DK155740B - METHOD OF ANALOGUE FOR PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE, CERTAIN ESTERS AND PHYSIOLOGICALLY ACCEPTABLE SALTS - Google Patents

METHOD OF ANALOGUE FOR PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE, CERTAIN ESTERS AND PHYSIOLOGICALLY ACCEPTABLE SALTS Download PDF

Info

Publication number
DK155740B
DK155740B DK251478AA DK251478A DK155740B DK 155740 B DK155740 B DK 155740B DK 251478A A DK251478A A DK 251478AA DK 251478 A DK251478 A DK 251478A DK 155740 B DK155740 B DK 155740B
Authority
DK
Denmark
Prior art keywords
dioxide
compound
acid
oxide
penicillanic acid
Prior art date
Application number
DK251478AA
Other languages
Danish (da)
Other versions
DK251478A (en
DK155740C (en
Inventor
Wayne Ernest Barth
Original Assignee
Pfizer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27122691&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DK155740(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pfizer filed Critical Pfizer
Publication of DK251478A publication Critical patent/DK251478A/en
Priority to DK428682A priority Critical patent/DK156480C/en
Publication of DK155740B publication Critical patent/DK155740B/en
Application granted granted Critical
Publication of DK155740C publication Critical patent/DK155740C/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/542Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/545Compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins, cefaclor, or cephalexine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/429Thiazoles condensed with heterocyclic ring systems
    • A61K31/43Compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula, e.g. penicillins, penems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

• . DK 155740 B•. DK 155740 B

iin

Den foreliggende opfindelse angår en analogifremgangsmåde til fremstilling af hidtil ukendte penicillansyrederivater med formlen IThe present invention relates to an analogous process for the preparation of novel penicillanic acid derivatives of formula I

O o5H3 ' *O5H3 '*

J-N-LJ-N-L

Q<^ %COORb 6 hvori R er hydrogen, 3-phthalidyl, 4-crotonolactonyl, γ-butyro-lacton-4-yl eller en gruppe med formlen f i? 5 f* S ,Q <% COORb 6 wherein R is hydrogen, 3-phthalidyl, 4-crotonolactonyl, γ-butyro-lacton-4-yl or a group of formula f i? 5 f * S,

-ά-O-C-R5 X eller -C-0-C-0-R5 XI-ά-O-C-R5 X or -C-0-C-0-R5 XI

i4 R4 3 4 5 hvori R og R hver er hydrogen, methyl eller ethyl, og R er alkylwherein R and R are each hydrogen, methyl or ethyl and R is alkyl

CC

med 1-6 carbonatomer, samt,når R betegner hydrogen, fysiologisk acceptable salte heraf, og fremgangsmåden er ejendommelig ved det i krav 1's kendetegnende del anførte.with 1-6 carbon atoms, and when R represents hydrogen, physiologically acceptable salts thereof, and the process is characterized by the characterizing part of claim 1.

Der kan benyttes forskellige hensigtsmæssige udførelsesformer for fremgangsmåden ifølge opfindelsen som angivet i krav 2-7.Various convenient embodiments of the method according to the invention may be used as set forth in claims 2-7.

En af de mest velkendte og almindeligst anvendte klasser af antibakterielle midler er de såkaldte Ø-lactam-antibiotika. Disse forbindelser er karakteriseret ved, at de har en kærne bestående af en 2-a2etidinonring (Ø-lactamring) kondenseret med enten en thiazoli“ dinring eller en dihydro-l,3-thiazinring. Når kærnen indeholder en thiazolidinring, betegnes forbindelserne sædvanligvis med fællesnavnet penicilliner, medens forbindelserne, hvor kærnen indeholder en dihydrothiazinring, betegnes som cephalosporiner. Typiske eksempler på penicilliner, der anvendes almindeligt i klinisk praksis, er ben-zylpenicillin (penicillin G), phenoxymethylpenicillin (penicillin V), ampicillin og carbenicillin, og typiske eksempler på almindelige cephalosporiner er cephalothin, cephalexin og cefazolin.One of the most well-known and commonly used classes of antibacterial agents is the so-called β-lactam antibiotics. These compounds are characterized in that they have a core consisting of a 2-aetidinone ring (β-lactam ring) condensed with either a thiazole dinar ring or a dihydro-1,3-thiazine ring. When the core contains a thiazolidine ring, the compounds are usually referred to by the common name penicillins, while the compounds in which the core contains a dihydrothiazine ring are referred to as cephalosporins. Typical examples of penicillins commonly used in clinical practice are benzylpenicillin (penicillin G), phenoxymethylpenicillin (penicillin V), ampicillin and carbenicillin, and typical examples of common cephalosporins are cephalothin, cephalexin and cefazoline.

Til trods for den udbredte anvendelse og den udbredte anerkendelse af Ø-lactam-antibiotikaene som værdifulde kemoterapeutiske midler, har de imidlertid den væsentlige mangel, at visse medlemmer ikke er aktive mod visse mokroorganismer. Det antages, at denne resistens hos en bestemt mikroorganisme over for et givet Ø-lactam-antibiotikum i mange tilfælde skyldes, at mikroorganismen producerer 2However, despite the widespread use and widespread recognition of the β-lactam antibiotics as valuable chemotherapeutic agents, they have the significant disadvantage that some members are not active against certain microorganisms. It is believed that this resistance of a particular microorganism to a given β-lactam antibiotic is in many cases due to the microorganism producing 2

DK 155740 BDK 155740 B

en β-lactamase. De sidstnævnte stoffer er enzymer, der spalter 3-lactamringen i penicilliner og cephalosporiner til dannelse af produkter, der er blottet for antibakteriel virkning. Visse stoffer har imidlertid evnen til at hæmme β-lactamaser, og når der anvendes en β-lactamase-inhibitor i kombination med en penicillin eller cephalosporin, kan den forhøje eller forøge den antibakterielle effektivitet af penicillinen eller cephalosporinen over for visse mikroorganismer. Man regner med, at der er en forøgelse i antibakteriel effektivitet, når den antibakterielle virkning af en kombination af et 3-lactamasehæmmende stof og et 3-lactam-antibiotikum er signifikant større end summen af de antibakterielle virkninger af de enkelte komponenter.and β-lactamase. The latter substances are enzymes that cleave the 3-lactam ring into penicillins and cephalosporins to form products devoid of antibacterial action. However, certain substances have the ability to inhibit β-lactamases, and when a β-lactamase inhibitor is used in combination with a penicillin or cephalosporin, it may increase or enhance the antibacterial efficacy of the penicillin or cephalosporin against certain microorganisms. An increase in antibacterial efficacy is expected when the antibacterial effect of a combination of a 3-lactamase inhibitor and a 3-lactam antibiotic is significantly greater than the sum of the antibacterial effects of the individual components.

Ved fremgangsmåden ifølge opfindelsen tilvejebringes der visse hidtil ukendte kemiske forbindelser med formlen I, der er nye medlemmer af den klasse af antibiotika, der betegnes som penicillinerne, og som er nytige som antibakterielle midler. Nærmere angivet er de omhandlede pencillinforbindelser penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estere heraf.The process of the invention provides certain novel chemical compounds of Formula I which are novel members of the class of antibiotics referred to as the penicillins and which are useful as antibacterial agents. More specifically, the subject pencillin compounds are penicillanic acid 1,1-dioxide and in vivo readily hydrolyzable esters thereof.

Penicillansyre-1,1-dioxid og dets in vivo let hydrolyserbare estere er desuden kraftige inhibitorer for mikrobielle β-lactamaser.In addition, penicillanic acid 1,1-dioxide and its in vivo readily hydrolyzable esters are potent inhibitors of microbial β-lactamases.

1,1-Dioxider af benzylpenicillin, phenoxymethylpenicillin og visse estere heraf er beskrevet i USA-patentskrifterne nr. 3.197.466 og 3.536.698 og i en artikel af Guddal et al., i Tetrahedron Letters, nr. 9, 381 (1962). Harrison et al., i the Journal of the Chemical1,1-Dioxides of benzylpenicillin, phenoxymethylpenicillin and certain esters thereof are disclosed in U.S. Patent Nos. 3,197,466 and 3,536,698 and in an article by Guddal et al., In Tetrahedron Letters, 9, 381 (1962). . Harrison et al., In the Journal of the Chemical

Society (London), Perkin I, 1772 (1976), har beskrevet flere forskellige penicillin-l,l-dioxider og -1-oxider, herunder methyl-phthal-imidopenicillinat-1,1-dioxid, methyl-6,6-dibrompenicillanat-l,1-dioxid, methyl-penicillanat-la-oxid, methyl-penicillanat-13-oxid, 6,6-dibrompenicillansyre-la-oxid og 6,6-dibrompenicillansyre-13-oxid.Society (London), Perkin I, 1772 (1976), has described several different penicillin-1,1-dioxides and -1-oxides, including methyl-phthalimidopenicillinate-1,1-dioxide, methyl-6,6-dibrompenicillanate -1,1-dioxide, methyl-penicillanate-1-oxide, methyl-penicillanate-13-oxide, 6,6-dibrompenicillanic acid-1-oxide and 6,6-dibrompenicillanic acid-13-oxide.

Ved fremgangsmåden ifølge opfindelsen tilvejebringes der hidtil ukendte forbindelser med den ovenstående formel I, hvoriThe process of the invention provides novel compounds of the above Formula I wherein

CC

R har den ovennævnte betydning. De ovennævnte, under definitionen g for R faldende grupper er in vivo let hydrolyserbare esterdannende grupper. Disse "in vivo let hydrolyserbare esterdannende grupper" er ikke-toksiske estergrupper, der let fraspaltes i pattedyrs blod eller væv til frigørelse af den tilsvarende frie syre (dvs.R has the above meaning. The aforementioned falling groups under the definition g for R are readily hydrolyzable ester forming groups in vivo. These "in vivo readily hydrolyzable ester forming groups" are nontoxic ester groups that are readily cleaved in mammalian blood or tissue to release the corresponding free acid (i.e.

C.C.

forbindelsen med formlen I, hvori R er hydrogen).the compound of formula I wherein R is hydrogen).

De ved fremgangsmåden ifølge opfindelsen fremstillede for-The compounds of the invention

' DK 155740 BDK 155740 B

3 bindeiser med formlen I er nyttige som antibakterielle midler og til forøgelse af den antibakterielle virkning af β-lactam-antibio-tika.3 binders of formula I are useful as antibacterial agents and for enhancing the antibacterial effect of β-lactam antibiotics.

De ved fremgangsmåde a) ifølge opfindelsen anvendte udgangsforbindelser har formlerne II, III og III1 2The starting compounds used in process a) according to the invention have formulas II, III and III1 2

O OISLAND ISLAND

1 \ ifs I—Y f-c"i ... I-Y f-'".1 \ ifs I — Y f-c "i ... I-Y f-" ".

J-N-\ ! ^-'N-\ 1J-N- \! ^ - 'N- \ 1

CT 'COOR Q> COORCT 'COOR Q> COOR

H „CH- % S / 3 eller -^ III1 y—N —k, i or '"coor 1 6 i hvilke formler R har samme betydning som R eller er en konventione penicillincarboxybeskyttende gruppe. Forbindelserne med formlerne II og III er i øvrigt hidtil ukendte forbindelser.H "CH-% S / 3 or - III III y - N - k, in or" coor 1 6 in which formulas R has the same meaning as R or is a conventional penicillin carboxy protecting group. The compounds of formulas II and III are otherwise novel compounds.

Den foreliggende opfindelse vedrører en fremgangsmåde til fremstilling af de hidtil ukendte forbindelser med formlen I, og gennem hele den foreliggende beskrivelse betegnes disse forbindelse] som derivater af penicillansyre, der kan gengives ved strukturformlen r4"V3The present invention relates to a process for preparing the novel compounds of formula I, and throughout the present disclosure these compounds are referred to as penicillanic acid derivatives which may be reproduced by structural formula r4 "V3

PCH 3 IVPCH 3 IV

-N-W.-N-W.

formel IV angiver tilknytning af en substituent til den bicycliske kærne med en brudt linie, at substituenten ligger under den bicycli 2 ske kærnes plan. En sådan substituent siges at være i a-konfigura-tion. Omvendt angiver tilknytning af en substituent til den bicycli 3 ske kærne med en fuldt optrukken linie, at substituenten er beliggende over kærnens plan. Denne sidste konfiguration betegnes som (3-konfiguration.Formula IV indicates the association of a substituent to the bicyclic nucleus with a broken line that the substituent is below the plane of the bicyclic 2 nucleus. Such a substituent is said to be in α-configuration. Conversely, the association of a substituent to the bicyclic 3 sphere core with a fully drawn line indicates that the substituent is located above the plane of the core. This last configuration is referred to as (3 configuration).

4 DK 155740 B ! ί j I den foreliggende beskrivelse omtales der også visse derivater af cephalosporansyre, der har formlen4 DK 155740 B! The present disclosure also discloses certain derivatives of cephalosporanoic acid having the formula

HH

rjf^i .rjf ^ i.

QT N|^iss^CH2-0-C-CH3 VQT N | ^ iss ^ CH2-0-C-CH3 V

COOHCOOH

I formel V ligger hydrogenatomet ved C-6 under den bicycliske kærnes plan. De afledte udtryk desacetoxycephalosporansyre og 3-desacetoxy-methylcephalosporansyre anvendes om forbindelser med henholdsvis strukturerne VI og VIIIn formula V, the hydrogen atom at C-6 is below the plane of the bicyclic nucleus. The derived terms desacetoxycephalosporanoic acid and 3-desacetoxymethylcephalosporanoic acid are used for compounds of structures VI and VII, respectively.

i—h i— 0^-N\j^CH3 0^-i-h i-0 ^ -N \ j ^ CH3 0 ^ -

COOH COOHCOOH COOH

VI VIIVI VII

4-Crotonolactonyl og Y-butyrolacton-4-yl refererer til henholdsvis strukturen VIII og IX. Bølgelinierne skal betegne hver af de to epi- mere og blandinger heraf.4-Crotonolactonyl and Y-butyrolacton-4-yl refer to Structures VIII and IX, respectively. The wavy lines must denote each of the two epithets and mixtures thereof.

o 0o 0

VIII IXVIII IX

cc

De ovenævnte under R faldende grupper er velkendte inden for penicillinområdet, se f.eks. tysk offentliggørelsesskrift nr. 2.517.316. I mange tilfælde forbedrer de penicillinforbindelsens absorptionsegenskaber. Foretrukne grupper for R er alkanoyloxy-methyl med fra 3 til 8 carbonatomer, 1-(alkanoyloxy)ethyl med fra 4 til 9 carbonatomer, 1-methyl-1-(alkanoyloxy)ethyl med fra 5 til 10 carbonatomer, 3-phthalidyl, 4-crotonolactonyl og γ-butyro-lacton-4-yl.The above groups falling under R are well known in the art of penicillin, see e.g. German Publication Publication No. 2,517,316. In many cases, they improve the absorption properties of the penicillin compound. Preferred groups for R are alkanoyloxy methyl having from 3 to 8 carbon atoms, 1- (alkanoyloxy) ethyl having from 4 to 9 carbon atoms, 1-methyl-1- (alkanoyloxy) ethyl having from 5 to 10 carbon atoms, 3-phthalidyl, 4 -crotonolactonyl and γ-butyro-lacton-4-yl.

" DK 155740B"DK 155740B

5 g5 g

Forbindelserne med formlen I, hvori R har den ovennævnte betydning, kan ved fremgangsmåde a) ifølge opfindelsen fremstilles ved oxidation af hver af forbindelserne med formel II eller III, , i hvori R har den ovennævnte betydning. Mange forskellige oxidationsmidler, der kendes i teknikken til oxidation af sulfoxider til sulfoner, kan benyttes til denne fremgangsmåde.The compounds of formula I wherein R has the above meaning can be prepared by process a) of the invention by oxidation of each of the compounds of formula II or III, wherein R has the above meaning. Many different oxidizing agents known in the art for the oxidation of sulfoxides to sulfones can be used for this process.

Særlig bekvemme reagenser er imidlertid metalpermanganater, såsom alkalimetalpermanganater og jordalkalimetalpermanganater, og organiske peroxysyrer, såsom organiske peroxycarboxylsyrer. Passende enkel treagenser er natriumpermanganat, kaliumpermanganat, 3-chlorper-benzoesyre og pereddikesyre.However, particularly convenient reagents are metal permanganates such as alkali metal permanganates and alkaline earth metal permanganates, and organic peroxy acids such as organic peroxycarboxylic acids. Suitable simple wood reagents are sodium permanganate, potassium permanganate, 3-chloroperbenzoic acid and peracetic acid.

Når en forbindelse med formlen II eller III, hvori R har ovennævnte betydning, oxideres til den tilsvarende forbindelse med formlen I under anvendelse af et metalpermanganat, udføres reaktionen sædvanligvis ved, at man behandler forbindelsen med formlen II eller III med fra ca. 0,5 til ca. 5 mol-ækvivalenter af permanganatet, og fortrinsvis ca. 1 mol-ækvivalent af permanganatet, i et passende opløsningsmiddelsystem. Et passende opløsningsmiddelsystem er et sådant, som ikke på uheldig måde reagerer med enten udgangsmaterialer-ne eller produktet, og der anvendes almindeligvis vand. Om ønsket kan der tilsættes et co-opløsningsmiddel, som er blandbart med vand, men som ikke reagerer med permanganatet, såsom tetrahydrofuran. Reaktionen udføres normalt ved en temperatur i området fra ca. -20 til ca. 50°C, og fortrinsvis ved ca. 0°C. Ved ca. 0°C er reaktionen normalt i det væsentlige afsluttet inden for et kort tidsrum, f.eks. inden for 1 time. Selv om reaktionen kan udføres under neutrale, basiske eller sure betingelser, foretrækkes det at arbejde under i det væsentlige neutrale betingelser for at undgå sønderdeling af β-lactamringsyste-met i forbindelsen med formlen I. Det er faktisk ofte fordelagtigt at pufre reaktionsmediet til en pH-værdi i nærheden af neutralpunktet. Produktet udvindes på konventionel måde. Eventuelt overskud af per-manganat sønderdeles sædvanligvis ved anvendelse af natriumhydrogen-sulfit, og derefter udvindes produktet, hvis det ikke er i opløsning, ved filtrering. Det adskilles fra mangandioxid ved ekstraktion af det i et organisk opløsningsmiddel og fjernelse af opløsningsmidlet ved afdampning. Alternativt isoleres produktet, hvis det foreligger i opløsning, ved den sædvanlige fremgangsmåde med opløsningsmiddelekstraktion.When a compound of formula II or III, wherein R is as defined above, is oxidized to the corresponding compound of formula I using a metal permanganate, the reaction is usually carried out by treating the compound of formula II or III with from ca. 0.5 to approx. 5 molar equivalents of the permanganate, and preferably approx. 1 molar equivalent of the permanganate, in a suitable solvent system. A suitable solvent system is one which does not adversely react with either the starting materials or the product and water is generally used. If desired, a co-solvent which is miscible with water but which does not react with the permanganate such as tetrahydrofuran can be added. The reaction is usually carried out at a temperature in the range of approx. -20 to approx. 50 ° C, and preferably at ca. 0 ° C. At about. 0 ° C, the reaction is usually substantially complete within a short period of time, e.g. Within 1 Hour. Although the reaction may be carried out under neutral, basic or acidic conditions, it is preferred to work under substantially neutral conditions to avoid decomposition of the β-lactam ring system in the compound of formula I. Indeed, it is often advantageous to buffer the reaction medium to a pH. value near the neutral point. The product is extracted in a conventional manner. Any excess of manganese is usually decomposed using sodium hydrogen sulfite and then the product, if not in solution, is recovered by filtration. It is separated from manganese dioxide by extraction of it in an organic solvent and removal of the solvent by evaporation. Alternatively, the product, if present in solution, is isolated by the usual solvent extraction process.

DK 155740 BDK 155740 B

6 Når en forbindelse med formlen II eller III, hvori R har ovennævnte betydning, oxideres til den tilsvarende forbindelse med formlen I under anvendelse af en organisk peroxysyre, f.eks. en peroxy-carboxylsyre, udføres reaktionen sædvanligvis ved, at man behandler forbindelsen med formlen II eller III med fra ca. 1 til ca. 4 molækvivalenter, og fortrinsvis ca. 1,2 ækvivalenter af oxidationsmidlet i et reaktionsindifferent organisk opløsningsmiddel. Typiske opløsningsmidler er chlorerede carbonhydrider, såsom dichlormethan, chloroform og 1,2-dichlorethan, og ethere, såsom diethylether, te-trahydrofuran og 1,2-dimethoxyethan. Reaktionen udføres normalt ved en temperatur på fra ca. -20 til ca. 50°C, og fortrinsvis ved ca.When a compound of formula II or III wherein R is as defined above is oxidized to the corresponding compound of formula I using an organic peroxy acid, e.g. a peroxy-carboxylic acid, the reaction is usually carried out by treating the compound of formula II or III with from ca. 1 to approx. 4 molar equivalents, and preferably approx. 1.2 equivalents of the oxidant in a reaction-inert organic solvent. Typical solvents are chlorinated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane, and ethers such as diethyl ether, tetrahydrofuran and 1,2-dimethoxyethane. The reaction is usually carried out at a temperature of from ca. -20 to approx. 50 ° C, and preferably at ca.

25°C. Ved ca. 25°C benyttes der almindeligvis reaktionstider på ca.25 ° C. At about. Reaction times of about 25 ° C are generally used.

2 til ca. 16 timer. Produktet isoleres normalt ved fjernelse af opløsningsmidlet ved afdampning i vakuum. Produktet kan renses på konventionel måde.2 to approx. 16 hours. The product is usually isolated by removing the solvent by evaporation in vacuo. The product can be purified by conventional means.

Når man oxiderer en forbindelse med formlen II eller III til en forbindelse med formlen I under anvendelse af en organisk peroxysyre, er det undertiden fordelagtigt at tilsætte en katalysator, såsom et mangansalt, f.eks. manganiacetylacetonat.When oxidizing a compound of formula II or III to a compound of formula I using an organic peroxy acid, it is sometimes advantageous to add a catalyst such as a manganese salt, e.g. manganiacetylacetonat.

Når man ved oxidationen ved fremgangsmåde a) ifølge opfindelsen opnår en forbindelse med formlen I med den afvigelse, at der g i stedet for en gruppe R forekommer en pencillincarboxybeskyttende 1 1 gruppe R , fjernes denne beskyttelsesgruppe R til opnåelse af forbin- 6 delsen. med formlen I, hvori R er hydrogen. I denne sammenhæng kan 1 R være en vilkårlig carboxybeskyttende gruppe, som anvendes konventionelt inden for penicillinområdet til beskyttelse af carboxygrupper i 3-stillingen. Identiteten af den carboxybeskyttende gruppe er ikke væsentlig. De eneste krav til den carboxybeskyttende gruppe R^ er, at: (i) den må være stabil under oxidationen af forbindelsen med formlen II eller III, og (ii) den må kunne fjernes fra forbindelsen med formlen I under anvendelse af betingelser, hvorunder β-lactamen forbliver i det væsentlige intakt. Typiske eksempler på grupper, der kan anvendes, er tetrahydropyranylgruppen, benzyl-gruppen, substituerede benzylgrupper( f.eks. 4-nitrobenzyl), benz-hydrylgruppen, 2,2,2-trichlorethylgruppen, t-butylgruppen og phena-cylgruppen. Se endvidere USA-patentskrifterne nr. 3.632.850 og 3.197.466, britisk patentskrift nr. 1.041.985, Woodward et al., Journal of the American Chemical Society, (38, 852 (1966) , Chauvette, Journal of Organic Chemistry, 36, 1259 (1971), Sheehan et al., Journal ofWhen, by the oxidation of process a) of the invention, a compound of formula I is obtained with the exception that g is substituted for a pencillin carboxy protecting group 1 in place of g, this protecting group R is removed to give the compound. of formula I wherein R is hydrogen. In this context, 1R may be any carboxy protecting group conventionally used in the penicillin range for protecting carboxy groups at the 3-position. The identity of the carboxy protecting group is not essential. The only requirements for the carboxy protecting group R 1 are that: (i) it must be stable during the oxidation of the compound of formula II or III, and (ii) it must be removable from the compound of formula I using conditions under which β The lactam remains essentially intact. Typical examples of groups that can be used are the tetrahydropyranyl group, the benzyl group, substituted benzyl groups (eg 4-nitrobenzyl), the benzhydryl group, 2,2,2-trichloroethyl group, the t-butyl group and the phenazyl group. See also U.S. Patent Nos. 3,632,850 and 3,197,466, British Patent No. 1,041,985, Woodward et al., Journal of the American Chemical Society, (38, 852 (1966), Chauvette, Journal of Organic Chemistry, 36, 1259 (1971), Sheehan et al., Journal of

7 DK 155740 B7 DK 155740 B

Organic Chemistry, 29_, 2006 (1964) , og "Cepahalosporin and Penicillins Chemistry and Biology", redigeret af H.E.Flynn, Academic Press, Inc./ 1972. Den penicillincarboxybeskyttende gruppe fjernes på konventionel måde under fornøden hensyntagen til 3-lactamringsystemets labilitet.Organic Chemistry, 29, 2006 (1964), and "Cepahalosporin and Penicillins Chemistry and Biology", edited by H.E.Flynn, Academic Press, Inc./ 1972. The penicillin carboxy protecting group is removed in a conventional manner, taking due account of the lactamation of the 3-lactam system.

På lignende måde kan man fremstille forbindelser med formlen g I, hvori R har den ovennævnte betydning ved oxidation af en forbindelse med ovenstående formel III', hvori R har den ovennævnte betydning. Denne oxidation udføres på nøjagtig samme måde som beskrevet ovenfor vedrørende oxidationen af en forbindelse med formlen II eller III, bortset fra at der sædvanligvis anvendes to gange så meget oxidationsmiddel.Similarly, compounds of formula g I can be prepared in which R has the above meaning by oxidizing a compound of formula III 'wherein R has the above meaning. This oxidation is carried out in exactly the same manner as described above for the oxidation of a compound of formula II or III, except that twice as much oxidant is usually used.

Fremgangsmåde b) ifølge opfindelsen består i, at man til frem- c: stilling af forbindelser med formlen I, hvor R har den ovennævnte betydning bortset fra hydrogen, omsætter et salt af pencillansyre- 1.1- dioxid med 3-phthalidylchlorid, 3-phthalidylbromid, 4-crotono-lacton-4-yl-chlorid, 4-crotonolacton-4-yl-bromid, y-butyrolacton-4-yl-bromid eller en forbindelse med formlenProcess b) according to the invention consists in the preparation of compounds of formula I wherein R has the above meaning other than hydrogen, reacting a salt of pencillanic acid 1.1-dioxide with 3-phthalidyl chloride, 3-phthalidyl bromide, 4-crotono-lacton-4-yl chloride, 4-crotonolacton-4-yl bromide, γ-butyrolacton-4-yl bromide or a compound of the formula

? ? R3 O? ? R3 O

I II s I II 5I II s I II 5

Q-C-G-C-R XII eller Q-C-0-C-0-R3 XIIIQ-C-G-C-R XII or Q-C-0-C-0-R3 XIII

l< 14 3 5 hvori R -R har de ovennævnte betydninger, og Q er chlor eller brom, i et reaktionsindifferent opløsningsmiddel ved en temperatur i området fra 0 til 100°C.wherein R -R has the above meanings, and Q is chlorine or bromine, in a reaction-inert solvent at a temperature in the range of 0 to 100 ° C.

Reaktionen udføres bekvemt ved at opløse et salt af penicillansyre- 1.1- dioxid i et passende, polært, organisk opløsningsmiddel, såsom Ν,Ν-dimethylformamid, og derpå tilsætte ca. ét mol-ækvivalent af det pågældende chlorid eller bromid. Når reaktionen er forløbet i det væsentlige til ende, isoleres produktet på sædvanlig måde. Det er ofte tilstrækkeligt simpelthen at fortynde reaktionsmediet med et overskud af vand og derefter ekstrahere produktet i et med vand ikke blandbart organisk opløsningsmiddel og dernæst udvinde det ved afdampning af opløsningsmidlet. De almindeligvis anvendte salte af penicillansyre-1,1-dioxid er alkalimetalsalte, såsom natrium- og kaliumsalte, og tertiære aminsalte, såsom triethylamin-, N-ethylpi-peridin-, Ν,Ν-dimethylanilin- og N-methylmorpholin-salte. Reaktionen udføres som nævnt ved en temperatur i området fra 0 til 100°C, 8The reaction is conveniently carried out by dissolving a salt of penicillanic acid 1.1 dioxide in a suitable polar organic solvent such as Ν, Ν-dimethylformamide, and then adding approx. one mole equivalent of that chloride or bromide. When the reaction is substantially complete, the product is isolated in the usual manner. It is often sufficient simply to dilute the reaction medium with an excess of water and then extract the product into a water-immiscible organic solvent and then recover it by evaporation of the solvent. The commonly used salts of penicillanic acid 1,1-dioxide are alkali metal salts such as sodium and potassium salts, and tertiary amine salts such as triethylamine, N-ethylpiperidine, Ν, Ν-dimethylaniline and N-methylmorpholine salts. The reaction is carried out as mentioned at a temperature in the range of 0 to 100 ° C, 8

DK 155740 BDK 155740 B

og sædvanligvis ca. 25°C. Den nødvendige tid til fuldendelse af reaktionen varierer med flere forskellige faktorer, såsom koncentrationen af reaktanterne og reaktiviteten af reagenserne. Når man betragter halogenforbindelsen, reagerer bromidet hurtigere end chlori-det. Når man anvender en chlorforbindelse, er det undertiden fordelagtigt at tilsætte op til ét mol-ækvivalent af et alkalimetaliodid. Dette bevirker en forøgelse af reaktionshastigheden. Under fuld hensyntagen til de ovenstående faktorer anveandes der almindeligvis reaktionstider på fra ca. 1 til ca. 24 timer.and usually approx. 25 ° C. The time required to complete the reaction varies with several different factors, such as the concentration of the reactants and the reactivity of the reagents. When considering the halogen compound, the bromide reacts faster than the chloride. When using a chlorine compound, it is sometimes advantageous to add up to one mole equivalent of an alkali metal iodide. This causes an increase in the reaction rate. Taking full account of the above factors, reaction times of approx. 1 to approx. 24 hours.

Penicillansyre-la-oxid, forbindelsen med formlen II, hvori R^· er hydrogen, kan fremstilles ved debromering af 6,6-dibrompeni-cillansyre-la-oxid. Debrmeringen kan udføres ved anvendelse af en konvetionel hydrogenolysemetode. Således omrører eller omryster man en opløsning af 6,6-dibrompenicillansyre-la-oxid under en atmosfære af hydrogen,' eller hydrogen blandet med et indifferent fortyndingsmiddel som nitrogen eller argon, i nærværelse af en katalytisk mængde af palladium-på-calciumcarbonat-katalysator. Passende opløsningsmidler til denne debromering er lavere alkanoler, såsom methanol, ethere, såsom tetrahydrofuran og dioxan, lavmolekulære estere, såsom ethylacetat og butylacetat, vand, og blandinger af disse opløsningsmidler. Man vælger imidlertid sædvanligvis betingelser, under hvilke dibromforbindelsen er opløselig. Hydro-genolysen udføres sædvanligvis ved stuetemperatur og ved et tryk fra ca. atmosfæretryk til ca. 3,5 at. Katalysatoren er sædvanligvis til stede i en mængde fra ca. 10 vægt%, beregnet på dibromforbindelsen, og op til en ligeså stor vægtmængde som dibromforbindelsen, men der kan dog anvendes større mængder. Reaktionen tager almindeligvis ca. 1 time, hvorefter forbindelsen med formlen II, hvori R^ er hydrogen, simpelthen udvindes ved filtrering efterfulgt af fjernelse af opløsningsmidlet i vakuum.Penicillanic acid la-oxide, the compound of formula II wherein R 2 is hydrogen, can be prepared by debromating 6,6-dibrompenic-cillanic acid la-oxide. The debromation can be carried out using a conventional hydrogenolysis method. Thus, a solution of 6,6-dibrompenicillanic acid oxide is stirred or shaken under an atmosphere of hydrogen, or hydrogen mixed with an inert diluent such as nitrogen or argon, in the presence of a catalytic amount of palladium-on-calcium carbonate catalyst. . Suitable solvents for this debromation are lower alkanols such as methanol, ethers such as tetrahydrofuran and dioxane, low molecular weight esters such as ethyl acetate and butyl acetate, water, and mixtures of these solvents. However, conditions are usually chosen under which the dibromo compound is soluble. The hydrogen genolysis is usually carried out at room temperature and at a pressure of approx. atmospheric pressure to approx. 3.5 at. The catalyst is usually present in an amount of approx. 10% by weight, based on the dibromo compound, and up to an equal amount of weight as the dibromo compound, however larger quantities can be used. The reaction usually takes approx. 1 hour, after which the compound of formula II wherein R 1 is hydrogen is simply recovered by filtration followed by removal of the solvent in vacuo.

6,6-Dibrompenicillansyre-la-oxid fremstilles ved oxidation af 6,6-dibrompenicillansyre med et ækvivalent 3-chlorperbenzoesyre i tetrahydrofuran ved 0 til 25°C i ca. 1 time efter den fremgangsmåde, der er angivet af Harrison et al., Journal of the Chemical Society (London) Perkin I, 1772 (1976). 6,6-Dibrompenicillansyre fremstilles ved den fremgangsmåde, der er angivet af Clayton,6,6-Dibrompenicillanic acid la-oxide is prepared by oxidation of 6,6-dibrompenicillanic acid with an equivalent of 3-chloroperbenzoic acid in tetrahydrofuran at 0 to 25 ° C for approx. 1 hour following the method set forth by Harrison et al., Journal of the Chemical Society (London) Perkin I, 1772 (1976). 6,6-Dibrompenicillanic acid is prepared by the method of Clayton,

Journal of the Chemical Society (London), (C) 2123 (1969).Journal of the Chemical Society (London), (C) 2123 (1969).

Penicillansyre-lf3-oxid, forbindelsen med formlen III, hvori i R er hydrogen, kan fremstilles ved kontrolleret oxidation af yPenicillanic acid Iβ3 oxide, the compound of formula III wherein in R is hydrogen, can be prepared by controlled oxidation of γ

DK i55740 BDK i55740 B

penicillansyre. Det kan således fremstilles ved at behandle penicil-lansyre med ét mol-ækvivalent 3-chlorperbenzoesyre i et indfifferent opløsningsmiddel ved ca. 0°C i ca. 1 time. Typiske opløsningsmidler, der kan anvendes, omfatter chlorerede carbonhydrider, såsom chloroform og dichlormethan, ethere, såsom diethylether og tetrahydrofuran, og lavmolekulære estere, såsom ethylacetat og butylacetat. Produktet udvindes på konventionel måde.pennicillanic. Thus, it can be prepared by treating penicillanic acid with one mole equivalent of 3-chloroperbenzoic acid in an inert solvent at ca. 0 ° C for approx. 1 hour. Typical solvents which may be used include chlorinated hydrocarbons such as chloroform and dichloromethane, ethers such as diethyl ether and tetrahydrofuran, and low molecular weight esters such as ethyl acetate and butyl acetate. The product is extracted in a conventional manner.

Penicillansyre fremstilles son beskrevet i britisk patentskrift nr. 1.07 2.108.Penicillanic acid is prepared as described in British Patent Specification No. 1.07 2,108.

. i. in

Forbindelser med formlerne II og III, hvori R har samme be- g tydning som R bortset fra hydrogen, kan fremstilles direkte ud fra i forbindelsen med formlen II eller III, hvori R er hydrogen, ved forestring, dvs. ved alkylering af den pågældende forbindelse med i formlen II eller III, hvori R er hydrogen, med et 3-phthalidylhalo-genid, et 4-crotonolactonylhalogenid, et Y-butyrolacton-4-yl-halo-genid eller en forbindelse med formlen XII eller XIII. Reaktionen udføres på nøjagtig samme måde som beskrevet ovenfor vedrørende fremgangsmåde b) ifølge opfindelsen.Compounds of formulas II and III in which R has the same meaning as R except hydrogen can be prepared directly from the compound of formula II or III wherein R is hydrogen by esterification, i. by alkylating said compound with the formula II or III wherein R is hydrogen, with a 3-phthalidyl halide, a 4-crotonolactonyl halide, a Y-butyrolacton-4-yl halo or a compound of formula XII or XIII. The reaction is carried out in exactly the same manner as described above for process b) of the invention.

iin

Alternativt kan forbindelserne med formlen II, hvori R har g samme betydning som R bortset fra hydrogen, fremstilles ved oxidation af den tilsvarende ester af 6,6-dibrompenicillansyre efterfulgt af debromering. Esterne af 6,6-dibrompenicillansyre fremstilles ud fra 6,6-dibrompenicillansyre ved sædvanlige fremgangsmåder. Oxidationen udføres f.eks. ved oxidation med ét mol-ækvivalent 3-chlor-perbenzoesyre som beskrevet ovenfor vedrørende oxidationen af 6,6-dibrompenicillansyre til 6,6-dibrompenicillansyre-1a-oxid, og debromeringen udføres som beskrevet ovenfor vedrørende debromeringen af 6,6-dibrompenicillansyre-1a-oxid.Alternatively, the compounds of formula II, wherein R has g the same meaning as R other than hydrogen, can be prepared by oxidation of the corresponding ester of 6,6-dibrompenicillanic acid followed by debromation. The esters of 6,6-dibrompenicillanic acid are prepared from 6,6-dibrompenicillanic acid by conventional methods. The oxidation is carried out e.g. by oxidation with one molar equivalent of 3-chloro-perbenzoic acid as described above regarding the oxidation of 6,6-dibrompenicillanic acid to 6,6-dibrompenicillanic acid 1a-oxide and the debromation is carried out as described above regarding the debromation of 6,6-dibrompenicillanic acid-1a oxide.

På lignende måde kan forbindelserne med formlen III, hvori 1 6 R har samme betydning som R bortset fra hydrogen, fremstilles ved oxidation af den tilsvarende ester af penicillansyre. De sidstnævnte forbindelser fremstilles let ved forestring af penicillansyre under anvendelse af sædvanlige fremgangsmåder. Oxidationen udføres f.eks. ved oxidation med ét mol-ækvivalent 3-chlorperbenzoesyre som beskrevet ovenfor vedrørende oxidationen af penicillansyre til peni-cillansyre-16-oxid.Similarly, the compounds of formula III wherein R 6 has the same meaning as R except hydrogen can be prepared by oxidation of the corresponding ester of penicillanic acid. The latter compounds are readily prepared by esterification of penicillanic acid using conventional methods. The oxidation is carried out e.g. by oxidation with one mole equivalent of 3-chloroperbenzoic acid as described above regarding the oxidation of penicillanic acid to penicillanic acid 16 oxide.

De forbindelser med formlen II, hvori R1 er en carboxybeskyt-tende gruppe, kan opnås på to måder. De kan opnås simpelthen ved atThe compounds of formula II wherein R 1 is a carboxy protecting group can be obtained in two ways. They can be obtained simply by

,0 DK 155740 B, 0 DK 155740 B

tage penicillansyre-la-oxid og knytte en carboxybeskyttende gruppe dertil. Alternativt kan de opnås ved: (a) at knytte en carboxybeskyttende gruppe til 6,6-dibrompenicillansyre, (b) oxidere den beskyttede 6,6-dibrompenicillansyre til et beskyttet 6,6-dibrom-penicillansyre-la-oxid under anvendelse af ét mol-ækvivalent 3-chlor-perbenzoesyre, og (c) debromere det beskyttede 6,6-dibrompenicillan-syre-la-oxid ved hydrogenolyse.take penicillanic acid-la-oxide and attach a carboxy protecting group thereto. Alternatively, they may be obtained by: (a) associating a carboxy protecting group with 6,6-dibrompenicillanic acid, (b) oxidizing the protected 6,6-dibrompenicillanic acid to a protected 6,6-dibromo-penicillanic acid la-oxide using one mole equivalent of 3-chloro-perbenzoic acid, and (c) debromate the protected 6,6-dibrompenicillanic acid la-oxide by hydrogenolysis.

De forbindelser med formlen III, hvori R^ er en carboxybeskyttende gruppe, kan opnås simpelthen ved at knytte en beskyttelsesgruppe til penicillansyre-ip-oxid. Alternativt kan de opnås ved: (a) at knytte en carboxybeskyttende gruppe til penicillansyre, og (b) oxidere den beskyttede penicillansyre under anvendelse af ét mol-ækvivalent 3-chlorperbenzoesyre som ovenfor beskrevet.The compounds of formula III wherein R 1 is a carboxy protecting group can be obtained simply by attaching a protecting group to penicillanic acid ip oxide. Alternatively, they may be obtained by: (a) associating a carboxy protecting group with penicillanic acid, and (b) oxidizing the protected penicillanic acid using one molar equivalent of 3-chloroperbenzoic acid as described above.

6 16 1

De forbindelser med formlerne I, II og III, hvori R hhv. R er hydrogen, er sure og danner salte med basiske stoffer. Sådanne salte henregnes under opfindelsens omfang. Disse salte kan fremstilles ved sædvanlige fremgangsmåder, såsom ved at bringe de sure og basiske komponenter i kontakt med hinanden, sædvanligvis i et molforhold på 1:1, i et vandigt, ikke-vandigt eller delvis vandigt medium alt efter omstændighederne. De udvindes derefter ved filtrering, ved udfældning med et ikke-opløsningsmiddel efterfulgt af filtrering, ved afdampning af opløsningsmidlet eller, i tilfælde af vandige opløsninger, ved lyophilisering, alt efter omstændighederne. Basiske stoffer, der hensigtsmæssigt anvendes til saltdannelse, hører til både den organiske og uorganiske type, og de omfatter ammoniak, organiske aminer, alkalimetalhydroxider, -carbo-nater, -hydrogencarbonater, -hydrider og -alkoxider, samt jord-alkalimetalhydroxider, -carbonater, -hydrider og -alkoxider. Repræsentative eksempler på sådanne baser er primære aminer, såsom n-pro-pylamin, n-butylamin, anilin, cyclohexylamin, benzylamin og octyl-amin, sekundære aminer såsom diethylamin, morpholin, pyrrolidin og piperidin, tertiære aminer såsom triethylamin, N-ethylpiperidin, N-methylmorpholin og 1,5-diazabicyclo[4,3,0]non-5-en, hydroxider, såsom natriumhydroxid, kaliumhydroxid, ammoniumhydroxid og barium-hydroxid, alkoxider såsom natriumethoxid og kaliumethoxid, hydrider såsom calciumhydrid og natriumhydrid, carbonater, såsom kalium-carbonat og natriumcarbonat, hydrogencarbonater, såsom natriumhy-drogencarbonat og kaliumhydrogencarbonat, og alkalimetalsalte af langkædede fede syrer, såsom natrium-2-ethylhexanoat.The compounds of formulas I, II and III in which R R is hydrogen, is acidic and forms salts with basic substances. Such salts are included in the scope of the invention. These salts can be prepared by conventional methods, such as contacting the acidic and basic components, usually in a molar ratio of 1: 1, in an aqueous, non-aqueous or partially aqueous medium as the case may be. They are then recovered by filtration, by precipitation with a non-solvent followed by filtration, by evaporation of the solvent or, in the case of aqueous solutions, by lyophilization, as the case may be. Basic substances which are suitably used for salt formation belong to both the organic and inorganic type and include ammonia, organic amines, alkali metal hydroxides, carbonates, hydrogen carbonates, hydrides and alkoxides, and alkaline earth metal hydroxides, carbonates, hydrides and alkoxides. Representative examples of such bases are primary amines such as n-propylamine, n-butylamine, aniline, cyclohexylamine, benzylamine and octylamine, secondary amines such as diethylamine, morpholine, pyrrolidine and piperidine, tertiary amines such as triethylamine, N-ethylpiperidine, N-methylmorpholine and 1,5-diazabicyclo [4,3,0] non-5ene, hydroxides such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and barium hydroxide, alkoxides such as sodium ethoxide and potassium ethoxide, hydrides such as calcium hydride and sodium hydride, carbonates such as potassium carbonate and sodium carbonate, hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate, and alkali metal salts of long chain fatty acids such as sodium 2-ethyl hexanoate.

,, DK 155740 B,, DK 155740 B

Foretrukne salte af forbindelserne med formlerne I, II og 6 1 III, hvori R hhv. R er hydrogen, er natrium-, kalium- og triethyl-aminsalte.Preferred salts of the compounds of formulas I, II and 6 1 III wherein R R is hydrogen, is sodium, potassium and triethylamine salts.

Som angivet ovenfor er de ved fremgangsmåden ifølge opfindelsen fremstillede forbindelser med formlen I antibakterielle midler med middel styrke. In-vitro-virkningen af forbindelsen med formlen I, hvori R er hydrogen, kan påvises ved at måle dens minimale hæmningskoncentrationer (MIC) i yg/ml overfor flere forskellige mikroorganismer. Den procedure, der følges, er den, der anbefales af International Collaborative Study on Antibiotic Sensitivity Testing (Ericcson og Sherris, Acta Pathologica et Microbiologia Scandinav., Supp. 217, sektion A og B: 1-90 [1970]), og ved denne anvendes hjerne-hjerte-infusionsagar (BHI-agar) og podningsgentagelsesindretningen. Indholdet af rørglas, hvori der er foregået vækst natten over, fortyndes 100 gange til anvendelse som standardpodestof (20.000 til 10.000 celler i ca. 0,002 ml anbringes på agaroverfladen; 20 ml BHI-agar/skål). Der benyttes tolv to ganges fortyndinger af prøveforbindelsen, idet begyndelseskoncentrationen af prøvemedikamentet er 200 yg/ml. Man ser bort fra enkeltkolonier, når man aflæser pladerne efter 18 timer ved 37°C. Prøveorganismens følsomhed (MIC) tages som den laveste koncentration af forbindelsen, der er i stand til at frembringe fuldstændig væksthæmning som bedømt med det ubevæbnede øje. MIC-værdier for penicillansyr.e-1,1-dioxid overfor en række mikroorganismer er anført i tabel I.As indicated above, the compounds of the formula I of the compound of the invention are of medium strength. The in vitro action of the compound of formula I wherein R is hydrogen can be detected by measuring its minimum inhibitory concentrations (MIC) in µg / ml against several different microorganisms. The procedure followed is that recommended by the International Collaborative Study on Antibiotic Sensitivity Testing (Ericcson and Sherris, Acta Pathologica et Microbiologia Scandinav., Supp. 217, sections A and B: 1-90 [1970]), and by this is used for the brain-heart infusion agar (BHI agar) and the graft repeat device. The tube glass, which has been growing overnight, is diluted 100 times for use as a standard graft (20,000 to 10,000 cells in approximately 0.002 ml are applied to the agar surface; 20 ml of BHI agar / dish). Twelve dilutions of the test compound are used twice, with the initial concentration of the test drug being 200 µg / ml. Single colonies are ignored when the plates are read after 18 hours at 37 ° C. The sensitivity of the test organism (MIC) is taken as the lowest concentration of the compound capable of producing complete growth inhibition as judged by the unarmed eye. MIC values for penicillanic acid.e-1,1-dioxide against a variety of microorganisms are listed in Table I.

12 DK 155740B '12 DK 155740B '

Tabel ITable I

In-vitro-antibakteriel virkning af penic±llansyre-l,l-dioxid.In vitro antibacterial action of penic ± llanoic acid -1,1-dioxide.

Mikroorganisme ' ..... ' ' MIC (y'g/ml _Microorganism '.....' 'MIC (y'g / ml _

Staphylococcus aureus 100Staphylococcus aureus 100

Streptococcus faecalis >200Streptococcus faecalis> 200

Streptococcus pyogenes 100Streptococcus pyogenes 100

Escherichia coli 50Escherichia coli 50

Pseudomonas aeruginosa 200Pseudomonas aeruginosa 200

Klebsiella pneumoniae 50Klebsiella pneumoniae 50

Proteus mirabilis 100Proteus mirabilis 100

Proteus morgani 100Proteus morgani 100

Salmonella typhimurium 50Salmonella typhimurium 50

Pasteurella multocida 50Pasteurella multocida 50

Serratia marcescens 100Serratia marcescens 100

Enterobacter aerogenes 25Enterobacter aerogenes 25

Enterobacter clocae 100Enterobacter clocae 100

Citrobacter freundii 50Citrobacter freundii 50

Providencia 100Providencia 100

Staphylococcus epidermis 200Staphylococcus epidermis 200

Pseudomonas putida >200Pseudomonas putida> 200

Hemophilus influenzae >50Hemophilus influenzae> 50

Neisseria gonorrhoeae ' ...... 0,312......Neisseria gonorrhoeae '...... 0.312 ......

De ved fremgangsmåden ifølge opfindelsen fremstillede forbindelser med formlen I er virksomme som antibakterielle midler in vivo. Til bestemmelse af denne virkning fremkaldes der akutte eksperimentelle infektioner hos mus ved intraperitoneal indpodning på musen af en standardiseret kultur af prøveorganismen suspenderet i 5% mycin fra svinemave. Infektionens alvorlighed standardiseres således, at musene modtager én til ti gange LD^Q-dosen for organismen (LDiqq: den minimale mængde podestof med organismen, som kræves til konsekvent at dræbe 100% af de inficerede, ikke-behandlede kontrolmus). Prøveforbindelsen administreres til de inficerede mus under anvendelse af et multipelt doseringssystem. Ved prøvens afslutning bedømmes virkningen af en forbindelse ved, at man tæller antallet af overlevende blandt de behandlede dyr og udtrykker virkningen af en forbindelse som den procentdel af dyrene, der har overlevet.The compounds of formula I prepared by the process of the invention act as antibacterial agents in vivo. To determine this effect, acute experimental infections in mice are induced by intraperitoneal inoculation on the mouse of a standard culture of the test organism suspended in 5% porcine mycin. The severity of the infection is standardized so that the mice receive one to ten times the LD 1Q dose of the organism (LDiqq: the minimal amount of inoculation with the organism required to consistently kill 100% of the infected, untreated control mice). The test compound is administered to the infected mice using a multiple dosing system. At the end of the test, the effect of a compound is assessed by counting the number of survivors among the treated animals and expressing the effect of a compound as the percentage of animals that survived.

Den in-vitro-antibakterielle virkning af forbindelsen med 13 DK 155740 B ' g formlen I, hvori R er hydrogen, gør den nyttig til lokal anvendelse som desinfektionsmiddel. I tilfælde af benyttelse af denne forbindelse til lokal anvendelse er det ofte bekvemt at blande den aktive bestanddel med en ikke-toxisk bærer, såsom vegetabilsk eller mineralsk olie eller en blødgørende creme. Ligeledes kan den opløses eller dispergeres i flydende fortyndingsmidler eller opløsningsmidler, såsom vand, alkanoler, glycoler eller blandinger heraf. I de fleste tilfælde er det hensigtsmæssigt at anvende koncentrationer af den aktive bestanddel på fra ca. 0,1 til ca 10 vægt%, beregnet på den totale komposition.The in vitro antibacterial effect of the compound of formula I wherein R is hydrogen makes it useful for local use as a disinfectant. In the case of using this compound for topical use, it is often convenient to mix the active ingredient with a non-toxic carrier such as vegetable or mineral oil or a softening cream. Likewise, it can be dissolved or dispersed in liquid diluents or solvents such as water, alkanols, glycols or mixtures thereof. In most cases, it is appropriate to use concentrations of the active ingredient of from ca. 0.1 to about 10% by weight, based on the total composition.

In-vivo-virkningen af de ved fremgangsmåden ifølge opfindelsen fremstillede forbindelser med formlen I gør den egnede til bekæmpelse af bakterielle infektioner hos pattedyr, og herunder mennesker, ved administrering ad både oral og parenteral vej. Forbindelserne kan finde anvendelse til bekæmpelse af infektioner forårsaget af følsomme bakterier hos mennesker, f.eks. infektioner forårsaget af stammer af Neisseria gonorrhoeae.The in vivo effect of the compounds of formula I prepared by the process of the invention makes it suitable for controlling bacterial infections in mammals, and including humans, by administration by both oral and parenteral routes. The compounds can be used to control infections caused by sensitive bacteria in humans, e.g. infections caused by strains of Neisseria gonorrhoeae.

Når man betragter den terapeutiske anvendelse af en forbindelse med formlen I, eller et salt heraf, til et pattedyr, specielt et menneske, kan forbindelsen administreres alene, eller den kan blandes med farmaceutisk acceptable bærere eller fortyndingsmidler.When considering the therapeutic use of a compound of formula I, or a salt thereof, in a mammal, especially a human, the compound may be administered alone or it may be admixed with pharmaceutically acceptable carriers or diluents.

De kan administreres oralt eller parenteralt, dvs. intramuskulært, subkutant, eller intraperitonealt. Bæreren eller fortyndingsmidlet vælges på basis af den påtænkte administreringsmåde. Når man f.eks. betragter den orale administreringsmåde, kan en ved fremgangsmåden ifølge opfindelsen fremstillet antibakteriel penam-forbindelse anvendes i form af tabletter, kapsler, pastiller, dulciblettae, pulvere, syrupi, elixirer,vandige opløsninger og suspensioner og lignende i overensstemmelse med sædvanlig farmaceutisk praksis. Mængdeforholdet mellem aktiv bestanddel og bærer vil selvsagt afhænge af den kemiske art, opløseligheden og stabiliteten af den aktive bestanddel, samt af den påtænkte dosering. Farmaceutiske præparater, der indeholder en antibakteriel forbindelse med formlen I, vil dog sandsynligvis indeholde fra ca. 20 til ca. 95% aktiv bestanddel.They can be administered orally or parenterally, ie. intramuscularly, subcutaneously, or intraperitoneally. The carrier or diluent is selected based on the intended mode of administration. For example, when In view of the oral mode of administration, an antibacterial penam compound prepared by the method of the invention can be used in the form of tablets, capsules, lozenges, dulciblettae, powders, syrups, elixirs, aqueous solutions and suspensions and the like in accordance with conventional pharmaceutical practice. The amount ratio of active ingredient to carrier will, of course, depend on the chemical nature, solubility and stability of the active ingredient, as well as the intended dosage. However, pharmaceutical compositions containing an antibacterial compound of formula I are likely to contain from ca. 20 to approx. 95% active ingredient.

I tilfælde af tabletter til oral anvendelse indbefatter de bærere, som almindeligvis anvendes, lactose, natriumcitrat og salte af phosphorsyre. Forskellige desintegreringsmidler, såsom stivelse, og smøremidler, såsom magnesiumstearat, natriumlaurylsulfat og talkum, anvendes almindeligvis i tabletter. Til oral administre-In the case of tablets for oral use, the carriers commonly used include lactose, sodium citrate and salts of phosphoric acid. Various disintegrants such as starch and lubricants such as magnesium stearate, sodium lauryl sulfate and talc are commonly used in tablets. For oral administration

,4 DK 155740 B, 4 DK 155740 B

ring i kapselform er nyttige fortyndingsmidler lactose og højmolekylære polyethylenglycoler. Når der kræves vandige suspensioner til oral anvendelse, kombineres den aktive bestanddel med emulgerings-og suspensionsmidler. Om ønsket kan der tilsættes visse sødestoffer og/eller smagsstoffer. Ml parenteral administrering, der indbefatter intramuskulær, intraperitoneal, subkutan og intravenøs anvendelse, fremstilles der sædvanligvis sterile opløsninger af den aktive bestanddel, og opløsningernes pH-værdi indstilles og pufres på passende måde. Til intravenøs anvendelse skal den totale koncentration af opløste stoffer reguleres således, at præparatet bliver isotonisk.capsule form are useful diluents lactose and high molecular weight polyethylene glycols. When aqueous suspensions are required for oral use, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweeteners and / or flavors may be added. For parenteral administration, including intramuscular, intraperitoneal, subcutaneous and intravenous use, sterile solutions of the active ingredient are usually prepared and the pH of the solutions is adjusted and appropriately buffered. For intravenous use, the total concentration of solutes must be adjusted so that the preparation is isotonic.

Som tidligere angivet kan antibakterielle midler, der indeholder de ved- fremgangsmåden ifølge opfindelsen fremstillede forbindelser, anvendes hos mennesker mod følsomme organismer. Den ordinerende læge vil i sidste instans bestemme den rette dosis til et bestemt menneske, og denne kan forventes at variere alt efter den enkelte patients alder, vægt og respons , samt efter arten og alvorligheden af patientens symptomer. De omhandlede forbindelser vil normalt blive anvendt oralt i doser i området fra ca. 10 til ca. 200 mg pr. kg legemsvægt pr. dag og parenteralt i doser fra ca. 10 til ca. 400 mg pr. kg legemsvægt pr. dag. Disse tal er imidlertid kun belysende, og i nogle tilfælde kan det være nødvendigt at anvende doseringer uden for disse grænser.As previously stated, antibacterial agents containing the compounds of the present invention can be used in humans against sensitive organisms. The prescribing physician will ultimately determine the right dose for a particular person, and this can be expected to vary according to the individual patient's age, weight and response, as well as the nature and severity of the patient's symptoms. The present compounds will normally be used orally in doses ranging from about 10 to approx. 200 mg per kg body weight per daily and parenterally in doses from ca. 10 to approx. 400 mg per day kg body weight per day. However, these figures are for illustrative purposes only and in some cases dosages outside these limits may be necessary.

Som angivet ovenfor er de ved fremgangsmåden ifølge opfindelsen fremstillede forbindelser med formlen I imidlertid kraftige inhibitorer for mikrobielle β-lactamaser, og de forøger den antibakterielle effektivitet af β-lactamantibiotika (penicilliner og cephalosporiner) mod mange mikroorganismer, specielt dem, der producerer en β-lactamase. Den måde, hvorpå de nævnte forbindelser med formlen I forøger effektiviteten af et 3-lactam-antibiotikum, kan vurderes ved forsøg, ved hvilke man måler MIC for et givet antibiotikum alene og for en forbindelse med formlen I alene.However, as indicated above, the compounds of formula I prepared by the process of the invention are potent inhibitors of microbial β-lactamases and increase the antibacterial efficacy of β-lactam antibiotics (penicillins and cephalosporins) against many microorganisms, especially those producing a β-lactamase. lactamase. The manner in which said compounds of formula I increase the efficacy of a 3-lactam antibiotic can be assessed by experiments measuring MIC for a given antibiotic alone and for a compound of formula I alone.

Disse MIC-værdier sammenlignes derefter med de MIC-værdier, der opnås med en kombination af det givne antibiotikum og forbindelsen med formlen I. Når den antibakterielle styrke af kombinationen er signifikant større end det kunne forudsiges ud fra styrkeværdierne for de enkelte forbindelser, anses det for at udgøre en virkningsforøgelse. MIC-værdierne for kombinationer måles under anvendelse af den metode, der er beskrevet af Barry og Sabath i "Manual of Clini-These MICs are then compared to the MICs obtained with a combination of the given antibiotic and the compound of formula I. When the antibacterial potency of the combination is significantly greater than could be predicted from the potency values of the individual compounds, it is considered to constitute an effect increase. The MIC values for combinations are measured using the method described by Barry and Sabath in the "Manual of Clini-

15 DK 155740 BDK 155740 B

cal Microbiology", udgivet af Lenette, Spaulding og Truant, 2. udgave, 1974, American Society for Microbiology.cal Microbiology ", published by Lenette, Spaulding and Truant, 2nd ed., 1974, American Society for Microbiology.

Forsøgsresultater, der viser at penicillansyre-1,1-dioxid forøger effektiviteten af ampicillin (6-(D-2-amino-2-phenylacet-amido)penicillansyre), er anført i tabel II. Af tabel II kan det ses, at mod 19 ampicillin-resistente stammer af Staphylococcus aureus er typeværdien af MIC for ampicillin og for penicillansyre-1,1-dioxid 200 yg/ml. Typeværdierne af MIC for ampicillin og penicillansyre-1 , 1 -dioxid i kombination er imidlertid henholdsvis 1,56 og 3,12 yg/ml. Sagt på en anden måde betyder dette, at medens ampicillin alene har en typeværdi af MIC på 200 yg/ml mod 19 stammer af Staphylococcus aureus, formindskes dets typeværdi af MIC til 1,56 yg/ml i nærværelse af 3,12 yg/ml periicillansyre-1,1-dioxid. De øvrige angivelser i tabel II viser forøgelsen af den antibakterielle effektivitet af ampicillin mod 26 ampicillin-resistente stammer af Haemophilus influenzae, 18 ampicillin-resistente stammer af Klebsiella pneumoniae og 15 stammer af den anaerobe Bacteroides fragilis. Tabellerne III, IV og V viser forøgelsen i den antibakterielle styrke af henholdsvis benzylpenicillin (penicillin G), carbenicillin (d!-carboxybenzylpenicillin) og cefazolin (7—(2—[1-tetrazolyl]acetamido-3-(2-[5-methyl-1,3,4-thiadiazolyl]-thiomethyl)-3-desacetoxymethylcephalosporansyre) mod stammer af S. aureus, H. influenzae, K. pneumoniae og Bacteroides fragilis.Experimental results showing that penicillanic acid 1,1-dioxide increases the efficacy of ampicillin (6- (D-2-amino-2-phenylacetamido) penicillanic acid) are listed in Table II. From Table II, it can be seen that against 19 ampicillin-resistant strains of Staphylococcus aureus, the type value of MIC for ampicillin and for penicillanic acid 1,1-dioxide is 200 µg / ml. However, the MIC type values for ampicillin and penicillanic acid-1,1-dioxide in combination are 1.56 and 3.12 µg / ml, respectively. Put another way, this means that while ampicillin alone has a MIC value of 200 µg / ml against 19 strains of Staphylococcus aureus, its type value of MIC is reduced to 1.56 µg / ml in the presence of 3.12 µg / ml periicillansyre-1,1-dioxide. The other entries in Table II show the increase in the antibacterial efficacy of ampicillin against 26 ampicillin-resistant strains of Haemophilus influenzae, 18 ampicillin-resistant strains of Klebsiella pneumoniae and 15 strains of the anaerobic Bacteroides fragilis. Tables III, IV and V show the increase in the antibacterial potency of benzylpenicillin (penicillin G), carbenicillin (di-carboxybenzylpenicillin) and cefazoline (7- (2- [1-tetrazolyl) acetamido-3- (2- [5- methyl-1,3,4-thiadiazolyl] -thiomethyl-3-desacetoxymethylcephalosporanoic acid) against strains of S. aureus, H. influenzae, K. pneumoniae and Bacteroides fragilis.

1616

DK 155740 BDK 155740 B

7373

•H• H

oisland

HH

73 | I CM CM in 00 s^hsh hh<ni^-O *> O **73 | In CM CM in 00 s ^ hsh hh <ni ^ -O *> O **

0 H-lH-HH ro ro '-O O0 H-lH-HH ro ro '-O O

Η I -P 1 H o <! Id >< m Η β ftΗ I -P 1 H o <! Id> <m Η β ft

-¾ g -H-¾ g -H

ø mos +) øo M CM ΰ 0 ·ρ) ·ρ) Ήø mos +) øo M CM ΰ 0 · ρ) · ρ) Ή

,0 T3 Η ·Η H, 0 T3 Η · Η H

•H ft) Η H• H ft) Η H

+j fe m 73 m w id m w c: > υ -ø o m n) in 0 0 -H x -H *****+ j fe m 73 m w id m w c:> υ -ø o m n) in 0 0 -H x -H *****

ft ft O ft H O m Hft ft O ft H O m H

C >i S Ή SC> i S Ή S

0 EH 0 -d ø 73 oø O.0 EH 0 -d ø 73 o O.

73 73 •H m -p)73 73 • H m -p)

X -ø XX-X

0 O0 O

•H -ri ·Η 73 73 73• H -ri · Η 73 73 73

1 M ft) I1 M ft) I

r—i fB O mr — i fB O m

*. > l(-| -¾ O O o O*. > l (- | -¾ O O o O

H 0 Hf! o o in mH 0 Hf! o o in m

l ftU lø c\l CMl ftU lo c \ l CM

<j >ιΗ <!Η λ PM Em g PM ti 73<j> ιΗ <! Η λ PM Em g PM ti 73

HH

]—j X] —J X

H 0 ft) GH 0 ft) G

M -r) -H 0 -r)M -r) -H 0 -r)

_i 73 73 m H_i 73 73 m H

øl ft) Hbeer ft) H

o Η ί8θ·Ηo Η ί8θ · Η

y - >HUØ OOOOy -> HUØ OOOO

S >-i 0 g -Η β o o o m ^ I £1, ftj) CM CM -ψ 0 >im S Η Λ ft) Em ø ø ø >1 01 · β β 0 -r) ft) Η H 0 pH γΗ H ^ H *H ø §S> -i 0 g -Η β ooom ^ I £ 1, ftj) CM CM -ψ 0> im S Η Λ ft) Em ø ø ø> 1 01 · β β 0 -r) ft) Η H 0 pH γΗ H ^ H * H ø §

Od -Pø cn in oo mOd -Pø cn in oo m

•p) ·ρ) β +1 H CM pH pH• p) · ρ) β + 1 H CM pH pH

β ft <J 01 0 g ft 0 0β ft <J 01 0 g ft 0 0

mm w ø <Dmm w ø <D

øø β n ø 01island β n ø 01

ø β -ri -Hø β -ri -H

&1 tn ft) 0 β pH& 1 tn ft) 0 β pH

β tt 3 q O m •H -p) ø pH S tT> β β m β ø Μ 44 ο m β 0 Μ ft) ft) g β -Η β m ·ρ| ·ρ) 0) Ο ft > > ·ρ) Ο 01 01 ^ β 0 β 0 ο 0 U pH Η 73β tt 3 q O m • H -p) ø pH S tT> β β m β ø Μ 44 ο m β 0 Μ ft) ft) g β -Η β m · ρ | · Ρ) 0) Ο ft>> · ρ) Ο 01 01 ^ β 0 β 0 ο 0 U pH Η 73

Jji 0 Ή pH ·Η ft) Η Λ Ο Ο Ο > ft Ή fti Ο Λ Ο 01 0 ft) ft s ii -ΡJji 0 Ή pH · Η ft) Η Λ Ο Ο Ο> ft Ή fti Ο Λ Ο 01 0 ft) ft s ii -Ρ

0 0 0 O0 0 0 Oh

p) -P 0 H ø 2 ra S K Pip) -P 0 H ø 2 ra S K Pi

d „ ,, DK 15574 0 Bd „,, DK 15574 0 B

ti tl Ί /ti tl Ί /

0 -rH0 -rH

•Η X• Η X

+> ο o rtj -H I LO i£> σι 4-· ft ,q rH cm m in m U S *· » * *· *» H jjio H y3rHCNO g o Μ I η <! m ø -H ft Φ rd H d ό Η -Η -Η -Η ϋ+> ο o rtj -H I LO i £> σι 4- · ft, q rH cm m in m U S * · »* * · *» H jjio H y3rHCNO g o Μ I η <! m ø -H ft Φ rd H d ό Η -Η -Η -Η ϋ

0) Ό Η X0) Ό Η X

ri d rH o fi d S -H -ri *rjri d rH o fi d S -H -ri * rj

Φ > Od HOd> Od H

.μ Φ ·Η I H CM 00 LO.µ Φ · Η I H CM 00 LO

rX ft d rH ·Η i I O- LOrX ft d rH · Η i I O- LO

Cd >i(D "> U » » *« rQ IH ft rH -ri ro O 1/1 ftCd> i (D "> U» »*« rQ IH ft rH -ri ro O 1/1 ft

H d CMH d CM

-p Φ ti ft rd ti-p Φ ti ft rd ti

Φ IΦ I

rd Hrd H

0(d IHH 0) ft (did C φ0 (d IHH 0) ft (did C φ

^ -H ft H^ -H ft H

Ό T3 <0 ri d ti X rø O Tf 0 > IH -riΌ T3 <0 ri d ti X rø O Tf 0> IH -ri

•H 0) X O O O O• H 0) X O O O O

rd fto O o o lo mrd fto O o o lo m

1 >i H -ri O] H1> i H -ri O] H

Η EH gΗ EH g

rHrh

iin

CC

ft ift i

~ 4H -H~ 4H -H

ΰ ^ ti tJ Ό Φ H -Η -H ft , x ti o r* o ti u £ -ri IB o dΰ ^ ti tJ Ό Φ H -Η -H ft, x ti o r * o ti u £ -ri IB o d

-ft rrt > IH ·Η φ O O O LO-ft rrt> IH · Η φ O O O LO

£ I 0) H d OIOOO] ^ H ftU Η Φ <N "tf£ I 0) H d OIOOO] ^ H ftU Η Φ <N „tf

* l>i H *rl 1—I* l> i H * rl 1 — I

rH EH g ϋ fd ΦrH EH g ϋ fd Φ

HH

>10 in d d (d -ri d rH rH G) rH i—I t—I g •ri -Η Id g O li! "Sf IT)> 10 in d d (d -ri d rH rH G) rH i — I t — I g • ri -Η Id g O li! "Sf IT)

ϋϋ 4-1¾ CMCNCNrHϋϋ 4-1¾ CMCNCNrH

•H -ri d +J• H -ri d + J

ti ti <1 to φ φ Φ ft ft t n id 0) d n id tnti ti <1 to φ φ Φ ft ft t n id 0) d n id tn

m m Φ d ή -Hm m Φ d ή -H

rd td d G) ti Hrd td d G) ti H

ti ti O -ri tn tn rd H g tn d s i« 3 td •η -π φ tn d Φ d d d g ti -η d m Μ X in o ft d d -H o tn in Ή ·Η d O ti td Φ i> > (ti U Η Η Ό bi O ·Η Η ·Ηti ti O -ri tn tn rd H g tn dsi «3 td • η -π φ tn d Φ dddg ti -η dm Μ X in o ft dd -H o tn in Ή · Η d O ti td Φ i>> (ti U Η Η Ό bi O · Η Η · Η

d Η Λ Φ Od Η Λ Φ O

O >i ft -ri d o ,d o in φ d ft g Λ -μ M id Φ Φ Ό Η H-i rd Η rdO> i ft -ri d o, d o in φ d ft g Λ -µ M id Φ Φ Ό Η H-i rd Η rd

g co W id fQg co W id fQ

18 DK 1 55740 B18 DK 1 55740 B

i a & I o o Π Η ·μ ·Η u “+> td g H id I in oo in co ιμ I β H nj cn r> .. <l Ή * ' - - J'i a & i o o Π Η · μ · Η u “+> td g H id I in oo in co ιμ I β H nj cn r> .. <l Ή * '- - J'

W Ai Λ H co O >n OW Ai Λ H co O> n O

Φ g S IS g S I

H ^ tn O < Η τμι O Λ! Pi Φ raH ^ tn O <Η τμι O Λ! Pi Φ ra

H .. Αί *HH .. Αί * H

μ 1¾ -H Sµ 1¾ -H S

0) SHfl -ri «Ρ S «Η -Η «Η A4 fe ·Η x id S Θ O -ri Λ cj -ri -ri ϋ •μ fi1 po ri m m m +j så na cn h A O) *· * ·> td Λ vo O o en μ m så id 0) o0) SHfl -ri «Ρ S« Η -Η «Η A4 fe · Η x id S Θ O -ri Λ cj -ri -ri ϋ • µ fi1 po ri mmm + j so na cn h AO) * · * · > td Λ vo O o a µ m so id 0) o

Td ‘+i td i »id rfj tdTd '+ i td i »id rfj td

Al -ri Al -Η td X! — μ μ o td S o-n H > IW td Φ X! Φ I Pi o o o o 0 ftU H Φ o o in mAl -ri Al -Η td X! - µ µ o td S o-n H> IW td Φ X! Φ I Pi o o o o 0 ftU H Φ o o in m

Η XH Ή N HΗ XH Ή N H

td Idtd Id

I—II-I

fc.fc.

iHI h

I II I

ΉΉ

Ai PiAi Pi

— <D- <D.

m Λ Φ w td id A Pi ^ -μ id (1) H X ·ΗυΗ , O td fd mm Λ Φ w td id A Pi ^ -µ id (1) H X · ΗυΗ, O td fd m

^ -Η Pi μ m CM^ -Η Pi µ m CM

® Ό fli O Pi - -Q I j> ιμ ·μ ni id o o fd <D H H O in E"1 » AiU H Sf® Ό fli O Pi - -Q I j> ιμ · µ ni id o o fd <D H H O in E "1» AiU H Sf

pH Η ·ιΗ ApH Η · ιΗ A

i °i °

£.S£ .S

CO H C r—) id -π μ HD 0)CO H C r—) id -π μ HD 0)

ιΗ ·Η iH SιΗ · Η iH S

•H Pi Id g O 0) 4J nj οιηνοιη• H Pi Id g O 0) 4J nj οιηνοιη

μ Λ Pi+J mnJHHµ Λ Pi + J mnJHH

Pi μ < co 0) idPi µ <co 0) id

Al O Φ co id Φ m m cd n id co td id Φ β ·μ ·μAl O Φ co id Φ m m cd n id co td id Φ β · µ · µ

μ CD Pi Η tn tn cd ;d O -Hµ CD Pi Η tn tn cd; d O -H

Pi ti id h g t n η ή ιμ d idPi ti id h g t n η ή ιμ d id

Pi ti Φ co så Φ μ MM G ti -H ti «μ μ μ to q Λ Ο·· Η ·Η ·Η U CO C0 > > ρ! ο d id ΦPi ti Φ co so Φ µ MM G ti -H ti «µ µ µ to q Λ Ο ·· Η · Η · Η U CO C0>> ρ! ο d id Φ

Id U Η Η td tn Ο ri Η ·Η μ Η Μ Φ Ο Ο >ι Αι ·Η μ Ο Μ Ο Μ φId U Η Η td tn Ο ri Η Η μ Η Ο Φ Ο> ι Αι · Η μ Ο Μ Ο φ

μ ft β Λ 4Jµ ft β Λ 4J

Μ id Φ Φ ϋ •Η 4J (d r-Η Id S co m w mΜ id Φ Φ ϋ • Η 4J (d r-Η Id S co m w m

S 19 DK 155740BS 19 DK 155740B

Ti OTi O

H HH H

X! Ti o inX! Ten o in

0 1 CM CM0 1 CM CM

ri r—i * *· 1¾ - m o m <nri r — i * * · 1¾ - m o m <n

[IH cm CM[1H cm CM

O H g i N *· 0 <1 (g Η ·Η ft lu ih I -P CD (ti CD <1 gO H g i N * · 0 <1 (g Η · Η ft lu ih I -P CD (ti CD <1 g

Η o Λ C SΗ o Λ C S

Η Η -HHΗ Η -HH

Jl ^ ίηΛ h Η s o O g O (N in inJl ^ ίηΛ h Η s o O g O {N in

p g IH ON CM H CM CMp g IH ON CM H CM CM

0)83 ·>·*·· +JQ1O.H η o m 10 id0) 83 ·> · * ·· + JQ1O.H η o m 10 id

Λ! ff § Η Η <DΛ! ff § Η Η <D

(ti H ^1 O(ti H ^ 1 0

Λ IΛ I

•Η H• Η H

•p *·• p * ·

d HHd HH

(ti (ti I(ten (ten I)

<1 S -H ft 0 t5<1 S -H ft 0 t5

Ti P PTi P P

ft) o Ti otti > η h <d ft Φ xi d o o o o ftU O d) o o in inft) o Ti otti> η h <d ft Φ xi d o o o o ftU O d) o o in

>l Η Η H CM CM> l Η Η H CM CM

Ti Eh g Ti niTi Eh g Ti ni

•H• H

gg

HH

Ti _ 1 dTi _ 1 d

Η HΗ H

^ H^ H

H OH O

I NI N

<| H (ti<| H (ti

ft (ti IHft (ten IH

Q) >10Q)> 10

H d jjj OH d yyy O

gO > m CD 00 S -H CD Cl Γ'gO> m CD 00 S -H CD Cl Γ '

Ti ft O <DTen ft O <D

Em i >iHH OmooEm i> iHH Omoo

H Eh g (ti cm o OH Eh g (ten cm o 0

«. H CM'. H CM

H IH I

CDCD

PP

>1 O> 1 O

CO CDCO CD

Cl · H g (ti Cl (tig HH -Pro o in ro mCl · H g (ti Cl (tig HH -Pro o in ro m

Η H c! -P CM CM HΗ H c! -P CM CM H

H O <1 »H O <1 »

ϋ N H (ti Cl Hϋ N H (ti Cl H

CD Φ CDCD Φ CD

ft O 0) (ti CDft O 0) (ti CD

0 N (ti CO0 N (ti CO

HH <D fl Η HHH <D fl Η H

(ti (ti C| CD Cl H(ti (ti C | CD Cl H)

3 0 O HO 0 H

tyi O1 (ti H g tn C! Cl H 3 (ti Η H CD CO d CD ptyi O1 (ti H g tn C! Cl H 3 {ti Η H CD CO d CD p

d d g d h d Hd d g d h d H

XX Vi O ftXX Vi O ft

p P H 0 CO COp P H 0 CO CO

H H d O d (ti CDH H d O d (ti CD

> > (ti O Η H Ti>> (ti O Η H Ti

Iji O Η Η HIji O Η Η H

p Η Λ CD Oon CD O

O >1 ft H pO> 1 ft H p

O Λ H CO CDO Λ H CO CD

p ft S Λ -Pp ft S Λ -P

S (ti δ CD OS (ti δ CD O

Η -p (ti H (ti g W S K fflΗ -p {ti H (ti g W S K ffl

20 DK 155740BDK 155740B

Yderligere biologiske afprøvningsdata for fem repræsentative forbindelser A til F som defineret nedenfor er anført i nedenstående Forsøg A til E, hvor Forsøg A, B og E godtgør, at forbindelserne B, C, D og F hydrolyseres til penicillansyre-1,1-dioxid efter administrering til mus, medens Forsøg C og D godtgør, at forbindelserne B og E er effektive til forøgelse af den antibakte-rielle effektivitet af ampicillin.Additional biological test data for five representative compounds A to F as defined below are set forth in Experiments A to E below, where Experiments A, B and E demonstrate that compounds B, C, D and F are hydrolyzed to penicillanic acid 1,1-dioxide after administration to mice, while Experiments C and D demonstrate that compounds B and E are effective in increasing the antibacterial efficacy of ampicillin.

STRUKTURERSTRUCTURES

H CHH CH

J LJ 3J LJ 3

</ ///COOR</ /// COOR

Forbindelse A: R er HCompound A: R is H

Forbindelse B: R er CH2-0-C0-C(CH3)3Compound B: R is CH 2 -O-CO-C (CH 3) 3

Forbindelse C: R er ^ 0Compound C: R is 100

Forbindelse D: R er CH(CH3)-0-C0-0-CH2CH3Compound D: R is CH (CH 3) -O-CO-O-CH 2 CH 3

Forbindelse E: R er C(CH3)2-0-C0-CH3Compound E: R is C (CH3) 2-O-CO-CH3

Forbindelse F: R er CH2-0-C0-0-CH3Compound F: R is CH 2 -O-CO-0-CH 3

RESULTATERRESULTS

Forsøg AExperiment A

Forbindelserne A (som dens natriumsalt), B og C administreredes oralt til mus i en enkelt dosis på 20 mg/kg. Blodprøver blev taget på musene med mellemrum, idet man begyndte ved 15 minutter efter dosering. Blodprøverne blev bio-afprøvet for anti-bakteriel virkning under anvendelse af mikroorganismen Comamonas terrigena. Resultaterne er anført i tabel VI. I tabel VI er den antibakterielle virkning i blodprøverne udtrykt som koncentrationen af forbindelsen A i yg/ml.Compounds A (as its sodium salt), B and C were orally administered to mice at a single dose of 20 mg / kg. Blood samples were taken on the mice at intervals starting at 15 minutes after dosing. The blood samples were bio-tested for anti-bacterial action using the microorganism Comamonas terrigena. The results are listed in Table VI. In Table VI, the antibacterial effect in the blood samples is expressed as the concentration of compound A in µg / ml.

DK 155740BDK 155740B

2121

TABEL VITABLE VI

Prøvetagningstid Antibakteriel virkning i blod (min) (som pg/ml af forbindelse A)Sampling time Antibacterial action in blood (min) (as pg / ml of compound A)

Forbindelse A Forbindelse B Forbindelse CCompound A Compound B Compound C

15 1,52 + 0,62 2,87 + 0,83 3,16 + 1,03 30 2,48 + 0,64 3,06 + 0,24 2,48 + 1,28 60 1,80+0,46 1,78+0,33 0,90+0,90 .90 0,87 + 0,53 0 0,59 + 0,49 a * 120 00 01.52 + 0.62 2.87 + 0.83 3.16 + 1.03 2.48 + 0.64 3.06 + 0.24 2.48 + 1.28 60 1.80 + 0 , 46 1.78 + 0.33 0.90 + 0.90 .90 0.87 + 0.53 0 0.59 + 0.49 a * 120 00 0

Forsøg BExperiment B

Forbindelserne A og D administreredes oralt til mus i en enkelt dosis på 20 mg/kg og 50 mg/kg. Blodprøver blev taget på musene med mellemrum, idet man begyndte ved 15 minutter efter dosering. Blodprøverne blev bio-afprøvet for antibakteriel virkning under anvendelse af mikroorganismen Comamonas terrigena. Resultaterne er anført i tabel VII. I tabel VII er den antibakterielle virkning i blodprøverne udtrykt som koncentrationen af forbindelse A i vg/mi.Compounds A and D were administered orally to mice at a single dose of 20 mg / kg and 50 mg / kg. Blood samples were taken on the mice at intervals starting at 15 minutes after dosing. The blood samples were bio-tested for antibacterial activity using the microorganism Comamonas terrigena. The results are listed in Table VII. In Table VII, the antibacterial effect in the blood samples is expressed as the concentration of compound A in vg / ml.

TABEL VIITABLE VII

Prøvetagnings- Antibakteriel virkning i blod tid (som yg/ml af forbindelse A) (min)-----—-- ^_20 mg/kg__50 mg/kg_Sampling Antibacterial activity in blood time (as µg / ml of compound A) (min) -----—-- _ 20 mg / kg

Forbindelse A Forbindelse D Forbindelse A Forbindelse DCompound A Compound D Compound A Compound D

15 1,97+0,88 4,92+0,38 6,03+1,24 10,9+0,87 ; 30 2,40+1,00 4,16+0,22 7,02+1,26 7,90+1,00 45 2,54+1,06 2,56+0,66 6,90+1,38 5,68+0,95 60 2,37 + 0,97 0 5,72 + 1,67 4,58 + 0,68 75 2,03 + 0,91 0 5,66 + 2,14 3,77 + 0,47 90 1,84 + 0,75 0 3,20 + 1,76 2,68 + 0,761.97 + 0.88 4.92 + 0.38 6.03 + 1.24 10.9 + 0.87; 2.40 + 1.00 4.16 + 0.22 7.02 + 1.26 7.90 + 1.00 45 2.54 + 1.06 2.56 + 0.66 6.90 + 1, 38 5.68 + 0.95 60 2.37 + 0.97 0 5.72 + 1.67 4.58 + 0.68 75 2.03 + 0.91 0 5.66 + 2.14 3.77 + 0.47 90 1.84 + 0.75 0 3.20 + 1.76 2.68 + 0.76

22 DK 155740B22 DK 155740B

Forsøg CExperiment C

Den in-vivo-antibakterielle virkning af ampicillin, forbindelse B og en 1:1-blanding af ampicillin og forbindelse B måltes mod tre stammer af ampicillin-resistent Staphylococcus aureus hos mus. Akutte eksperimentelle infektioner fremkaldtes hos mus ved intraperitoneal indpodning på musene af en standardiseret kultur af Staphylococcus aureus suspenderet i 5% mucin fra svinemave. Infektionens alvorlighed standardiseredes således, at musene modtog én til ti gange LD^Q-dosen for organismen (LD10Q: den minimale mængde podestof med organismen, som kræves til konsekvent at dræbe 100% af de inficerede, ikke-behandlede kontrolmus). Prøveforbindelsen administreredes subcutant (sc) eller oralt (po) ved hjælp af et multipelt doseringssystem, ved hvilket den første dosis blev givet 0,5 timer efter indpodning og blev gentaget 4 og 24 timer senere. Antallet af overlevende mus bestemtes derpå 96 timer efter indpodning. Resultaterne er anført i tabellerne VIII, IX og X. Virkningerne er angivet som PDj-g-værdier (PD^: den mængde medikament, som beskytter 50% af musene).The in vivo antibacterial effect of ampicillin, compound B and a 1: 1 mixture of ampicillin and compound B was measured against three strains of ampicillin-resistant Staphylococcus aureus in mice. Acute experimental infections were induced in mice by intraperitoneal inoculation on the mice by a standard culture of Staphylococcus aureus suspended in 5% pig stomach mucin. The severity of the infection was standardized such that the mice received one to ten times the LD 1Q dose of the organism (LD10Q: the minimal amount of graft with the organism required to consistently kill 100% of the infected, untreated control mice). The test compound was administered subcutaneously (sc) or orally (po) by a multiple dosing system at which the first dose was given 0.5 hours after inoculation and repeated 4 and 24 hours later. The number of surviving mice was then determined 96 hours after inoculation. The results are listed in Tables VIII, IX and X. The effects are given as PDj-g values (PD ^: the amount of drug that protects 50% of the mice).

TABEL· VIIITABLE · VIII

PD50 g) modPD50 g) mod

Forbindelse Staphylococcus aureus 01A182 PO sc ampicillin >100 >100Compound Staphylococcus aureus 01A182 PO sc ampicillin> 100> 100

Forbindelse B >100 >100 ampicillin + (8,45±1,9) + (8,14+0,9) +Compound B> 100> 100 ampicillin + (8.45 ± 1.9) + (8.14 + 0.9) +

Forbindelse B (8,45+1,9) (8,14i0,9) ^ — .......... I - — -- jjCompound B (8.45 + 1.9) (8.14.0.9) ^ - .......... I - - - jj

23 DK 155740 B23 DK 155740 B

TABEL IXTABLE IX

««

PD50 (my/kcj) mod IPD50 (my / kcj) against I

Forbindelse Staphylococcus, aureus 01Λ167 po sc ampicillin >100 >100Compound Staphylococcus, aureus 01Λ167 po sc ampicillin> 100> 100

Forbindelse B >100 >100 ampicillin + (21,3+3,0) +, (16,3+1,9) +Compound B> 100> 100 ampicillin + (21.3 + 3.0) +, (16.3 + 1.9) +

Forbindelse B j (21,3±3,0) (16,3±1,9)Compound B j (21.3 ± 3.0) (16.3 ± 1.9)

.··’.· .:*.··..... TABEL X. ·· '. ·.: *. ·· ..... TABLE X

pd50 tøsAg) mod Ipd50 throttleAg) against I

Forbindelse Staphylococcus aureus 01A178 po sc ampicillin >100 >100Compound Staphylococcus aureus 01A178 po sc ampicillin> 100> 100

Forbindelse B >100 >100 ampicillin + (30,0±9,9) + (13,2±2,3) +Compound B> 100> 100 ampicillin + (30.0 ± 9.9) + (13.2 ± 2.3) +

Forbindelse B (30,0±9r9) (13,2±2?3) 24Compound B (30.0 ± 9r9) (13.2 ± 2? 3) 24

DK 15S740BDK 15S740B

Forsøg DExperiment D

PD5 o--værdierne for ampicillin, forbindelserne A, B og E og 1:1-blandinger af ampicillin med hver af forbindelserne A, B og E, mod Staphylococcus aureus 01A400, måltes på mus. PD^Q-vær-dierne måltes under anvendelse af den procedure, der er beskrevet under Forsøg C. Alle doserne af ampicillin, forbindelserne A, B og E, og blandingerne deraf, blev indgivet ad oral vej. Resultaterne er anført i tabel XI.The PD5 o values of ampicillin, compounds A, B and E and 1: 1 mixtures of ampicillin with each of compounds A, B and E, against Staphylococcus aureus 01A400, were measured in mice. The PD ^ values were measured using the procedure described in Experiment C. All doses of ampicillin, compounds A, B and E, and the mixtures thereof, were administered by oral route. The results are listed in Table XI.

TABEL XITABLE XI

Forbindelse ^50 (mg/kg) ampicillin >100Compound 50 (mg / kg) ampicillin> 100

Forbindelse A >100Compound A> 100

Forbindelse B >100Compound B> 100

Forbindelse E >100 ampicillin+Compound E> 100 ampicillin +

Forbindelse A (30,1+2,3) + (30,1±2,3) ampicillin+Compound A (30.1 ± 2.3) + (30.1 ± 2.3) ampicillin +

Forbindelse B (22,0±1,.7) + .(22,0±1,7) ampicillin+Compound B (22.0 ± 1.7) +. (22.0 ± 1.7) ampicillin +

Forbindelse E (54,8±5,1) + (54,8±5,1)Compound E (54.8 ± 5.1) + (54.8 ± 5.1)

Forsøg ETry

Forbindelse F administreredes oralt til mus i en enkelt dosis på 50 og 20 mg/kg. Blodprøver blev taget på musene med mellemrum, idet man begyndte ved 15 minutter efter dosering. Man lod blodet koagulere, og serumet opsamledes. Serumprøverne afprøvedes for antibakteriel virkning under anvendelse af mikroorganismen Comamonas terrigena. Resultaterne er anført i tabel XII, hvori de antibakterielle virkninger er udtrykt som koncentrationen af forbindelse A i yg/ml.Compound F was orally administered to mice at a single dose of 50 and 20 mg / kg. Blood samples were taken on the mice at intervals starting at 15 minutes after dosing. The blood was allowed to clot and the serum was collected. The serum samples were tested for antibacterial activity using the Comamonas terrigena microorganism. The results are given in Table XII, in which the antibacterial effects are expressed as the concentration of compound A in µg / ml.

25 DK 155740 BDK 155740 B

TABEL XIITABLE XII

Prøvetagningstid Antibakteriel virkning i blod (min) (som ng/ml af forbindelse A) 50 mg/kg 20 mg/kg 15 21;7 ±3,28 16,0 ±2,37 30 16,3 ±2,38 9,34+1,21 45 12,1 ±1,53 5,80±1,09 60 8,78±0,81 3,58+0,81 90 5,34±0,64 1,97±0,63 120 3,13±0,47 0,87+0,33 180 1,94+0,55 0Sampling time Antibacterial action in blood (min) (as ng / ml of compound A) 50 mg / kg 20 mg / kg 15 21; 7 ± 3.28 16.0 ± 2.37 30 16.3 ± 2.38 9, 34 + 1.21 45 12.1 ± 1.53 5.80 ± 1.09 60 8.78 ± 0.81 3.58 + 0.81 90 5.34 ± 0.64 1.97 ± 0.63 120 3.13 ± 0.47 0.87 + 0.33 180 1.94 + 0.55 0

26 DK 155740 B26 DK 155740 B

De ved fremgangsmåden ifølge opfindelsen fremstillede forbindelser med formlen I forøger den antibakterielle effektivitet af 3-lactam-antibiotika in vivo. Det vil sige, de formindsker den mængde af antibiotikumet, der er nødvendig til at beskytte mus mod et ellers dødeligt podestof af visse 3-lactamaseproducerende bakterier.The compounds of the formula I according to the invention increase the antibacterial efficacy of 3-lactam antibiotics in vivo. That is, they reduce the amount of antibiotic needed to protect mice from an otherwise deadly graft of certain 3-lactamase-producing bacteria.

Evnen hos de ved fremgangsmåden ifølge opfindelsen fremstillede forbindelser med formlen I til at forøge effektiviteten af et β-lactam-antibiotikum mod 3-lactamaseproducerende bakterier gør dem værdifulde til administrering sammen med 3-lactam-antibiotika ved behandling af bakterielle infektioner hos pattedyr, specielt mennesker. Til behandling af en bakteriel infektion kan den nævnte forbindelse med formlen I blandes sammen med 3-lactam-antibiotiket og de to forbindelser derigennem administreres samtidigt. Alternativt kan den nævnte forbindelse med formlen I administreres som et særskilt middel under et behandlingsforløb med et β-lactam-antibiotikum. I nogle tilfælde vil det være fordelagtigt på forhånd at indgive individet forbindelsen med formlen I, før behandlingen med et 3-lactam-antibiotikum påbegyndes.The ability of the compounds of formula I according to the invention to increase the effectiveness of a β-lactam antibiotic against 3-lactamase-producing bacteria makes them valuable for administration with 3-lactam antibiotics in the treatment of bacterial infections in mammals, especially humans. . For the treatment of a bacterial infection, said compound of formula I can be mixed with the 3-lactam antibiotic and the two compounds thereafter administered simultaneously. Alternatively, said compound of formula I may be administered as a separate agent during a course of treatment with a β-lactam antibiotic. In some cases, it will be advantageous to administer the subject compound of formula I beforehand before starting treatment with a 3-lactam antibiotic.

Når man anvender penicillansyre-l,l-dioxid eller en in vivo let hydrolyserbar ester heraf til forøgelse af effektiviteten af et 3-lactam-antibiotikum, administreres forbindelsen fortrinsvis i blanding med sædvanlige farmaceutiske bærere eller fortyndings-midler. De formuleringsmetoder, der er omtalt tidligere til anvendelse til penicillansyre-l,l-dioxid eller en in vivo let hydrolyser-bar ester heraf som et særskilt antibakterielt middel, kan anvendes, når man påtænker administrering sammen med et andet 3-lactam-antibiotikum. Et farmaceutisk præparat omfattende en farmaceutisk acceptabel bærer, et 3-lactam-antibiotikum og penicillansyre-1,1-dioxid eller en let hydrolyser ester heraf vil normalt indeholde fra ca. 5 til ca.80 vægt% af den farmaceutisk acceptable barrer.When using penicillanic acid 1,1-dioxide or an in vivo readily hydrolyzable ester thereof to enhance the effectiveness of a 3-lactam antibiotic, the compound is preferably administered in admixture with conventional pharmaceutical carriers or diluents. The formulation methods mentioned previously for use with penicillanic acid 1, 1-dioxide or an in vivo light hydrolyzable ester thereof as a separate antibacterial agent may be used when contemplating administration with another 3-lactam antibiotic. A pharmaceutical composition comprising a pharmaceutically acceptable carrier, a 3-lactam antibiotic and penicillanic acid 1,1-dioxide or a lightly hydrolyzed ester thereof will normally contain from 5 to about 80% by weight of the pharmaceutically acceptable bar.

Når man anvender penicillansyre-1,1-dioxid eller en in vivo let hydrolyserbar ester heraf i kombination med et andet 3-lactam-antibiotikum, kan sulfonen administreres oralt eller parenteralt, dvs. intramuskulært, subkutant eller intraperitonealt.When penicillanic acid 1,1-dioxide or an in vivo readily hydrolyzable ester thereof is used in combination with another 3-lactam antibiotic, the sulfone may be administered orally or parenterally, i.e. intramuscularly, subcutaneously or intraperitoneally.

Typiske 3-lactam-antibiotika, sammen med hvilke penicillansyre-1, 1-dioxid og dens in vivo let hydrolyserbare estere kan administreres er:Typical 3-lactam antibiotics together with which penicillanic acid-1,1-dioxide and its in vivo easily hydrolyzable esters can be administered are:

27 DK 155740 B27 DK 155740 B

6-(2-phenylacetamido)penicillansyre, 6-(2-phenoxyacetamido)penicillansyre, 6-(2-pheny lpropipnamido) penicillansyre./ 6-(D-2-amxno-2-phenylacetamxdo)penxcxllansyre, 6-(D-2-amino-2-[4-hydroxyphenyl]acetamido)penicillansyre, 6-(D-2-araino-2-[1,4-cyclohexadienyl ] acetamido)penicillansyre, 6-(1-aminocyclohexancarboxamido)penicillansyre, 6-(2-carboxy-2-phenylacetamido)penicillansyre, 6-(2-carboxy-2-[3-thienyl]acetamido)penicillansyre, 6- (D-2- [4-ethylpiperazin-2,3-dion-l-carboxamido] -2-phenylacetamido) -penicillansyre, 6-(D-2-[4-hydroxy-l,5-naphthyridin-3-carboxamido]-2-phenylacetamido)-penicillansyre, 6-(D-2-sulfo-2-phenylacetamido)penicillansyre, 6-(D-2-sulfoamino-2-phenylac etamido)penicillansyre, 6- (D-2- [imidazolidin-2-on-l-carboxamido] -2-phenyKlacetamido) penicillansyre, 6- (D- [3-methylsulfonylimidazolidin-2-on-l-carboxamido] -2-phenylacetamido) penicillansyre, 6-([hexahydro-lH-azepin-l-yl]methylenamino)penicillansyre, acetoxymethyl-6-(2-phenylacetamido)penicillanat, acetoxyme thyl-6-(D-2-amino-2-pheny lacetamido )penici'llanat, acetoxymethyl-6-(D-2-amino-2-[4-hydroxyphenyl)acetamido)penicillanat, pivaloyloxymethy1-6-(2-phenylacetamido)penicillanat, pivaloyloxymethyl-6-(D-2-amino-2-phenylacetamido)penicillanat, pivaloyloxymethyl-6-(D-2-amino-2-[4-hydroxyphenyl]acetamido)peήχο il lanat, 1-(ethoxycarhonyloxy)ethy1-6-(2-phenylacetamido)penicillanat, 1-(ethoxycarbonyloxy) ethyl-6-(D-2-amino-2-phenylacetamido)penicilla-nat, 1- (ethoxycarbonyloxy) ethyl-6- (D-2-amino-2-[4-hydroxyphenyl] acetamido) -penicillanat, 3-phthalidyl-6-(2-phenylacetamido)penicillanat, 3-phthalidyl-6-(D-2-amino-2-phenylacetamido)penicillanat, 3-phthalidyl-6-(D-2-amino-2-[4-hydroxyphenyl]acetamido)penicillanat, 6-(2-phenoxycarbonyl-2-phenylacetamido)penicillansyre, 6-(2-tolyloxycarbonyl-2-phenylacetamido)penicillansyre, 6—(2—[5-indanyloxycarbony1]-2-phenylacetamido)pencillansyre, 6-(2-phenoxycarbonyl-2-[3-thienyl] acetamido)penicillansyre, 6-(2-tolyloxycarbony1-2-[3-thienyl]acetamido)penicillansyre,6- (2-phenylacetamido) penicillanic acid, 6- (2-phenoxyacetamido) penicillanic acid, 6- (2-phenylpropipnamido) penicillanic acid. 6- (D-2-Amino-2-phenylacetamoxide) penicillanic acid, 6- (D-2 -amino-2- [4-hydroxyphenyl] acetamido) penicillanic acid, 6- (D-2-amino-2- [1,4-cyclohexadienyl] acetamido) penicillanic acid, 6- (1-aminocyclohexanecarboxamido) penicillanic acid, 6- (2- carboxy-2-phenylacetamido) penicillanic acid, 6- (2-carboxy-2- [3-thienyl] acetamido) penicillanic acid, 6- (D-2- [4-ethylpiperazine-2,3-dione-1-carboxamido] -2 -phenylacetamido) -penicillanic acid, 6- (D-2- [4-hydroxy-1,5-naphthyridine-3-carboxamido] -2-phenylacetamido) -penicillanic acid, 6- (D-2-sulfo-2-phenylacetamido) penicillanic acid , 6- (D-2-sulfoamino-2-phenylac etamido) penicillanic acid, 6- (D-2- [imidazolidin-2-one-1-carboxamido] -2-phenylcetacetamido) penicillanic acid, 6- (D- [3- methylsulfonylimidazolidin-2-one-1-carboxamido] -2-phenylacetamido) penicillanic acid, 6 - ([hexahydro-1H-azepin-1-yl] methyleneamino) penicillanic acid, acetoxymethyl-6- (2-phenylacetamido) penicillanate, acetoxymethane hyl 6- (D-2-amino-2-phenylacetamido) penicillanate, acetoxymethyl 6- (D-2-amino-2- [4-hydroxyphenyl) acetamido) penicillanate, pivaloyloxymethyl 1-6- (2-phenylacetamido) ) penicillanate, pivaloyloxymethyl 6- (D-2-amino-2-phenylacetamido) penicillanate, pivaloyloxymethyl 6- (D-2-amino-2- [4-hydroxyphenyl] acetamido) pyranylate, 1- (ethoxycarhonyloxy) ethyl -6- (2-phenylacetamido) penicillanate, 1- (ethoxycarbonyloxy) ethyl-6- (D-2-amino-2-phenylacetamido) penicillanate, 1- (ethoxycarbonyloxy) ethyl-6- (D-2-amino) 2- [4-hydroxyphenyl] acetamido) -penicillanate, 3-phthalidyl-6- (2-phenylacetamido) penicillanate, 3-phthalidyl-6- (D-2-amino-2-phenylacetamido) penicillanate, 3-phthalidyl-6 (D-2-amino-2- [4-hydroxyphenyl] acetamido) penicillanate, 6- (2-phenoxycarbonyl-2-phenylacetamido) penicillanic acid, 6- (2-tolyloxycarbonyl-2-phenylacetamido) penicillanic acid, 6- (2- 5-indanyloxycarbonyl] -2-phenylacetamido) pencillanic acid, 6- (2-phenoxycarbonyl-2- [3-thienyl] acetamido) penicillanic acid, 6- (2-tholyloxycarbony1-2- [3-thienyl] acetamido) penicill ansyre,

28 DK 155740B28 DK 155740B

6-(2-[5-indanyloxycarbonyl] -2- [3-thienyl] acetamido )penicillansyre,.6- (2- [5-indanyloxycarbonyl] -2- [3-thienyl] acetamido) penicillanic acid.

6- (2,2-d imethyl-5-oxo-4-phenyl-l-imidazolidiny1)penicillansyre, 7- (2-[2-thienyl]acetamido)c ephalospor ansyre, 7-(2-[1-tetrazolyl]acetamido-3-(2-[5-methyl-l,3,4-thiadiazolyl]-thiomethyl)-3-d esacetoxymethylcephalospor ansyre, 7- (D-2-amino-2-phenylacetamido)desacetoxycephalosporansyre, 7-a-methoxy-7 - (2- [2-thienyl] acetamido) -3-carbamoyloxymethyl-3-desacetoxymethylcephalospor ansyre, 7-(2-cyanoacetamido)cephalosporansyre, 7-(D-2-hydroxy-2-phenylacetamido)-3-(5-[1-methyltetrazolyl)thiomethyl )-3-desacetoxymethylcephalosporansyre, 7-(2-[4-pyridylthio]acetamido)cephalosporansyre, 7-(D-2-amino-2-[1,4-cyclohexadienyl)acetamido)cephalosporansyre, 7-(D-2-amino-2-phenylacetamido)cephalosporansyre, og farmaceutisk acceptable salte heraf.6- (2,2-dimethyl-5-oxo-4-phenyl-1-imidazolidinyl) penicillanic acid, 7- (2- [2-thienyl] acetamido) cephalosporic acid, 7- (2- [1-tetrazolyl] acetamido-3- (2- [5-methyl-1,3,4-thiadiazolyl] thiomethyl) -3-dacetoxymethylcephalosporic acid, 7- (D-2-amino-2-phenylacetamido) desacetoxycephalosporanoic acid, 7-a-methoxy -7 - (2- [2-thienyl] acetamido) -3-carbamoyloxymethyl-3-desacetoxymethylcephalosporic acid, 7- (2-cyanoacetamido) cephalosporanoic acid, 7- (D-2-hydroxy-2-phenylacetamido) -3- (5) - [(1-methyltetrazolyl) thiomethyl) -3-desacetoxymethylcephalosporanoic acid, 7- (2- [4-pyridylthio] acetamido) cephalosporanoic acid, 7- (D-2-amino-2- [1,4-cyclohexadienyl) acetamido) cephalosporanoic acid, 7 - (D-2-amino-2-phenylacetamido) cephalosporanoic acid, and pharmaceutically acceptable salts thereof.

Fremgangsmåden ifølge opfindelsen belyses nærmere ved hjælp af de efterfølgende eksempler. IR-spektrerne måltes på KBr-skiver eller Nujol-emulsioner og de diagnostiske absorptionsbånd er angivet som bølgetal (cm ^) . NMR-spektrerne måltes ved 60 MHz for opløsninger i deuterochloroform (CDCl^), perdeuterodimethylsulfoxid (DMSO-dg) eller deuteriumoxid (D20), og spidsværdierne er udtrykt i dele pr. million (ppm) i forhold til tetramethylsilan eller na-trium-2,2-diraethyl-2-silapentan-5-sulfonat. De følgende forkortelser for spidsformer anvendes: s = singlet, d = dublet, t = triplet, q = kvartet, m = multiplet.The process according to the invention is further elucidated by the following examples. The IR spectra were measured on KBr slices or Nujol emulsions and the diagnostic absorption bands are indicated as wave numbers (cm 2). The NMR spectra were measured at 60 MHz for solutions in deuterochloroform (CDCl ^), perdeuterodimethylsulfoxide (DMSO-dg) or deuterium oxide (D20), and the peak values are expressed in parts per minute. million (ppm) relative to tetramethylsilane or sodium 2,2-diraethyl-2-silapentane-5-sulfonate. The following abbreviations for tip forms are used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.

Eksempel 1Example 1

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

Til en opløsning af 6,51 g (41 mmol) kaliumpermanganat i 130 ml vand og 4,95 ml iseddikesyre, afkølet til ca. 5°C, sattes en kold (ca. 5°C) opløsning af 4,58 g (21 mmol) af natriumsaltet af penicillansyre i 50 ml vand. Blandingen omrørtes ved ca. 5°C i 20 minutter, hvorefter kølebadet fjernedes. Der tilsattes fast natriumhydrogen-sulfit, indtil farven af kaliumpermanganatet var forsvundet, og derefter filtreredes blandingen. Til det vandige filtrat sattes halvdelen af dets rumfang af mættet natriumchloridopløsning, og derefter indstilledes pH-værdien på 1,7. Den sure opløsning ekstraheredes med ethylacetat. Ekstrakterne tørredes og inddampedes derefter i vakuum til opnåelse af 3,47 g af det i overskriften anførte produkt. Den vandige moderlud mættedes med natriumchlorid og ekstraheredes yder- 29To a solution of 6.51 g (41 mmol) of potassium permanganate in 130 ml of water and 4.95 ml of glacial acetic acid, cooled to ca. 5 ° C, a cold (about 5 ° C) solution of 4.58 g (21 mmol) of the sodium salt of penicillanic acid in 50 ml of water was added. The mixture was stirred at ca. 5 ° C for 20 minutes, after which the cooling bath was removed. Solid sodium hydrogen sulfite was added until the color of the potassium permanganate had disappeared and then the mixture was filtered. To half of its volume of saturated sodium chloride solution was added to the aqueous filtrate, and then the pH was adjusted to 1.7. The acidic solution was extracted with ethyl acetate. The extracts were dried and then evaporated in vacuo to give 3.47 g of the title product. The aqueous mother liquor was saturated with sodium chloride and extracted further

DK 155740BDK 155740B

ligere med ethylacetat. Ethylacetatopløsningen tørredes og inddampedes i vakuum til opnåelse af yderligere 0,28 g produkt. Det totale udbytte var herefter 3,75 g (78% udbytte). NMR-spektret (DMSO-dg) for produktet viste absorptioner ved 1,40 (s, 3H), 1,50 (s, 3H), 3,13 (d af d's, IH, J± = 16Hz, J2 = 2Hz) , 3,63 (d, af d's, IH, J1 = 16 Hz, J2 = 4Hz), 4,22 (s, IH) og 5,03 (d af d's, IH, J·^ = 4Hz, J2 = 2Hz) ppm.more similar to ethyl acetate. The ethyl acetate solution was dried and evaporated in vacuo to give an additional 0.28 g of product. The total yield was then 3.75 g (78% yield). The NMR spectrum (DMSO-dg) of the product showed absorptions at 1.40 (s, 3H), 1.50 (s, 3H), 3.13 (d of d's, 1H, J ± = 16Hz, J2 = 2Hz) , 3.63 (d, of d's, 1H, J1 = 16 Hz, J2 = 4Hz), 4.22 (s, 1H) and 5.03 (d of d's, 1H, J · 4 = 4Hz, J2 = 2Hz ) ppm.

Eksempel 2Example 2

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

a) Benzylpenicillanat-1,1-dioxid.a) Benzylpenicillanate-1,1-dioxide.

Til en omrørt opløsning af 6,85 g (24 mmol) benzylpenicilla-nat i 75 ml ethanolfri chloroform under nitrogen i et isbad sattes i 2 portioner med flere minutters mellemrum 4,78 g 85% ren 3-chlor-perbenzoesyre. Omrøringen fortsattes i 30 minutter i isbadet og derefter i 45 minutter uden udvendig køling. Reaktionsblandingen vaskedes med vandig alkali (pH 8,5) efterfulgt af mættet natriumchlorid-opløsning, og derefter tørredes den og inddampedes i vakuum til opnåelse af 7,05 g remanens. Undersøgelse af denne remanens viste, at den var en 5,5:1-blanding af benzylpenicillanat-l-oxid og benzylpeni-cillanat-1,1-dioxid.To a stirred solution of 6.85 g (24 mmol) of benzylpenicillate in 75 ml of ethanol-free chloroform under nitrogen in an ice bath was added in 2 portions, at several intervals, 4.78 g of 85% pure 3-chloro-perbenzoic acid. Stirring was continued for 30 minutes in the ice bath and then for 45 minutes without external cooling. The reaction mixture was washed with aqueous alkali (pH 8.5) followed by saturated sodium chloride solution and then dried and evaporated in vacuo to give 7.05 g of residue. Examination of this residue showed that it was a 5.5: 1 mixture of benzylpenicillanate-1-oxide and benzylpenicillanate-1,1-dioxide.

Til en omrørt opløsning af 4,85 g af den ovennævnte 5,5:1-sulfoxid-sulfon-blanding i 50 ml ethanolfrit chloroform under nitrogen sattes 3,2 g 85% ren 3-chlorperbenzoesyre ved stuetemperatur. Reaktionsblandingen omrørtes i 2,5 timer, hvorefter den fortyndedes med ethylacetat. Den opnåede blanding sattes til vand med pH 8,0, og derefter adskiltes lagene. Den organiske fase vaskedes med vand med pH 8,0 efterfulgt af mættet natriumchloridopløsning, og derefter tørredes den under anvendelse af natriumsulfat. Ved afdampning af opløsningsmidlet i vakuum opnåedes 3,59 g af den i overskriften anførte forbindelse. NMR-spektret for produktet (i CDClg) viste absorptioner ved 1,28 (s, 3H), 1,58 (s, 3H), 3,42 (m, 2H), 4,37 (s, IH), 4,55 (m, IH), 5,18 (q, 2H, J = 12 Hz) og 7,35 (s, 5H) ppm.To a stirred solution of 4.85 g of the above 5.5: 1 sulfoxide-sulfone mixture in 50 ml of ethanol-free chloroform under nitrogen was added 3.2 g of 85% pure 3-chloroperbenzoic acid at room temperature. The reaction mixture was stirred for 2.5 hours, then diluted with ethyl acetate. The resulting mixture was added to water at pH 8.0 and then the layers were separated. The organic phase was washed with water of pH 8.0 followed by saturated sodium chloride solution and then dried using sodium sulfate. Evaporation of the solvent in vacuo yielded 3.59 g of the title compound. The NMR spectrum of the product (in CDCl 3) showed absorptions at 1.28 (s, 3H), 1.58 (s, 3H), 3.42 (m, 2H), 4.37 (s, 1H), 4, 55 (m, 1H), 5.18 (q, 2H, J = 12 Hz) and 7.35 (s, 5H) ppm.

b) Penicillansyre-1,1-dioxid.b) Penicillanic acid 1,1-dioxide.

Til en omrørt opløsning af 8,27 g benzylpenicillanat-1,1-dioxid i en blanding af 40 ml methanol og 10 ml ethylacetat sattes langsomt 10 ml vand efterfulgt af 12 g 5% palladium-på-calciumcarbonat. Blandingen rystedes under en hydrogenatmosfære ved 3,7 at i 40 mi-To a stirred solution of 8.27 g of benzylpenicillanate-1,1-dioxide in a mixture of 40 ml of methanol and 10 ml of ethyl acetate was slowly added 10 ml of water followed by 12 g of 5% palladium-on-calcium carbonate. The mixture was shaken under a hydrogen atmosphere at 3.7 ° C for 40 minutes.

DK 155740BDK 155740B

30 nutter, hvorefter den filtreredes gennem supercel (en diatoméjordart). Filterkagen vaskedes med methanol og med vandigt methanol, og vaskevæskerne sattes til filtratet. Den samlede opløsning inddampedes i vakuum til fjernelse af hovedmængden af de organiske opløsningsmidler, og derefter fordeltes remanensen mellem ethylacetat og vand med en pH på 2,8. Ethylacetatlaget fjernedes, og den vandige fase ekstra-heredes yderligere med ethylacetat. De samlede ethylacetatopløsnin-ger vaskedes med mættet natriumchloridopløsning, tørredes under anvendelse af natriumsulfat og inddampedes derefter i vakuum. Remanensen opslemmedes i en l:2-blanding af ethylacetat og ether til opnåelse af 2,37 g af det i overskriften anførte produkt med smp. 148-151°C. Ethylacetat-ether-blandingen inddampedes til opnåelse af yderligere 2,17 g produkt.30 nuts, after which it was filtered through supercell (a diatomaceous earth). The filter cake was washed with methanol and aqueous methanol and the washings were added to the filtrate. The combined solution was evaporated in vacuo to remove the bulk of the organic solvents and then the residue was partitioned between ethyl acetate and water at a pH of 2.8. The ethyl acetate layer was removed and the aqueous phase was further extracted with ethyl acetate. The combined ethyl acetate solutions were washed with saturated sodium chloride solution, dried using sodium sulfate and then evaporated in vacuo. The residue is slurried in a 1: 2 mixture of ethyl acetate and ether to give 2.37 g of the title product, m.p. 148-151 ° C. The ethyl acetate-ether mixture was evaporated to give an additional 2.17 g of product.

Eksempel 3Example 3

Pivaloyloxymethylpenicillanat-1,1-dioxid.Pivaloyloxymethylpenicillanat-1,1-dioxide.

Til 0,562 g (2,41 mmol) penicillansyre-1,1-dioxid i 2 ml N,N-dimethylformamid sattes 0,375 g (2,90 mmol) diisopropylethylamin efterfulgt af 0,360 ml chlormethylpivalat. Reaktionsblandingen omrørtes ved stuetemperatur i 24 timer, hvorefter den fortyndedes med ethylacetat og vand. Ethylacetatlaget fraskiltes og vaskedes 3 gargemed vard og 1 gang med mættet natriumchloridopløsning. Ethylacetatopløsningen tørredes derefter under anvendelse af vandfrit natriumsulfat og inddampedes i vakuum til opnåelse af 0,700 g af det i overskriften anførte produkt som et fast stof, smp. 103-104°c. NMR-spektret for produktet (i CDC^) viste absorptioner ved 1,27 (s, 9H), 1,47 (s, 3H), 1,62 (s, 3H), 3,52 (m, 2H), 4,47 (s, IH), 4,70 (m, IH), 5,73 (d, IH, J = 6,0 Hz) og 5,98 (d, IH, J = 6,0 Hz).To 0.562 g (2.41 mmol) of penicillanic acid 1,1-dioxide in 2 ml of N, N-dimethylformamide was added 0.375 g (2.90 mmol) of diisopropylethylamine followed by 0.360 ml of chloromethyl pivalate. The reaction mixture was stirred at room temperature for 24 hours, then diluted with ethyl acetate and water. The ethyl acetate layer was separated and washed 3 times with caustic and 1 time with saturated sodium chloride solution. The ethyl acetate solution was then dried using anhydrous sodium sulfate and evaporated in vacuo to give 0.700 g of the title product as a solid, m.p. 103-104 ° C. The NMR spectrum of the product (in CDCl3) showed absorptions at 1.27 (s, 9H), 1.47 (s, 3H), 1.62 (s, 3H), 3.52 (m, 2H), 4 , 47 (s, 1H), 4.70 (m, 1H), 5.73 (d, 1H, J = 6.0 Hz) and 5.98 (d, 1H, J = 6.0 Hz).

Eksempel 4Example 4

Acetoxymethylpenic illanat-1,1-dioxid.Acetoxymethylpenic illanate-1,1-dioxide.

Fremgangsmåden ifølge eksempel 3 blev gentaget, bortset fra at det deri anvendte pivaloyloxymethylchlorid erstattedes med en ækvi- molær mængde af acetoxymethylchlorid. Dette gav et udbytte på 56% af acetoxymethylpenicillanat-1,1-dioxid, smp. 138-141°C. NMR-spektret for produktet (i CDCl·^) viste absorptioner ved 1,45 (s, 3H), 1,65 (s, 3H), 2,10 (s, 3H), 3,45 (d, 2H, J = 3 Hz), 4,40 (s, IH), 4,50 (t, IH, J = 3 Hz) og 5,75 (q, 2H, J = 5 Hz) ppm nedad i feltet fra internt tetramethylsilan.The procedure of Example 3 was repeated except that the pivaloyloxymethyl chloride used therein was replaced with an equimolar amount of acetoxymethyl chloride. This yielded 56% yield of acetoxymethylpenicillanate-1,1-dioxide, m.p. 138-141 ° C. The NMR spectrum of the product (in CDCl3) showed absorptions at 1.45 (s, 3H), 1.65 (s, 3H), 2.10 (s, 3H), 3.45 (d, 2H, J = 3 Hz), 4.40 (s, 1H), 4.50 (t, 1H, J = 3 Hz) and 5.75 (q, 2H, J = 5 Hz) ppm down the field from internal tetramethylsilane.

31 DK 155740B31 DK 155740B

Acetoxymethylpenicillanat-1,1-dioxid fremstilledes også i 29%'s udbytte ud fra natriumpenicillanat-1,1-dioxid og aceto-methylbromid, i dimethylsulfoxid, på lignende måde som i eksempel 3. Efter chromatografering havde produktet et smeltepunkt på 143-144°C. Dets IR-spektrum i en KBr-skive viste absorptioner ved 1750, 1300, 1150, 1040, 990 og 825 cm \ NMR-spektret i DMSO-dg viste absorptioner ved 1,00 (s, 3H), 1,15 (s, 3H), 1,75 (s, 3H), 2,95 (q, IH), 3,15 (q, IH), 4,05 (s, IH), 4,80 (q, IH) og 5,40 (q, 2H) ppm nedad i feltet fra internt tetramethylsilan.Acetoxymethylpenicillanate-1,1-dioxide was also prepared in 29% yield from sodium penicillanate-1,1-dioxide and acetylmethyl bromide, in dimethylsulfoxide, in a similar manner to Example 3. After chromatography, the product had a melting point of 143-144. ° C. Its IR spectrum in a KBr disk showed absorptions at 1750, 1300, 1150, 1040, 990 and 825 cm @ 1 of the NMR spectrum of DMSO-dg showed absorptions at 1.00 (s, 3H), 1.15 (s, 3H), 1.75 (s, 3H), 2.95 (q, 1H), 3.15 (q, 1H), 4.05 (s, 1H), 4.80 (q, 1H), and 5, 40 (q, 2H) ppm down in the field from internal tetramethylsilane.

Eksempel 5Example 5

Methoxycarbonyloxymethylpenicillanat-1,1-dioxid.Methoxycarbonyloxymethylpenicillanat-1,1-dioxide.

En hurtig strøm af chlorgas bobledes gennem en omrørt opløsning af 3,08 ml methylchlorformiat i 50 ml deoxygeneret carbon- tetrachlorid under nitrogen. Denne reaktionsblanding bestråledes derefter med lys med en bølgelængde på 3500 Å i 10 minutter. Carbon-tetrachloridopløsningen afkøledes derpå til -10°C, og der tilsattes 1,62 ml methanol. Herefter tilsattes der dråbevis 11,87 ml diiso-propylethylamin i 10 ml carbontetrachlorid. Man lod reaktionsblandingen opvarme langsomt til stuetemperatur, og omrøringen fortsattes i 45 minutter. Opløsningsmidlet fjernedes ved afdampning i vakuum, og derefter tilsattes der en opløsning af 6,24 g penicillansyre-1,1-dioxid og 4,62 ml diisopropylethylamin i 60 ml Ν,Ν-dimethylformamid. Omrøringen fortsattes i 24 timer, og derefter tilsattes der vand og dichlormethan. pH-Værdien indstilledes på 4,0, og lagene adskil tes. Den vandige fase ekstraheredes yderligere med dichlormethan, og derpå vaskedes de samlede dichlormethanlag med vand med pH 3,0 efterfulgt af vand uden nogen pH-indstilling. Den tørrede dichlor-methanopløsning inddampedes i vakuum til en olie, der størknede ved behandling med ether. Herved opnåedes 1,94 g af den i overskriften anførte forbindelse, smp. 124-126°C. NMR-Spektret (CDC13) viste absorptioner ved 1,43 (s, 3H), 1,61 (s, 3H), 3,44 (m, 2H), 3,85 (s, 3H), 4,39 (s, IH), 4,59 (m, IH) og 5,78 (q, 2H)ppm nedad i feltet fra tetramethylsilan.A rapid flow of chlorine gas was bubbled through a stirred solution of 3.08 ml of methyl chloroformate in 50 ml of deoxygenated carbon tetrachloride under nitrogen. This reaction mixture was then irradiated with light at a wavelength of 3500 Å for 10 minutes. The carbon tetrachloride solution was then cooled to -10 ° C and 1.62 ml of methanol was added. Then, 11.87 ml of diisopropylethylamine was added dropwise in 10 ml of carbon tetrachloride. The reaction mixture was allowed to warm slowly to room temperature and stirring was continued for 45 minutes. The solvent was removed by evaporation in vacuo and then a solution of 6.24 g of penicillanic acid 1,1-dioxide and 4.62 ml of diisopropylethylamine in 60 ml of Ν, Ν-dimethylformamide was added. Stirring was continued for 24 hours and then water and dichloromethane were added. The pH was adjusted to 4.0 and the layers separated. The aqueous phase was further extracted with dichloromethane and then the combined dichloromethane layers were washed with water of pH 3.0 followed by water without any pH adjustment. The dried dichloromethane solution was evaporated in vacuo to an oil which solidified by ether treatment. There was thus obtained 1.94 g of the title compound, m.p. 124-126 ° C. The NMR spectrum (CDCl3) showed absorptions at 1.43 (s, 3H), 1.61 (s, 3H), 3.44 (m, 2H), 3.85 (s, 3H), 4.39 (s). , 1H), 4.59 (m, 1H) and 5.78 (q, 2H) ppm down in the field from tetramethylsilane.

32 DK 155740 B32 DK 155740 B

Eksempel 6Example 6

Butoxycarbonyloxymethylpenicillanat-1,1-dioxid.Butoxycarbonyloxymethylpenicillanat-1,1-dioxide.

En hurtig strøm af chlorgas bobledes gennem en omrørt opløsning af 3,08 ml methylchlorformiat i 50 ml deoxygeneret carbon-tetrachlorid. Denne reaktionsblanding bestråledes derefter med lys med en bølgelængde på 3500 Å i 7 minutter. Reaktionsblandingen gen-nemskylledes med nitrogen, og derefter bestråledes den i yderligere 10 sekunder. Den således opnåede opløsning afkøledes til ca. -10°C, hvorefter der tilsattes 3,48 ml n-butanol. Derpå tilsattes der dråbevis 8,6 ml diisopropylethylamin i 10 ml dichlormethan. Kølebadet fjernedes, og omrøringen fortsattes i 1 time. Dichlormethanet fjernedes i vakuum, og derefter tilsattes der en opløsning af 3,07 g penicillansyre-1,1-dioxid og 2,27 ml diisopropylethylamin i ca. 50 ml Ν,Ν-dimethylformamid. Omrøringen fortsattes i 18 timer, og derefter tilsattes der vand og dichlormethan. Lagene adskiltes, og den vandige fase ekstraheredes yderligere med dichlormethan. De samlede dichlormethanopløsninger vaskedes med vand, tørredes og inddampedes til opnåelse af det rå produkt.A rapid stream of chlorine gas was bubbled through a stirred solution of 3.08 ml of methyl chloroformate in 50 ml of deoxygenated carbon tetrachloride. This reaction mixture was then irradiated with light at a wavelength of 3500 Å for 7 minutes. The reaction mixture was purged with nitrogen and then irradiated for a further 10 seconds. The solution thus obtained was cooled to ca. -10 ° C, then 3.48 ml of n-butanol was added. Then 8.6 ml of diisopropylethylamine was added dropwise in 10 ml of dichloromethane. The cooling bath was removed and stirring was continued for 1 hour. The dichloromethane was removed in vacuo and then a solution of 3.07 g of penicillanic acid 1,1-dioxide and 2.27 ml of diisopropylethylamine was added in ca. 50 ml of Ν, Ν-dimethylformamide. Stirring was continued for 18 hours and then water and dichloromethane were added. The layers were separated and the aqueous phase was further extracted with dichloromethane. The combined dichloromethane solutions were washed with water, dried and evaporated to give the crude product.

Analyse af det rå produkt ved NMR-spektroskopi viste, at omsætningen var ufuldstændig. Følgelig opløstes det rå produkt i 5 ml Ν,Ν-dimethylformamid, og der tilsattes 1,165 g penicillansyre-1,1-dioxid og 0,86 ml diisopropylethylamin. Denne blanding omrørtes natten over, og produktet isoleredes derefter som før. Omsætningen var stadig ufuldstændige, og derfor genopløstes produktet i 5 ml Ν,Ν-dimethylformamid, og der tilsattes 1,165 g penicillansyre-1,1-dioxid og 0,86 ml diisopropylethylamin. Blandingen omrørtes natten over, og produktet isoleredes som før. Herved opnåedes 4,6 g rå produkt.Analysis of the crude product by NMR spectroscopy revealed that the reaction was incomplete. Accordingly, the crude product was dissolved in 5 ml of Ν, Ν-dimethylformamide and 1.165 g of penicillanic acid-1,1-dioxide and 0.86 ml of diisopropylethylamine were added. This mixture was stirred overnight and the product was then isolated as before. The reaction was still incomplete and therefore the product was redissolved in 5 ml of Ν, Ν-dimethylformamide, and 1.165 g of penicillanic acid 1,1-dioxide and 0.86 ml of diisopropylethylamine were added. The mixture was stirred overnight and the product isolated as before. 4.6 g of crude product were obtained.

Det sidstnævnte rå produkt rensedes ved kolonnechromato-grafi på silicagel til opnåelse af 0,19 g af den i overskriften anførte forbindelse. NMR-spektret (CDCl^) viste absorptioner ved 0,98 (t, 3H), 1,45 (s, 3H), 1,63 (s, 3H), 1,55 (m, 4H), 3,5 (m, 2H), 4,23 (t, 3H, J = 6,8 Hz), 4,45 (s, IH), 4,65 (m, IH) og 5,85 (q, 2H) ppm nedad i feltet fra tetramethylsilan.The latter crude product was purified by column chromatography on silica gel to give 0.19 g of the title compound. The NMR spectrum (CDCl3) showed absorptions at 0.98 (t, 3H), 1.45 (s, 3H), 1.63 (s, 3H), 1.55 (m, 4H), 3.5 ( m, 2H), 4.23 (t, 3H, J = 6.8 Hz), 4.45 (s, 1H), 4.65 (m, 1H) and 5.85 (q, 2H) ppm downwards the field from tetramethylsilane.

33 DK 1S5740B33 DK 1S5740B

Eksempel 7 3-Phthalidylpenicillanat-l,1-dioxid.Example 7 3-Phthalidylpenicillanate-1,1-dioxide.

Til 0,783 g (3,36 mmol) penicillansyre-1,1-dioxid i 5 ml N,N-dimethylformamid sattes 0,47 ml triethylamin efterfulgt af 0,715 g 3- bromphthalid. Reaktionsblandingen omrørtes i 2 timer ved stuetemperatur, hvorefter den fortyndedes med ethylacetat og vand, pH-Værdien af den vandige fase hævedes til 7,0, og lagene adskiltes. Ethylacetat-laget vaskedes efter hinanden med vand og mættet natriumchloridopløs-ning, hvorefter det tørredes under anvendelse af natriumsulfat. Ethyl-acetatopløsningen inddampedes i vakuum til opnåelse af det i overskriften anførte produkt som et hvidt skiam. NMR-spektret for produktet (i CDClg) viste absorptioner ved 1,47 (s, 6H), 3,43 (m, IH), 4,45 (s, IH), 4,62 (m, IH), 7,40 og 7,47 (2s's, IH) og 7,73 (m, 4H) ppm.To 0.783 g (3.36 mmol) of penicillanic acid 1,1-dioxide in 5 ml of N, N-dimethylformamide was added 0.47 ml of triethylamine, followed by 0.715 g of 3-bromophthalide. The reaction mixture was stirred for 2 hours at room temperature, then diluted with ethyl acetate and water, the pH of the aqueous phase was raised to 7.0 and the layers separated. The ethyl acetate layer was washed successively with water and saturated sodium chloride solution, then dried using sodium sulfate. The ethyl acetate solution was evaporated in vacuo to give the title product as a white foam. The NMR spectrum of the product (in CDCl 3) showed absorptions at 1.47 (s, 6H), 3.43 (m, 1H), 4.45 (s, 1H), 4.62 (m, 1H), 7, 40 and 7.47 (2s's, 1H) and 7.73 (m, 4H) ppm.

Ved gentagelse af den ovenstående fremgangsmåde, bortset fra at 3-bromphthalidet erstattedes med henholdsvis 4-bromcrotonolacton og 4-brom-Y-butyrolacton, opnåedes der henholdsvis: 4- crotonolactonylpenicillanat-l,1-dioxid og Y-butyrolacton-4-yl-penicillanat.By repeating the above procedure, except that the 3-bromophthalide was replaced by 4-bromo-crotonolactone and 4-bromo-Y-butyrolactone, respectively: 4-crotonolactonylpenicillanate-1,1-dioxide and Y-butyrolacton-4-yl-1 -penicillanate.

Eksempel 8 1-(Ethoxycarbonyloxy)ethylpenicillanat-1,1-dioxid.Example 8 1- (Ethoxycarbonyloxy) ethylpenicillanate-1,1-dioxide.

En blanding af 0,654 g penicillansyre-1,1-dioxid, 0,42 ml triethylamin, 0,412 g 1-chlorethyl-ethylcarbonat, 0,300 g natriumbromid og 3 ml Ν,Ν-dimethylformamid omrørtes ved stuetemperatur i 6 dage. Blandingen oparbejdedes derefter ved fortynding med ethylacetat og vand, hvorefter pH indstilledes på 8,5. Ethylacetatlaget fraskiltes og vaskedes 3 gange med vand og 1 gang med mættet natriumchloridopløsning, hvorefter det tørredes under anvendelse af vandfrit natriumsulfat. Ethylacetatet fjernedes ved afdampning i vakuum til opnåelse af 0,390 g af det i overskriften anførte produkt som en olie.A mixture of 0.654 g of penicillanic acid 1,1-dioxide, 0.42 ml of triethylamine, 0.412 g of 1-chloroethyl-ethyl carbonate, 0.300 g of sodium bromide and 3 ml of Ν, Ν-dimethylformamide was stirred at room temperature for 6 days. The mixture was then worked up by dilution with ethyl acetate and water and then adjusted to pH 8.5. The ethyl acetate layer was separated and washed 3 times with water and 1 time with saturated sodium chloride solution, then dried using anhydrous sodium sulfate. The ethyl acetate was removed by evaporation in vacuo to give 0.390 g of the title product as an oil.

Det ovennævnte produkt hældtes sammen med en omtrent lige så stor mængde af et lignende materiale fra et lignende forsøg. Det samlede produkt opløstes i chloroform, og der tilsattes 1 ml pyridin. Blandingen omrørtes ved stuetemperatur natten over, hvorefter chloro-formet fjernedes ved afdampning i vakuum. Remanensen fordeltes mellem ethylacetat og vand med pH 8. Det fraskilte og tørrede ethylacetat inddampedes derefter i vakuum til opnåelse af 150 mg af det i overskriften anførte produkt (udbytte ca. 7%). IR-spektret (film) for produktet viste absorptioner ved 1805 og 1763 cm NMR-spektret (CDCl^)The above product was poured together with an approximately equal amount of a similar material from a similar experiment. The combined product was dissolved in chloroform and 1 ml of pyridine was added. The mixture was stirred at room temperature overnight, then the chloroform was removed by evaporation in vacuo. The residue was partitioned between ethyl acetate and water at pH 8. The separated and dried ethyl acetate was then evaporated in vacuo to give 150 mg of the title product (yield, about 7%). The IR spectrum (film) of the product showed absorptions at 1805 and 1763 cm NMR spectrum (CDCl

34 DK 155740B34 DK 155740B

viste absorptioner ved 1,43 (m, 12H) , 3,47 (m, 2H), 3,9 (q, 2H, J = 7,5 Hz), 4,37/m, IH), 4,63 (m, IH) og 6,77 (m, IH) ppm.showed absorptions at 1.43 (m, 12H), 3.47 (m, 2H), 3.9 (q, 2H, J = 7.5 Hz), 4.37 / m, 1H), 4.63 ( m, 1H) and 6.77 (m, 1H) ppm.

Eksempel 9Example 9

Fremgangsmåden ifølge eksempel 8 blev gentaget, bortset fra at 1-chlorethyl-ethylcarbonatet erstattedes med en ækvimolær mængde af det fornødne 1-chloralkyl-alkylcarbonat, 1-(alkanoyloxy)ethylchlorid eller 1-methyl-(alkanoyloxy)ethylchlorid til opnåelse af henholdsvis følgende forbindelser: methoxycarbonyloxymethylpenicillanat-1,1-dioxid, ethoxycarbonyloxymethylpenicillanat-1,1-dioxid, isobutoxycarbonyloxymethylpenicillanat-1,1-dioxid, 1-(methoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, 1-(butoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, 1-(acetoxy)ethylpenicillanat-1,1-dioxid, 1-(butyryloxy)ethylpenicillanat-1,1-dioxid, 1-(pivaloyloxy)ethylpenicillanat-1,1-dioxid, l-(hexanoyloxy)ethylpenicillanat-1,1-dioxid, 1-methyl-l-(acetoxy)ethylpenicillanat-1,1-dioxid og 1-methyl-l-(isobutyryloxy)ethylpenicillanat-1,1-dioxid.The procedure of Example 8 was repeated except that the 1-chloroethyl ethyl carbonate was replaced by an equimolar amount of the 1-chloroalkyl alkyl carbonate required, 1- (alkanoyloxy) ethyl chloride or 1-methyl (alkanoyloxy) ethyl chloride to give the following compounds, respectively. : methoxycarbonyloxymethylpenicillanate-1,1-dioxide, ethoxycarbonyloxymethylpenicillanate-1,1-dioxide, isobutoxycarbonyloxymethylpenicillanate-1,1-dioxide, 1- (methoxycarbonyloxy) ethylpenicillanate-1,1-dioxide, 1- (butoxycarbonyloxy-dioxide) , 1- (acetoxy) ethylpenicillanate-1,1-dioxide, 1- (butyryloxy) ethylpenicillanate-1,1-dioxide, 1- (pivaloyloxy) ethylpenicillanate-1,1-dioxide, 1- (hexanoyloxy) ethylpenicillanate-1,1 -dioxide, 1-methyl-1- (acetoxy) ethylpenicillanate-1,1-dioxide and 1-methyl-1- (isobutyryloxy) ethylpenicillanate-1,1-dioxide.

Eksempel 10Example 10

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

Til 2,17 g (10 mmol) penicillansyre-la-oxid i 30 ml ethanol-frit chloroform ved ca. 0°C sattes 1,73 g (10 mmol) 3-chlorperbenzoe-syre. Blandingen omrøres i 1 time ved ca. 0°C og derefter i yderligere 24 timer ved 25°C. Den filtrerede reaktionsblandingen inddampes i vakuum til opnåelse af penicillansyre-1,1-dioxid. Smp. 148-151 C.To 2.17 g (10 mmol) of penicillanic acid 1-oxide in 30 ml of ethanol-free chloroform at ca. At 0 ° C was added 1.73 g (10 mmol) of 3-chloroperbenzoic acid. The mixture is stirred for 1 hour at ca. 0 ° C and then for another 24 hours at 25 ° C. The filtered reaction mixture is evaporated in vacuo to give penicillanic acid 1,1-dioxide. Mp. 148-151 C.

Eksempel 11Example 11

Fremgangsmåden ifølge eksempel 10 blev gentaget, bortset fra at det deri anvendte penicillansyre-la-oxid erstattedes med henholdsvis: penicillansyre-li3-oxid, acetoxymethylpenicillanat-la-oxid, propionyloxymethylpenicillanat-la-oxid, pivaloyloxymethyIpenic i1lanat-1α-oxid, acetoxymethylpenicillanat-ip-oxid,The procedure of Example 10 was repeated except that the penicillanic acid-la-oxide used therein was replaced with: penicillanic acid-l3-oxide, acetoxymethylpenicillanate-la-oxide, propionyloxymethylpenicillanate-la-oxide, pivaloyloxymethyl-epicillan-oxide-1 oxide,

35 DK 155740 BDK 155740 B

propionyloxymethylpenicillanat-13-oxid, pivaloyloxymethylpenicillanat-13-oxid, 3-phthalidylpenicillanat-la-oxid, 3-phthalidylpenicillanat-13_oxid, 1-(ethoxycarbonyloxy)ethylpenicillanat-la-oxid, methoxycarbonyloxymethylpenicillanat-la-oxid, ethoxycarbonyloxymethylpenicillanat-la-oxid, isobutoxycarbonyloxymethylpenic i1lanat-ΐα-oxid, 1-(methoxycarbonyloxy)ethylpenicillanat-la-oxid, 1-(butoxycarbonyloxy)ethylpenicillanat-la-oxid, 1- (acetoxy) ethylpenicillanat-la-oxid, 1-(butyryloxy)ethylpenicillanat-la-oxid, 1-(pivaloyloxy)ethylpenicillanat-la-oxid, 1-(ethoxycarbonyloxy)ethylpenicillanat-13-oxid, methoxycarbonyloxymethylpenicillanat-10-oxid, ethoxycarbonyloxymethylpenicillanat-13-oxid, isobutoxycarbonyloxymethylpenicillanat-l&-oxid, 1-(methoxycarbonyloxy)ethylpenicillanat-13-oxid, 1-(butoxycarbonyloxy)ethylpenicillanat-ip-oxid, 1-(acetoxy)ethylpenicillanat-13-oxid, 1-(butyryloxy)ethylpenicillanat-13-oxid og 1-(pivaloyloxy)ethylpenicillanat-13-oxid.propionyloxymethylpenicillanate-oxide, pivaloyloxymethylpenicillanate-13-oxide, 3-phthalidylpenicillanate-1-oxide, 3-phthalidylpenicillanate-13-oxide, 1- (ethoxycarbonyloxy) illanate ΐα-oxide, 1- (methoxycarbonyloxy) ethylpenicillanate-la-oxide, 1- (butoxycarbonyloxy) ethylpenicillanate-la-oxide, 1- (acetoxy) ethylpenicillanate-la-oxide, 1- (butyryloxy) ethylpenicillanate-la-oxide, 1- (pivaloyloxy) ethylpenicillanate 1-oxide, 1- (ethoxycarbonyloxy) ethylpenicillanate-13-oxide, methoxycarbonyloxymethylpenicillanate-10-oxide, ethoxycarbonyloxymethylpenicillanate-13-oxide, isobutoxycarbonyloxymethylpenicillanate-oxide , 1- (butoxycarbonyloxy) ethylpenicillanate ip oxide, 1- (acetoxy) ethylpenicillanate 13 oxide, 1- (butyryloxy) ethylpenicillanate 13 oxide and 1- (pivaloyloxy) ethylpenicillanate 13 oxide.

Herved opnåedes henholdsvis: penicillansyre-1,1-dioxid, acetoxymethylpenicillanat-1,1-dioxid , smp. 143-144°C, propionyloxymethylpenicillanat-1,1-dioxid, pivaloyloxymethylpenicillanat-1,1-dioxid, smp. 103-104°C, acetoxymethylpenicillanat-1,1-dioxid, propionyloxymethylpenicillanat-l,1-dioxid, pivaloyloxymethylpenicillanat-1,1-dioxid, 3-phthalidylpenicillanat-l,1-dioxid, 3-phthalidylpenicillanat-l,1-dioxid, v 1-(ethoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, methoxycarbonyloxymethylpenicillanat-1,1-dioxid, smp. 124-126°C, ethoxycarbonyloxymethylpenicillanat-1,1-dioxid, isobutoxycarbonyloxymethylpenicillanat-'i, 1-dioxid, 1-(methoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, 1-(butoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, 1-(acetoxy)ethylpenicillanat-1,1-dioxid,There were obtained respectively: penicillanic acid 1,1-dioxide, acetoxymethylpenicillanate-1,1-dioxide, m.p. 143-144 ° C, propionyloxymethylpenicillanate-1,1-dioxide, pivaloyloxymethylpenicillanate-1,1-dioxide, m.p. 103-104 ° C, acetoxymethylpenicillanate-1,1-dioxide, propionyloxymethylpenicillanate-1,1-dioxide, pivaloyloxymethylpenicillanate-1,1-dioxide, 3-phthalidylpenicillanate-1,1-dioxide, 3-phthalidylpenicillanate-1,1-dioxide v 1- (ethoxycarbonyloxy) ethylpenicillanate-1,1-dioxide, methoxycarbonyloxymethylpenicillanate-1,1-dioxide, m.p. 124-126 ° C, ethoxycarbonyloxymethylpenicillanate-1,1-dioxide, isobutoxycarbonyloxymethylpenicillanate-1, 1-dioxide, 1- (methoxycarbonyloxy) ethylpenicillanate-1,1-dioxide, 1- (butoxycarbonyloxy) ethylpenicillanate-1,1-dioxide - (acetoxy) ethylpenicillanat-1,1-dioxide,

36 DK 155740B36 DK 155740B

1-(butyryloxy)ethylpenicillanat-1,1-dioxid, 1-(pivaloyloxy)ethylpenicillanat-1,1-dioxid, 1-(ethoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, methoxycarbonyloxymethylpenicillanat-1,1-dioxid, ethoxycarbonyloxymethylpenicillanat-l,1-dioxid, isobutoxycarbonyloxymethylpenicillanat-1,1-dioxid, 1-(methoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, 1-(butoxycarbonyloxy)ethylpenicillanat-1,1-dioxid, 1-(acetoxy)ethylpenicillanat-1,1-dioxid, 1-(butyryloxy)ethylpenicillanat-1,1-dioxid og 1-(pivaloyloxy)ethylpenicillanat-1,1-dioxid.1- (butyryloxy) ethylpenicillanate-1,1-dioxide, 1- (pivaloyloxy) ethylpenicillanate-1,1-dioxide, 1- (ethoxycarbonyloxy) ethylpenicillanate-1,1-dioxide, methoxycarbonyloxymethylpenicillanate-1,1-dioxide, ethoxycarbonyloxymethylpenyl , 1-dioxide, isobutoxycarbonyloxymethylpenicillanate-1,1-dioxide, 1- (methoxycarbonyloxy) ethylpenicillanate-1,1-dioxide, 1- (butoxycarbonyloxy) ethylpenicillanate-1,1-dioxide, 1- (acetoxy) ethylpenicillanate-1,1-dioxide dioxide, 1- (butyryloxy) ethylpenicillanate-1,1-dioxide and 1- (pivaloyloxy) ethylpenicillanate-1,1-dioxide.

Eksempel 12Example 12

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

På lignende måde opnåedes der ved oxidation af 4-nitrobenzyl-penicillanat-la-oxid og 4-nitrobenzylpenicillanat-ip-oxid med 3-chlorperbenzoesyre ved fremgangsmåden ifølge eksempel 10 4-nitroben-zylpenicillanat-1,1-dioxid.Similarly, by oxidation of 4-nitrobenzyl-penicillanate-1-oxide and 4-nitrobenzyl-penicillanate-1-oxide with 3-chloroperbenzoic acid, the method of Example 10 obtained 4-nitro-benzyl-penicillanate-1,1-dioxide.

Ved hydrogenolyse af 4-nitrobenzylpenicillanat-l,1-dioxid ved fremgangsmåden ifølge ekseqpel 2b) opnås penicillansyre-1,1-dioxid.Hydrogenolysis of 4-nitrobenzylpenicillanate-1,1-dioxide by the method of Example 2b) gives penicillanic acid 1,1-dioxide.

Eksempel 13Example 13

Natriumpenicillanat-1,1-dioxid.Of sodium penicillanate 1,1-dioxide.

Til en omrørt opløsning af 32,75 g (0,14 mmol) penicillansyre-1,1-dioxid i 450 ml ethylacetat sattes en opløsning af 25,7 g natrium- 2 -ethylhexanoat (0,155 mol) i 200 ml ethylacetat. Den opnåede opløsning omrørtes i 1 time, hvorefter der tilsattes et yderligere 10% overskud af natrium-2-ethylhexanoat i et lille rumfang ethylacetat. Produktet begyndte straks at fælde ud. Omrøringen fortsattes i 30 minutter, og derefter udvandtes bundfaldet ved filtrering. Det vaskedes efter hinanden med ethylacetat, ved 1:1-ethylacetat-ether og med ether. Det faste stof tørredes derefter over phosphorpentoxid ved ca. 0,1 mm Hg i 16 timer ved 25°C til opnåelse af 36,8 g af det i overskriften anførte natriumsalt, forurenet med en lille mængde ethylacetat. Ethylacetatindholdet formindskedes ved opvarmning til 100°C i 3 timer i vakuum. IR-spektret af dette slutprodukt (KBr-skive) viste absorptioner ved 1786 og 1608 cm’’'*·. NMR-spektret (D20) viste absorp-To a stirred solution of 32.75 g (0.14 mmol) of penicillanic acid 1,1-dioxide in 450 ml of ethyl acetate was added a solution of 25.7 g of sodium 2-ethylhexanoate (0.155 mol) in 200 ml of ethyl acetate. The resulting solution was stirred for 1 hour, then an additional 10% excess of sodium 2-ethyl hexanoate was added in a small volume of ethyl acetate. The product immediately began to precipitate. Stirring was continued for 30 minutes, and then the precipitate was diluted by filtration. It was washed successively with ethyl acetate, with 1: 1 ethyl acetate ether and with ether. The solid was then dried over phosphorus pentoxide at ca. 0.1 mm Hg for 16 hours at 25 ° C to give 36.8 g of the title sodium salt contaminated with a small amount of ethyl acetate. The ethyl acetate content was reduced by heating to 100 ° C for 3 hours in vacuo. The IR spectrum of this final product (KBr disk) showed absorptions at 1786 and 1608 cm ’’. The NMR spectrum (D20) showed the absorbance.

37 DK 155740 B37 DK 155740 B

tioner ved 1,48 (s, 3H), 1,62 (s, 3H), 3,35 (d af d's, IH, J^=16Hz, J2=2Hz) , 3,70 (d af d's, IH, ^=16Ηζ, J2=4Hz) , 4,25 (s, IH) og 5,03 (d af d's, IH, J^=4Hz, J2=2Hz)ppm.tions at 1.48 (s, 3H), 1.62 (s, 3H), 3.35 (d of d's, 1H, J ^ = 16Hz, J2 = 2Hz), 3.70 (d of d's, 1H, = 16 =, J₂ = 4Hz), 4.25 (s, 1H) and 5.03 (d of d's, 1H, J J = 4Hz, J₂ = 2Hz) ppm.

Det i overskriften anførte natriumsalt kan også fremstilles under anvendelse af acetone i stedet for ethylacetat.The titled sodium salt may also be prepared using acetone instead of ethyl acetate.

Eksempel 14Example 14

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

Til en blanding af 7600 ml vand og 289 ml iseddikesyre sattes portionsvis 379,5 g kaliumpermanganat. Denne blanding omrørtes i 15 minutter, og derefter afkøledes den til 0°C. Til blandingen sattes derpå under omrøring en blanding, som var blevet fremstillet ud fra 270 g penicillansyre, 260 ml 4 N natriumhydroxidopløsning og 2400 ml vand (pH 7,2), og som derefter var blevet afkølet til 8°C. Temperaturen steg til 15°C under denne sidste tilsætning. Temperaturen af den opnåede blanding sænkedes til 5°C, og omrøringen fortsattes i 30 minutter. Til reaktionsblandingen sattes derefter portionsvis 142,1 g natriumhydrogensulfit i løbet af 10 minutter. Blandingen omrørtes i 10 minutter ved 10°C, og derefter tilsattes der 100 g supercel (en diatoméjordart). Efter yderligere 5 minutters omrøring filtreredes blandingen. Til filtratet sattes 4,0 liter ethylacetat, og derefter sænkedes pH-værdien af den vandige fase til 1,55 under anvendelse af 6 N saltsyre. Ethylacetatlaget fjernedes og hældtes sammen med flere yderligere ethylacetatekstrakter. Det samlede organiske lag vaskedes med vand, tørredes (MgSO^) og inddampedes næsten til tørhed i vakuum. Den således opnåede opslemning omrørtes med 700 ml ether ved 10°C i 20 minutter, hvorefter det faste stof opsamledes ved filtrering. Derved opnåedes 82,6 g (26%'s udbytte) af den i overskriften anførte forbindelse med smp. 154-155,5°C (sønderdeling).To a mixture of 7600 ml of water and 289 ml of glacial acetic acid was added portionwise 379.5 g of potassium permanganate. This mixture was stirred for 15 minutes and then cooled to 0 ° C. To the mixture was then added, with stirring, a mixture which had been prepared from 270 g of penicillanic acid, 260 ml of 4 N sodium hydroxide solution and 2400 ml of water (pH 7.2), which had then been cooled to 8 ° C. The temperature rose to 15 ° C during this last addition. The temperature of the mixture obtained was lowered to 5 ° C and stirring was continued for 30 minutes. To the reaction mixture was then added 142.1 g of sodium hydrogen sulfite in portions over 10 minutes. The mixture was stirred for 10 minutes at 10 ° C and then 100 g of supercell (a diatomaceous earth) was added. After a further 5 minutes of stirring, the mixture was filtered. To the filtrate was added 4.0 liters of ethyl acetate and then the pH of the aqueous phase was lowered to 1.55 using 6N hydrochloric acid. The ethyl acetate layer was removed and poured with several additional ethyl acetate extracts. The combined organic layer was washed with water, dried (MgSO 4) and evaporated almost to dryness in vacuo. The slurry thus obtained was stirred with 700 ml of ether at 10 ° C for 20 minutes, after which the solid was collected by filtration. Thereby 82.6 g (26% yield) of the title compound was obtained with m.p. 154-155.5 ° C (dec.).

Eksempel 15Example 15

Pivaloyloxymethylpenicillanat-1,1-dioxid.Pivaloyloxymethylpenicillanat-1,1-dioxide.

Til en opløsning af 1,25 g pivaloyloxymethylpenicillanat i 40 ml chloroform, afkølet til ca. -15°C, sattes 0,8 g 3-chlorperbenzoe-syre. Blandingen omrørtes ved ca. -15°C i 20 minutter, hvorefter man lod den opvarme til stuetemperatur. Analyse af den opnåede opløsning ved hjælp af NMR viste, at den indeholdt både la- og 10-oxidet.To a solution of 1.25 g of pivaloyloxymethylpenicillanate in 40 ml of chloroform, cooled to ca. -15 ° C, 0.8 g of 3-chloroperbenzoic acid was added. The mixture was stirred at ca. -15 ° C for 20 minutes, then allowed to warm to room temperature. Analysis of the obtained solution by NMR showed that it contained both the 1α and 10 oxide.

38 DK 155740 B38 DK 155740 B

Chloroformopløsningen koncentreredes til ca. 20 ml, og der tilsattes yderligere 0,8 g 3-chlorperbenzoesyre. Den opnåede blanding omrørtes natten over ved stuetemperatur, hvorefter alt opløsningsmidlet fjernedes ved afdampning i vakuum. Remanensen opløstes igen i ca. 4 ml dichlormethan, og der tilsattes 0,4 g 3-chlorbenzoesyre. Blandingen omrørtes i 3 timer, hvorefter opløsningsmidlet fjernedes ved afdampning i vakuum. Remanensen fordeltes mellem ethylacetat og vand med pH 6,0, og der tilsattes natriumhydrogensulfit, indtil en prøve for tilstedeværelse af peroxider var negativ. pH-Værdien af den vandige fase hævedes til 8,0, og lagene adskiltes. Det organiske lag vaskedes med saltopløsning, tørredes ved anvendelse af vandfrit natriumsulfat og inddampedes i vakuum. Remanensen opløstes i ether og udfældedes igen ved tilsætning af hexan. Det opnåede faste stof omkrystalliseredes af ether til opnåelse af 0,357 g af den i overskriften anførte forbindelse.The chloroform solution was concentrated to ca. 20 ml and a further 0.8 g of 3-chloroperbenzoic acid was added. The resulting mixture was stirred overnight at room temperature, after which all the solvent was removed by evaporation in vacuo. The residue was dissolved again for approx. 4 ml of dichloromethane and 0.4 g of 3-chlorobenzoic acid were added. The mixture was stirred for 3 hours, after which the solvent was removed by evaporation in vacuo. The residue was partitioned between ethyl acetate and water at pH 6.0, and sodium hydrogen sulfite was added until a test for the presence of peroxides was negative. The pH of the aqueous phase was raised to 8.0 and the layers separated. The organic layer was washed with brine, dried using anhydrous sodium sulfate and evaporated in vacuo. The residue was dissolved in ether and precipitated again by the addition of hexane. The solid obtained was recrystallized from ether to give 0.357 g of the title compound.

NMR-spektret for produktet (CDClg) viste absorptioner ved 1,23 (s, 9H), 1,50 (s, 3H), 1,67 (s, 3H), 3,28 (m, 2H), 4,45 (s, IH), 5,25 (m, IH) og 5,78 (m, 2H)ppm.The NMR spectrum of the product (CDCl 3) showed absorptions at 1.23 (s, 9H), 1.50 (s, 3H), 1.67 (s, 3H), 3.28 (m, 2H), 4.45 (s, 1H), 5.25 (m, 1H) and 5.78 (m, 2H) ppm.

Eksempel i6 3-Phthalidylpenicillanat-l,1-dioxid.Example 16 3 3-Phthalidylpenicillanate-1,1-dioxide.

Til en opløsning af 713 mg 3-phthalidylpenicillanat i 3 ml chloroform sattes 0,430 g 3-chlorperbenzoesyre ved ca. 10°C. Blandingen omrørtes i 30 minutter, hvorefter der tilsattes yderligere 0,513 g 3-chlorperbenzoesyre. Blandingen omrørtes i 4 timer ved stuetemperatur, hvorefter opløsningsmidlet fjernedes ved afdampning i vakuum. Remanensen fordeltes mellem ethylacetat og vand med pH 6,0, og der tilsattes natriumhydrogensulfit til sønderdeling af den tilbageværende per syre. pH-værdien af den vandige fase hasvedes til 8,8. Lagene adskiltes, og den organiske fase inddampedes i vakuum. Herved opnåedes den i overskriften anførte forbindelse som et skum. NMR-spektret (CDCl^) viste absorptioner ved 1,62 (m, 6H), 3,3 (m, 2H), 4,52 (p, IH), 5,23 (m, IH) og 7,63 (m, 5H) ppm.To a solution of 713 mg of 3-phthalidylpenicillanate in 3 ml of chloroform was added 0.430 g of 3-chloroperbenzoic acid at ca. 10 ° C. The mixture was stirred for 30 minutes, then an additional 0.513 g of 3-chloroperbenzoic acid was added. The mixture was stirred for 4 hours at room temperature, after which the solvent was removed by evaporation in vacuo. The residue was partitioned between ethyl acetate and water at pH 6.0 and sodium hydrogen sulfite was added to decompose the residual per acid. The pH of the aqueous phase was boiled to 8.8. The layers were separated and the organic phase was evaporated in vacuo. Thereby the title compound was obtained as a foam. The NMR spectrum (CDCl3) showed absorptions at 1.62 (m, 6H), 3.3 (m, 2H), 4.52 (p, 1H), 5.23 (m, 1H) and 7.63 ( m, 5H) ppm.

39 DK 155740 B39 DK 155740 B

Eksempel 17Example 17

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

a) 4-Nitrobenzylpenicillanat-1,1-dioxid.a) 4-Nitrobenzylpenicillanate-1,1-dioxide.

En opløsning af 4-nitrobenzylpenicillanat i chloroform afkøledes til ca. 15°C, og der tilsattes 1 ækvivalent 3-chlorperbenzoesyre. Reaktionsblandingen omrørtes i 20 minutter. En undersøgelse af reaktionsblandingen på dette tidspunkt ved NMR-spektroskopi viste, at den indeholdt 4-nitrobenzylpenicillanat-l-oxid. Der tilsattes yderligere 1 ækvivalent 3-chlorperbenzoesyre, og reaktionsblandingen omrørtes i 4 timer. På dette tidspunkt tilsattes der yderligere 1 ækvivalent 3-chlorperbenzoesyre, og reaktionsblandingen omrørtes natten over. Opløsningsmidlet fjernedes ved afdampning, og remanensen fordeltes mellem ethylacetat og vand med pH 8,5. Ethylacetatlaget fraskiltes, vaskedes med vand, tørredes og inddampedes til opnåelse af det rå produkt. Det rå produkt rensedes ved chromatografi på silica-gel, idet der elueredes med en l:l-blanding af ethylacetat og chloroform.A solution of 4-nitrobenzylpenicillanate in chloroform was cooled to ca. 15 ° C and 1 equivalent of 3-chloroperbenzoic acid was added. The reaction mixture was stirred for 20 minutes. An examination of the reaction mixture at this time by NMR spectroscopy revealed that it contained 4-nitrobenzylpenicillanate 1-oxide. An additional 1 equivalent of 3-chloroperbenzoic acid was added and the reaction mixture was stirred for 4 hours. At this time, an additional 1 equivalent of 3-chloroperbenzoic acid was added and the reaction mixture was stirred overnight. The solvent was removed by evaporation and the residue partitioned between ethyl acetate and water at pH 8.5. The ethyl acetate layer was separated, washed with water, dried and evaporated to give the crude product. The crude product was purified by chromatography on silica gel eluting with a 1: 1 mixture of ethyl acetate and chloroform.

NMR-spektret for dette produkt (CDCl3) viste absorptioner ved 1,35 (s, 3H), 1,58 (s, 3H), 3,45 (m, 2H), 4,42 (s, IH), 4,58 (m, IH), 5,30 (s, 2H) og 7,83 (q, 4H)ppm.The NMR spectrum of this product (CDCl3) showed absorptions at 1.35 (s, 3H), 1.58 (s, 3H), 3.45 (m, 2H), 4.42 (s, 1H), 4, 58 (m, 1H), 5.30 (s, 2H) and 7.83 (q, 4H) ppm.

b) Penicillansyre-1,1-dioxid.b) Penicillanic acid 1,1-dioxide.

Til 0,54 g 4-nitrobenzylpenicillanat-l,l-dioxid i 30 ml methanol og 10 ml ethylacetat sattes 0,54 g 10% palladium-på-carbon. Blandingen rystedes derefter under en hydrogenatmosfære ved et tryk på ca. 3,5 at , indtil hydrogenoptagelsen ophørte. Reaktionsblandingen filtreredes, og opløsningsmidlet fjernedes ved afdampning. Remanensen fordeltes mellem ethylacetatet og vand med pH 8,5, og det vandige lag fjernedes. Der tilsattes frisk ethylacetat, og pH indstilledes på 1,5. Ethylacetatlaget fjernedes, vaskedes med vand og tørredes, og derefter inddampedes det i vakuum. Herved opnåedes 0,168 g af den i overskriften anførte forbindelse som et krystallinsk fast stof.To 0.54 g of 4-nitrobenzylpenicillanate-1,1-dioxide in 30 ml of methanol and 10 ml of ethyl acetate was added 0.54 g of 10% palladium-on-carbon. The mixture was then shaken under a hydrogen atmosphere at a pressure of approx. 3.5 at until hydrogen uptake ceased. The reaction mixture was filtered and the solvent removed by evaporation. The residue was partitioned between the ethyl acetate and water at pH 8.5 and the aqueous layer removed. Fresh ethyl acetate was added and the pH was adjusted to 1.5. The ethyl acetate layer was removed, washed with water and dried, and then evaporated in vacuo. There was thus obtained 0.168 g of the title compound as a crystalline solid.

4040

DK 155740BDK 155740B

c) Penicillansyre-1,1-dioxid.c) Penicillanic acid 1,1-dioxide.

En omrørt opløsning af 512 mg 4-nitrobenzylpenicillanat-l,1-dioxid i en blanding af 5 ml acetonitril og 5 ml vand afkøledes til 0°C, og derefter tilsattes der portionsvis en opløsning af 484 mg na-triumdithionit i 1,4 ml 1,0 N natriumhydroxid i løbet af flere minut ter. Reaktionsblandingen omrørtes i yderligere 5 minutter, og derefter fortyndedes den med ethylacetat og vand med pH 8,5. Ethylacetat-laget fraskiltes og inddampedes i vakuum til opnåelse af 300 mg udgangsmateriale. Der sattes frisk ethylacetat til den vandige fase, og pH-værdien indstilledes på 1,5. Ethylacetatet fraskiltes, tørredes og inddampedes i vakuum til opnåelse af 50 mg af den i overskriften anførte forbindelse.A stirred solution of 512 mg of 4-nitrobenzylpenicillanate-1,1-dioxide in a mixture of 5 ml of acetonitrile and 5 ml of water was cooled to 0 ° C and then a solution of 484 mg of sodium dithionite was added portionwise in 1.4 ml. 1.0 N sodium hydroxide over several minutes. The reaction mixture was stirred for a further 5 minutes and then diluted with ethyl acetate and water with pH 8.5. The ethyl acetate layer was separated and evaporated in vacuo to give 300 mg of starting material. Fresh ethyl acetate was added to the aqueous phase and the pH was adjusted to 1.5. The ethyl acetate was separated, dried and evaporated in vacuo to give 50 mg of the title compound.

Eksempel 18 1-Methyl-l-(acetoxy)ethylpenicillanat-l,l-dioxid.Example 18 1-Methyl-1- (acetoxy) ethylpenicillanate-1,1-dioxide.

Til 2,33 g penicillansyre-1,1-dioxid i 5 ml Ν,Ν-dimethylformamid sattes 1,9 ml ethyldiisopropylamin efterfulgt af dråbevis tilsætning af 1,37 g 1-methyl-l-(acetoxy)ethylchlorid ved ca.20°c. Blandingen omrørtes ved stuetemperatur natten over, hvorefter den fortyhde-des med ethylacetat og m^d vand. Lagene adskiltes, og ethylacetatla-get vaskedes med vand med pH 9. Ethylacetatopløsningen tørredes derefter (Na2S04) og inddampedes i vakuum, hvorved man fik 1,65 g råprodukt som en olie. Olien størknede ved henstand i køleskab, og produktet omkrystalliseredes derefter af en blanding af chloroform og ether til opnåelse af et produkt med smp. 90-92°C.To 2.33 g of penicillanic acid 1,1-dioxide in 5 ml of Ν, Ν-dimethylformamide was added 1.9 ml of ethyl diisopropylamine followed by dropwise addition of 1.37 g of 1-methyl-1- (acetoxy) ethyl chloride at about 20 °. c. The mixture was stirred at room temperature overnight, then quenched with ethyl acetate and m 2 of water. The layers were separated and the ethyl acetate layer was washed with water of pH 9. The ethyl acetate solution was then dried (Na 2 SO 4) and evaporated in vacuo to give 1.65 g of crude product as an oil. The oil solidified upon standing in the refrigerator and the product was then recrystallized from a mixture of chloroform and ether to give a product of m.p. 90-92 ° C.

NMR-spektret for det rå produkt (CDClg) viste absorptioner ved 1,5 (s, 3H), 1,62 (s, 3H), 1,85 (s, 3H), 1,93 (s, 3H), 2,07 (s, 3H), 3,43 (m, 2H), 4,3 (s, IH) og 4,57 (m, lH)ppm.The NMR spectrum of the crude product (CDCl 3) showed absorptions at 1.5 (s, 3H), 1.62 (s, 3H), 1.85 (s, 3H), 1.93 (s, 3H), 2 , 07 (s, 3H), 3.43 (m, 2H), 4.3 (s, 1H) and 4.57 (m, 1H) ppm.

Eksempel 1 gExample 1 g

Fremgangsmåden ifølge eksempel 18 blev gentaget, bortset fra at 1-methyl-l(acetoxy)ethylchloridet erstattedes med det fornødne 1-methyl-1-(alkanoyloxy)ethylchlorid til opnåelse af henholdsvis følgende forbindelser: 1-methyl-l-(propionyloxy)ethylpenicillanat-l,1-dioxid, 1-methyl-l-(pivaloyloxy)ethylpenicillanat-l,1-dioxid og 1-methyl-l-(hexanoyloxy)ethylpenicillanat-l,1-dioxid.The procedure of Example 18 was repeated except that the 1-methyl-1 (acetoxy) ethyl chloride was replaced with the necessary 1-methyl-1- (alkanoyloxy) ethyl chloride to give the following compounds, respectively: 1-methyl-1- (propionyloxy) ethylpenicillanate -1,1-dioxide, 1-methyl-1- (pivaloyloxy) ethylpenicillanate-1,1-dioxide and 1-methyl-1- (hexanoyloxy) ethylpenicillanate-1,1-dioxide.

41 DK 155740 B41 DK 155740 B

Eksempel 20Example 20

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

Til en omrørt opløsning af 1,78 g penicillansyre i vand med pH 7,5 sattes 1,46 ml 40%'s pereddikesyre efterfulgt af yderligere 2,94 ml 40%'s pereddikesyre 30 minutter senere. Reaktionsblandingen omrørtes i 3 dage ved stuetemperatur, hvorefter den fortyndedes med ethylacetat og vand. Der tilsattes fast natriumhydrogensulfit til sønderdeling af overskud af persyre, og derefter indstilledes pH på 1,5. Ethylacetatlaget fraskiltes, tørredes (Na^O^) og inddampedes i vakuum. Remanensen var en 3:2-blanding af penicillansyre-1,1-dioxid og penicillansyre-l-oxid.To a stirred solution of 1.78 g of penicillanic acid in pH 7.5 water was added 1.46 ml of 40% peracetic acid followed by an additional 2.94 ml of 40% peracetic acid 30 minutes later. The reaction mixture was stirred for 3 days at room temperature, then diluted with ethyl acetate and water. Solid sodium hydrogen sulfite was added to decompose excess peracid, and then the pH was adjusted to 1.5. The ethyl acetate layer was separated, dried (Na 2 O 4) and evaporated in vacuo. The residue was a 3: 2 mixture of penicillanic acid 1,1-dioxide and penicillanic acid 1-oxide.

Eksempel 21Example 21

Pivaloyloxymethylpenicillanat-1,1-dioxid.Pivaloyloxymethylpenicillanat-1,1-dioxide.

En omrørt opløsning af 595 mg pivaloyloxymethylpenicillanat-1-oxid i 5 ml ethylacetat afkøledes til ca. -15°C, og der tilsattes 5 mg manganiacetylacetonat. Til den således opnåede mørkebrune blanding sattes der i løbet af adskillige minutter 0,89 ml 40%'s pereddikesyre i små mængder over flere minutter. Efter 40 minutters forløb fjernedes kølebadet, og blandingen omrørtes ved stuetemperatur i 3 dage. Blandingen fortyndedes med ethylacetat og vand med pH 8,5, og ethylacetatlaget fraskiltes, tørredes og inddampedes i vakuum. Herved opnåedes 178 mg materiale, som ved NMR-spektroskopi viste sig at være en blanding af pivaloyloxymethylpenicillanat-l,1-dioxid og piva-loyloxymethylpenicillanat-l-oxid.A stirred solution of 595 mg of pivaloyloxymethylpenicillanate-1 oxide in 5 ml of ethyl acetate was cooled to ca. -15 ° C and 5 mg of manganese acetylacetonate were added. To the dark brown mixture thus obtained, 0.89 ml of 40% peracetic acid was added in small amounts over several minutes over several minutes. After 40 minutes, the cooling bath was removed and the mixture was stirred at room temperature for 3 days. The mixture was diluted with ethyl acetate and water at pH 8.5 and the ethyl acetate layer was separated, dried and evaporated in vacuo. This yielded 178 mg of material which, by NMR spectroscopy, proved to be a mixture of pivaloyloxymethylpenicillanate-1,1-dioxide and piva-loyloxymethylpenicillanate-1 oxide.

Det ovennævnte materiale opløstes igen i ethylacetat og genoxideredes under anvendelse af 0,9 ml pereddikesyre og 5 mg manganiacetylacetonat som beskrevet ovenfor under anvendelse af en reaktionstid på 16 timer. Reaktionsblandingen oparbejdes som beskrevet ovenfor. Herved opnåedes 186 mg pivaloyloxymethylpenicillanat-1,1-dioxid.The above material was again dissolved in ethyl acetate and re-oxidized using 0.9 ml of peracetic acid and 5 mg of manganese acetylacetonate as described above using a reaction time of 16 hours. The reaction mixture is worked up as described above. There was obtained 186 mg of pivaloyloxymethylpenicillanate-1,1-dioxide.

Referenceeksempel 1Reference Example 1

Penicillansyre-la-oxid.Penicillanic acid la-oxide.

Til 1,4 g forud hydrogeneret 5% palladium-på-calciumcarbonat i 50 ml vand sattes en opløsning af 1,39 g benzyl-6,6-dibrompenicil-lanat-la-oxid i 50 ml tetrahydrofuran. Blandingen omrystedes under en hydrogenatmosfære ved ca. 3,2 at og 25°C i 1 time, hvorefter den filtreredes. Filtratet inddampedes i vakuum til fjernelse af hoved- I *To 1.4 g of pre-hydrogenated 5% palladium-on-calcium carbonate in 50 ml of water was added a solution of 1.39 g of benzyl-6,6-dibrompenicilanate-la-oxide in 50 ml of tetrahydrofuran. The mixture was shaken under a hydrogen atmosphere at ca. 3.2 at and 25 ° C for 1 hour, then filtered. The filtrate was evaporated in vacuo to remove the main I

42 DK 155740 B42 DK 155740 B

mængden af tetrahydrofuranet, hvorefter den vandige fase ekstrahere-des med ether. Etherekstrakterne inddampedes i vakuum til opnåelse af 0,5 g materiale, der viste sig at være hovedsagelig benzylpenicil-lanat-la-oxid.the amount of the tetrahydrofuran, after which the aqueous phase is extracted with ether. The ether extracts were evaporated in vacuo to give 0.5 g of material which was found to be mainly benzylpenicilanate la oxide.

Det ovennævnte benzylpenicillanat-la-oxid hældtes sammen med yderligere 2,0 g benzyl-6,6-dibrompenicillanat-la-oxid, og blandingen opløstes i 50 ml tetrahydrofuran. Opløsningen sattes til 4,0 g 5% palladium-på-calciumcarbonat i 50 ml vand, og den opnåede blanding rystedes under en hydrogena%tosfære ved ca. 3,2 at og 25°C natten over. Blandingen filtreredes, og filtratet ekstraheredes med ether. Ekstrakterne inddampedes i vakuum, og remanensen rensedes ved chroma-tografi på silicagel, idet der elueredes med chloroform. Herved opnåedes 0,50 g materiale.The above-mentioned benzylpenicillanate-la-oxide was poured into an additional 2.0 g of benzyl-6,6-dibrompenicillanate-la-oxide and the mixture was dissolved in 50 ml of tetrahydrofuran. The solution was added to 4.0 g of 5% palladium-on-calcium carbonate in 50 ml of water and the resulting mixture was shaken under a hydrogen peroxide at ca. 3.2 at and 25 ° C overnight. The mixture was filtered and the filtrate extracted with ether. The extracts were evaporated in vacuo and the residue purified by chromatography on silica gel eluting with chloroform. 0.50 g of material was obtained.

Det sidstnævnte materiale hydrogeneredes ved ca. 3,-2 at og 25°C i vand-methanol (1:1) med 0,50 g 5% palladium-på-calciumcarbo-nat i 2 timer. Efter dette tidsrum tilsattes der yderligere 0,50 g 5% palladium-på-calciumcarbonat, og hydrogeneringen fortsattes ved 3,2 at og 25°C natten over. Reaktionsblandingen filtreredes og ekstraheredes med ether, og ekstrakterne bortkastedes. Den tilbageværende vandige fase indstilledes på pH 1,5 og ekstraheredes derefter med ethylacetat. Ethylacetatekstrakterne tørredes (Na2SO^) og inddampedes derefter i vakuum til opnåelse af 0,14 g penicillansyre-la-oxid.The latter material was hydrogenated at ca. 3, -2 at and 25 ° C in water-methanol (1: 1) with 0.50 g of 5% palladium-on-calcium carbonate for 2 hours. After this time, an additional 0.50 g of 5% palladium-on-calcium carbonate was added and hydrogenation was continued at 3.2 at and 25 ° C overnight. The reaction mixture was filtered and extracted with ether and the extracts discarded. The remaining aqueous phase was adjusted to pH 1.5 and then extracted with ethyl acetate. The ethyl acetate extracts were dried (Na 2 SO 4) and then evaporated in vacuo to give 0.14 g of penicillanic acid la-oxide.

NMR-spektret (CDCl^/DMSO-dg) viste absorptioner ved 1,4 (s, 3H), 1,64 (s, 3H), 3,60 (m, 2H), 4,3 (s, IH) og 4,54 (m, lH)ppm. IR-spektret for produktet (KBr-skive) viste absorptioner ved 1795 og 1745 cm”^.The NMR spectrum (CDCl3 / DMSO-dg) showed absorptions at 1.4 (s, 3H), 1.64 (s, 3H), 3.60 (m, 2H), 4.3 (s, 1H) and 4.54 (m, 1H) ppm. The IR spectrum of the product (KBr disk) showed absorptions at 1795 and 1745 cm 2

Referenceeksempel 2Reference Example 2

Penicillansyre-la-oxid.Penicillanic acid la-oxide.

Til 1,0 g forud hydrogeneret 5% palladium-på-calciumcarbonat i 30 ml vand sattes en opløsning af 1,0 g 6,6-dibrompenicillansyre-la-oxid. Blandingen rystedes under en hydrogenatmosfære ved ca. 3,2 at og 25°C i 1 time. Reaktionsblandingen filtreredes derpå, og filtratet koncentreredes i vakuum til fjernelse af methanolet. Den tilbageblevne vandige fase fortyndedes med et lige så stort rumfang vand, indstilledes på pH 7 og vaskedes med ether. Den vandige fase syrnedes derefter til pH 2 med fortyndet saltsyre og ekstraheredes med ethylacetat, Ethylacetatekstrakterne tørredes (Na2S04) og inddampedes i vakuum til opnåelse af penicillansyre-la-oxid.To 1.0 g of pre-hydrogenated 5% palladium-on-calcium carbonate in 30 ml of water was added a solution of 1.0 g of 6,6-dibrompenicillanic acid la-oxide. The mixture was shaken under a hydrogen atmosphere at ca. 3.2 at and 25 ° C for 1 hour. The reaction mixture was then filtered and the filtrate was concentrated in vacuo to remove the methanol. The remaining aqueous phase was diluted with an equal volume of water, adjusted to pH 7 and washed with ether. The aqueous phase was then acidified to pH 2 with dilute hydrochloric acid and extracted with ethyl acetate, the ethyl acetate extracts were dried (Na 2 SO 4) and evaporated in vacuo to give penicillanic acid la-oxide.

43 DK 155740 B43 DK 155740 B

Referenceeksempel 3Reference Example 3

Penicillansyre-13-oxid.Penicillanic acid 13-oxide.

Til en omrørt opløsning af 2,65g (12,7 mmol) penicillansyre i chloroform ved 0°c sattes 2,58 g 85% ren 3-chlorperbenzoesyre. Efter 1 times forløb filtreredes reaktionsblandingen, og filtratet inddampedes i vakuum. Remanensen opløstes i en lille mængde chloroform. Opløsningen koncentreredes langsomt, indtil et bundfald begyndte at vise sig. På dette tidspunkt blev inddampningen afbrudt, og blandingen fortyndedes med ether. Bundfaldet fjernedes ved filtrering, vaskedes med ether og tørredes til opnåelse af 0,615 g penicillansyre-ip-oxid, smp. 140-143°C. IR-spektret for produktet (CHCl,-opløsning) viste ab- —1 ^ sorptioner ved 1775 og 1720 cm . NMR-spektret (CDClg/DMSO-dg) viste absorptioner ved 1,35 (s, 3H), 1,76 (s, 3H), 3,36 (m, 2H), 4,50 (s, IH) og 5,05 (m, IH)ppm. Ifølge NMR-spektret var produktet ca. 90% rent.To a stirred solution of 2.65 g (12.7 mmol) of penicillanic acid in chloroform at 0 ° C was added 2.58 g of 85% pure 3-chloroperbenzoic acid. After 1 hour, the reaction mixture was filtered and the filtrate was evaporated in vacuo. The residue was dissolved in a small amount of chloroform. The solution was concentrated slowly until a precipitate began to appear. At this point, evaporation was stopped and the mixture was diluted with ether. The precipitate was removed by filtration, washed with ether and dried to give 0.615 g of penicillanic acid ip oxide, m.p. 140-143 ° C. The IR spectrum of the product (CHCl 3 solution) showed ab sorptions at 1775 and 1720 cm. The NMR spectrum (CDCl , 05 (m, 1H) ppm. According to the NMR spectrum, the product was approx. 90% pure.

En undersøgelse af chloroform-ether-moderluden viste, at den indeholdt yderligere penicillansyre-13-oxid og desuden noget penicil-lansyre-la-oxid.A study of the chloroform-ether mother liquor showed that it contained additional penicillanic acid-13 oxide and, moreover, some penicil-lanoic acid-la-oxide.

Referenceeksempel 4Reference Example 4

Ved forestring af penicillansyre-la-oxid eller penicillansy-re-13-oxid med det fornødne alkanoyloxychlorid i overensstemmelse med eksempel 4 opnåedes der henholdsvis følgende forbindelser: acetoxymethylpenicillanat-la-oxid, propionyloxymethylpenicillanat-la-oxid, pivalojzbxymethylpenicillanat-la-oxid, acetoxymethylpenicillanat-13-oxid, propionyloxymethylpenicillanat-ip-oxid og pivaloyloxymethylpenicillanat-13-oxid.By esterification of penicillanic acid la-oxide or penicillanic acid-13-oxide with the required alkanoyloxy chloride in accordance with Example 4, the following compounds were obtained, respectively: acetoxymethylpenicillanate-la-oxide, propionyloxymethylpenicillanate-la-oxide, pivalojzbxymethylpenicillanate-oxide, -13-oxide, propionyloxymethylpenicillanate ip-oxide and pivaloyloxymethylpenicillanate-13-oxide.

Referenceeksempel 5Reference Example 5

Ved omsætning af penicillansyre-la-oxid eller penicillansyre-Ιβ-oxid med efter omstændighederne 3-bromphthalid, 4-bromcrotonolac-ton eller 4-brom-y-butyrolacton opnåedes der henholdsvis følgende forbindelser: 3- phthalidylpenicillanat-la-oxid, 4- crotonolactonylpenicillanat-la-oxid, 3- phthalidylpenicillanat-13-oxid, 4- crotonolactonylpenicillanat-13-oxid og v—hnf wrnl d—-nonϊ pi 1 1 anat-l R-ηνϊ riBy reaction of penicillanic acid-la-oxide or penicillanic acid-β-oxide with 3-bromophthalide, 4-bromocrotonolactone or 4-bromo-γ-butyrolactone, respectively, the following compounds were obtained: 3-phthalidylpenicillanate-1-oxide, 4- crotonolactonylpenicillanate 1-oxide, 3-phthalidylpenicillanate-13-oxide, 4-crotonolactonyl-penicillanate-13-oxide and v-hnf wrnl d-nonϊ pi 1 1 anat-1 R-ηνϊ

44 DK 155740B44 DK 155740B

Referenceeksempel 6Reference Example 6

Ved omsætning af penicillansyre-la-oxid eller penicillansyre-Ιβ-oxid med dét fornødne 1-chloralkyl-alkylcarbonat eller l-(alkano-yloxy)ethylchlorid i overensstemmelse med fremgangsmåden ifølge eksempel 8 opnåedes der henholdsvis følgende forbindelser: 1-(ethoxycarbonyloxy)ethylpenieillanat-la-oxid, methoxycarbonyloxymethylpenicillanat-la-oxid, ethoxyc arbonyloxymethylpenic illanat-la-oxid, isobutoxycarbonyloxymethylpenicillanat-la-oxid, 1-(methoxycarbonyloxy)ethylpenicillanat-la-oxid, 1-(butoxycarbonyloxy)ethylpenicillanat -la-oxid, 1-(acetoxy)ethylpenicillanat-la-oxid, 1-(butyryloxy)ethylpenicillanat-la-oxid, 1-(pivaloyloxy)ethylpenicillanat-la-oxid, 1-(ethoxycarbonyloxy)ethylpenicillanat-lØ-oxid, methoxycarbonyloxymethylpenicillanat-13-oxid, ethoxycarbonyloxymethylpenicillanat-13-oxid, i sobutoxycarbonyloxymethylpenic i1lanat-13-oxid, 1- (methoxycarbonyloxy) ethylpenicillanat-13**oxid, 1-(butoxycarbonyloxy)ethylpenicillanat-13“Oxid, 1-(acetoxy)ethylpenicillanat-13-oxid, 1-(butyryloxy)ethylpenicillanat-13“Oxid og 1-(pivaloyloxy)ethylpenicillanat-13-oxid.By reaction of penicillanic acid 1a-oxide or penicillanic acid Ιβ-oxide with the required 1-chloroalkyl-alkyl carbonate or 1- (alkanoyloxy) ethyl chloride according to the procedure of Example 8, the following compounds were obtained, respectively: 1- (ethoxycarbonyloxy) ethylpenieillanate -la oxide, methoxycarbonyloxymethylpenicillanate la oxide, ethoxyc arbonyloxymethylpenic illanate la oxide, isobutoxycarbonyloxymethylpenicillanate la oxide, 1- (methoxycarbonyloxy) ethylpenicillanate la oxide, 1- (butoxycarbonyloxy) acetoxy) ethylpenicillanate 1 oxide, 1- (butyryloxy) ethylpenicillanate 1 oxide, 1- (pivaloyloxy) ethylpenicillanate 1 oxide, 1- (ethoxycarbonyloxy) ethylpenicillanate 10 oxide, methoxycarbonyloxymethylpenicillanate 13 oxide, ethoxycarbony oxide, in sobutoxycarbonyloxymethylpenic illanate 13 oxide, 1- (methoxycarbonyloxy) ethylpenicillanate-13 oxide, 1- (butoxycarbonyloxy) ethylpenicillanate-13 "Oxide, 1- (acetoxy) ethylpenicillanate-13 oxide, 1- (butyryloxy) ) Ethylpenicillanate-13 "Oxide and 1- (pivaloyloxy) ethylpenicillanate-13 oxide.

Referenceeksempel 7Reference Example 7

Ved omsætning af penicillansyre-la-oxid og penicillansyre-13-oxid med benzylbromid i overensstemmelse med fremgangsmåden ifølge eksempel 3 opnåedes der henholdsvis benzylpenicillanat-la-oxid og benzyl-penicillanat-13“Oxid.By reaction of penicillanic acid-la-oxide and penicillanic acid-13-oxide with benzyl bromide according to the procedure of Example 3, benzylpenicillanate-la-oxide and benzyl-penicillanate-13 ° Oxide were obtained, respectively.

På lignende måde opnåedes der ved omsætning af penicillansyre-la-oxid og penicillansyre-13~oxid med 4-nitrobenzylbromid i overensstemmelse med fremgangsmåden ifølge eksempel 3 henholdsvis 4-nitro-benzylpenicillanat-la-oxid og 4-nitrobenzylpenicillanat-13-oxid.Similarly, by reaction of penicillanic acid 1a-oxide and penicillanic acid-13 ~ oxide with 4-nitrobenzyl bromide, in accordance with the procedure of Example 3, 4-nitro-benzylpenicillanate-1-oxide and 4-nitrobenzylpenicillanate-13-oxide, respectively, were obtained.

Preparation APreparation A

6,6-Dibrompenicillansyre-la-oxid.6,6-dibromopenicillanic acid la-oxide.

Den i overskriften anførte forbindelse fremstilles ved oxidation af 6,6-dibrompenicillansyre med 1 askvi valent 3-chlorperbenzoe-The title compound is prepared by oxidation of 6,6-dibrompenicillanic acid with 1 ash valent 3-chloroperbenzoic acid.

45 DK 155740 B45 DK 155740 B

syre i tetrahydrofuran ved 0-25°C i ca. 1 time efter den fremgangsmåde, der er angivet af Harrison et al., Journal of the Chemical Society (London) Perkin I, 1772 (1976).acid in tetrahydrofuran at 0-25 ° C for approx. 1 hour following the method set forth by Harrison et al., Journal of the Chemical Society (London) Perkin I, 1772 (1976).

Preparation BPreparation B

Benzyl-6,6-dibrompenicillanat.Benzyl 6,6-dibromopenicillanate.

Til en opløsning af 54 g (0,165 mol) 6,6-dibrompenicillansyre i 350 ml Ν,Ν-dimethylacetamid sattes 22,9 ml (0,165 mol) triethyl-amin, og opløsningen omrørtes i 40 minutter. Der tilsattes 19,6 ml (0,165 mol) benzylbromid, og den opnåede blanding omrørtes ved stuetemperatur i 48 timer. Det udfældede triethylamin-hydrobromid fra-filtreredes, og filtratet sattes til 1500 ml isvand indstillet på pH 2. Blandingen ekstraheredes med ether, og ekstrakterne vaskedes efter hinanden med mættet natriumhydrogencarbonatopløsning, vand og saltopløsning. Den tørrede (MgSO^) etheropløsning inddampedes i vakuum til opnåelse af et næsten hvidt fast stof, som omkrystalliseredes af isopropanol. Derved opnåedes 70,0 g (95% udbytte) af den i overskriften anførte forbindelse, smp. 75-76°C. IR-spektret (KBr-skive) viste absorptioner ved 1795 og 1740 cm NMR-spektret (CDClg) viste absorptioner ved 1,53 (s, 3H), 1,58 (s, 3H), 4,50 (s, IH), 5,13 (s, 2H), 5,72 (s, IH) og 7,37 (s, 5H)ppm.To a solution of 54 g (0.165 mol) of 6,6-dibrompenicillanic acid in 350 ml of Ν, Ν-dimethylacetamide was added 22.9 ml (0.165 mol) of triethylamine and the solution was stirred for 40 minutes. 19.6 ml (0.165 mol) of benzyl bromide was added and the resulting mixture was stirred at room temperature for 48 hours. The precipitated triethylamine hydrobromide was filtered off and the filtrate was added to 1500 ml of ice water adjusted to pH 2. The mixture was extracted with ether and the extracts were washed successively with saturated sodium bicarbonate solution, water and brine. The dried (MgSO 4) ether solution was evaporated in vacuo to give an almost white solid which was recrystallized from isopropanol. There was thus obtained 70.0 g (95% yield) of the title compound, m.p. 75-76 ° C. The IR spectrum (KBr disk) showed absorptions at 1795 and 1740 cm NMR spectrum (CDCl 3) showed absorptions at 1.53 (s, 3H), 1.58 (s, 3H), 4.50 (s, 1H) , 5.13 (s, 2H), 5.72 (s, 1H) and 7.37 (s, 5H) ppm.

Preparation CPreparation C

Benzyl-6,6-d.ibrompenicillanat-la-oxid.Benzyl-6,6-d.ibrompenicillanat-la-oxide.

Til en omrørt opløsning af 13,4 g (0,03 mol) benzyl-6,6-di-brompenicillanat i 200 ml dichlormethan sattes en opløsning af 6,12 g (0,03 mol) 3-chlorperbenzoesyre i 100 ml dichlormethan ved ca. 0°C. Omrøringen fortsattes i 1,5 timer ved ca. 0°C, hvorefter reaktionsblandingen filtreredes. Filtratet vask-edes efter hinanden med 5% na-triumhydrogencarbonatopløsning og vand, hvorefter den tørredes (Na2S04). Ved fjernelse af opløsningsmidlet ved afdampning i vakuum opnåedes 12.5 g af det i overskriften anførte produkt som en olie. Man fik olien til at størkne ved triturering under ether. Ved filtrering opnåedes derpå 10,5 g benzyl-6,6-dibrompenicillanat-la-oxid som et fast stof. IR-spektret (CHC13) viste absorptioner ved 1800 og 1750 cm-1. NMR-spektret for produktet (CDClg) viste absorptioner ved 1,3 (s, 3H), 1.5 (s, 3H), 4,5 (s, IH), 5,18 (s, 2H), 5,2 (s, IH) og 7,3 (s, 5H) ppm.To a stirred solution of 13.4 g (0.03 mole) of benzyl 6,6-dibrompenicillanate in 200 ml of dichloromethane was added a solution of 6.12 g (0.03 mole) of 3-chloroperbenzoic acid in 100 ml of dichloromethane. ca. 0 ° C. Stirring was continued for 1.5 hours at ca. 0 ° C, after which the reaction mixture was filtered. The filtrate was washed successively with 5% sodium hydrogen carbonate solution and water and then dried (Na 2 SO 4). Removal of the solvent by evaporation in vacuo afforded 12.5 g of the title product as an oil. The oil was solidified by trituration under ether. By filtration, 10.5 g of benzyl 6,6-dibrompenicillanate 1-oxide was then obtained as a solid. The IR spectrum (CHCl3) showed absorptions at 1800 and 1750 cm -1. The NMR spectrum of the product (CDCl 3) showed absorptions at 1.3 (s, 3H), 1.5 (s, 3H), 4.5 (s, 1H), 5.18 (s, 2H), 5.2 (s). , 1H) and 7.3 (s, 5H) ppm.

46 DK 155740 B46 DK 155740 B

Preparation DPreparation D

4-Nitrobenzylpenicillanat.4-Nitrobenzylpenicillanat.

Ved omsætning af triethylaminsaltet af penicillansyre med 4-nitrobenzylbromid ved fremgangsmåden ifølge preparation B opnåedes 4-nitrobenzylpenicillanat.Reaction of the triethylamine salt of penicillanic acid with 4-nitrobenzyl bromide by the method of Preparation B gave 4-nitrobenzylpenicillanate.

Preparation e 3-Phthalidylpenicilianat.Preparation of 3-Phthalidylpenicilianate.

Til en opløsning af 506 mg penicillansyre i 2 ml N,N-dimethyl-formid sattes 0/476 ml diisopropylethylamin efterfulgt af 536 mg 3-phthalidylbromid. Blandingen omrørtes natten over, hvorefter den fortyndedes med ethylacetat og vand. pH indstilledes på 3,0, og lagene adskiltes. Det organiske lag vaskedes med vand og derefter med vand med pH 8,0, hvorpå det tørredes under anvendelse af vandfrit natriumsulfat. Den tørrede ethylacetatopløsning inddampedes i vakuum til opnåelse af 713 mg af den i overskriften anførte ester som en olie. NMR-spektret (CDClg) viste absorptioner ved 1,62 (m, 6H), 3,3 (m, 2H) , 4,52 (s, IH), 5,23 (m, IH) og 7,63 (m, 5H) .To a solution of 506 mg of penicillanic acid in 2 ml of N, N-dimethylformide was added 0/476 ml of diisopropylethylamine followed by 536 mg of 3-phthalidyl bromide. The mixture was stirred overnight, then diluted with ethyl acetate and water. The pH was adjusted to 3.0 and the layers separated. The organic layer was washed with water and then with pH 8.0 water, and then dried using anhydrous sodium sulfate. The dried ethyl acetate solution was evaporated in vacuo to give 713 mg of the title ester as an oil. The NMR spectrum (CDCl 3) showed absorptions at 1.62 (m, 6H), 3.3 (m, 2H), 4.52 (s, 1H), 5.23 (m, 1H) and 7.63 (m , 5H).

Preparation FPreparation F

Pivaloyloxymethylpenicillanat.Pivaloyloxymethylpenicillanat.

Til 3,588 g 6,6-dibrompenicillansyre i 10 ml Ν,Ν-dimethylformamid sattes 1,8 ml diisopropylethylamin efterfulgt af 1,40 ml chlor-methylpivalat. Blandingen omrørtes natten over, hvorefter den fortyndedes med ethylacetat og vand. Det organiske lag fraskiltes og vaskedes efter hinanden med vand med pH 3,0 og vand med pH 8,0. Ethyl-acetatopløsningen tørredes (Na^SO^) og inddampedes derefter i vakuum til opnåelse af pivaloyloxymethyl-6,6-dibrompenicillanat som en ravgul olie (3,1 g), der langsomt krystalliserede.To 3.588 g of 6,6-dibrompenicillanic acid in 10 ml of Ν, Ν-dimethylformamide was added 1.8 ml of diisopropylethylamine followed by 1.40 ml of chloromethyl pivalate. The mixture was stirred overnight, then diluted with ethyl acetate and water. The organic layer was separated and washed successively with water of pH 3.0 and water of pH 8.0. The ethyl acetate solution was dried (Na 2 SO 4) and then evaporated in vacuo to give pivaloyloxymethyl 6,6-dibrompenicillanate as an amber oil (3.1 g) which slowly crystallized.

Den ovennævnte ester opløstes i 100 ml methanol, hvorefter der tilsattes 3,1 g 10% palladium-på-carbon og 1,31 g kaliumhydrogencar-bonat i 20 ml vand. Blandingen rystedes under hydrogen ved atmosfæretryk, indtil hydrogenoptagelsen ophørte. Reaktionsblandingen filtreredes, og methanolet fjernedes ved afdampning i vakuum. Remanensen fordeltes mellem vand og ethylacetat ved pH 8, og derefter fraskiltes det organiske lag. Det sidstnævnte tørredes (Na2SO^) og inddampedes i vakuum til opnåelse af 1,25 g af den i overskriften anførte forbinThe above ester was dissolved in 100 ml of methanol, then 3.1 g of 10% palladium-on-carbon and 1.31 g of potassium hydrogen carbonate were added in 20 ml of water. The mixture was shaken under hydrogen at atmospheric pressure until hydrogen uptake ceased. The reaction mixture was filtered and the methanol removed by evaporation in vacuo. The residue was partitioned between water and ethyl acetate at pH 8, and then the organic layer was separated. The latter was dried (Na 2 SO 4) and evaporated in vacuo to give 1.25 g of the title compound

Claims (7)

1-N-L ^ //// i CT ''COOR X 6 hvori R har samme betydning som R eller er en konventionel penicil-lincarboxybeskyttende gruppe, hvorefter man om nødvendigt fjerner den carboxybeskyttende gruppe og, om ønsket, omdanner en opnået forbindelse til et farmaceutisk acceptabelt salt ved omsætning med en base under anvendelse af sædvanlige fremgangsmåder, eller g b) til fremstilling af forbindelser med formlen I, hvor R har den ovennævnte betydning bortset fra hydrogen, omsætter et salt af penicillansyre-l,l-dioxid med 3-phthalidylchlorid, 3-phthalidyl-bromid, 4-crotonolacton-4-yl-chlorid, 4-crotonolacton-4-yl-bromid, Y-butyrolacton-4-yl-chlorid, Y-butyrolacton-4-yl-bromid eller en forbindelse med formlen f $ R1 0 I II 5 I II 5 Q-C-O-C-R1 XII eller Q-C-0-C-0-R XIII l4 I4 R R 5 hvori R -R har de ovennævnte betydninger, og Q er chlor eller brom, i et reaktionsindifferent opløsningsmiddel ved en temperatur i området fra 0 til 100°C.1-NL ^ //// in CT COOR X 6 wherein R has the same meaning as R or is a conventional penicillin-carboxy protecting group, after which removing the carboxy protecting group and, if desired, converting a obtained compound into a pharmaceutically acceptable salt by reaction with a base using conventional methods, or gb) to prepare compounds of formula I wherein R has the above meaning other than hydrogen, reacting a salt of penicillanic acid 1,1-dioxide with 3-phthalidyl chloride , 3-phthalidyl bromide, 4-crotonolacton-4-yl chloride, 4-crotonolacton-4-yl bromide, Y-butyrolacton-4-yl chloride, Y-butyrolacton-4-yl bromide or a compound of the formula f $ R1 0 I II 5 I II 5 QCOC-R1 XII or QC-0-C-0-R XIII 14 I4 RR 5 wherein R -R has the above meanings, and Q is chlorine or bromine, in a reaction inert solvent at a temperature in the range of 0 to 100 ° C. 1. Analogifremgangsmåde til fremstilling af penicillan-syrederivater med formlen H, 0"-s'0 ,''CH3 Γ! "f-CH3 )-“-\ 6 0' COOR hvori R6 er hydrogen, 3-phthalidyl, 4-crotonolactonyl, Y-butyrolacton-4-yl eller en gruppe med formlen R3 O R3 0 I II 5 I II 5 -C-O-C-R X eller -C-O-C-O-R XI I 4 I 4 R R hvori R og R hver er hydrogen, methyl eller ethyl, og R er alkyl med 1-6 carbonatomer, samt,når R6 betegner hydrogen, fysiologisk acceptable salte heraf, kendetegnet ved, at manAn analogous process for the preparation of penicillanic acid derivatives of the formula H, 0 "-s'0," 'CH3 Γ' '- (CH3) -' - \ 6 O 'COOR wherein R6 is hydrogen, 3-phthalidyl, 4-crotonolactonyl , Y-butyrolacton-4-yl or a group of formula R3 O R3 0 I II 5 I II 5 -COCR X or -COCOR XI I 4 I 4 RR wherein R and R are each hydrogen, methyl or ethyl and R is alkyl of 1-6 carbon atoms, and when R6 represents hydrogen, physiologically acceptable salts thereof, characterized in that 48 DK 155740 B a) oxiderer en forbindelse med formlen O O H = ,vCH^ I 0‘CH3 C· c ν' 3 ' c ' V -S ν' V -.S ^ r-YY-CH3 II/ rf>CH3 1_n_L J— n-L CT ^COOR1 CT ^COOR1 \.s -- 3 eller -“~CH3 III'A) oxidizes a compound of the formula OOH =, vCH ^ I 0'CH3 C · c ν '3' c 'V -S ν' V -.S ^ r-YY-CH3 II / rf> CH3 1_n_L J - nL CT ^ COOR1 CT ^ COOR1 \ .s - 3 or - "~ CH3 III ' 2. Fremgangsmåde ifølge krav la), kendetegnet ved, at oxidationen udføres under anvendelse af et metalpermanganat eller en organisk peroxycarboxylsyre.Process according to claim 1a, characterized in that the oxidation is carried out using a metal permanganate or an organic peroxycarboxylic acid. 49 DK 155740 B49 DK 155740 B 3. Fremgangsmåde ifølge krav 2, kendetegn et ved, at oxidationen udføres under anvendelse af kaliumpermanganat.Process according to claim 2, characterized in that the oxidation is carried out using potassium permanganate. 4. Fremgangsmåde ifølge krav 3, kendetegnet ved, at oxidationen udføres i et reaktionsindifferent opløsningsmiddel ved en temperatur i området fra ca. -20 til ca. 50°C.Process according to claim 3, characterized in that the oxidation is carried out in a reaction-inert solvent at a temperature in the range of from approx. -20 to approx. 50 ° C. 4-Nitrobenzylpenicillanat. Til en omrørt opløsning af 2,14 g penicillansyre og 2,01 ml ethyldiisopropylamin i 10 ml Ν,Ν-dimethylformamid sattes dråbevis 2,36 g 4-nitrobenzylbromid ved ca. 20°C. Blandingen omrørtes ved stuetemperatur natten over, hvorefter den fortyndedes med ethylacetat og vand. Lagene adskiltes, og ethylacetatlaget vaskedes med vand med pH 2,5 efterfulgt af vand med pH 8,5. Ethylacetatopløsningen tørredes derefter (I^SO^) og inddampedes i vakuum til opnåelse af 3,36 g af den i overskriften anførte forbindelse. NMR-spektret for produktet (i CDCI3) viste absorptioner ved 1,45 (s, 3H), 1,68 (s, 3H), 3,32 (m, 2H) , 4,50 (s, IH), 5,23 (m, IH), 5,25 (s, 2H) og 7,85 (q, 4H) ppm.4-Nitrobenzylpenicillanat. To a stirred solution of 2.14 g of penicillanic acid and 2.01 ml of ethyl diisopropylamine in 10 ml of Ν, Ν-dimethylformamide was added dropwise 2.36 g of 4-nitrobenzyl bromide at ca. 20 ° C. The mixture was stirred at room temperature overnight, then diluted with ethyl acetate and water. The layers were separated and the ethyl acetate layer was washed with water of pH 2.5 followed by water of pH 8.5. The ethyl acetate solution was then dried (1 SO 2) and evaporated in vacuo to give 3.36 g of the title compound. The NMR spectrum of the product (in CDCl 3) showed absorptions at 1.45 (s, 3H), 1.68 (s, 3H), 3.32 (m, 2H), 4.50 (s, 1H), 23 (m, 1H), 5.25 (s, 2H) and 7.85 (q, 4H) ppm. 5. Fremgangsmåde ifølge et vilkårligt af kravene 1-4, 1 6 kendetegnet ved, at R og R er hydrogen.Process according to any one of claims 1-4, 16 characterized in that R and R are hydrogen. 6. Fremgangsmåde ifølge krav lb), kendetegnet ved, at R^ er alkanoyloxymethyl med 3-8 carbonatomer.Process according to claim 1b), characterized in that R 1 is alkanoyloxymethyl having 3-8 carbon atoms. 7. Fremgangsmåde ifølge krav 6, kendetegnet ved, g at R er pivaloyloxymethyl.Process according to claim 6, characterized in that R is pivaloyloxymethyl.
DK251478A 1977-06-07 1978-06-06 METHOD OF ANALOGUE FOR PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE, CERTAIN ESTERS AND PHYSIOLOGICALLY ACCEPTABLE SALTS DK155740C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK428682A DK156480C (en) 1977-06-07 1982-09-27 PENICILLANIC ACID-1 OXIDES USED AS INTERMEDIATES IN THE PREPARATION OF THERAPEUTIC ACTIVE PENICILLANIC ACID-1,1-DIOXIDE DERIVATIVES

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US80432077A 1977-06-07 1977-06-07
US80432077 1977-06-07
US87938178A 1978-02-21 1978-02-21
US87938178 1978-02-21

Publications (3)

Publication Number Publication Date
DK251478A DK251478A (en) 1978-12-08
DK155740B true DK155740B (en) 1989-05-08
DK155740C DK155740C (en) 1989-10-23

Family

ID=27122691

Family Applications (1)

Application Number Title Priority Date Filing Date
DK251478A DK155740C (en) 1977-06-07 1978-06-06 METHOD OF ANALOGUE FOR PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE, CERTAIN ESTERS AND PHYSIOLOGICALLY ACCEPTABLE SALTS

Country Status (35)

Country Link
AR (1) AR224111A1 (en)
AT (2) AT360649B (en)
AU (1) AU513636B2 (en)
BE (1) BE867859A (en)
BG (2) BG34615A3 (en)
CH (1) CH634073A5 (en)
CS (1) CS208472B2 (en)
DD (2) DD140888A5 (en)
DE (2) DE2857263C3 (en)
DK (1) DK155740C (en)
EG (1) EG13869A (en)
FI (1) FI66003C (en)
FR (2) FR2393804A1 (en)
GB (1) GB2000138B (en)
GR (1) GR72255B (en)
HK (1) HK13184A (en)
HU (1) HU180042B (en)
IE (1) IE47079B1 (en)
IL (2) IL54867A (en)
IN (1) IN149747B (en)
IT (1) IT1096381B (en)
KE (1) KE3355A (en)
LU (1) LU79774A1 (en)
MY (1) MY8500092A (en)
NL (2) NL180009C (en)
NO (2) NO151746C (en)
NZ (1) NZ187476A (en)
OA (1) OA05964A (en)
PH (3) PH26810A (en)
PL (1) PL114501B1 (en)
PT (1) PT68146A (en)
SE (2) SE436206B (en)
SG (1) SG65383G (en)
SU (1) SU860706A1 (en)
YU (1) YU41829B (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU77306A1 (en) * 1977-05-09 1979-01-18
DE2912511C2 (en) * 1977-06-07 1982-06-24 Pfizer Inc., 10017 New York, N.Y. Pharmaceutical composition containing penicillanic acid
DK155942C (en) * 1977-12-23 1989-10-23 Pfizer METHOD OF ANALOGUE FOR THE PREPARATION OF 6-AMINOPENICILLANIC ACID-1,1-DIOXIDE AND PHYSIOLOGICALLY ACCEPTABLE ACID ADDITION AND BASIS SALTS.
JPS54126735A (en) * 1978-03-24 1979-10-02 Toyama Chem Co Ltd Bactericidal composition for medical use
US4241050A (en) * 1978-09-01 1980-12-23 Pfizer Inc. Penam 1,1-dioxides as beta-lactamase inhibitors
CA1158639A (en) * 1978-12-11 1983-12-13 Eric M. Gordon 6-bromopenicillanic acid sulfone
IE49880B1 (en) * 1979-02-13 1986-01-08 Leo Pharm Prod Ltd Penicillin derivatives
US4714761A (en) * 1979-03-05 1987-12-22 Pfizer Inc. 6,6-dihalopenicillanic acid 1,1-dioxides and process
SE449103B (en) * 1979-03-05 1987-04-06 Pfizer SET TO PENICILLANIC ACID-1,1-DIOXIDE AND ESSERS THEREOF
US4420426A (en) 1979-03-05 1983-12-13 Pfizer Inc. 6-Alpha-halopenicillanic acid 1,1-dioxides
GB2045236A (en) * 1979-03-26 1980-10-29 Hoechst Uk Ltd Oxapenem derivatives
US4244951A (en) * 1979-05-16 1981-01-13 Pfizer Inc. Bis-esters of methanediol with penicillins and penicillanic acid 1,1-dioxide
US4309347A (en) * 1979-05-16 1982-01-05 Pfizer Inc. Penicillanoyloxymethyl penicillanate 1,1,1',1'-tetraoxide
IE49768B1 (en) * 1979-05-21 1985-12-11 Leo Pharm Prod Ltd 6beta-halopenicillanic acid derivatives
DE3051044C2 (en) * 1979-06-19 1989-03-30 Leo Pharmaceutical Products Ltd. A/S (Loevens Kemiske Fabrik Produktionsaktieselskab), Ballerup, Dk
US4256733A (en) * 1979-09-26 1981-03-17 Pfizer Inc. Acetoxymethyl penam compounds as β-lactamase inhibitors
US4432970A (en) * 1979-11-23 1984-02-21 Pfizer Inc. 6-beta-Halopenicillanic acid 1,1-dioxides as beta-lactamase inhibitors
IL61880A (en) * 1980-01-21 1984-11-30 Bristol Myers Co 2beta-chloromethyl-2alpha-methylpenam-3alpha-carboxylic acid sulfone derivatives,their preparation and pharmaceutical compositions containing them
US4432903A (en) * 1980-09-08 1984-02-21 Pfizer Inc. Bis-esters of methanediol with penicillins and penicillanic acid 1,1-dioxide
US4488994A (en) * 1980-09-08 1984-12-18 Pfizer Inc. Bis-esters of methanediol with penicillins and penicillanic acid 1,1-dioxide
US4474698A (en) * 1980-12-11 1984-10-02 Pfizer Inc. Process for preparing esters of penicillanic acid sulfone
US4419284A (en) * 1981-03-23 1983-12-06 Pfizer Inc. Preparation of halomethyl esters (and related esters) of penicillanic acid 1,1-dioxide
EP0069962B1 (en) * 1981-07-15 1985-01-02 Kanebo, Ltd. Novel ester of 1,1-dioxopenicillanic acid, process for production thereof, and use thereof as beta-lactamase inhibitor
PT76527B (en) * 1982-04-19 1985-12-09 Gist Brocades Nv A process for the preparation of penicillanic acid 1,1-dioxide and derivatives thereof
US4502988A (en) * 1983-08-08 1985-03-05 Eli Lilly And Company Oxidation process
EP0139047A1 (en) * 1983-10-18 1985-05-02 Gist-Brocades N.V. Process for the preparation of 6,6-dibromopenicillanic acid 1,1-dioxide
US4647457A (en) * 1983-12-16 1987-03-03 Hoffmann-La Roche Inc. Penicillanic acid derivatives
US4816580A (en) * 1986-04-10 1989-03-28 Leo Pharmaceutical Products Ltd. A/S Improved method for preparing penicillanic acid derivatives
GB8808701D0 (en) * 1988-04-13 1988-05-18 Erba Carlo Spa Beta-lactam derivatives
CN102977120B (en) * 2012-12-14 2015-05-27 江西富祥药业股份有限公司 Method for preparing and crystallizing sulbactam pivoxyl

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197466A (en) * 1961-10-30 1965-07-27 Smith Kline French Lab Penicillin sulfoxides and process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU77306A1 (en) * 1977-05-09 1979-01-18
AU3796278A (en) * 1977-07-13 1980-01-17 Glaxo Group Ltd Penams and azetidinones

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197466A (en) * 1961-10-30 1965-07-27 Smith Kline French Lab Penicillin sulfoxides and process

Also Published As

Publication number Publication date
DE2857263C3 (en) 1981-12-17
SE447995B (en) 1987-01-12
NL930064I2 (en) 1994-04-18
GR72255B (en) 1983-10-06
PL114501B1 (en) 1981-02-28
DD148585A5 (en) 1981-06-03
HK13184A (en) 1984-02-24
NO781970L (en) 1978-12-08
DE2824535C3 (en) 1981-01-22
SG65383G (en) 1985-03-29
FR2393804A1 (en) 1979-01-05
FI781800A (en) 1978-12-08
IE47079B1 (en) 1983-12-14
FI66003C (en) 1984-08-10
SE8305916D0 (en) 1983-10-27
YU117078A (en) 1983-01-21
NL180009C (en) 1986-12-16
DK251478A (en) 1978-12-08
NO152448B (en) 1985-06-24
CS208472B2 (en) 1981-09-15
DE2824535B2 (en) 1980-05-14
LU79774A1 (en) 1980-01-22
GB2000138B (en) 1982-03-03
IL62168A0 (en) 1981-03-31
AT364084B (en) 1981-09-25
EG13869A (en) 1983-03-31
HU180042B (en) 1983-01-28
BG34615A3 (en) 1983-10-15
NZ187476A (en) 1982-08-17
IT1096381B (en) 1985-08-26
AR224111A1 (en) 1981-10-30
NO151746B (en) 1985-02-18
NL930064I1 (en) 1993-09-01
AT360649B (en) 1981-01-26
ATA411278A (en) 1980-06-15
IT7824270A0 (en) 1978-06-06
PH26810A (en) 1992-11-05
MY8500092A (en) 1985-12-31
IN149747B (en) 1982-04-03
AU3683878A (en) 1979-12-06
DE2824535A1 (en) 1978-12-14
BE867859A (en) 1978-12-06
YU41829B (en) 1988-02-29
DD140888A5 (en) 1980-04-02
SE436206B (en) 1984-11-19
ATA128580A (en) 1981-02-15
FR2393805B1 (en) 1984-02-24
SE7806628L (en) 1978-12-08
NO152448C (en) 1985-10-02
NO151746C (en) 1985-06-05
NL7806126A (en) 1978-12-11
OA05964A (en) 1981-06-30
AU513636B2 (en) 1980-12-11
FR2393804B1 (en) 1980-11-07
IE781140L (en) 1978-12-07
BG34614A3 (en) 1983-10-15
IL54867A (en) 1981-11-30
KE3355A (en) 1983-12-16
FR2393805A1 (en) 1979-01-05
SU860706A1 (en) 1981-08-30
NO823126L (en) 1978-12-08
PH16465A (en) 1983-10-20
GB2000138A (en) 1979-01-04
DK155740C (en) 1989-10-23
PT68146A (en) 1978-07-01
PH21116A (en) 1987-07-16
FI66003B (en) 1984-04-30
SE8305916L (en) 1983-10-27
CH634073A5 (en) 1983-01-14
DE2857263B2 (en) 1981-04-23
PL207396A1 (en) 1979-06-04
IL54867A0 (en) 1978-08-31

Similar Documents

Publication Publication Date Title
DK155740B (en) METHOD OF ANALOGUE FOR PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE, CERTAIN ESTERS AND PHYSIOLOGICALLY ACCEPTABLE SALTS
US4234579A (en) Penicillanic acid 1,1-dioxides as β-lactamase inhibitors
KR840000797B1 (en) Process for preparing 6 -hydroxy alkyl-penicillanic acid derivatives
US4276285A (en) Combinations of penicillanic acid 1,1-dioxide with 7-(D-2-[4-ethylpiperazin-2,3-dione-1-carboxamido]-2-[4-hydroxyphenyl]acetamido)-3-([1-methyl-5-tetrazolyl]thiomethyl)-3-desacetoxymethylcephalosporanic acid
US4256733A (en) Acetoxymethyl penam compounds as β-lactamase inhibitors
US4420426A (en) 6-Alpha-halopenicillanic acid 1,1-dioxides
IE54771B1 (en) Derivatives of ampicillin and amoxicillin with beta-lactamase inhibitors
FI70024B (en) FOERFARANDE FOER FRAMSTAELLNING AV PENICILLANSYRA-1,1-DIOXID OCH DESS ESTRAR
US4260598A (en) Method for increasing antibacterial effectiveness of a β-lactam antibiotic
NO823093L (en) PROCEDURE FOR PREPARING BETA-LACTAMASE INHIBITIVE COMPOUNDS.
US4714761A (en) 6,6-dihalopenicillanic acid 1,1-dioxides and process
JPS6145993B2 (en)
US4762920A (en) 6,6-Dihalopenicillanic acid 1,1-dioxides
EP0083977A1 (en) 6-Alpha-hydroxymethylpenicillanic acid sulfone as a beta-lactamase inhibitor
EP0002927B1 (en) Penicillanic acid derivatives, processes for their preparation and pharmaceutical compositions containing them
CA1129773A (en) PENICILLANIC ACID 1,1-DIOXIDES AS .beta.-LACTAMASE INHIBITORS
KR820000740B1 (en) Process for preaprign penicillanic acid 1,1-dioxides
KR810002025B1 (en) Process for preparing penicillanic acid 1,1-dioxides
NZ199601A (en) Coadministration of a cephalosporin derivative and a penicillin
NZ199608A (en) Administering penicillanic acid 1,1-dioxides with beta-lactam antibiotics
JPH0534336B2 (en)

Legal Events

Date Code Title Description
PUP Patent expired