMR-spek-tret (i DMSO-dg) viste absorptioner ved 5,75 (q, 2H), 5,05 (m, IH), 4,40 (s, IH), 3,95 - 2,95 (m, 2H), 1,40 (s, 3H), 1,25 (s, 3H) og 1,10 (s, 9H) ppm.To the solution was added hexane (100 ml) slowly and the precipitate was filtered off. Yield: 2.4 g. The NMR spectrum (in DMSO-dg) showed absorptions at 5.75 (q, 2H), 5.05 (m, 1H), 4.40 (s, 1H), 3, 95 - 2.95 (m, 2H), 1.40 (s, 3H), 1.25 (s, 3H) and 1.10 (s, 9H) ppm.
15 Eksempel 14 2,2,2-Trichlorethyl-6-a-brompenicillanat-l,1-dioxid.Example 14 2,2,2-Trichloroethyl-6-a-brompenicillanate-1,1-dioxide.
2,2,2-Trichlorethyl-6-a-brompenicillanat blev oxideret med kaliumpermanganat i det væsentlige ved fremgangsmåden ifølge Eksempel 12, hvorved vandtes titelfor-20 bindeisen i et udbytte på 79%. NMR-spektret af produktet (i CDCl-j) viste absorptioner ved 5,30 til 4,70 (m, 4H), 4,60 (s, IH), 1,70 (s, 3H) og 1,50 (s, 3H) ppm.2,2,2-Trichloroethyl 6-a-brompenicillanate was oxidized with potassium permanganate substantially by the procedure of Example 12, thereby winning the title compound ice in 79% yield. The NMR spectrum of the product (in CDCl3) showed absorbances at 5.30 to 4.70 (m, 4H), 4.60 (s, 1H), 1.70 (s, 3H) and 1.50 (s). , 3H) ppm.
Eksempel 15 25 Benzyl-6-a-brompenicillanat-l,1-dioxid.Example 15 Benzyl-6-α-brompenicillanate-1,1-dioxide.
Benzyl-6-a-brompenicillanat blev oxideret med kaliumpermanganat i det væsentlige som ved fremgangsmåden i-følge Eksempel 12, hvorved vandtes titelforbindelsen i 94% udbytte. NMR-spektret (i CDCl^) viste absorptioner 30 ved 7,35 (s, 5H), 5,10 (m, 3H), 4,85 (m, IH), 4,40 (s, IH), 1,50 (s, 3H) og 1,25 (s, 3H) ppm.Benzyl 6-α-brompenicillanate was oxidized with potassium permanganate substantially as in the procedure of Example 12, thereby gaining the title compound in 94% yield. The NMR spectrum (in CDCl3) showed absorptions at 7.35 (s, 5H), 5.10 (m, 3H), 4.85 (m, 1H), 4.40 (s, 1H), 1, 50 (s, 3H) and 1.25 (s, 3H) ppm.
Eksempel 16Example 16
Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.
33 En opløsning af 4,0 g benzyl-6-a-brompenicillanat- 1,1-dioxid i 50 ml tetrahydrofuran blev kombineret med en opløsning af 1,06 g natriumbicarbonat i 50 ml vand.33 A solution of 4.0 g of benzyl-6-a-brompenicillanate-1,1-dioxide in 50 ml of tetrahydrofuran was combined with a solution of 1.06 g of sodium bicarbonate in 50 ml of water.
2727
DK 1S9852 BDK 1S9852 B
Til blandingen blev der sat 2,0 g af en 50% suspension af 5% palladium-på-kul i vand, hvorefter denne blanding blev rystet under en atmosfære af hydrogen ved et tryk på 46,5 -50 psig. i 20 minutter. Katalysatoren blev frafiltreret, 5 og derefter blev der tilsat 30 ml tetrahydrofuran og 3,0 g af en 50% suspension af 5% palladium-på-kul. Den resulterende blanding blev rystet under en atmosfære af hydrogen ved tryk fra 42 til 45 psig. i 65 minutter. Reaktionsblandingen blev derefter filtreret, og tetrahydro-10 furanen blev afdampet. Ethylacetat blev sat til den vandige inddampningsrest, og pH blev indstillet på 7,1. Ethylacetatlaget blev fjernet, og frisk ethylacetat blev tilsat til den resterende vandige fase. pH-Værdien blev sænket til 1,5, og lagene blev adskilt. Den vandige fase 15 blev ekstraheret yderligere med ethylacetat, og de samlede ethylacetatopløsninger blev vasket med mættet natrium-chloridopløsning og tørret (MgSO^). Inddampning i vakuum gav en gummi, der blev tritureret under ether. Herved vandtes 31 mg penicillansyre-l,l-dioxid som et gult fast 20 stof. NMR-spektret (i CDCl^/DMSO-dg) viste absorption ved 9,45 (bred s, IH), 4,60 (t, IH), 4,25 (s, IH), 3,40 (d, 2H) , 1,65 (s, 3H) og 1,30 (s, 3H) ppm.To the mixture was added 2.0 g of a 50% suspension of 5% palladium-on-charcoal in water, after which this mixture was shaken under an atmosphere of hydrogen at a pressure of 46.5 -50 psig. for 20 minutes. The catalyst was filtered off, then 30 ml of tetrahydrofuran and 3.0 g of a 50% suspension of 5% palladium-on-charcoal were added. The resulting mixture was shaken under an atmosphere of hydrogen at pressures from 42 to 45 psig. for 65 minutes. The reaction mixture was then filtered and the tetrahydrofuran was evaporated. Ethyl acetate was added to the aqueous evaporation residue and the pH was adjusted to 7.1. The ethyl acetate layer was removed and fresh ethyl acetate was added to the remaining aqueous phase. The pH was lowered to 1.5 and the layers separated. The aqueous phase 15 was further extracted with ethyl acetate and the combined ethyl acetate solutions were washed with saturated sodium chloride solution and dried (MgSO4). Evaporation in vacuo gave a gum which was triturated under ether. There was thus obtained 31 mg of penicillanic acid 1,1-dioxide as a yellow solid. The NMR spectrum (in CDCl3 / DMSO-dg) showed absorption at 9.45 (broad s, 1H), 4.60 (t, 1H), 4.25 (s, 1H), 3.40 (d, 2H) ), 1.65 (s, 3H) and 1.30 (s, 3H) ppm.
Eksempel 17 25 6,6-Dibrompenicillansyre-l,l-dioxid.Example 17 6,6-Dibrompenicillanic acid 1,1-dioxide.
Til dichlormethanopløsningen af 6,6-dibrompenicil-lansyre fra Præparation K blev der sat 300 ml vand efter* .i fulgt af dråbevis tilsætning over en periode på 30 minutter af 105 ml 3N natriumhydroxid. pH-Værdien stabilisere-30 de ved 7,0. Det vandige lag blev fjernet, og det organiske lag blev ekstraheret med vand (2 x 100 ml) . Til de samlede vandige opløsninger blev der ved -5°C såt en præ-blandet opløsning fremstillet ud fra 59,25 g kaliumper-manganat, 18 ml koncentreret phosphorsyre og 600 ml vand, 35 indtil den lyserøde farve af permanganatet holdt sig. Tilsætningen tog 50 minutter, og 550 ml oxidationsmiddel var nødvendigt. På dette tidspunkt blev der tilsat 500 mL ethylacetat, og derefter blev pH sænket til 1,23 ved tilsætning af 105 ml 6N saltsyre. Derefter blev der i løbet 23To the dichloromethane solution of 6,6-dibrompenicilanoic acid from Preparation K, 300 ml of water was added after * i followed by dropwise addition over a period of 30 minutes of 105 ml of 3N sodium hydroxide. The pH value stabilized at 7.0. The aqueous layer was removed and the organic layer was extracted with water (2 x 100 ml). To the combined aqueous solutions, at -5 ° C a pre-mixed solution was prepared from 59.25 g of potassium permanganate, 18 ml of concentrated phosphoric acid and 600 ml of water until the pink color of the permanganate remained. The addition took 50 minutes and 550 ml of oxidizer was needed. At this time, 500 mL of ethyl acetate was added, and then the pH was lowered to 1.23 by the addition of 105 mL of 6N hydrochloric acid. Then, during the course of 23
DK 159852 BDK 159852 B
af 10-15 minutter ved ca. 10°C tilsat 250 ml 1M natrium-bisulfit. Under tilsætningen af natriumbisulfitopløsnin-gen holdtes pH ved 1,25-1,35 ved anvendelse af 6N saltsyre. Den vandige fase blev mættet med natriumchlorid, 5 og de to faser blev adskilt. Den vandige opløsning blev ekstraheret med yderligere ethylacetat (2 x 150 ml), og de samlede ethylacetatopløsninger blev vasket med saltopløsning og tørret (MgS04). Dette gav en ethylacetatop-løsning af 6,6-dibrompenicillansyre-l,l-dioxid.of 10-15 minutes at approx. 10 ml of 250 ml of 1M sodium bisulfite. During the addition of the sodium bisulfite solution, the pH was maintained at 1.25-1.35 using 6N hydrochloric acid. The aqueous phase was saturated with sodium chloride, and the two phases were separated. The aqueous solution was extracted with additional ethyl acetate (2 x 150 mL) and the combined ethyl acetate solutions were washed with brine and dried (MgSO 4). This gave an ethyl acetate solution of 6,6-dibrompenicillanic acid 1,1-dioxide.
TO 6,6-Dibrompenicillansyre-l,l-dioxidet kunne isole res ved at fjerne opløsningsmidlet i vakuum. En prøve isoleret på denne måde ud fra et analogt præparat havde smp. 201°C (dek.). NMR-spektret (CDCl^/DMSO-dg) viste absorptioner ved 9,35 (s, IH), 5,30 (s, IH), 4,42 (s, 1HV 15 1,63 (s, 3H) og 1,50 (s, 3H) ppm. IR-spektret (KBr-plade) viste absorptioner ved 3846-2500, 1818, 1754, 1342 og 1250-1110 cm-1.The two 6,6-dibrompenicillanic acid 1,1-dioxide could be isolated by removing the solvent in vacuo. A sample isolated in this way from an analog preparation had m.p. 201 ° C (dec.). The NMR spectrum (CDCl3 / DMSO-dg) showed absorptions at 9.35 (s, 1H), 5.30 (s, 1H), 4.42 (s, 1HV, 1.63 (s, 3H), and 1 , 50 (s, 3H) ppm. The IR spectrum (KBr plate) showed absorptions at 3846-2500, 1818, 1754, 1342 and 1250-1110 cm -1.
Eksempel 18 20 6-Chlor-6-iodpenicillansyre-l,l-dioxid.Example 18 6-Chloro-6-iodopenicillanic acid 1,1-dioxide.
Til en opløsning af 4,9 g 6-chlor-6-iodpenicillan-syre i 50 ml dichlormethan blev der sat 50 ml vand, og derefter blev pH hævet til 7,2 ved anvendelse af 3N natriumhydroxid. Lagene blev adskilt, og det vandige lag 25 blev afkølet til 5°C. Til denne opløsning blev der derefter dråbevis over en periode på 20 minutter sat en præblandet opløsning fremstillet ud fra 2,61 g kaliumperman-ganat, 1,75 ml koncentreret phosphorsyre og 50 ml vand. pH-Værdien holdtes ved 6, og temperaturen holdtes under 30 10°C under tilsætningen. På dette tidspunkt blev der tilsat 100 ml ethylacetat, og pH blev indstillet på 1,5.To a solution of 4.9 g of 6-chloro-6-iodo-penicillanic acid in 50 ml of dichloromethane was added 50 ml of water and then the pH was raised to 7.2 using 3N sodium hydroxide. The layers were separated and the aqueous layer 25 was cooled to 5 ° C. To this solution was then added dropwise over a period of 20 minutes a premixed solution prepared from 2.61 g of potassium permanganate, 1.75 ml of concentrated phosphoric acid and 50 ml of water. The pH was maintained at 6 and the temperature kept below 10 ° C during the addition. At this point, 100 ml of ethyl acetate was added and the pH was adjusted to 1.5.
Til blandingen blev der derefter sat 50 ml 10% natriumbisulf it, idet temperaturen holdtes under 10°C, og pH ved ca. 1,5 ved tilsætning af 6N saltsyre. pH-Værdien 35 blev sænket til 1,25, og lagene blev adskilt. Det vandige lag blev mættet med natriumchlorid og ekstraheret med ethylacetat. De samlede organiske opløsninger blev vasket med saltopløsning, tørret (MgS04) og inddampet i vakuum, hvorved vandtes 4,2 g af titelforbindelsen, smp.To the mixture was then added 50 ml of 10% sodium bisulfite, keeping the temperature below 10 ° C and the pH at ca. 1.5 by the addition of 6N hydrochloric acid. The pH 35 was lowered to 1.25 and the layers separated. The aqueous layer was saturated with sodium chloride and extracted with ethyl acetate. The combined organic solutions were washed with brine, dried (MgSO 4) and evaporated in vacuo to give 4.2 g of the title compound, m.p.
DK 159852 BDK 159852 B
29 143-145°C. NMR-spektret (CDClj) viste absorptioner ved 4,86 (s, IH), 4,38 (s, IH), 1,60 (s, 3H) og 1,43 (s,3H) ppm. IR-spektret (KBr-plade) viste absorptioner ved 1800, 1740 og 1250-1110 cm"1.29 143-145 ° C. The NMR spectrum (CDCl3) showed absorptions at 4.86 (s, 1H), 4.38 (s, 1H), 1.60 (s, 3H) and 1.43 (s, 3H) ppm. The IR spectrum (KBr plate) showed absorptions at 1800, 1740 and 1250-1110 cm -1.
55
Eksempel 19 6-Brom-6-iodpenicillansyre-l,1-dioxid.Example 19 6-Bromo-6-iodopenicillanic acid 1,1-dioxide.
Til en opløsning af 6,0 g 6-brom-6-iodpenicillansy-re i 50 ml dichlormethan blev der sat 50 ml vand. pH-Vær-10 dien blev hævet til 7,3 med 3N natriumhydroxid, og det vandige lag blev fjernet. Det organiske lag blev ekstraheret med 10 ml vand. De samlede vandige faser blev afkølet til 5°C, og en præblandet opløsning af 284 g kalium-permanganat i 2 ml koncentreret phosphorsyre og 50 ml 15 vand blev tilsat dråbevis mellem 5° og 10°C. Tilsætningen tog 20 minutter. På dette tidspunkt blev der tilsat 50 ml ethylacetat, og pH af blandingen blev sænket til 1,5 med 6N saltsyre. Til dette tofase-system blev der dråbevis sat 50 ml 10% natriumbisulfit, idet pH holdtes ved ca.1,5 20 ved tilsætning af 6N saltsyre. Yderligere 50 ml ethylacetat blev tilsat, og derefter blev pH sænket til 1,23. Lagene blev adskilt, og det vandige lag blev mættet med na-triumchlorid. Den mættede opløsning blev ekstraheret med ethylacetat (3 x 50 ml), og de samlede ethylacetatlag 25 blev vasket med saltopløsning, tørret (MgSO^) og inddampet i vakuum. Inddampningsresten blev tørret i højvakuum, hvilket gav 4,2 g af titelforbindelsen, smp. 145-147°C. NMR-spektret (CDCl^) viste absorptioner ved 4,90 (s, IH), 4,30 (s, IH), 1,60 (s, 3H) og 1,42 (s, 3H) ppm. IR-spek-30 tret (KBr-plade) viste absorptioner ved 1800, 1740, 1330 og 1250-1110 cm \To a solution of 6.0 g of 6-bromo-6-iodo-penicillanic acid in 50 ml of dichloromethane was added 50 ml of water. The pH-value diene was raised to 7.3 with 3N sodium hydroxide and the aqueous layer removed. The organic layer was extracted with 10 ml of water. The combined aqueous phases were cooled to 5 ° C and a premixed solution of 284 g of potassium permanganate in 2 ml of concentrated phosphoric acid and 50 ml of water was added dropwise between 5 ° and 10 ° C. The addition took 20 minutes. At this point, 50 ml of ethyl acetate was added and the pH of the mixture was lowered to 1.5 with 6N hydrochloric acid. To this two-phase system was added dropwise 50 ml of 10% sodium bisulfite, keeping the pH at about 1.5 20 by the addition of 6N hydrochloric acid. An additional 50 ml of ethyl acetate was added and then the pH was lowered to 1.23. The layers were separated and the aqueous layer was saturated with sodium chloride. The saturated solution was extracted with ethyl acetate (3 x 50 ml) and the combined ethyl acetate layers 25 washed with brine, dried (MgSO 4) and evaporated in vacuo. The residue was dried in high vacuum to give 4.2 g of the title compound, m.p. 145-147 ° C. The NMR spectrum (CDCl3) showed absorptions at 4.90 (s, 1H), 4.30 (s, 1H), 1.60 (s, 3H) and 1.42 (s, 3H) ppm. The IR spectra (KBr plate) showed absorptions at 1800, 1740, 1330 and 1250-1110 cm
Eksempel 20 6-Chlor-6-brompenicillansyre-l,1-dioxid.Example 20 6-Chloro-6-brompenicillanic acid 1,1-dioxide.
35 Oxidation af 6-chlor-6-brompenicillansyre med kali- umpermanganat ved fremgangsmåden ifølge Eksempel 19 gav 6-chlor-6-brompenicillansyre-l,1-dioxid.Oxidation of 6-chloro-6-brompenicillanic acid with potassium permanganate by the procedure of Example 19 gave 6-chloro-6-brompenicillanic acid 1,1-dioxide.
DK 159852BDK 159852B
3030
Eksempel 21Example 21
Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.
Ethylacetatopløsningen af 6,6-dibrompenicillansyre- 1,1-dioxid fra Eksempel 17 blev kombineret med 705 ml 5 mættet natriumbicarbonatopløsning og 8,88 g 5% palladium- på-kul-katalysator. Blandingen blev rystet under en at- 2 mosfære af hydrogen ved et tryk på ca. 5 kg/cm i ca. 1 time. Katalysatoren blev frafiltreret/ og pH af den vandige fase af filtratet blev indstillet på 1,2 med 6N 10 saltsyre. Den vandige fase blev mættet med natriumchlo-rid. Lagene blev adskilt, og den vandige fase blev ekstraheret med yderligere ethylacetat (3 x 200 ml). De samlede ethylacetatopløsninger blev tørret (MgSO^) og inddampet i vakuum, hvorved vandtes 33,5 g (58% udbytte 15 baseret på 6-aminopenicillansyre) af penicillansyre-1,1-dioxid. Dette produkt blev opløst i 600 ml ethylacetat, opløsningen blev affarvet med aktivt kul, og opløsningsmidlet blev afdampet i vakuum. Produktet blev vasket med hexan. Herved vandtes 31,0 g rent produkt.The ethyl acetate solution of 6,6-dibrompenicillanic acid 1,1-dioxide from Example 17 was combined with 705 ml of 5 saturated sodium bicarbonate solution and 8.88 g of 5% palladium-on-carbon catalyst. The mixture was shaken under an atmosphere of hydrogen at a pressure of approx. 5 kg / cm for approx. 1 hour. The catalyst was filtered off and the pH of the aqueous phase of the filtrate was adjusted to 1.2 with 6N 10 hydrochloric acid. The aqueous phase was saturated with sodium chloride. The layers were separated and the aqueous phase was extracted with additional ethyl acetate (3 x 200 mL). The combined ethyl acetate solutions were dried (MgSO4) and evaporated in vacuo to give 33.5 g (58% yield 15 based on 6-aminopenicillanic acid) of penicillanic acid 1,1-dioxide. This product was dissolved in 600 ml of ethyl acetate, the solution was decolorized with activated charcoal and the solvent was evaporated in vacuo. The product was washed with hexane. There was thus obtained 31.0 g of pure product.
20 Eksempel 22Example 22
Hydrogenolyse af hver af 6-chlor-6-iodpenicillan-syre-1,1-dioxid, 6-brom-6-iodpenicillansyre og 6-chlor- 6-brom-penicillansyre ved fremgangsmåden ifølge Eksempel 21 gav i hvert enkelt tilfælde penicillansyre-1,1-dioxid.Hydrogenolysis of each of 6-chloro-6-iodo-penicillanic acid-1,1-dioxide, 6-bromo-6-iodo-penicillanic acid and 6-chloro-6-bromo-penicillanic acid by the procedure of Example 21 in each case gave penicillanic acid-1 , 1-dioxide.
2525
Eksempel 23Example 23
Pivaloyloxymethyl-6,6-dibrompenicillanat-l,1-dioxid.Pivaloyloxymethyl 6,6-dibromopenicillanate-l, 1-dioxide.
Til en opløsning af 4,73 g pivaloyloxymethyl-6,6-dibrompenicillanat i 15 ml dichlormethan blev der sat 30 3,80 g 3-chlorperbenzoesyre ved 0-5°C. Reaktionsblandin gen blev omrørt ved 0-5°C i 1 time og derefter ved 25°C i 24 timer. Den filtrerede reaktionsblanding blev inddampet til tørhed i vakuum, og inddampningsresten blev fordelt mellem ethylacetat og vand. pH-Værdien af den 35 vandige fase blev indstillet på 7,5, og lagene blev ad- 31To a solution of 4.73 g of pivaloyloxymethyl-6,6-dibrompenicillanate in 15 ml of dichloromethane was added 3.80 g of 3-chloroperbenzoic acid at 0-5 ° C. The reaction mixture was stirred at 0-5 ° C for 1 hour and then at 25 ° C for 24 hours. The filtered reaction mixture was evaporated to dryness in vacuo and the residue was partitioned between ethyl acetate and water. The pH of the 35 aqueous phase was adjusted to 7.5 and the layers were ad 31
DK 159G52BDK 159G52B
skilt. Ethylacetatfasen blev tørret (Na^SO^) og inddam-pet i vakuum, hvorved vandtes titelforbindelsen.sign. The ethyl acetate phase was dried (Na 2 SO 4) and evaporated in vacuo to give the title compound.
Eksempel 24 5 Oxidation af hver af 6,6-dihalogenpenicillansyre- estrene fra Præparation P under anvendelse af 3-chlor-perbenzoesyre ved fremgangsmåden ifølge Eksempel 23 gav de følgende forbindelser: 3-phthalidyl-6,6-dibrompenicillanat-l, 1-dioxid, 10 4-crotonolactonyl-6-chlor-6-iodpenicillanat-l, 1-dioxid, Y-butyrolactonyl-6-brom-6-iodpenicillanat-l,1-dioxid, acetoxymethyl-6-chlor-6-brompenicillanat-l,1-dioxid, pivaloyloxymethyl-6-chlor-6-iodpenicillanat-l, 1-dioxid, hexanoyloxymethyl-6,6-dibrompenicillanat-l, 1-dioxid, 15 l- (acetoxy) ethyl-6,6-dibrompenicillanat-l, 1-dioxid, 1-(isobutyryloxy)ethyl-6-brom-6-iodpenicillanat-l,1-dioxid, 1-methyl-l- (acetoxy) ethyl-6,6-dibrompenicillanat-l, 1-dioxid, 20 1-methyl-l- (hexanoyloxy) ethyl-6-chlor-6-brompenicillanat, methoxycarbonyloxymethyl-6,6-dibrompenicillanat-l,1-dioxid, propoxycarbonyloxymethyl-6-chlor-6-iodpenicillanat-l, 1- dioxid, 25 1- (ethoxycarbonyloxy)ethyl-6,6-dibrompenicillanat-l,1-dioxid, 1-(butoxycarbonyloxy)ethyl-6-brom-6-iodpenicillanat-l,1-dioxid, 1-methyl-l-(methoxycarbonyloxy)ethyl-6,6-dibrompenicilla-30 nat-1,1-dioxid og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-6,6-dibrompeni-cillanat-1,1-dioxid.Example 24 Oxidation of each of the 6,6-dihalogenpenicillanic acid esters of Preparation P using 3-chloro-perbenzoic acid by the procedure of Example 23 gave the following compounds: 3-phthalidyl-6,6-dibrompenicillanate-1,1-dioxide 4-Crotonolactonyl-6-chloro-6-iodo-penicillanate-1,1-dioxide, Y-butyrolactonyl-6-bromo-6-iodo-penicillanate-1,1-dioxide, acetoxymethyl-6-chloro-6-brompenicillanate-1, 1-dioxide, pivaloyloxymethyl-6-chloro-6-iodopenicillanate-1,1-dioxide, hexanoyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide, 1- (acetoxy) ethyl-6,6-dibrompenicillanate-1, 1-dioxide, 1- (isobutyryloxy) ethyl-6-bromo-6-iodopenicillanate-1,1-dioxide, 1-methyl-1- (acetoxy) ethyl-6,6-dibrompenicillanate-1,1-dioxide, 1 -methyl-1- (hexanoyloxy) ethyl-6-chloro-6-brompenicillanate, methoxycarbonyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide, propoxycarbonyloxymethyl-6-chloro-6-iodopenicillanate-1,1-dioxide, 1 - (ethoxycarbonyloxy) ethyl 6,6-dibrompenicillanate-1,1-dioxide, 1- (butoxycarbonyloxy) ethyl-6-bromo -6-iodopenicillanate-1,1-dioxide, 1-methyl-1- (methoxycarbonyloxy) ethyl-6,6-dibrompenicillanate-1,1-dioxide and 1-methyl-1- (isopropoxycarbonyloxy) ethyl-6, 6-dibrompeni cillanat-1,1-dioxide.
Eksempel 25 33 Pivaloyloxymethyl-penicillanat-1,1-dioxid.Example 25 33 Pivaloyloxymethyl penicillanate-1,1-dioxide.
Til en opløsning af 1,0 g pivaloyloxymethyl-6,6-dibrompenicillanat-1,1-dioxid i 10 ml methanol blev der sat 3 ml 1M natriumbicarbonat og 200 ml 10% palladium-på-To a solution of 1.0 g of pivaloyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide in 10 ml of methanol was added 3 ml of 1M sodium bicarbonate and 200 ml of 10% palladium
DK 159852 BDK 159852 B
32 kul. Reaktionsblandingen blev rystet kraftigt under en 2 atmosfære af hydrogen ved et tryk på ca. 5 kg/cm , indtil hydrogenoptagningen ophørte. Blandingen blev derefter filtreret, og hovedparten af methanolen blev fjernet ved 5 inddampning i vakuum. Vand og ethylacetat blev sat til inddampningsresten, og pH blev indstillet på 8,5. Lagene blev adskilt, og det organiske lag blev vasket med vand, tørret (Na2S0^) og inddampet i vakuum. Herved vandtes pivaloyloxymethylpenicillanat-1,1-dioxid.32 cool. The reaction mixture was shaken vigorously under a 2 atmosphere of hydrogen at a pressure of ca. 5 kg / cm until hydrogen uptake ceased. The mixture was then filtered and the majority of the methanol removed by evaporation in vacuo. Water and ethyl acetate were added to the evaporation residue and the pH was adjusted to 8.5. The layers were separated and the organic layer was washed with water, dried (Na 2 SO 4) and evaporated in vacuo. Pivaloyloxymethylpenicillanate-1,1-dioxide was thereby obtained.
1010
Eksempel 26Example 26
Hydrogenolyse af hver af 6,6-dihalogen-penicillan-syreester-l,l-dioxiderne fra Eksempel 24 ved fremgangsmåden ifølge Eksempel 25 gav de følgende forbindelser: 15 3-phthalidyl-penicillanat-l,1-dioxid, 4-crotonolactonyl-penicillanat-l,1-dioxid, Y-butyrolacton-4-yl-penicillanat-l,1-dioxid, acetoxymethyl-penicillanat-1,1-dioxid, pivaloyloxymethyl-penicillanat-1,1-dioxid, 20 hexanoyloxymethyl-penicillanat-1,1-dioxid, 1-(acetoxy)ethyl-penicillanat-1,1-dioxid, 1-(isobutyryloxy)ethyl-penicillanat-1,1-dioxid, 1-methyl-(acetoxy)ethyl-penicillanat-1,1-dioxid, 1-methyl-l-(hexanoyloxy)ethyl-penicillanat-1,1-dioxid, 25 methoxycarbonyloxymethyl-penicillanat-1,1-dioxider, propoxycarbonyloxymethyl-penicillanat-1,1-dioxid, 1-(ethoxycarbonyloxy)ethyl-penicillanat-1,1-dioxid, 1-(butoxycarbonyl)ethyl-penicillanat-1,1-dioxid, 1-methyl-l-(methoxycarbonyloxy)ethyl-penicillanat-1,1-30 dioxid og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-penicillanat- 1,1-dioxid.Hydrogenolysis of each of the 6,6-dihalo-penicillanic acid ester-1,1-dioxides of Example 24 by the procedure of Example 25 gave the following compounds: 3-phthalidyl-penicillanate-1,1-dioxide, 4-crotonolactonyl-penicillanate -1,1-dioxide, Y-butyrolacton-4-yl-penicillanate-1,1-dioxide, acetoxymethyl-penicillanate-1,1-dioxide, pivaloyloxymethyl-penicillanate-1,1-dioxide, hexanoyloxymethyl-penicillanate-1, 1-dioxide, 1- (acetoxy) ethyl-penicillanate-1,1-dioxide, 1- (isobutyryloxy) ethyl-penicillanate-1,1-dioxide, 1-methyl (acetoxy) ethyl-penicillanate-1,1-dioxide , 1-methyl-1- (hexanoyloxy) ethyl-penicillanate-1,1-dioxide, methoxycarbonyloxymethyl-penicillanate-1,1-dioxides, propoxycarbonyloxymethyl-penicillanate-1,1-dioxide, 1- (ethoxycarbonyloxy) ethyl-penicillanate 1,1-dioxide, 1- (butoxycarbonyl) ethyl-penicillanate-1,1-dioxide, 1-methyl-1- (methoxycarbonyloxy) ethyl-penicillanate-1,1-30-dioxide and 1-methyl-1- (isopropoxycarbonyloxy) ethyl penicillanate 1,1-dioxide.
Eksempel 27 35 Pivaloyloxymethyl-6,6-dibrompenicillanat-l, 1-dioxid.Example 27 Pivaloyloxymethyl 6,6-dibrompenicillanate-1,1-dioxide.
En omrørt opløsning af 3,92 g 6,6-dibrompenicillan-syre-1,1-dioxid i 20 ml Ν,Ν-dimethylformamid blev afkølet til 0°C, og derefter blev der tilsat 1,29 g diisopro-A stirred solution of 3.92 g of 6,6-dibrompenicillanic acid 1,1-dioxide in 20 ml of Ν, Ν-dimethylformamide was cooled to 0 ° C and then 1.29 g of diisopropylene was added.
DK 159852 BDK 159852 B
33 pylethylamin. Herefter blev der tilsat 1,51 g chlorme-thylpivalat. Denne reaktionsblanding blev omrørt ved 0°C i 3 timer og derefter ved stuetemperatur i 16 timer. Reaktionsblandingen blev derefter fortyndet med 25 ml ethyl-5 acetat og 25 ml vand. Lagene blev adskilt, og det vandige lag blev ekstraheret med ethylacetat. De samlede ethyl-acetatlag blev vasket med kold 5% natriumbicarbonatopløs-ning, vand og saltopløsning. Ethylacetatopløsningen blev derefter behandlet med Darco (et aktiveret trækul), tør-10 ret (MgS04) og inddampet i vakuum til en brun olie, der vejede 2,1 g. Denne olie blev chromatograferet på 200 g silicagel under anvendelse af dichlormethan som eluerings-middel. De fraktioner, der indeholdt det ønskede produkt, blev samlet og genchromatograferet på silicagel, hvorved 15 vandtes 0,025 g af titelforbindelsen. NMR-spektret (CDC13) viste absorptioner ved 6,10 (q, 2H), 5,00 (s, IH), 4,55 (s, IH), 1,60 (s, 3H), 1,50 (s, 3H) og 1,15 (s, 9H) ppm.33 pylethylamine. Then 1.51 g of chloromethyl pivalate was added. This reaction mixture was stirred at 0 ° C for 3 hours and then at room temperature for 16 hours. The reaction mixture was then diluted with 25 ml of ethyl acetate and 25 ml of water. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined ethyl acetate layers were washed with cold 5% sodium bicarbonate solution, water and brine. The ethyl acetate solution was then treated with Darco (an activated charcoal), dried (MgSO 4) and evaporated in vacuo to a brown oil weighing 2.1 g. This oil was chromatographed on 200 g of silica gel using dichloromethane as eluent. agent. The fractions containing the desired product were pooled and re-chromatographed on silica gel to give 0.025 g of the title compound. The NMR spectrum (CDCl3) showed absorptions at 6.10 (q, 2H), 5.00 (s, 1H), 4.55 (s, 1H), 1.60 (s, 3H), 1.50 (s). , 3H) and 1.15 (s, 9H) ppm.
Eksempel 28 20 6,6-Dibrompenicillansyre-l,1-dioxid.Example 28 20 6,6-Dibrompenicillanic acid 1,1-dioxide.
Til en opløsning af 359 mg 6,6-dibrompenicillansy-re i 30 ml dichlormethan blev der sat 380 mg 3-chlorper-benzoesyre ved 0-5°C. Reaktionsblandingen blev omrørt ved 0-5°C i 30 minutter og derefter ved 25°C i 24 timer.To a solution of 359 mg of 6,6-dibrompenicillanic acid in 30 ml of dichloromethane was added 380 mg of 3-chloroperbenzoic acid at 0-5 ° C. The reaction mixture was stirred at 0-5 ° C for 30 minutes and then at 25 ° C for 24 hours.
25 Den filtrerede reaktionsblanding blev inddampet i vakuuirv hvorved vandtes titelforbindelsen.The filtered reaction mixture was evaporated in vacuo to give the title compound.
Eksempel 29Example 29
Benzyl-6,6-dibrompenicillanat-l,1-dioxid.Benzyl 6,6-dibromopenicillanate-l, 1-dioxide.
30 En blanding af 10,0 g 6,6-dibrompenicillansyre-l,l- dioxid, 2,15 g natriumbicarbonat, 3,06 ml benzylbromid og 100 ml Ν,Ν-dimethylformamid blev omrørt ved stuetemperatur natten over. Det meste af opløsningsmidlet blev fjernet ved inddampning i vakuum, og inddampningsresten 35 blev fordelt mellem ethylacetat og vand. Det organiske lag blev fjernet, vasket med IN saltsyre og med mættet natriumchlorid og tørret (Na2S04). Inddampning i vakuum gav 11,55 g af titelforbindelsen. NMR-spektret (i CDCl^) 34A mixture of 10.0 g of 6,6-dibrompenicillanic acid-1,1-dioxide, 2.15 g of sodium bicarbonate, 3.06 ml of benzyl bromide and 100 ml of Ν, Ν-dimethylformamide was stirred at room temperature overnight. Most of the solvent was removed by evaporation in vacuo and the residue 35 was partitioned between ethyl acetate and water. The organic layer was removed, washed with 1N hydrochloric acid and with saturated sodium chloride and dried (Na 2 SO 4). Evaporation in vacuo afforded 11.55 g of the title compound. NMR spectrum (in CDCl3) 34
DK 159852 BDK 159852 B
viste absorptioner ved 7,40 (s, 5H), 5,30 (m, 2H), 4,95 (s, IH), 4,55 (s, IH), 1,50 (s, 3H) og 1,20 (s, 3H) ppm.showed absorbances at 7.40 (s, 5H), 5.30 (m, 2H), 4.95 (s, 1H), 4.55 (s, 1H), 1.50 (s, 3H) and 1, 20 (s, 3H) ppm.
Eksempel 30 5 Penicillansyre-1,1-dioxid.Example 30 Penicillanic Acid-1,1-Dioxide.
Til en opløsning af 2,0 g benzyl-6,6-dibrompenicil-lanat-1,1-dioxid i 50 ml tetrahydrofuran blev der sat en opløsning af 0,699 g natriumbicarbonat i 50 ml vand efterfulgt af 2,0 g 5% palladium-på-kul. Denne blanding TO blev derefter rystet under en atmosfære af hydrogen ved ca. 50 psig. i 70 minutter. Tetrahydrofuranen blev fjernet ved fordampning, og inddampningsresten blev fordelt mellem ethylacetat og vand ved pH 7,37. Det vandige lag blev fjernet, og frisk ethylacetat blev tilsat. pH-Vær-T5 dien blev sænket til 1,17, og ethylacetatet blev fjernet og vasket med mættet natriumchloridopløsning. Inddamp-ning i vakuum gav 423 mg af titelforbindelsen.To a solution of 2.0 g of benzyl-6,6-dibrompenicilanate-1,1-dioxide in 50 ml of tetrahydrofuran was added a solution of 0.699 g of sodium bicarbonate in 50 ml of water followed by 2.0 g of 5% palladium. on-carbon. This mixture TO was then shaken under an atmosphere of hydrogen at ca. 50 psig. for 70 minutes. The tetrahydrofuran was removed by evaporation and the residue was partitioned between ethyl acetate and water at pH 7.37. The aqueous layer was removed and fresh ethyl acetate was added. The pH-Weather-T5 diene was lowered to 1.17 and the ethyl acetate was removed and washed with saturated sodium chloride solution. Evaporation in vacuo afforded 423 mg of the title compound.
2 0 Præparation A2 0 Preparation A
6-Chlor-6-iodpenicillansyre.6-Chloro-6-iodopenicillanic acid.
Til 3,38 g iodmonochlorid i 30 ml dichlormethan blev der under omrøring ved 0-5°C sat 11,1 ml 2,5N svovlsyre efterfulgt af 1,92 g natriumnitrit. På dette tids-25 punkt blev der på én gang tilsat 3,00 g 6-aminopenicil-lansyre, og omrøring blev fortsat i 30 minutter ved 0-5°C.To 3.38 g of iodine monochloride in 30 ml of dichloromethane was added with stirring at 0-5 ° C 11.1 ml of 2.5N sulfuric acid followed by 1.92 g of sodium nitrite. At this time, 3.00 g of 6-aminopenicilanoic acid was added at one time and stirring was continued for 30 minutes at 0-5 ° C.
Til reaktionsblandingen blev der derefter sat 22,8 ml 1MTo the reaction mixture was then added 22.8 ml of 1M
DK 159852 BDK 159852 B
35 natriumbisulfitopløsning i portioner, og lagene blev adskilt. Det vandige lag blev vasket med yderligere di-chlormethan, og derefter blev alle de organiske faser vasket med mættet natriumchlorid. Dichlormethanopløsnin-5 gen blev tørret (Na2S0^) og inddampet i vakuum, hvorved vandtes 3,48 g af titelforbindelsen.35 sodium bisulfite solution in portions and the layers were separated. The aqueous layer was washed with additional dichloromethane and then all the organic phases were washed with saturated sodium chloride. The dichloromethane solution was dried (Na 2 SO 4) and evaporated in vacuo to give 3.48 g of the title compound.
Det ovennævnte produkt blev opløst i 30 ml tetra-hydrofuran, og derefter blev der tilsat 30 ml vand. pH-Værdien blev indstillet på 6,8 med fortyndet natriumhy-10 droxid, og tetrahydrofuranen blev fjernet i vakuum. Den tilbageværende vandige fase blev frysetørret, og resten blev vasket med diethylether. Herved vandtes 3,67 g af titelforbindelsen som dens natriumsalt.The above product was dissolved in 30 ml of tetrahydrofuran and then 30 ml of water was added. The pH was adjusted to 6.8 with dilute sodium hydroxide and the tetrahydrofuran was removed in vacuo. The remaining aqueous phase was freeze-dried and the residue was washed with diethyl ether. There was thus obtained 3.67 g of the title compound as its sodium salt.
Præparation BPreparation B
15 6-8-Chlorpenicillansyre.6-8-Chlorpenicillanic acid.
En prøve på 2,95 g af natrium-6-chlor-6-iodpenicil-lansyre blev omdannet til den fri syre og derefter opløst i 125 ml benzen under nitrogen. Til opløsningen blev der sat 1,08 ml triethylamin, og blandingen blev afkølet til 20 0-5°C. Til den afkølede blanding blev der derefter sat 0,977 ml trimethylsilylchlorid, og reaktionsblandingen blev omrørt ved 0-5°C i 5 minutter, ved 25°C i 60 minutter og ved 50°C i 30 minutter. Reaktionsblandingen blev afkølet til 25°C, og triethylaminhydrochloridet blev fra-25 filtreret. Til filtratet blev der sat 15 mg azobisisobu-tyronitril efterfulgt af 2,02 ml tri-n-butyltinhydrid. Blandingen blev derefter bestrålet med ultraviolet lys i 15 minutter under afkøling til opretholdelse af en temperatur på ca. 20°C. Opløsningsmidlet blev derefter fjernet 30 ved inddampning i vakuum, og inddampningsresten blev opløst i en l:l-blanding af tetrahydrofuran/vand. pH-Værdi-en blev indstillet på 7,0, og tetrahydrofuranen blev fjernet ved fordampning i vakuum. Den vandige fase blev vasket med ether, og derefter blev der tilsat et lige så 35 stort volumen ethylacetat. pH-Værdien blev indstillet på 1,8, og ethylacetatlaget blev fjernet. Den vandige fase blev ekstraheret med yderligere ethylacetat, og derefterA sample of 2.95 g of sodium 6-chloro-6-iodo-penicilanoic acid was converted to the free acid and then dissolved in 125 ml of benzene under nitrogen. To the solution was added 1.08 ml of triethylamine and the mixture was cooled to 0-5 ° C. To the cooled mixture was then added 0.977 ml of trimethylsilyl chloride and the reaction mixture was stirred at 0-5 ° C for 5 minutes, at 25 ° C for 60 minutes and at 50 ° C for 30 minutes. The reaction mixture was cooled to 25 ° C and the triethylamine hydrochloride was filtered off. To the filtrate was added 15 mg of azobisisobutyronitrile followed by 2.02 ml of tri-n-butyltin hydride. The mixture was then irradiated with ultraviolet light for 15 minutes under cooling to maintain a temperature of ca. 20 ° C. The solvent was then removed by evaporation in vacuo and the residue was dissolved in a 1: 1 tetrahydrofuran / water mixture. The pH was adjusted to 7.0 and the tetrahydrofuran was removed by evaporation in vacuo. The aqueous phase was washed with ether and then an equal volume of ethyl acetate was added. The pH was adjusted to 1.8 and the ethyl acetate layer was removed. The aqueous phase was extracted with additional ethyl acetate, and then
DK 159852 BDK 159852 B
36 blev de samlede ethylacetatopløsninger tørret og inddampet i vakuum. Herved vandtes 980 mg 6^-chlorpenicillan-syre.36, the combined ethyl acetate solutions were dried and evaporated in vacuo. 980 mg of 6β-chlorpenicillanic acid were thereby obtained.
Det ovennævnte produkt blev opløst i tetrahydrofu-5 ran, og et lige så stort volumen vand blev tilsat. pH-Værdien blev indstillet på 6,8, og tetrahydrofuranen blev fjernet ved inddampning i vakuum. Den tilbageværende vandige fase blev frysetørret, hvorved vandtes 850 mg natri-um-6-D-chlorpenicillanat. NMR-spektret ^0) viste ab-10 sorption ved 5,70 Cd, IH, J = 4Hz) , 5,50 (d, IH, J = 4Hz), 4,36 (s, IH), 1,60 (s, 3H) og 1,53 (s, 3H) ppm.The above product was dissolved in tetrahydrofuran and an equal volume of water was added. The pH was adjusted to 6.8 and the tetrahydrofuran was removed by evaporation in vacuo. The remaining aqueous phase was lyophilized to give 850 mg of sodium 6-D-chlorpenicillanate. The NMR spectrum (0) showed absorption at 5.70 Cd, 1H, J = 4Hz), 5.50 (d, 1H, J = 4Hz), 4.36 (s, 1H), 1.60 ( s, 3H) and 1.53 (s, 3H) ppm.
Præparation CPreparation C
6-3-Brompenicillansyre.6-3-bromopenicillanic acid.
En blanding af 5,0 g 6,6-dibrompenicillansyre, 154 15 ml triethylamin og 100 ml benzen blev omrørt under nitrogen, indtil der var vundet en opløsning. Opløsningen blev afkølet til 0-5°C, og 1,78 ml trimethylsilylchlorid blev tilsat. Reaktionsblandingen blev omrørt ved 0-5°C i 2-3 minutter og derefter ved 50°C i 35 minutter. Den afkøle-20 de reaktionsblanding blev filtreret, og filtratet blev afkølet til 0-5°C. En lille mængde azobisisobutyronitril blev tilsat efterfulgt af 3,68 ml tri-n-butyltinhydrid. Reaktionsbeholderen blev bestrålet med ultraviolet lys i 15 minutter, og derefter blev reaktionsblandingen omrørt 25 ved ca. 25°C i 1,75 timer. Reaktionsblandingen blev igen bestrålet i 15 minutter, og derefter blev omrøring fortsat i 2,5 timer. På dette tidspunkt blev der tilsat en yderligere lille mængde azobisisobutyronitril efterfulgt af 0,6 ml tri-n-butyltinhydrid, og blandingen blev igen 30 bestrålet i 30 minutter. Opløsningsmidlet blev derefter fjernet ved inddampning i vakuum, og til inddampningsre-sten blev der sat 5% natriumbicarbonatopløsning og di-ethylether. Tofase-systemet blev rystet kraftigt i 10 minutter, og derefter blev pH indstillet på 2,0. Etherlaget 35 blev fjernet, tørret og inddampet i vakuum, hvorved vandtes 2,33 g af en olie. Olien blev omdannet til et natriumsalt ved tilsætning af vand indeholdende 1 ækvivalentA mixture of 5.0 g of 6,6-dibrompenicillanic acid, 154 ml of triethylamine and 100 ml of benzene was stirred under nitrogen until a solution was obtained. The solution was cooled to 0-5 ° C and 1.78 ml of trimethylsilyl chloride was added. The reaction mixture was stirred at 0-5 ° C for 2-3 minutes and then at 50 ° C for 35 minutes. The cooled reaction mixture was filtered and the filtrate was cooled to 0-5 ° C. A small amount of azobisisobutyronitrile was added followed by 3.68 ml of tri-n-butyltin hydride. The reaction vessel was irradiated with ultraviolet light for 15 minutes, and then the reaction mixture was stirred at ca. 25 ° C for 1.75 hours. The reaction mixture was again irradiated for 15 minutes, and then stirring was continued for 2.5 hours. At this time, a further small amount of azobisisobutyronitrile was added followed by 0.6 ml of tri-n-butyltin hydride and the mixture was again irradiated for 30 minutes. The solvent was then removed by evaporation in vacuo and to the evaporation residue was added 5% sodium bicarbonate solution and diethyl ether. The two-phase system was shaken vigorously for 10 minutes and then the pH was adjusted to 2.0. The ether layer 35 was removed, dried and evaporated in vacuo to give 2.33 g of an oil. The oil was converted to a sodium salt by the addition of water containing 1 equivalent
DK 159852 BDK 159852 B
37 natriumbicarbonat efterfulgt af frysetørring af den således vundne opløsning. Herved vandtes natrium-6-β-brompe-nicillanat forurenet med en lille mængde af den «-isomere .37 sodium bicarbonate followed by freeze-drying of the solution thus obtained. Thereby, sodium 6-β-bromo-nicillanate was obtained contaminated with a small amount of the isomer.
5 Natriumsaltet blev renset ved chromatografi på Se- phadex LH-20, kombineret med noget yderligere materiale af samme kvalitet og genchromatograferet. NMR-spektret (D20) af det således vundne produkt viste absorptioner ved 5,56 (s, 2H), 4,25 (s, IH), 1,60 (s, 3H) og 1,50 (s, 10 3H) ppm.The sodium salt was purified by chromatography on Sepadex LH-20, combined with some additional material of the same quality, and re-chromatographed. The NMR spectrum (D 2 O) of the product thus obtained showed absorbances at 5.56 (s, 2H), 4.25 (s, 1H), 1.60 (s, 3H) and 1.50 (s, 10H) ppm.
Præparation DPreparation D
6-3-Iodpenicillansyre.6-3-iodopenicillanic acid.
Titelforbindelsen blev fremstillet ved reduktion af 6,6-diiodpenicillansyre med tri-n-butyltinhydrid ved 15 fremgangsmåden ifølge Præparation B.The title compound was prepared by reduction of 6,6-diiodo-penicillanic acid with tri-n-butyltin hydride by the method of Preparation B.
Præparation EPreparation E
Pivaloyloxymethyl-6-a-brompenicillanat.Pivaloyloxymethyl 6-alpha-bromopenicillanate.
Til en opløsning af 280 mg 6-a-brompenicillansyre i 2 ml Ν,Ν-dimethylformamid blev der sat 260 mg diisopro-20 pylethylamin efterfulgt af 155 mg chlormethylpivalat og 15 mg natriumiodid. Reaktionsblandingen blev omrørt ved stuetemperatur i 24 timer og blev derefter fortyndet med ethylacetat og vand. pH-Værdien blev indstillet på 7,5, og derefter blev ethylacetatlaget fraskilt og vasket tre 25 gange med vand og én gang med mættet natriumchloridopløsning. Ethylacetatopløsningen blev derefter tørret ved anvendelse af vandfrit natriumsulfat og inddampet i vakkum, hvorved vandtes titelforbindelsen.To a solution of 280 mg of 6-α-brompenicillanic acid in 2 ml of Ν, Ν-dimethylformamide was added 260 mg of diisopropylethylamine followed by 155 mg of chloromethyl pivalate and 15 mg of sodium iodide. The reaction mixture was stirred at room temperature for 24 hours and then diluted with ethyl acetate and water. The pH was adjusted to 7.5 and then the ethyl acetate layer was separated and washed three times with water and once with saturated sodium chloride solution. The ethyl acetate solution was then dried using anhydrous sodium sulfate and evaporated in vacuo to give the title compound.
Præparation FPreparation F
30 Omsætning af den passende 6-halogenpenicillansyre med 3-phthalidylchlorid, 4-crotonolactonylchlorid, γ-bu-tyrolacton-4-yl-chlorid eller det fornødne alkanoyloxy-methylchlorid, 1-(alkanoyloxy) ethylchlorid, 1-methyl-l-(alkanoyloxy)ethylchlorid, alkoxycarbonyloxymethylchlo-35 rid, l-(alkoxycarbonyloxy)ethylchlorid eller 1-methyl-l-Reaction of the appropriate 6-halo-penicillanic acid with 3-phthalidyl chloride, 4-crotonolactonyl chloride, γ-butyrolacton-4-yl chloride or the required alkanoyloxy methyl chloride, 1- (alkanoyloxy) ethyl chloride, 1-methyl-1- (alkanoyloxy) ethyl chloride, alkoxycarbonyloxymethyl chloride, 1- (alkoxycarbonyloxy) ethyl chloride or 1-methyl-1-
DK 159852 BDK 159852 B
38 (alkoxycarbonyloxy)ethylchlorid ved fremgangsmåden ifølge Præparation E gav følgende forbindelser: 3- phthalidyl-6-a-chlorpenicillanat, 4- crotonolactonyl-6-3-chlorpenicillanat, 5 Y-butyrolacton-4-yl-6-a-brompenicillanat, acetoxymethyl-6-3-brompenicillanat, pivaloyloxymethy1-6-β-brompenici1lanat, hexanoyloxymethyl-6-a-iodpenicillanat, 1-(acetoxy)ethyl-6-3-iodpenicillanat, 10 1-(isobutyryloxy)ethyl-6-a-chlorpenicillanat, 1-methyl-l-(acetoxy)ethyl-6-3-chlorpenicillanat, 1-methyl-l-(hexanoyloxy)ethyl-6-a-brompenicillanat, methoxycarbonyloxymethy1-6-α-brompenicilianat, propoxycarbonyloxymethy1-6-β-brompenicilianat, 15 1-(ethoxycarbonyloxy)ethyl-6-a-brompenicillanat, 1-butoxycarbonyloxy)ethyl-6-cc-iodpenicillanat, 1-methyl-l- (methoxycarbonyloxy) ethyl-6-(3-iodpenicillanat og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-6-a-chlorpenicil-20 lanater.38 (alkoxycarbonyloxy) ethyl chloride in the process of Preparation E gave the following compounds: 3-phthalidyl-6-a-chloropenicillanate, 4-crotonolactonyl-6-3-chloropenicillanate, 5-y-butyrolacton-4-yl-6-a-brompenicillanate, acetoxymethyl -6-3-brompenicillanate, pivaloyloxymethyl 1-6-β-brompenicillanate, hexanoyloxymethyl-6-a-iodopenicillanate, 1- (acetoxy) ethyl 6-3-iodopenicillanate, 1- (isobutyryloxy) ethyl 6-a-chloropenicillanate, 1-methyl-1- (acetoxy) ethyl 6-3-chloropenicillanate, 1-methyl-1- (hexanoyloxy) ethyl-6-a-brompenicillanate, methoxycarbonyloxymethyl 1-6-α-brompenicilianate, propoxycarbonyloxymethyl 1-6-β-brompenicilianate, 1- (ethoxycarbonyloxy) ethyl 6-a-brompenicillanate, 1-butoxycarbonyloxy) ethyl 6-cc-iodopenicillanate, 1-methyl-1- (methoxycarbonyloxy) ethyl 6- (3-iodopenicillanate and 1-methyl-1- (isopropoxycarbonyloxy) ethyl 6-α-chlorpenicilanates.
Præparation GPreparation G
6,6-Diiodpenicillansyre.6,6-diiodopenicillanic acid.
En blanding af 15,23 g iod, 10 ml 2,5N svovlsyre, 276 g natriumnitrit og 75 ml dichlormethan blev omrørt 25 ved 5°C, og 4,32 g 6-aminopenicillansyre blev tilsat over en periode på 15 minutter. Omrøring blev fortsat ved 5-10°C i 45 minutter efter endt tilsætning, og derefter blev der dråbevis tilsat 100 ml 10% natriumbisulfit. Lagene blev adskilt, og det vandige lag blev ekstraheret 30 yderligere med dichlormethan. De samlede dichlormethanlag blev vasket med saltopløsning, tørret (MgSO^) og inddampet i vakuum. Herved vandtes 1,4 g af titelforbindelsen forurenet med nogen 6-iod-penicillansyre. Produktet havde smp. 58-64°C. NMR-spektret (CDClg) viste absorptioner ved 35 5,77 (s, IH), 4,60 (s, IH), 1,71 (s, 3H) og 1,54 (s, 3H) ppm.A mixture of 15.23 g of iodine, 10 ml of 2.5N sulfuric acid, 276 g of sodium nitrite and 75 ml of dichloromethane was stirred at 5 ° C and 4.32 g of 6-aminopenicillanic acid was added over a period of 15 minutes. Stirring was continued at 5-10 ° C for 45 minutes after completion of addition and then 100 ml of 10% sodium bisulfite was added dropwise. The layers were separated and the aqueous layer was further extracted with dichloromethane. The combined dichloromethane layers were washed with brine, dried (MgSO4) and evaporated in vacuo. 1.4 g of the title compound were contaminated with some 6-iodo-penicillanic acid. The product had m.p. 58-64 ° C. The NMR spectrum (CDCl 3) showed absorptions at 5.77 (s, 1H), 4.60 (s, 1H), 1.71 (s, 3H) and 1.54 (s, 3H) ppm.
DK 159852 BDK 159852 B
3939
Præparation HPreparation H
Pivaloyloxymethyl-6-a-brompenicillanat.Pivaloyloxymethyl 6-alpha-bromopenicillanate.
Til en omrørt blanding af 11,2 g 6-a-brompenicil-lansyre, 3,7 g natriumbicarbonat og 44 ml N,N-dimethyl-5 formamid blev der dråbevis sat 6,16 g chlormethylpivalat i løbet af 5 minutter ved stuetemperatur. Omrøring blev fortsat i 66 timer, og derefter blev reaktionsblandingen fortyndet med 100 ml ethylacetat og 100 ml vand. Lagene blev adskilt, og ethylacetatlaget blev vasket successivt 10 med vand, mættet natriumchlorid, mættet natriumbicarbonat, vand og mættet natriumchlorid. Den affarvede ethyl-acetatopløsning blev tørret (MgSO^) og inddampet til tørhed i vakuum. Herved vandtes 12,8 g (80% udbytte) af titelforbindelsen.To a stirred mixture of 11.2 g of 6-a-brompenicilanoic acid, 3.7 g of sodium bicarbonate and 44 ml of N, N-dimethylformamide, 6.16 g of chloromethyl pivalate was added dropwise over 5 minutes at room temperature. Stirring was continued for 66 hours and then the reaction mixture was diluted with 100 ml of ethyl acetate and 100 ml of water. The layers were separated and the ethyl acetate layer was washed successively with water, saturated sodium chloride, saturated sodium bicarbonate, water and saturated sodium chloride. The stained ethyl acetate solution was dried (MgSO4) and evaporated to dryness in vacuo. This gave 12.8 g (80% yield) of the title compound.
15 Præparation IPreparation I
Benzyl-6-a-brompenicillanat.Benzyl 6-alpha-bromopenicillanate.
Titelforbindelsen blev fremstillet ved esterifice-ring af 6-a-brompenicillansyre med benzylbromid i det væsentlige ved fremgangsmåden ifølge Præparation H (ud-20 bytte 83%). NMR-spektret (i CDCl^) viste absorptioner ved 7,35 (s, 5H), 5,35 (m, IH), 5,15 (s, 2H), 4,70 (m, IH), 4,60 (s, IH), 1,55 (s, 3H) og 1,35 (s, 3H) ppm.The title compound was prepared by esterification of 6-α-brompenicillanic acid with benzyl bromide essentially by the method of Preparation H (yield 83%). The NMR spectrum (in CDCl3) showed absorptions at 7.35 (s, 5H), 5.35 (m, 1H), 5.15 (s, 2H), 4.70 (m, 1H), 4.60 (s, 1H), 1.55 (s, 3H) and 1.35 (s, 3H) ppm.
Præparation JPreparation J
2,2,2-Trichlorethyl -6-a-brbm-penicillanat.2,2,2-Trichloroethyl-6-α-brbm penicillanate.
25 Til en omrørt opløsning af 11,2 g 6-a-brompenicil- lansyre i 50 ml tetrahydrofuran blev der ved 0°C sat 3,48 g pyridin over en periode på 1 minut. Til den herved vundne uklare opløsning blev der over en periode på 10 minutter sat 8,47 g 2,2,2-trichlorethyl-chlorformiat, 30 idet temperaturen holdtes mellem 0° og 2°C. Omrøring blev fortsat i 30 minutter, og derefter blev kølebadet fjernet. Omrøring blev fortsat ved stuetemperatur natten over. Reaktionsblandingen blev derefter opvarmet til 35°C i 5 minutter og derefter filtreret. Filtratet blev ind-35 dampet, og inddampningsresten blev opløst i 100 ml ethyl-To a stirred solution of 11.2 g of 6-α-brompenicillanic acid in 50 ml of tetrahydrofuran was added at 0. ° C 3.48 g of pyridine over a period of 1 minute. To the resulting cloudy solution, 8.47 g of 2,2,2-trichloroethyl chloroformate were added over a period of 10 minutes, keeping the temperature between 0 ° and 2 ° C. Stirring was continued for 30 minutes and then the cooling bath was removed. Stirring was continued at room temperature overnight. The reaction mixture was then heated to 35 ° C for 5 minutes and then filtered. The filtrate was evaporated and the residue was dissolved in 100 ml of ethyl acetate.
DK 159852 BDK 159852 B
40 acetat. Ethylacetatopløsningen blev vasket successivt med mættet natriumbicarbonat, vand og mættet natrium-chlorid. Ethylacetatopløsningen blev derefter affarvet og tørret og derefter koncentreret til lille volumen.40 acetate. The ethyl acetate solution was washed successively with saturated sodium bicarbonate, water and saturated sodium chloride. The ethyl acetate solution was then decolorized and dried and then concentrated to small volume.
5 Til den resulterende blanding blev der sat 100 ml hexan, og de faste stoffer blev frafiltreret, hvorved vandtes 10,5 g af titelforbindelsen, smp. 105-110°C. NMR-spek-tret (i CDCl^) viste absorptioner ved 5,50 (d, IH), 4,95 (d, IH), 4,90 (s, 2H), 4,65 (s, IH), 1,70 (s, 3H), 1,55 10 (s, 3H) ppm.To the resulting mixture was added 100 ml of hexane and the solids were filtered off to give 10.5 g of the title compound, m.p. 105-110 ° C. The NMR spectrum (in CDCl3) showed absorptions at 5.50 (d, 1H), 4.95 (d, 1H), 4.90 (s, 2H), 4.65 (s, 1H), 1 , 70 (s, 3H), 1.55 (s, 3H) ppm.
Præparation KPreparation K
6,6-Dibrompenicillansyre.6,6-dibromopenicillanic acid.
Til 500 ml dichlormethan afkølet til 5°C blev der sat 119,9 g brom, 200 ml 2,5N svovlsyre og 34,5 g natri-15 umnitrit. Til denne omrørte blanding blev der derefter portionsvis sat 54,0 g 6-aminopenicillansyre over 30 minutter, idet temperaturen holdtes fra 4° til 10°C. Omrøring blev fortsat i 30 minutter ved 5°C, og derefter blev 410 ml af en 1,0M opløsning af natriumbisulfit til-20 sat dråbevis ved 5-10°C i løbet af 20 minutter. Lagene blev adskilt, og det vandige lag blev ekstraheret to gange med 150 ml dichlormethan. Det oprindelige dichlorme-thanlag blev samlet med de to ekstrakter, hvorved vandtes en opløsning af 6,6-dibrompenicillansyre. Denne op-25 løsning anvendtes direkte i Eksempel 17.To 500 ml of dichloromethane cooled to 5 ° C was added 119.9 g of bromine, 200 ml of 2.5N sulfuric acid and 34.5 g of sodium nitrite. To this stirred mixture was then added portionwise 54.0 g of 6-aminopenicillanic acid over 30 minutes keeping the temperature from 4 ° to 10 ° C. Stirring was continued for 30 minutes at 5 ° C, and then 410 ml of a 1.0M solution of sodium bisulfite was added dropwise at 5-10 ° C over 20 minutes. The layers were separated and the aqueous layer was extracted twice with 150 ml of dichloromethane. The original dichloromethane layer was combined with the two extracts to give a solution of 6,6-dibrompenicillanic acid. This solution was used directly in Example 17.
Præparation LPreparation L
6-Chlor-6-iodpenicillansyre.6-Chloro-6-iodopenicillanic acid.
Til 100 ml dichlormethan afkølet til 3°C blev der sat 4,87 g iodchlorid, 10 ml 2,5N svovlsyre og 2,76 g na-30 triumnitrit. Til denne omrørte blanding blev der derefter portionsvis sat 4,32 g 6-aminopenicillansyre over en periode på 15 minutter. Omrøring blev fortsat i 20 minutter ved 0-5°C, og derefter blev 100 ml 10% natriumbisulfitop-løsning tilsat dråbevis ved ca. 4°C. Omrøring blev fort-35 sat i 5 minutter, og derefter blev lagene adskilt. Det vandige lag blev ekstraheret med dichlormethan (2 x 50 mlVTo 100 ml of dichloromethane cooled to 3 ° C was added 4.87 g of iodine chloride, 10 ml of 2.5N sulfuric acid and 2.76 g of sodium nitrite. To this stirred mixture was then added portionwise 4.32 g of 6-aminopenicillanic acid over a period of 15 minutes. Stirring was continued for 20 minutes at 0-5 ° C and then 100 ml of 10% sodium bisulfite solution was added dropwise at ca. 4 ° C. Stirring was continued for 5 minutes and then the layers were separated. The aqueous layer was extracted with dichloromethane (2 x 50 mlV)
DK 159852 BDK 159852 B
41 og de samlede dichlormethanopløsninger blev vasket med saltopløsning, tørret (MgSO^) og inddampet i vakuum, hvorved vandtes titelforbindelsen som et gulbrunt fast stof, smp. 148-152°C. NMR-spektret af produktet (CDCl^) 5 viste absorptioner ved 5,40 (s, IH), 4,56 (s, IH), 1,67 (s, 3H) og 1,50 (s, 3H) ppm. IR-spektret (KBr-plade) viste absorptioner ved 1780 og 1715 cm”^.41 and the combined dichloromethane solutions were washed with brine, dried (MgSO 4) and evaporated in vacuo to give the title compound as a tan solid, m.p. 148-152 ° C. The NMR spectrum of the product (CDCl3) δ showed absorbances at 5.40 (s, 1H), 4.56 (s, 1H), 1.67 (s, 3H) and 1.50 (s, 3H) ppm. The IR spectrum (KBr plate) showed absorptions at 1780 and 1715 cm 2
Præparation MPreparation M
6-Brom-6-iodpenicillansyre.6-Bromo-6-iodopenicillanic acid.
10 Til 100 ml dichlormethan afkølet til 5°C blev der sat 10 ml 2,5N svovlsyre, 6,21 g iodbromid og 2,76 g natriumnitrit. Til denne blanding blev der under kraftig omrøring ved 0-5°C og i løbet af 15 minutter sat 4,32 g 6-aminopenicillansyre. Omrøring blev fortsat i yderlige-15 re 20 minutter ved 0-5°C, og derefter blev der dråbevis tilsat 100 ml 10% natriumbisulfit mellem 0° og 10°C. På dette tidspunkt blev lagene adskilt, og det vandige lag blev ekstraheret med dichlormethan (3 x 50 ml). De samlede dichlormethanlag blev vasket med saltopløsning, tør-20 ret (MgSO^) og inddampet i vakuum. Inddampningsresten blev tørret i højvakuum i 30 minutter, hvorved vandtes 6,0 g (72% udbytte) af titelforbindelsen, smp. 144-147°C. NMR-spektret (CDCl^) viste absorptioner ved 5,50 (s, IH), 4,53 (s, IH), 1,70 (s, 3H) og 1,53 (s, 3H) ppm. IR-spek-25 tret (KBr-plade) viste absorptioner ved 1785 og 1710 cm ^ Massespektret viste en fremtrædende ion ved m/e = 406.To 100 ml of dichloromethane cooled to 5 ° C was added 10 ml of 2.5N sulfuric acid, 6.21 g of iodine bromide and 2.76 g of sodium nitrite. To this mixture, vigorous stirring at 0-5 ° C and 4.32 g of 6-aminopenicillanic acid was added over 15 minutes. Stirring was continued for another 15 minutes at 0-5 ° C and then 100 ml of 10% sodium bisulfite between 0 ° and 10 ° C was added dropwise. At this time, the layers were separated and the aqueous layer was extracted with dichloromethane (3 x 50 ml). The combined dichloromethane layers were washed with brine, dried (MgSO4) and evaporated in vacuo. The residue was dried under high vacuum for 30 minutes to afford 6.0 g (72% yield) of the title compound, m.p. 144-147 ° C. The NMR spectrum (CDCl3) showed absorptions at 5.50 (s, 1H), 4.53 (s, 1H), 1.70 (s, 3H) and 1.53 (s, 3H) ppm. The IR spectrum (KBr plate) showed absorptions at 1785 and 1710 cm 2. The mass spectrum showed a prominent ion at m / e = 406.
Præparation NPreparation N
6-Chlor-6-brompenicillansyre.6-Chloro-6-bromopenicillanic acid.
6-Chlor-6-brompenicillansyre blev fremstillet ud 30 fra 6-aminopenicillansyre via diazotering efterfulgt af omsætning med bromchlorid, ved fremgangsmåden ifølge Præparation M.6-Chloro-6-brompenicillanic acid was prepared from 30-6-aminopenicillanic acid via diazotation followed by reaction with bromochloride, by the method of Preparation M.
DK 159852 BDK 159852 B
4242
Præparation OPreparation O
Pivaloyloxymethyl-6,6-dibrompenicillanat.Pivaloyloxymethyl 6,6-dibromopenicillanate.
Til en omrørt opløsning af 3,59 g 6,6-dibrompeni-cillansyre i 20 ml Ν,Ν-dimethylformamid blev der sat 1,30 5 g diisopropylethylamin efterfulgt af 1,50 g chlormethyl-pivalat ved ca. 0°C. Reaktionsblandingen blev omrørt ved ca. 0°C i 30 minutter og derefter ved stuetemperatur i 24 timer. Reaktionsblandingen blev derefter fortyndet med ethylacetat og vand, og pH af den vandige fase blev ind-10 stillet på 7,5. Ethylacetatlaget blev fraskilt og vasket tre gange med vand og én gang med mættet natriumchloridopløsning. Ethylacetatopløsningen blev derefter tørret under anvendelse af vandfrit natriumsulfat og inddampet i vakuum, hvorved vandtes titelforbindelsen.To a stirred solution of 3.59 g of 6,6-dibrompenicillanic acid in 20 ml of Ν, Ν-dimethylformamide was added 1.30 g of diisopropylethylamine followed by 1.50 g of chloromethyl pivalate at ca. 0 ° C. The reaction mixture was stirred at ca. 0 ° C for 30 minutes and then at room temperature for 24 hours. The reaction mixture was then diluted with ethyl acetate and water and the pH of the aqueous phase was adjusted to 7.5. The ethyl acetate layer was separated and washed three times with water and once with saturated sodium chloride solution. The ethyl acetate solution was then dried using anhydrous sodium sulfate and evaporated in vacuo to give the title compound.
15 Præparation PPreparation P
Omsætning af den pågældende 6,6-dihalogenpenicil-lansyre med 3-phthalidylchlorid, 4-crotonolactonylchlo-rid, Y-butyrolacton-4-yl-chlorid eller det fornødne al-kanoyloxymethylchlorid, l-ialkanoyloxyjethylchlorid, 1-20 methyl-1-(alkanoyloxy)ethylchlorid, alkoxycarbonyloxyme-thylchlorid, 1-(alkoxycarbonyloxy)ethylchlorid eller 1-methyl-1-(alkoxycarbonyloxy)ethylchlorid ved fremgangsmåden ifølge Præparation O gav følgende forbindelser: 3-phthalidyl-6,6-dibrompenicillanat, 25 4-crotonolactonyl-6-chlor-6-iodpenicillanat, γ-butyrolactony1-6-brom-6-iodpenicil1anat, acetoxymethyl-6-chlor-6-brompenicillanat, pivaloyloxymethyl-6-chlor-6-iodpenicillanat, hexanoyloxymethyl-6,6-dibrompenicillanat, 30 1-(acetoxy)ethyl-6,6-dibrompenicillanat, 1-(isobutyryloxy)ethyl-6-brom-6-iodpenicillanat, 1-methyl-l-(acetoxy)ethyl-6,6-dibrompenicillanat, 1-methyl-l-(hexanoyloxy)ethyl-6-chlor-6-brompenicillanat, methoxycarbonyloxymethyl-6,6-dibrompenicillanat, 35 propoxycarbonyloxymethyl-6-chlor-6-iodpenicillanat, 1-(ethoxycarbonyloxy)ethyl-6,6-dibrompenicillanat,Reaction of the relevant 6,6-dihalogenpenicilanoic acid with 3-phthalidyl chloride, 4-crotonolactonyl chloride, Y-butyrolacton-4-yl chloride or the required al-canoyloxymethyl chloride, 1-alkoanoyloxyethyl chloride, 1-20 methyl-1- ( alkanoyloxy) ethyl chloride, alkoxycarbonyloxymethyl chloride, 1- (alkoxycarbonyloxy) ethyl chloride or 1-methyl-1- (alkoxycarbonyloxy) ethyl chloride in the process of Preparation O gave the following compounds: 3-phthalidyl-6,6-dibrompenicillanate, -chloro-6-iodo-penicillanate, γ-butyrolactonyl-6-bromo-6-iodo-penicillanate, acetoxymethyl-6-chloro-6-brompenicillanate, pivaloyloxymethyl-6-chloro-6-iodo-penicillanate, hexanoyloxymethyl-6,6-dibrompenicillanate (acetoxy) ethyl 6,6-dibrompenicillanate, 1- (isobutyryloxy) ethyl 6-bromo-6-iodopenicillanate, 1-methyl-1- (acetoxy) ethyl 6,6-dibrompenicillanate, 1-methyl-1- hexanoyloxy) ethyl 6-chloro-6-brompenicillanate, methoxycarbonyloxymethyl-6,6-dibrompenicillanate, propoxycarbonyloxymethyl-6-chloro-6-iodopenicil lanate, 1- (ethoxycarbonyloxy) ethyl 6,6-dibrompenicillanate,
Claims (4)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1781079A | 1979-03-05 | 1979-03-05 | |
US1780879A | 1979-03-05 | 1979-03-05 | |
US1780879 | 1979-03-05 | ||
US1781079 | 1979-03-05 |
Publications (3)
Publication Number | Publication Date |
---|---|
DK92680A DK92680A (en) | 1980-09-06 |
DK159852B true DK159852B (en) | 1990-12-17 |
DK159852C DK159852C (en) | 1991-05-06 |
Family
ID=26690337
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK092680A DK159852C (en) | 1979-03-05 | 1980-03-04 | PROCEDURE FOR THE PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE OR BASIC SALTS OR IN VIVO EASY HYDRAULIZABLE ESTERS |
DK145690A DK166353C (en) | 1979-03-05 | 1990-06-14 | Penicillanic acid 1,1-dioxide DERIVATIVES |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DK145690A DK166353C (en) | 1979-03-05 | 1990-06-14 | Penicillanic acid 1,1-dioxide DERIVATIVES |
Country Status (36)
Country | Link |
---|---|
KR (1) | KR850001339B1 (en) |
AR (1) | AR225031A1 (en) |
AT (1) | AT366693B (en) |
AU (1) | AU522572B2 (en) |
BG (1) | BG33292A3 (en) |
CH (1) | CH644608A5 (en) |
CS (1) | CS215130B2 (en) |
DD (1) | DD149367A5 (en) |
DE (1) | DE3008257C2 (en) |
DK (2) | DK159852C (en) |
EG (1) | EG14437A (en) |
ES (1) | ES489185A0 (en) |
FI (1) | FI70024C (en) |
FR (1) | FR2450836B1 (en) |
GB (1) | GB2045755B (en) |
GR (1) | GR67234B (en) |
HK (1) | HK66587A (en) |
HU (1) | HU186304B (en) |
IE (1) | IE49535B1 (en) |
IL (1) | IL59515A (en) |
IN (1) | IN153685B (en) |
IT (1) | IT1130300B (en) |
KE (1) | KE3464A (en) |
LU (1) | LU82215A1 (en) |
MX (1) | MX6032E (en) |
MY (1) | MY8500319A (en) |
NL (1) | NL180317C (en) |
NO (2) | NO800618L (en) |
PL (1) | PL125197B1 (en) |
PT (1) | PT70897A (en) |
RO (1) | RO80112A (en) |
SE (2) | SE449103B (en) |
SG (1) | SG55884G (en) |
SU (1) | SU1192626A3 (en) |
UA (1) | UA6342A1 (en) |
YU (1) | YU42328B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4419284A (en) * | 1981-03-23 | 1983-12-06 | Pfizer Inc. | Preparation of halomethyl esters (and related esters) of penicillanic acid 1,1-dioxide |
IN159362B (en) * | 1981-03-23 | 1987-05-09 | Pfizer | |
PT76527B (en) * | 1982-04-19 | 1985-12-09 | Gist Brocades Nv | A process for the preparation of penicillanic acid 1,1-dioxide and derivatives thereof |
IT1190897B (en) * | 1982-06-29 | 1988-02-24 | Opos Biochimica Srl | PROCEDURE FOR THE PREPARATION OF THE 1-ETHOXYCARBONYLOXYETHYL ACID ACID 6- (D (-) - ALPHA AMINOALPHA-PHENYLACETAMIDE) -PENICILLANIC |
US4606865A (en) * | 1982-09-20 | 1986-08-19 | Astra Lakemedel Aktiebolag | Methods for the preparation of α-bromodiethylcarbonate |
EP0139047A1 (en) * | 1983-10-18 | 1985-05-02 | Gist-Brocades N.V. | Process for the preparation of 6,6-dibromopenicillanic acid 1,1-dioxide |
EP0139048A1 (en) * | 1983-10-18 | 1985-05-02 | Gist-Brocades N.V. | Process for the dehalogenation of 6,6-dibromopenicillanic acid 1,1-dioxide |
US4596677A (en) * | 1984-04-06 | 1986-06-24 | Bristol-Myers Company | Anhydropenicillin intermediates |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IN149747B (en) * | 1977-06-07 | 1982-04-03 | Pfizer | |
CA1158639A (en) * | 1978-12-11 | 1983-12-13 | Eric M. Gordon | 6-bromopenicillanic acid sulfone |
DE3068390D1 (en) * | 1979-01-10 | 1984-08-09 | Beecham Group Plc | Penicillin derivatives, process for their preparation and pharmaceutical compositions containing certain of these compounds |
IE49881B1 (en) * | 1979-02-13 | 1986-01-08 | Leo Pharm Prod Ltd | B-lactam intermediates |
-
1980
- 1980-01-22 SE SE8000512A patent/SE449103B/en not_active IP Right Cessation
- 1980-02-11 IN IN98/DEL/80A patent/IN153685B/en unknown
- 1980-02-27 SU SU802889601A patent/SU1192626A3/en active
- 1980-02-27 UA UA2889601A patent/UA6342A1/en unknown
- 1980-02-29 HU HU80479A patent/HU186304B/en unknown
- 1980-03-03 YU YU585/80A patent/YU42328B/en unknown
- 1980-03-03 IL IL59515A patent/IL59515A/en unknown
- 1980-03-03 AR AR280148A patent/AR225031A1/en active
- 1980-03-03 GB GB8007122A patent/GB2045755B/en not_active Expired
- 1980-03-03 LU LU82215A patent/LU82215A1/en unknown
- 1980-03-04 RO RO80100366A patent/RO80112A/en unknown
- 1980-03-04 DK DK092680A patent/DK159852C/en not_active IP Right Cessation
- 1980-03-04 IE IE429/80A patent/IE49535B1/en not_active IP Right Cessation
- 1980-03-04 PL PL1980222448A patent/PL125197B1/en unknown
- 1980-03-04 PT PT70897A patent/PT70897A/en unknown
- 1980-03-04 NL NLAANVRAGE8001285,A patent/NL180317C/en not_active IP Right Cessation
- 1980-03-04 FR FR8004764A patent/FR2450836B1/en not_active Expired
- 1980-03-04 DE DE3008257A patent/DE3008257C2/en not_active Expired
- 1980-03-04 GR GR61347A patent/GR67234B/el unknown
- 1980-03-04 FI FI800661A patent/FI70024C/en not_active IP Right Cessation
- 1980-03-04 EG EG123/80A patent/EG14437A/en active
- 1980-03-04 ES ES489185A patent/ES489185A0/en active Granted
- 1980-03-04 CH CH171080A patent/CH644608A5/en not_active IP Right Cessation
- 1980-03-04 AU AU56104/80A patent/AU522572B2/en not_active Expired
- 1980-03-04 CS CS801496A patent/CS215130B2/en unknown
- 1980-03-04 AT AT0119080A patent/AT366693B/en not_active IP Right Cessation
- 1980-03-04 KR KR1019800000885A patent/KR850001339B1/en active
- 1980-03-04 NO NO800618A patent/NO800618L/en unknown
- 1980-03-04 DD DD80219432A patent/DD149367A5/en unknown
- 1980-03-05 MX MX808687U patent/MX6032E/en unknown
- 1980-03-05 BG BG046874A patent/BG33292A3/en unknown
- 1980-03-05 IT IT20367/80A patent/IT1130300B/en active
-
1982
- 1982-09-15 NO NO823127A patent/NO823127L/en unknown
-
1984
- 1984-08-13 SG SG558/84A patent/SG55884G/en unknown
- 1984-09-24 KE KE3464A patent/KE3464A/en unknown
-
1985
- 1985-12-30 MY MY319/85A patent/MY8500319A/en unknown
-
1986
- 1986-08-04 SE SE8603309A patent/SE8603309D0/en not_active Application Discontinuation
-
1987
- 1987-09-17 HK HK665/87A patent/HK66587A/en not_active IP Right Cessation
-
1990
- 1990-06-14 DK DK145690A patent/DK166353C/en not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4234579A (en) | Penicillanic acid 1,1-dioxides as β-lactamase inhibitors | |
KR840000797B1 (en) | Process for preparing 6 -hydroxy alkyl-penicillanic acid derivatives | |
DK155740B (en) | METHOD OF ANALOGUE FOR PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE, CERTAIN ESTERS AND PHYSIOLOGICALLY ACCEPTABLE SALTS | |
US4276285A (en) | Combinations of penicillanic acid 1,1-dioxide with 7-(D-2-[4-ethylpiperazin-2,3-dione-1-carboxamido]-2-[4-hydroxyphenyl]acetamido)-3-([1-methyl-5-tetrazolyl]thiomethyl)-3-desacetoxymethylcephalosporanic acid | |
US4420426A (en) | 6-Alpha-halopenicillanic acid 1,1-dioxides | |
DK159852B (en) | PROCESS FOR THE PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE OR BASIC SALTS OR IN VIVO EASY HYDRAULIZABLE ESTERS | |
CA1150242A (en) | ACETOXYMETHYL PENAM COMPOUNDS AS .beta.-LACTAMASE INHIBITORS | |
JPS6033397B2 (en) | Penam-1,1-dioxide | |
US4260598A (en) | Method for increasing antibacterial effectiveness of a β-lactam antibiotic | |
US4590073A (en) | 6-substituted penicillanic acid 1,1-dioxide compounds | |
HU186575B (en) | Process for producing beta-lactamaze-inhiaitor 2-beta-substituted-2-alpha-methyl-kbracket-5r-bracket closed-pename-3-alpha-carboxylic acid-1,1-dioxides and intermediates | |
US4762920A (en) | 6,6-Dihalopenicillanic acid 1,1-dioxides | |
US4714761A (en) | 6,6-dihalopenicillanic acid 1,1-dioxides and process | |
JPS6145993B2 (en) | ||
EP0002927B1 (en) | Penicillanic acid derivatives, processes for their preparation and pharmaceutical compositions containing them | |
CA1129773A (en) | PENICILLANIC ACID 1,1-DIOXIDES AS .beta.-LACTAMASE INHIBITORS | |
US4613462A (en) | 6-substituted penicillanic acid 1,1-dioxide compounds | |
KR820000740B1 (en) | Process for preaprign penicillanic acid 1,1-dioxides | |
NZ199608A (en) | Administering penicillanic acid 1,1-dioxides with beta-lactam antibiotics | |
NZ199601A (en) | Coadministration of a cephalosporin derivative and a penicillin | |
JPH0534336B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUP | Patent expired |