DK166353B - Penicillanic acid 1,1-dioxide DERIVATIVES - Google Patents

Penicillanic acid 1,1-dioxide DERIVATIVES Download PDF

Info

Publication number
DK166353B
DK166353B DK145690A DK145690A DK166353B DK 166353 B DK166353 B DK 166353B DK 145690 A DK145690 A DK 145690A DK 145690 A DK145690 A DK 145690A DK 166353 B DK166353 B DK 166353B
Authority
DK
Denmark
Prior art keywords
dioxide
acid
ethyl
solution
ethyl acetate
Prior art date
Application number
DK145690A
Other languages
Danish (da)
Other versions
DK145690A (en
DK145690D0 (en
DK166353C (en
Inventor
Bernard Shields Moore
Ronnie D Carroll
Robert Alfred Volkmann
Original Assignee
Pfizer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer filed Critical Pfizer
Publication of DK145690A publication Critical patent/DK145690A/en
Publication of DK145690D0 publication Critical patent/DK145690D0/en
Publication of DK166353B publication Critical patent/DK166353B/en
Application granted granted Critical
Publication of DK166353C publication Critical patent/DK166353C/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Description

DK 166353BDK 166353B

Den foreliggende opfindelse angår hidtil ukendte penicillansyre-1,1-dioxid-derivater, der er ejendommelige ved, at de er derivater med den almene formelThe present invention relates to novel penicillanic acid 1,1-dioxide derivatives which are characterized in that they are derivatives of the general formula

5 Y \? „-CH5 Y \? "-CH

*-i( \ i “U'T”T CH, (III) -\* -i (\ i "U'T" T CH, (III) - \

o COORo COOR

eller basesalte deraf, hvor R er hydrogen, en in vivo 10 let hydrolyserbar esterdannende gruppe udvalgt blandt 3-phthalidyl, 4-crotonolactonyl, γ-butyrolactonyl eller en gruppe med formlen:or base salts thereof, wherein R is hydrogen, an in vivo easily hydrolyzable ester-forming group selected from 3-phthalidyl, 4-crotonolactonyl, γ-butyrolactonyl or a group of the formula:

2 2 R O R O2 2 R O R O

I II 4 I II 4 -C-O-C-R eller -C-O-C-O-R I 3 I 3I II 4 I II 4 -C-O-C-R or -C-O-C-O-R I 3 I 3

15 RJ RJ15 RJ RJ

2 3 hvor R og R hver er hydrogen eller alkyl med 1-2 4 C-atomer, og R er alkyl med 1-5 C-atomer, eller en sædvanlig penicillincarboxy-beskyttende gruppe udvalgt blandt tetrahydropyranyl, trialkylsilyl med 1-3 C-ato-20 mer i hver alkylgruppe, benzyl, 4-nitro-benzyl, benz-hydryl, 2,2,2-trichlorethyl, t-butyl eller phenacyl , og X og Y hver er hydrogen, chlor, brom eller iod med den betingelse, at når X og Y er ens, skal de begge være bran.Wherein R and R are each hydrogen or alkyl of 1-2 to 4 C atoms and R is alkyl of 1 to 5 C atoms, or a usual penicillin carboxy protecting group selected from tetrahydropyranyl, trialkylsilyl having 1-3 C atoms in each alkyl group, benzyl, 4-nitrobenzyl, benzhydryl, 2,2,2-trichloroethyl, t-butyl or phenacyl, and X and Y are each hydrogen, chloro, bromo or iodo with the condition that when X and Y are the same, they should both be bran.

Disse hidtil ukendte penicillansyre-1,1-dioxid-25 derivater er anvendelige som mellemprodukter og kan som sådanne navnlig indgå i en særlig og i henseende til udbytte fordelagtig fremgangsmåde til fremstilling af penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf, som omhandlet i stamsagen DK fremlæg-30 gelsesskrift nr. 159.852.These novel penicillanic acid 1,1-dioxide derivatives are useful as intermediates and as such may be particularly included in a particular and advantageous yielding process for the preparation of penicillanic acid 1,1-dioxide and in vivo readily hydrolyzable esters thereof , which is referred to in the case in the case of the Danish Patent Application No. 305,552.

Penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf er anvendelige som beta-lactamasein-hibitorer og som midler, der fremmer effektiviteten af visse beta-lactam-antibiotica, når sidstnævnte anvendes 35 til behandling af bakterieinfektioner hos pattedyr, navnlig mennesker.Penicillanic acid 1,1-dioxide and in vivo easily hydrolyzable esters thereof are useful as beta-lactamasein inhibitors and as agents promoting the efficacy of certain beta-lactam antibiotics when the latter is used to treat bacterial infections in mammals, especially humans. .

Fra dansk fremlæggelsesskrift nr. 155.740 er det kendt at fremstille penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf ved oxidation af penicil-From Danish Patent Specification No. 155,740 it is known to prepare penicillanic acid 1,1-dioxide and in vivo easily hydrolyzable esters thereof by oxidation of penicillin.

DK 166353 BDK 166353 B

2 lansyre eller estre deraf, hvorhos disse udgangsforbindelser kan fremstilles ved debromering af tilsvarende 6-brom-penicillansyrederivater. Sammenlignet med denne kendte proces fører den ovennævnte særlige frem-.2 lanoic acid or esters thereof, wherein these starting compounds can be prepared by debromating the corresponding 6-bromo-penicillanic acid derivatives. Compared to this known process, the above-mentioned special advances.

5 stillingsmetode, som dokumenteret i stamsagen, til bedre udbytter af penicillansyre-1,1-dioxid og in vivo let hydrolyserbare estre deraf.5 positioning method, as documented in the stem case, for better yields of penicillanic acid 1,1-dioxide and in vivo easily hydrolyzable esters thereof.

Forskellen mellem den nævnte særlige fremgangsmåde til f rens tilling af penicillansyre-1,1-dioxid og in vivo 10 let hydrolyserbare estre deraf og den fra ovennævnte danske fremlæggelsesskrift nr. 155.740 kendte fremstillingsmetode for sådanne penicillansyrederivater kan illustreres ved følgende skema:The difference between said particular process for the purification of penicillanic acid 1,1-dioxide and in vivo readily hydrolyzable esters thereof and the known method of preparation of such penicillanic acid derivatives from the above-mentioned Danish Patent Specification No. 155,740 can be illustrated by the following scheme:

Y HY H

J_i_I “SJ_i_I “S

''/COOR'' / COOR

/ “ \/ “\

Ϊ S °\ ? HΪ S ° \? H

X·../.-, l^Nt'CH3 _ps\i-'CH3 T p ch3 T P' ch3X · ../.-, l ^ Nt'CH3 _ps \ i-'CH3 T p ch3 T P 'ch3

CP-"-"••COOR <P-8-* *.. COORCP - "-" •• COOR <P-8- * * .. COOR

25 / 111 \ Stm25/111 \ Stm

^ S V^ S V

30 CH3 J—I . Tch3 35 hvor R, X og Y er som ovenfor defineret.CH3 J-I. Tch3 where R, X and Y are as defined above.

Som det fremgår bliver der ved den kendte proces først dehalogeneret og derefter oxideret, mens der ved den nævnte særlige fremgangsmåde først oxideres, hvorvedAs can be seen, in the known process it is first dehalogenated and then oxidized, while in the said particular process it is first oxidized, whereby

DK 166353BDK 166353B

3 der som mellemprodukt dannes de her omhandlede hidtil ukendte penicillansyre-1,1 -dioxid-deri.vater med formlen III, der derefter dehalogeneres.3 which forms as the intermediate the novel penicillanic acid 1,1-dioxide derivatives of formula III, which are then dehalogenated.

Det samlede udbytte ved den kendte proces II 5 IIIA—^ I er højst på ca. 27%, mens der ved den nævnte særlige fremgangsmåde kan forventes et totaludbytte IIIII —> I på mindst 53%.The total yield of the known process II 5 IIIA - ^ I is no more than approx. 27%, while the said special method can expect a total yield IIIII -> I of at least 53%.

Foretrukne mellemprodukter er 6-brom- og 6,6-di-brompenicillansyre-1,1-dioxid, dvs. forbindelser med 10 formlen III, hvor X er brom, og Y er hydrogen, henholdsvis X og Y er brom; og R er hydrogen.Preferred intermediates are 6-bromo- and 6,6-di-brompenicillanic acid 1,1-dioxide, i.e. compounds of formula III wherein X is bromine and Y are hydrogen, X and Y are bromine, respectively; and R is hydrogen.

De i den foreliggende beskrivelse omhandlede forbindelser med formlen III betegnes som derivater af peni-cillansyre, der er repræsenteret ved følgende strukturel-15 le formel: \ vCH3 (IV)The compounds of formula III as described herein are referred to as derivatives of penicillanic acid represented by the following structural formula: \ vCH3 (IV)

" 'COOH"'COOH

20 U20 U

I derivater af penicillansyre angiver binding med brudt linie af en substituent til den bicycliske kerne, at substituenten ligger under kernens plan. En sådan sub-25 stituent siges at være i ct-konfiguration. Omvendt angiver binding med fuld linie af en substituent til den bicycliske kerne, at substituenten ligger over kernens plan. Sidstnævnte konfiguration omtales som $-konfiguration.In penicillanic acid derivatives, a broken line bond of a substituent to the bicyclic nucleus indicates that the substituent is below the core plane. Such a substituent is said to be in ct configuration. Conversely, full line binding of a substituent to the bicyclic nucleus indicates that the substituent is above the plane of the nucleus. The latter configuration is referred to as the $ configuration.

Gruppen X har således α-konfiguration, og gruppen Y har 30 (3-konfiguration i formlen III.Thus, group X has α-configuration and group Y has 30 (3-configuration of formula III).

De i hovedkravet opregnede in vivo let hydrolyserbare esterdannende grupper er velkendte på penicillinområdet. I de fleste tilfælde forbedrer de penicillinforbindelsernes absorptionsegenskaber. Se for eksempel 35 tyske offentliggørelsesskrift nr. 2.517.316. Blandt sådanne grupper for R er imidlertid alkanoyloxymethyl med 3-7 C-atomer,1-(alkanoyloxy) ethyl med 4-8 C-atomer, 1-methyl- 1-(alkanoyloxy)ethyl med 5-9 C-atomer, alkoxycarbonyl-The readily hydrolyzable ester forming groups listed in the main claim are well known in the art of penicillin. In most cases, they improve the absorption properties of the penicillin compounds. See, for example, 35 German Publication Publication No. 2,517,316. However, among such groups for R are alkanoyloxymethyl of 3-7 C atoms, 1- (alkanoyloxy) ethyl of 4-8 C atoms, 1-methyl-1- (alkanoyloxy) ethyl of 5-9 C atoms, alkoxycarbonyl

DK 166353 BDK 166353 B

4 oxymethyl med 3-6 C-atomer, l-(alkoxycarbonyloxy)ethyl med 4-7 C-atomer, 1-methyl-l-ialkoxycarbonyloxy)ethyl med 5-8 C-atomer, 3-phthalidyl, 4-crotonolactonyl og γ-butyrolacton-4-yl foretrukket.4 oxymethyl with 3-6 C atoms, 1- (alkoxycarbonyloxy) ethyl with 4-7 C atoms, 1-methyl-1-alkoxycarbonyloxy) ethyl with 5-8 C atoms, 3-phthalidyl, 4-crotonolactonyl and γ -butyrolacton-4-yl preferred.

5 3-Phthalidyl, 4-crotonolactonyl og γ-butyrolac- ton-4-yl refererer til strukturer VII, VIII og IX. Bølgelinierne skal angive hver af de to epimere eller en blanding deraf.5 3-Phthalidyl, 4-crotonolactonyl and γ-butyrolactone-4-yl refer to structures VII, VIII and IX. The wavy lines must indicate each of the two epimers or a mixture thereof.

· <o Φ φ o o o VII VIII ix 15· <O Φ φ o o o VII VIII ix 15

De i hovedkravet nævnte sædvanlige penicillincarb-oxy-beskyttende gruppe er beskyttelsesgrupper, der er almindeligt benyttet på penicillin-området til at beskytte 3-carboxygruppen, idet sådanne beskyttelsesgrup-20 per især kan bindes og fjernes under anvendelse åf betingelser, hvorunder β-lactam-ringsystemet forbliver i det væsentlige intakt. Selv om alle beskyttelsesgrupper ikke er anvendelige i alle situationer, vil en særlig gruppe, der kan anvendes i en særlig situation, 25 let kunne vælges af fagmanden. Se endvidere US-patent-skrifter nr. 3.632.850 og nr. 3.197.466, britisk patentskrift nr. 1.041.985, Woodward et al., Journal of the American Chemical Society, 88, 852 (1966), Chauvette,The usual penicillin carboxy protecting group mentioned in the main claim are protecting groups commonly used in the penicillin field to protect the 3-carboxy group, such protecting groups being particularly able to bind and be removed under conditions under which β-lactam the ring system remains essentially intact. Although not all protecting groups are applicable in all situations, a particular group that can be used in a particular situation can be readily selected by one of ordinary skill in the art. See also U.S. Patent Nos. 3,632,850 and 3,197,466, British Patent No. 1,041,985, Woodward et al., Journal of the American Chemical Society, 88, 852 (1966), Chauvette,

DK 166353 BDK 166353 B

55

Journal of Organic Chemistry 3<5, 1259 ( 1971 ), Sheedan et al., Journal of Organic Chemistry, 29, 2006, (1964) og "Cephalosporin and Penicillins, Chemistry and Biology", udgivet af H.E. Flynn, Academic Press, Inc., 1972. Peni- 5 cillincarboxy-beskyttelsesgruppen kan fjernes på sædvanlig måde, under hensyntagen til β-lactam-ringsyste-mets labilitet.Journal of Organic Chemistry 3 <5, 1259 (1971), Sheedan et al., Journal of Organic Chemistry, 29, 2006, (1964) and "Cephalosporin and Penicillins, Chemistry and Biology", published by H.E. Flynn, Academic Press, Inc., 1972. The penicillin carboxy protecting group may be removed in the usual manner, taking into account the lability of the β-lactam system.

Forbindelserne med formlen III kan, som allerede nævnt, fremstilles ved oxidation af sulfidgruppen i en 10 forbindelse med formlen II, hvor R, X og Y er som ovenfor defineret. Til denne reaktion kan der for eksempel anvendes alkalimetalpermanganater, såsom natrium- og kalium-permanganat, jordalkalimetalpermanganater, såsom calcium-og bariumpermanganater, og organiske peroxycarboxylsyrer, 15 såsom pereddikesyre og 3-chlorperbenzoesyre.The compounds of formula III can, as already mentioned, be prepared by oxidation of the sulfide group in a compound of formula II wherein R, X and Y are as defined above. For this reaction, for example, alkali metal permanganates such as sodium and potassium permanganate, alkaline earth metal permanganates such as calcium and barium permanganates, and organic peroxycarboxylic acids such as peracetic acid and 3-chloroperbenzoic acid may be used.

Når der til oxidationen anvendes et metal-permanganat, gennemføres reaktionen sædvanligvis ved at behandle forbindelsen med formlen II med fra ca. 0,5 til ca. 10 molære ækvivalenter, fortrinsvis fra ca. 1 til ca.When a metal permanganate is used for the oxidation, the reaction is usually carried out by treating the compound of formula II with from ca. 0.5 to approx. 10 molar equivalents, preferably from ca. 1 to approx.

20 4 molære ækvivalenter af permanganatet i et passende, over for reaktionen indifferent opløsningsmiddelsystem.20 4 molar equivalents of the permanganate in an appropriate inert solvent system reaction.

Et passende, over for reaktionen indifferent opløsningsmiddelsystem er et sådant, der ikke på ugunstig måde samvirker hverken med udgangsmaterialerne eller med produk-25 tet, og vand er almindeligt benyttet. Om ønsket kan der tilsættes et co-opløsningsmiddel, der er blandbart med vand, men som ikke vil samvirke med permanganatet, såsom tetrahydrofuran. Reaktionen kan gennemføres ved en temperatur inden for området fra ca. -30°C til ca. 50°C, og 30 den gennemføres fortrinsvis fra ca. -10° til ca. 10°C.A suitable solvent inert to the reaction is one which does not adversely interact neither with the starting materials nor with the product, and water is commonly used. If desired, a water-miscible co-solvent may be added but will not interact with the permanganate such as tetrahydrofuran. The reaction can be carried out at a temperature within the range of from ca. -30 ° C to approx. 50 ° C, and preferably it is carried out from ca. -10 ° to approx. 10 ° C.

Ved ca. 0°C er reaktionen i almindelighed fuldendt i løbet af kort tid, f.eks. i løbet af en time. Selvom reaktionen kan gennemføres under neutrale, basiske eller sure betingelser, foretrækkes det at anvende et pH inden for området fra ca. 4 til ca. 9, fortrinsvis 6-8. Det er imidlertid væsentligt at vælge betingelser, hvorunder dekomponer ing af β-lactamringsystemet af forbindelsen med 35At about. 0 ° C, the reaction is generally completed in a short time, e.g. within an hour. Although the reaction may be carried out under neutral, basic or acidic conditions, it is preferred to use a pH within the range of from ca. 4 to approx. 9, preferably 6-8. However, it is important to select conditions under which decomposition of the β-lactam ring system by the compound with 35

DK 166353 BDK 166353 B

6 formlen II eller III undgås. Det er ofte fordelagtigt at pufre reaktionsmediets pH i nærheden af neutralitet. Produktet udvindes ved sædvanlig teknik. Ethvert overskud af permanganat bliver i almindelighed dékomponeret ved anvendelse af natriumbisulfit, og hvis produktet ikke be-5 finder sig i opløsning, bliver det derefter indvundet ved filtrering. Det fraskilles fra mangandioxid ved at ekstrahere det over i et organisk opløsningsmiddel og fjerne opløsningsmidlet ved fordampning. Hvis produktet befinder sig i opløsning ved reaktionens afslutning, isoleres det 10 ved sædvanlig opløsningsmiddelekstraktion..6 formula II or III is avoided. It is often advantageous to buffer the pH of the reaction medium in the vicinity of neutrality. The product is recovered by conventional techniques. Any excess permanganate is generally decomposed using sodium bisulfite, and if the product is not in solution, it is then recovered by filtration. It is separated from manganese dioxide by extracting it into an organic solvent and removing the solvent by evaporation. If the product is in solution at the end of the reaction, it is isolated by usual solvent extraction.

Når der til oxidationsreaktionen anvendes en peroxy- carboxylsyre, gennemføres reaktionen sædvanligvis ved at behandle forbindelsen med formlen II med fra ca. 1 til ca. 6 molære ækvivalenter, og fortrinsvis ca. 2,2 molære 15 ækvivalenter af oxidationsmidlet i et reaktions-indifferent organisk opløsningsmiddel. Typiske opløsningsmidler er chlorerede carbonhydrider, såsom dichlormethan, chloroform og 1,2-dichlorethan, og ethere, såsom diethylether; tetrahydrofuran og 1,2-dimethoxyethan. Reaktionen gennem-20 føres normalt ved en temperatur på fra ca. -30° til ca.When a peroxycarboxylic acid is used for the oxidation reaction, the reaction is usually carried out by treating the compound of formula II with from about 1 to approx. 6 molar equivalents, and preferably approx. 2.2 molar equivalents of the oxidant in a reaction-inert organic solvent. Typical solvents are chlorinated hydrocarbons such as dichloromethane, chloroform and 1,2-dichloroethane, and ethers such as diethyl ether; tetrahydrofuran and 1,2-dimethoxyethane. The reaction is usually carried out at a temperature of from ca. -30 ° to approx.

50°C, fortrinsvis fra ca. 15° til ca. 30°C. Ved ca. 25°C anvendes almindeligvis reaktionstider fra ca. 2 til ca.50 ° C, preferably from ca. 15 ° to approx. 30 ° C. At about. Reaction times of about 25 ° C are generally used. 2 to approx.

16 timer. Produktet isoleres normalt ved at fjerne opløsningsmidlet ved fordampning i vakuum. Reaktionsproduktet 25 kan renses ved sædvanlige, på området velkendte metoder.16 hours. The product is usually isolated by removing the solvent by evaporation in vacuo. The reaction product 25 can be purified by conventional methods well known in the art.

En foretrukket anvendelse af forbindelserne med formlen III er som nævnt til fremstilling af farmakologisk aktive forbindelser med formlen I, hvor R, X og Y er som ovenfor defineret, ved en dehalogeneringsreaktion.A preferred use of the compounds of formula III is, as mentioned, for the preparation of pharmacologically active compounds of formula I, wherein R, X and Y are as defined above, in a dehalogenation reaction.

30 En hensigtsmæssig metode til gennemførelse af denne omdannelse er at omrøre eller ryste en opløsning af en forbindelse med formlen III under en hydrogenatmosfære, eller hydrogen blandet med et indifferent fortyndingsmiddel, såsom nitrogen eller argon, i nærværelse af en hydrogenolyse-katalysator. Egnede op-35 løsningsmidler for denne hydrogenoly se-reakt ion er de, der i det væsentlige opløser udgangsforbindelsen medAn appropriate method for carrying out this conversion is to stir or shake a solution of a compound of formula III under a hydrogen atmosphere, or hydrogen mixed with an inert diluent such as nitrogen or argon, in the presence of a hydrogenolysis catalyst. Suitable solvents for this hydrogen oleic reaction are those which essentially dissolve the starting compound with

DK 166353BDK 166353B

7 formlen III, men som ikke selv undergår hydrogenering eller hydrogenolyse. Eksempler på sådanne opløsningsmidler omfatter ethere, såsom diethylether, tetrahydrofuran, di« oxan og 1,2-dimethoxyethan, lavmolekylære estre, såsom 5ethylacetat og butylacetat, tertiære amider, såsom N,N-dimethylformamid, Ν,Ν-dimethylacetamid og N-methylpyrro-lidon, vand og blandinger deraf. Yderligere er det almindeligt at pufre reaktionsblandingen, således at der opereres ved et pH inden for området fra ca. 4 til ca, 9, 10 fortrinsvis fra ca, 6 til ca. 8. Borat- og phosphat-puf-fere er almindeligt anvendt. Indføring af det luftformige hydrogen i reaktionsmediet foregår sædvanligvis ved at gennemføre reaktionen i en forseglet beholder indeholdende forbindelsen med formlen III, opløsningsmidlet, kata-15 lysatoren og hydrogenet. Trykket inden i reaktionsbehol-deren kan variere fra 1 til 100 kg/cm Det foretrukne trykområde, når atmosfæren inden i reaktionsbeholderen er i det væsentlige rent hydrogen, ligger fra 2 til 5 kg/cm . Hydrogenolysen gennemføres ved en temperatur på ·fra 200°C til . &0°C, fortrinsvis fra 25°C til 50°C. Når der anvendes de foretrukne temperatur- og tryk-værdier, forløber hydrogenolysen i almindelighed i løbet af nogle få timer, f.eks. fra 2 timer til 20 timer. De ved denne hy-drogenolysereaktion anvendte katalysatorer er af den på 25 området for denne art omdannelser velkendte type, og typiske eksempler er de ædle metaller, såsom nikkel, palladium, platin og rhodium. Katalysatoren er til stede i en mængde på fra 0,01 til 2,5 vægtprocent, fortrinsvis fra 0,1 til 1,0 vægtprocent, baseret på forbindelsen med 30 formlen III. Det er ofte hensigtsmæssigt at suspendere katalysatoren på en indifferent bærer. En særligt hensigtsmæssig katalysator er palladium suspenderet på en indifferent bærer, såsom kul.7, but which does not itself undergo hydrogenation or hydrogenolysis. Examples of such solvents include ethers such as diethyl ether, tetrahydrofuran, dioxane and 1,2-dimethoxyethane, low molecular weight esters such as 5ethyl acetate and butyl acetate, tertiary amides such as N, N-dimethylformamide, Ν, Ν-dimethylacetamide and N-methylpyrro-amide. lidon, water and mixtures thereof. Further, it is common to buffer the reaction mixture so that it is operated at a pH within the range of approx. 4 to about 9, 10 preferably from about 6 to about 8. Borate and phosphate buffers are commonly used. The introduction of the gaseous hydrogen into the reaction medium is usually carried out by carrying out the reaction in a sealed container containing the compound of formula III, the solvent, the catalyst and the hydrogen. The pressure within the reaction vessel may range from 1 to 100 kg / cm. The preferred pressure range when the atmosphere within the reaction vessel is substantially pure hydrogen is from 2 to 5 kg / cm. The hydrogenolysis is carried out at a temperature of · from 200 ° C to. & 0 ° C, preferably from 25 ° C to 50 ° C. When the preferred temperature and pressure values are used, the hydrogenolysis generally proceeds within a few hours, e.g. from 2 hours to 20 hours. The catalysts used in this hydrogenolysis reaction are of the type well known in the art for this type of conversion, and typical examples are the precious metals such as nickel, palladium, platinum and rhodium. The catalyst is present in an amount of from 0.01 to 2.5% by weight, preferably from 0.1 to 1.0% by weight, based on the compound of formula III. It is often convenient to suspend the catalyst on an inert carrier. A particularly suitable catalyst is palladium suspended on an inert carrier such as coal.

Andre fremgangsmåder kan anvendes ved reduktiv · 35 fjernelse af halogenet fra en forbindelse med formlen III.Other methods may be used in the reductive removal of the halogen from a compound of formula III.

For eksempel kan X og Y fjernes ved anvendelse af et reduktionssystem med opløsende metal, såsom zinkstøv iFor example, X and Y can be removed using a dissolution metal reduction system such as zinc dust i

DK 166353BDK 166353B

s eddikesyre, myresyre eller en phosphatpuffer, ifølge velkendte metoder. Alternativt kan der anvendes et tinhy-drid, for eksempel et trialkyltinhydrid, såsom tri-n-butyltinhydrid.s acetic acid, formic acid or a phosphate buffer, according to well known methods. Alternatively, a tin hydride may be used, for example a trialkyltin hydride such as tri-n-butyltin hydride.

5 De forbindelser med formlen 'III# hvor RThe compounds of formula 'III # wherein R

er hydrogen, er sure og vil danne salte med basiske midler.. Disse salte kan fremstilles ved standardteknik, såsom ved at bringe de sure og basiske komponenter i kontakt, sædvanligvis i et støkiometrisk forhold# i et van-10 digt, ikke-vandigt eller delvis vandigt medium, som egnet. De udvindes derefter ved filtrering, ved udfældning med et ikke-opløsningsmiddel efterfulgt af filtrering, ved afdampning af opløsningsmidlet eller, i tilfælde af vandige opløsninger, ved lyofilisering, som egnet. Basi-15 ske midler, der passende kan anvendes ved saltdannelse, tilhører både den organiske og uorganiske type, og de omfatter ammoniak, organiske aminer, alkalimetalhydroxi-der, -carbonater, -bicarbonater, -hydrider og -alkoxider, såvel som jordalkalimetalhydroxider, -carbonater, -hydri-20 der og -alkoxider. Repræsentative eksempler på sådanne baser er primære aminer, såsom n-propylamin, n-butylamin, anilin, cyclohexylamin, benzylamin og octylamin, sekundære aminer,· såsom diethylamin, morpholin, pyrrolidin og piperidin,’ tertiære aminer, såsom triethylamin, N-ethyl-25 piperidin, N-methylmorpholin og 1,5-diazabicyclo[4.3,0]-non-5-en, hydroxider, såsom natriumhydroxid, kaliumhydroxid, ammoniumhydroxid og bariumhydroxid, alkoxider, såsom natriummethoxid og kaliumethoxid, hydrider, såsom calci-umhydrid og natriumhydrid, carbonater, såsom kaliumcarbo-30 nat og natriumcarbonat, bicarbonater, såsom natriumbicar-bonat og kaliumbicarbonat, og alkalimetalsalte af langkædede fede syrer, såsom natrium-2-ethylhexanoat. Foretrukne salte er natrium-, kalium- og triethylamin-saltene.are salts, are acidic and will form salts with basic agents. These salts can be prepared by standard techniques, such as by contacting the acidic and basic components, usually in a stoichiometric ratio # in an aqueous, non-aqueous or partially aqueous medium, as appropriate. They are then recovered by filtration, by precipitation with a non-solvent followed by filtration, by evaporation of the solvent or, in the case of aqueous solutions, by lyophilization, as appropriate. Basic agents which can be suitably used in salt formation belong to both the organic and inorganic types, and they include ammonia, organic amines, alkali metal hydroxides, carbonates, bicarbonates, hydrides and alkoxides, as well as alkaline earth metal hydroxides, - carbonates, hydrides and alkoxides. Representative examples of such bases are primary amines such as n-propylamine, n-butylamine, aniline, cyclohexylamine, benzylamine and octylamine, secondary amines such as diethylamine, morpholine, pyrrolidine and piperidine, tertiary amines such as triethylamine, N-ethylamine. 25 piperidine, N-methylmorpholine and 1,5-diazabicyclo [4.3,0] non-5-ene, hydroxides such as sodium hydroxide, potassium hydroxide, ammonium hydroxide and barium hydroxide, alkoxides such as sodium methoxide and potassium ethoxide, hydrides such as sodium anhydride and sodium hydride. , carbonates such as potassium carbonate and sodium carbonate, bicarbonates such as sodium bicarbonate and potassium bicarbonate, and alkali metal salts of long chain fatty acids such as sodium 2-ethyl hexanoate. Preferred salts are the sodium, potassium and triethylamine salts.

Opfindelsen beskrives nærmere gennem følgende 35 eksempler, der illustrerer dels fremstilling af de omhandlede forbindelser med formlen III og dels omdannelse af forbindelserne med formlen III til farmakologisk aktive forbindelser med formlen I ved en dehalogenerings-The invention is further described by the following examples which illustrate, in part, the preparation of the subject compounds of formula III and in part the conversion of the compounds of formula III into pharmacologically active compounds of formula I by a dehalogenation agent.

DK 166353BDK 166353B

9 procss. Infrarøde (IR) spektre er målt som kaliumbromid- plader (KBr-plader), og diagnostiske absorptionsbånd er -1 angivet i bølgetal (cm ). Kernemagnetiske resonansspektre (NMR) er målt ved 60 MHz for opløsninger i deutero-5 chloroform (CDCl^), perdeuteroacetone (CD^COCD^), perdeu-terodimethylsulfoxid (DMSO-dg) eller deuteriumoxid (D20), og spidspositioner er udtrykt i dele pr. million (ppm) nedad fra tetramethylsilan eller natrium-2,2-dimethyl-2-silapentan-5-sulfonat. De følgende forkortelser for 10 spidsformer er anvendt: s: singlet, d: dublet, t: triplet, q: kvartet, m: multiplet.9 procss. Infrared (IR) spectra are measured as potassium bromide plates (KBr plates), and diagnostic absorption bands are -1 indicated in wavelengths (cm). Nuclear magnetic resonance spectra (NMR) were measured at 60 MHz for solutions in deuterochloroform (CDCl CD), perdeuteroacetone (CD ^COCD ^), perdeuterodimethylsulfoxide (DMSO-dg) or deuterium oxide (D20), and peak positions are expressed in parts. per. million (ppm) down from tetramethylsilane or sodium 2,2-dimethyl-2-silapentane-5-sulfonate. The following abbreviations for 10 tip forms are used: s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet.

Eksempel 1 6-a-Brompenicillansyre-l,1-dioxid.Example 1 6-α-Brompenicillanic acid 1,1-dioxide.

15 Til en omrørt blanding af 560 ml vand, 300 ml di- chlormethan og 56,0 g 6-a-brompenicillansyre blev der sat 4N natriumhydroxidopløsning, indtil der var opnået et stabilt pH på 7,2. Dette krævede 55 ml natriumhydroxid. Blandingen blev omrørt ved pH 7,2 i 10 minutter og 20 blev derefter filtreret. Lagene blev adskilt, og den organiske fase blev bortkastet. Den vandige fase blev derefter hurtigt under omrøring hældt i en oxiderende blanding, der var fremstillet som følger: I en 3 liters beholder blev der blandet 63,2 g ka-25 liumpermanganat, 1.000 ml vand og 48.0 g eddikesyre. Denne blanding blev omrørt i 15 minutter ved 20°C og blev derefter afkølet til 0°C.To a stirred mixture of 560 ml of water, 300 ml of dichloromethane and 56.0 g of 6-a-brompenicillanic acid, 4N sodium hydroxide solution was added until a stable pH of 7.2 was obtained. This required 55 ml of sodium hydroxide. The mixture was stirred at pH 7.2 for 10 minutes and then filtered. The layers were separated and the organic phase was discarded. The aqueous phase was then quickly poured with stirring into an oxidizing mixture prepared as follows: In a 3 liter container, 63.2 g of potassium permanganate, 1,000 ml of water and 48.0 g of acetic acid were mixed. This mixture was stirred for 15 minutes at 20 ° C and then cooled to 0 ° C.

Efter at 6-a-brompenicillansyreoplØsningen var sat til den oxiderende blanding, holdtes et kølebad ved -15¾ 30 rundt om reaktionsblandingen. Den indre temperatur steg til. 15°C og faldt derefter til 5°C over en periode på 20 minutter. På dette tidspunkt blev der i løbet af 10 minutter under omrøring ved ca. 10°C tilsat 30,0 g natrium-bisulfit. Efter yderligere 15 minutter blev blandingen 55 filtreret, og pH af filtratet blev sænket til 1,2 ved tilsætning af 170 ml 6N saltsyre. Den vandige fase blev ekstrateret med chloroform og derefter med ethylacetat.After the 6-a-brompenicillanic acid solution was added to the oxidizing mixture, a cooling bath was maintained at -15 ° 30 around the reaction mixture. The internal temperature increased. 15 ° C and then dropped to 5 ° C over a period of 20 minutes. At this point, stirring was performed at ca. 10.0 C added 30.0 g of sodium bisulfite. After a further 15 minutes, the mixture was filtered 55 and the pH of the filtrate was lowered to 1.2 by the addition of 170 ml of 6N hydrochloric acid. The aqueous phase was extracted with chloroform and then with ethyl acetate.

Både chloroformekstrakterne og ethylacetatekstrakterneBoth the chloroform extracts and the ethyl acetate extracts

DK 166353BDK 166353B

10 blev tørret under anvendelse af vandfrit magnesiuxnsulfat og blev derefter inddampet i vakuum. Chloroformopløsnin-gen gav 10,0 g (16% udbytte) af titelforbindelsen. Ethyl-acetatopløsningen gav 57 g af en olie, der blev triture-5 ret linder hexan. Der fremkom et hvidt fast stof. Det blev frafiltreret, hvorved vandtes 41,5 g (66% udbytte) af titelforbindelsen, smp. 134°C (dek.).10 was dried using anhydrous magnesium sulfate and then evaporated in vacuo. The chloroform solution afforded 10.0 g (16% yield) of the title compound. The ethyl acetate solution gave 57 g of an oil which was triturated with hexane. A white solid appeared. It was filtered off to give 41.5 g (66% yield) of the title compound, m.p. 134 ° C (dec.).

Analyse: beregnet for C8HioBrN05S: C: 30,78, H: 3,23, Br: 25,60, N: 4,49, S: 10,27% 10 fundet: C: 31,05, H: 3,24, Br: 25,54, N: 4,66, S: 10,21% Eksempel 2Analysis: Calculated for C 8 H 10 BrNO 5 S: C: 30.78, H: 3.23, Br: 25.60, N: 4.49, S: 10.27% Found: C: 31.05, H: 3.24 , Br: 25.54, N: 4.66, S: 10.21% Example 2

Oxidation af 6-a-chlorpenicillansyre og 6-a-iodpe-15 nicillansyre med kaliumpermanganat ved fremgangsmåden ifølge Eksempel 1 gav henholdsvis 6-a-chlorpenicillansy-re-1,1-dioxid og 6-a-iodpenicillansyre-l,1-dioxid.Oxidation of 6-alpha-chlorpenicillanic acid and 6-alpha-iodopicillanic acid with potassium permanganate by the procedure of Example 1 gave 6-alpha-chlorpenicillanic acid 1,1-dioxide and 6-alpha-iodopenicillanic acid, respectively, 1,1-dioxide .

Eksempel 3 20 6-β-Chlorpeniciliansyre-1,1-dioxid.Example 3 6-β-Chlorpenicilic acid-1,1-dioxide.

En oxiderende opløsning blev fremstillet ud fra 185 mg kaliumpermanganat, 0,063 ml 85% phosphorsyre og 5 ml vand. Denne oxiderende opløsning blev dråbevis sat til en opløsning af 150 mg natrium-6-fi-chlorpenicillanat 25 i 5 ml vand ved 0-5°C, indtil purpurfarven af kaliumper-manganatet var vedrarende. Omtrent halvdelen af den oxiderende opløsning var nødvendig. På dette tidspunkt blev kaliumpermanganatfarven fjernet ved tilsætning af fast natriumbisulfit, og reaktionsblandingen blev derefter 30 filtreret, og pH blev indstillet på 1,8. Lagene blev adskilt, og det vandige lag blev ekstraheret yderligere med ethylacetat. De samlede ethylacetatlag blev vasket med vand, tørret og inddampet i vakuum, hvorved vandtes 118 mg af titelforbindelsen. NMR-spektret (i CDgCOCDg) 35 viste absorption ved 5,82 (d, IH), 5,24 (d, IH), 4,53 (s, IH), 1,62 (s, 3H) og 1,50 (s, 3H) ppm.An oxidizing solution was prepared from 185 mg of potassium permanganate, 0.063 ml of 85% phosphoric acid and 5 ml of water. This oxidizing solution was added dropwise to a solution of 150 mg of sodium 6-chlorophenicillanate 25 in 5 ml of water at 0-5 ° C until the purple color of the potassium permanganate was softened. About half of the oxidizing solution was needed. At this point, the potassium permanganate color was removed by the addition of solid sodium bisulfite, and the reaction mixture was then filtered and the pH was adjusted to 1.8. The layers were separated and the aqueous layer was further extracted with ethyl acetate. The combined ethyl acetate layers were washed with water, dried and evaporated in vacuo to give 118 mg of the title compound. The NMR spectrum (in CDgCOCDg) 35 showed absorption at 5.82 (d, 1H), 5.24 (d, 1H), 4.53 (s, 1H), 1.62 (s, 3H) and 1.50 (s, 3H) ppm.

Det ovennævnte produkt blev opløst i tetrahydrofu-ran, og der blev tilsat et lige så stort volumen vand. 'The above product was dissolved in tetrahydrofuran and an equal volume of water was added. '

DK 166353BDK 166353B

11 pH-Værdien blev indstillet på 6,8 med fortyndet natriumhydroxid, tetrahydrofuranen blev fjernet ved inddampning i vakuum, og den resterende vandige opløsning blev frysetørret. Herved vandtes natriumsaltet af titelforbindel-5 sen.The pH was adjusted to 6.8 with dilute sodium hydroxide, the tetrahydrofuran was removed by evaporation in vacuo and the residual aqueous solution was lyophilized. Thereby the sodium salt of the title compound was won.

Eksempel 4 δ-β-Brompenicillansyre-l,i-dioxid.Example 4 δ-β-Brompenicillanic acid -1,1-dioxide.

Til en opløsning af 255 mg natrium-6-f}-brompeni-10 cillanat i 5 ml vand blev der ved 0-5°C sat en opløsning fremstillet ud fra 140 mg kaliumpermanganat, 0,11 ml 85% phosphorsyre og 5 ml vand ved 0-5°C. pH-Værdien blev bibeholdt mellem 6,0 og 6,4 under tilsætningen. Reaktionsblandingen blev omrørt ved pH 6,3 i 15 minutter, og der-15 efter blev den purpurfarvede opløsning dækket med ethyl-acetat. pH-Værdien blev indstillet på 1,7, og 330 mg na-triumbisulfit blev tilsat. Efter 5 minutter blev lagene adskilt, og det vandige lag blev ekstraheret yderligere med saltopløsning, tørret (MgSO^) og inddampet i vakuum.To a solution of 255 mg of sodium 6-f} brompeni-cillanate in 5 ml of water was added at 0-5 ° C a solution prepared from 140 mg of potassium permanganate, 0.11 ml of 85% phosphoric acid and 5 ml of water. at 0-5 ° C. The pH was maintained between 6.0 and 6.4 during the addition. The reaction mixture was stirred at pH 6.3 for 15 minutes and then the purple solution was covered with ethyl acetate. The pH was adjusted to 1.7 and 330 mg of sodium bisulfite was added. After 5 minutes, the layers were separated and the aqueous layer was further extracted with brine, dried (MgSO4) and evaporated in vacuo.

20 Herved vandtes 216 mg af titelforbindelsen som hvide krystaller. NMR-spektret (i D2O) viste absorptioner ved 5,78 (d, IH, J = 4Hz), 5,25 (d, IH, J * 4Hz), 4,20 (s, IH), 1,65 (s, 3H) og 1,46 (s, 3H) ppm.Thereby 216 mg of the title compound were obtained as white crystals. The NMR spectrum (in D 2 O) showed absorptions at 5.78 (d, 1H, J = 4Hz), 5.25 (d, 1H, J * 4Hz), 4.20 (s, 1H), 1.65 (s , 3H) and 1.46 (s, 3H) ppm.

25 Eksempel 5 6-3-Iodpenicillansyre-l,1-dioxid.Example 5 6-3-Iodpenicillanic acid 1,1-dioxide.

Oxidation af β-β-iodpenicillansyre med kaliumpermanganat ved fremgagsmåden ifølge Eksempel 4 gav 6-p-iod-penicillansyre-1,1-dioxid.Oxidation of β-β-iodine penicillanic acid with potassium permanganate by the procedure of Example 4 gave 6-p-iodo-penicillanic acid 1,1-dioxide.

3030

Eksempel 6Example 6

Pivaloyloxymethyl-6-a-brompenicillanat-l,1-dioxid.Pivaloyloxymethyl 6-alpha-bromopenicillanate-l, 1-dioxide.

Til en opløsning af 394 mg pivaloyloxymethyl-6-α-brompenicillanat i 10 ml dichlormethan blev der sat 400 35 mg 3-chlorperbenzoesyre ved 0-5°C. Reaktionsblandingen blev omrørt ved 0-5°C i 1 time og derefter ved 25°C i 24 timer. Den filtrerede reaktionsblanding blev inddampet til tørhed i vakuum, hvorved vandtes titelforbindelsen.To a solution of 394 mg of pivaloyloxymethyl-6-α-brompenicillanate in 10 ml of dichloromethane was added 400 35 mg of 3-chloroperbenzoic acid at 0-5 ° C. The reaction mixture was stirred at 0-5 ° C for 1 hour and then at 25 ° C for 24 hours. The filtered reaction mixture was evaporated to dryness in vacuo to give the title compound.

DK 166353BDK 166353B

1212

Eksempel 7Example 7

Fremgangsmåden fra Eksempel 6 blev gentaget, med den undtagelse at pivaloyloxymethyl-6-3-brompenicillana-tet blev erstattet med: 5 3-phthaiidyl-6-a-chlorpenicillanat, 4-crotonolactolyl-6-f3-chlorpenicillanat, Y-butyrolacton-4-yl-6-a-brompenicillanat, acetoxymethyl-6^-brompenicillanat, pivaloyloxymethyl-6-p-brompenicillanat, 10 hexanoyloxymethyl-6-a-iodpenicillanat, 1-(acetoxy)ethyl-6-3-iodpenicillanat, 1-(isobutyryloxy)ethyl-6-a-chlorpenicillanat, 1-methyl-l- (acetoxy) ethyl-6-fl-chlorpenicillanat, 1-methyl-l- (hexanoyloxy) ethyl-6-a-brompenicillanat, 15 methoxycarbonyloxymethyl-6-a-brompenicillanat, propoxycarbonyloxymethyl- 6-p-brompenicillanat, 1-(ethoxycarbonyloxy)ethyl-6-a-brompenicillanat, 1-(butoxycarbonyloxy)ethyl-6-a-iodpenicillanat, 1-methyl-l- (methoxycarbonyloxy)ethyl-β-β-iodpenicillanat 20 og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-6-a-chlorpenicil-lanat.The procedure of Example 6 was repeated except that the pivaloyloxymethyl 6-3 brompenicillanate was replaced by: 3-phthalidyl-6-a-chloropenicillanate, 4-crotonolactolyl-6-ph3-chloropenicillanate, Y-butyrolactone-4 -yl-6-a-brompenicillanate, acetoxymethyl-6β-brompenicillanate, pivaloyloxymethyl-6-p-brompenicillanate, hexanoyloxymethyl-6-a-iodopenicillanate, 1- (acetoxy) ethyl 6-3-iodopenicillanate, 1- ) ethyl 6-a-chloropenicillanate, 1-methyl-1- (acetoxy) ethyl-6-1-chloropenicillanate, 1-methyl-1- (hexanoyloxy) ethyl 6-a-brompenicillanate, methoxycarbonyloxymethyl-6-a brompenicillanate, propoxycarbonyloxymethyl 6-p-brompenicillanate, 1- (ethoxycarbonyloxy) ethyl 6-a-brompenicillanate, 1- (butoxycarbonyloxy) ethyl 6-a-iodopenicillanate, 1-methyl-1- (methoxycarbonyloxy) ethyl β-β -iodopedicillanate 20 and 1-methyl-1- (isopropoxycarbonyloxy) ethyl 6-a-chlorpenicillanate.

Herved vandtes: 3-phthalidyl-6-a-chlorpenicillanat-l,l-dioxid, 25 4-crotonolactonyl-6-p-chlorpenicillanat-l,1-dioxid, Y-butyrolacton-4-yl-6-a-brompenicillanat-l,1-dioxid, acetoxymethyl-6-0-brompenicillanat-l,1-dioxid, pivaloyloxymethyl-6-|3-brompenicillanat-l, 1-dioxid, hexanoyloxymethy1-6-a-iodpenic il1anat-1,1-dioxid, 30 i-(acetoxy)ethyl-6-3-iodpenicillanat-l,1-dioxid, 1-(isobutyryloxy)ethyl-6-a-chlorpenicillanat-l,1-dioxid, 1-methyl-l-(acetoxy)ethyl-6-3-chlorpenicillanat-l,1-dioxid, 1-methyl-l-(hexanoyloxy)ethyl-6-a-brompenicillanat-l,1-35 dioxid, methoxycarbonyloxymethyl-6-a-brompenicillanat-l,1-dioxid,. propoxycarbonyloxymethyl-6-f3-brompenicillanat-l, 1-dioxid, 13There were thus obtained: 3-phthalidyl-6-a-chloropenicillanate-1,1-dioxide, 4-crotonolactonyl-6-p-chloropenicillanate-1,1-dioxide, Y-butyrolacton-4-yl-6-a-brompenicillanate. 1,1-dioxide, acetoxymethyl-6-O-brompenicillanate-1,1-dioxide, pivaloyloxymethyl-6-, 3-brompenicillanate-1,1-dioxide, hexanoyloxymethyl-6-a-iodpenic illanate-1,1-dioxide, 1- (acetoxy) ethyl-6-3-iodo-penicillanate-1,1-dioxide, 1- (isobutyryloxy) ethyl-6-a-chloro-penicillanate-1,1-dioxide, 1-methyl-1- (acetoxy) -ethyl 6-3-chlorpenicillanate-1,1-dioxide, 1-methyl-1- (hexanoyloxy) ethyl-6-a-brompenicillanate-1,135 dioxide, methoxycarbonyloxymethyl-6-a-brompenicillanate-1,1-dioxide, . propoxycarbonyloxymethyl 6-β-brompenicillanate-1,1-dioxide, 13

DK 166353 BDK 166353 B

1-(ethoxycarbonyloxy)ethyl-6-a-brompenicillanat-l,1-dio-xid, 1-butoxycarbonyloxy)ethyl-6-a-iodpenicillanat-l,1-dioxid, 1-methyl-l- (metoxycarbonyloxy)ethyl-6-B-iodpenicillanat-5 1,1-dioxid og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-6-a-chlorpenicil-lanat-1,1-dioxid.1- (ethoxycarbonyloxy) ethyl-6-α-brompenicillanate-1,1-dioxide, 1-butoxycarbonyloxy) ethyl-6-α-iodopenicillanate-1,1-dioxide, 1-methyl-1- (methoxycarbonyloxy) ethyl 6-B-iodo-penicillanate-5, 1,1-dioxide and 1-methyl-1- (isopropoxycarbonyloxy) ethyl-6-a-chloro-penicillanate-1,1-dioxide.

Eksempel 8 10 Penicillansyre-1,1-dioxid.Example 8 Penicillanic Acid-1,1-Dioxide.

Til 100 ml vand blev der sat 9,4 g 6-a-brompenicil- lansyre-1,1-dioxid ved 22°C efterfulgt af tilstrækkelig 4N natriumhydroxidopløsning til at nå et stabilt pH på 7,3. Til den resulterende opløsning blev der sat 2,25 g 15 5% palladium-på-kul efterfulgt af 6,9 g dikaliumphosphat- trihydrat. Denne blanding blev derefter rystet under en atmosfære af hydrogen ved et tryk varierende fra 3,5 til 2 1,8 kg/cm . Da hydrogenoptagningen ophørte, blev de faste stoffer frafiltreret, og den vandige opløsning blev dækket med 100 ml ethylacetat. pH-Værdien blev langsomt 20 sænket fra 5,0 til 1,5 med 6N saltsyre. Lagene blev adskilt, og den vandige fase blev ekstraheret med yderligere ethylacetat. De samlede ethylacetatlag blev vasket med saltopløsning, tørret under anvendelse af vandfrit magnesiumsulfat og inddampet i vakuum. Inddampningsresten blev 25 tritureret under ether, og det faste materiale blev derefter indsamlet ved filtrering. Herved vandtes 4,5 g (65% udbytte) af titelforbindelsen.To 100 ml of water was added 9.4 g of 6-α-brompenicillanic acid 1,1-dioxide at 22 ° C followed by sufficient 4N sodium hydroxide solution to reach a stable pH of 7.3. To the resulting solution was added 2.25 g of 5% palladium-on-charcoal followed by 6.9 g of dicalcium phosphate trihydrate. This mixture was then shaken under an atmosphere of hydrogen at a pressure ranging from 3.5 to 2 1.8 kg / cm. When hydrogen uptake ceased, the solids were filtered off and the aqueous solution was covered with 100 ml of ethyl acetate. The pH was slowly lowered from 5.0 to 1.5 with 6N hydrochloric acid. The layers were separated and the aqueous phase was extracted with additional ethyl acetate. The combined ethyl acetate layers were washed with brine, dried using anhydrous magnesium sulfate and evaporated in vacuo. The residue was triturated under ether and the solid was then collected by filtration. This gave 4.5 g (65% yield) of the title compound.

Analyse: beregnet for CgH^NOgS: C: 41,20, H: 4,75, N: 6,00, S: 13,75% 30 fundet: C: 41,16, H: 4,81, N: 6,11, S: 13,51%.Found: C: 41.20; H: 4.75; N: 6.00; S: 13.75% Found: C: 41.16; H: 4.81; N: 6 , 11, S: 13.51%.

Eksempel 9Example 9

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

35 Hydrogenolyse af hver af: 6-a-chlorpenicillansyre-l,1-dioxid, 6-a-iodpenicillansyre-l,1-dioxid, 14Hydrogenolysis of each of: 6-α-chlorpenicillanic acid-1,1-dioxide, 6-α-iodophenicillanic acid-1,1-dioxide, 14

DK 166353 BDK 166353 B

β-β-chlorpenicillansyre-l,1-dioxid, 6 - β-br ompen icillansyre-1,1-dioxid og 6-£-iodpenicillansyre-l,1-dioxid ved fremgangsmåden ifølge Eksempel 8 gav penicillansyre-5 1,1-dioxid.β-β-chlorpenicillanic acid-1,1-dioxide, 6- β -br ompenicillanic acid-1,1-dioxide, and 6β-iodophenicillanic acid-1,1-dioxide by the method of Example 8 gave penicillanic acid-5 dioxide.

Eksempel 10Example 10

Pivaloyloxymethyl-penicillanat-1,1-dioxid.Pivaloyloxymethyl penicillanate 1,1-dioxide.

Til en opløsning af 1,0 g pivaloyloxymethyl-6-α-10 brompenicillanat-1,1-dioxid i 10 ml methanol blev der sat 3 ml 1M natriumbicarbonat og 200 mg 10% pallad ium-på-kul. Reaktionsblandingen blev rystet kraftigt under en atmosfære 2 af hydrogen ved et tryk på ca. 5 kg/cm , indtil hydrogenoptagningen ophørte. Blandingen blev derefter filtreret, 15 og hovedparten af methanol blev fjernet ved inddampning i vakuum. Vand og ethylacetat blev sat til inddampnings-resten, og pH blev indstillet til 8,5. Lagene blev adskilt, og det organiske lag blev vasket med vand, tørret (Na2SO^) og inddampet i vakuum. Herved vandtes titelfor-20 bindeisen.To a solution of 1.0 g of pivaloyloxymethyl-6-α-10 brompenicillanate-1,1-dioxide in 10 ml of methanol was added 3 ml of 1M sodium bicarbonate and 200 mg of 10% palladium on charcoal. The reaction mixture was shaken vigorously under an atmosphere 2 of hydrogen at a pressure of approx. 5 kg / cm until hydrogen uptake ceased. The mixture was then filtered, and the majority of methanol was removed by evaporation in vacuo. Water and ethyl acetate were added to the evaporation residue and the pH was adjusted to 8.5. The layers were separated and the organic layer was washed with water, dried (Na 2 SO 4) and evaporated in vacuo. The title compound was thus won.

Eksempel 11Example 11

Hydrogenolyse af det pågældende 6-halogenpenicil-lansyreester-1,1-dioxid fra Eksempel 7 ved fremgangsmåden 25 ifølge Eksempel 10 gav de følgende forbindelser: 3- phthalidyl-penicillanat-l,1-dioxid, 4- crotonolactonyl-penicillanat-l,1-dioxid, Y-butyrolacton-4-yl-penicillanat-l,1-dioxid, acetoxymethyl-penicillanat-1,1-dioxid, 30 pivaloyloxymethyl-penicillanat-1,1-dioxid, hexanoyloxymethyl-penicillanat-1,1-dioxid, 1-(acetoxy)ethyl-penicillanat-1,1-dioxid, 1-(isobutyryloxy)ethyl-penicillanat-1,1-dioxid, 1-methyl-l-(acetoxy)ethyl-penicillanat-1,1-dioxid, 35 1-methyl-l-(hexanoyloxy)ethyl-penicillanat-1,1-dioxid, methoxycarbonyloxymethyl-penicillanat-1,1-dioxid, propoxycarbonyloxymethyl-penicillanat-1,1-dioxid, 1-(ethoxycarbonyloxy)ethyl-penicillanat-1,1-dioxid,Hydrogenolysis of the respective 6-halo-penicillanoic acid ester-1,1-dioxide from Example 7 by the method of Example 10 gave the following compounds: 3-phthalidyl-penicillanate-1,1-dioxide, 4-crotonolactonyl-penicillanate-1 -dioxide, Y-butyrolacton-4-yl-penicillanate-1,1-dioxide, acetoxymethyl-penicillanate-1,1-dioxide, pivaloyloxymethyl-penicillanate-1,1-dioxide, hexanoyloxymethyl-penicillanate-1,1-dioxide, 1- (acetoxy) ethyl-penicillanate-1,1-dioxide, 1- (isobutyryloxy) ethyl-penicillanate-1,1-dioxide, 1-methyl-1- (acetoxy) ethyl-penicillanate-1,1-dioxide, 35 1-methyl-1- (hexanoyloxy) ethyl-penicillanate-1,1-dioxide, methoxycarbonyloxymethyl-penicillanate-1,1-dioxide, propoxycarbonyloxymethyl-penicillanate-1,1-dioxide, 1- (ethoxycarbonyloxy) ethyl-penicillanate-1, 1-dioxide,

DK 166353BDK 166353B

15 1-(butoxycarbonyl)ethyl-penicillanat-l,1-dioxid, 1-methyl-l-(methoxycarbonyloxy)ethyl-penicillanat-1,1-dioxid og 1-methyl-l-(isopropoxycarbonyloxy)ethyl-penicillanat-1,1-5 dioxid.1- (butoxycarbonyl) ethyl penicillanate-1,1-dioxide, 1-methyl-1- (methoxycarbonyloxy) ethyl-penicillanate-1,1-dioxide and 1-methyl-1- (isopropoxycarbonyloxy) ethyl-penicillanate-1, 1-5 dioxide.

Eksempel 12Example 12

Pivaloyloxymethyl-6-a-brompenicillanat-l,1-dioxid.Pivaloyloxymethyl 6-alpha-bromopenicillanate-l, 1-dioxide.

En oxiderende opløsning blev fremstillet ved at Ί0 kombinere 4,26 g kaliumpermanganat, 2,65 g 85% phosphor-syre og 40 ml vand. Blandingen blev omrørt i 1 time, og den blev derefter langsomt i løbet af 20 minutter ved 5-10°C sat til en omrørt opløsning af 5,32 g pivaloyloxy-methyl-6-a-brompenicillanat i 70 ml acetone og 10 ml 15 vand. Blandingen blev omrørt ved 5°C i 30 minutter, og 100 ml ethylacetat blev tilsat. Efter yderligere 30 minutter blev en opløsning af 3,12 g natriumbisulfit i 30 ml vand tilsat i løbet af 15 minutter ved ca. 10°C. Omrøring blev fortsat i yderligere 30 minutter ved 5°C, og 20 blandingen blev derefter filtreret. Den organiske fase blev fraskilt og vasket med mættet natriumchloridopløs-ning. Det tørrede organiske lag blev inddampet, hvorved vandtes 5,4 g af titelforbindelsen som en olie, der langsomt krystalliserede. NMR-spektret (i CDCl^) viste ab-25 sorptioner ved 5,80 (q, 2H), 5,15 (d, IH), 4,75 (d, IH), 4,50 (s, IH), 1,60 (s, 3H), 1/40 (s, 3H) og 1,20 (s, 9H) ppm.An oxidizing solution was prepared by combining 4.26 g of potassium permanganate, 2.65 g of 85% phosphoric acid and 40 ml of water. The mixture was stirred for 1 hour and then slowly, over 20 minutes at 5-10 ° C, was added to a stirred solution of 5.32 g of pivaloyloxy-methyl-6-α-brompenicillanate in 70 ml of acetone and 10 ml. water. The mixture was stirred at 5 ° C for 30 minutes and 100 ml of ethyl acetate was added. After a further 30 minutes, a solution of 3.12 g of sodium bisulfite in 30 ml of water was added over 15 minutes at ca. 10 ° C. Stirring was continued for an additional 30 minutes at 5 ° C and then the mixture was filtered. The organic phase was separated and washed with saturated sodium chloride solution. The dried organic layer was evaporated to give 5.4 g of the title compound as an oil which slowly crystallized. The NMR spectrum (in CDCl3) showed absorptions at 5.80 (q, 2H), 5.15 (d, 1H), 4.75 (d, 1H), 4.50 (s, 1H), 1.60 (s, 3H), 1/40 (s, 3H) and 1.20 (s, 9H) ppm.

Eksempel 13 3 0 Pivaloyloxymethyl-penicillanat-1,1-dioxid.Example 13 Pivaloyloxymethyl penicillanate-1,1-dioxide.

En opløsning af 4,4 g pivaloyloxymethyl-6-a-brom-penicillanat-1,1-dioxid i 60 ml tetrahydrofuran blev sat til 0,84 g natriumbicarbonat i 12 ml vand. Opløsningen blev rystet under en atmosfære af hydrogen i nærværelse 35 af 2,0 g 5% palladium-på-kul ved 47-51 psig. Reaktionsblandingen blev derefter filtreret, og filterresten blev vasket med 100 ml ethylacetat og 25 ml vand. Kombinationen af filtrat og vaskevæsker blev fraskilt. Det organi-A solution of 4.4 g of pivaloyloxymethyl-6-a-bromo-penicillanate-1,1-dioxide in 60 ml of tetrahydrofuran was added to 0.84 g of sodium bicarbonate in 12 ml of water. The solution was shaken under an atmosphere of hydrogen in the presence of 2.0 g of 5% palladium on charcoal at 47-51 psig. The reaction mixture was then filtered and the filter residue was washed with 100 ml of ethyl acetate and 25 ml of water. The combination of filtrate and washings was separated. The organic

DK 166353BDK 166353B

16 ske lag blev vasket med mættet natriumchlorid, tørret (MgSO^) og inddampet, hvorved vandtes titelforbindelsen som en olie. Denne olie blev opløst i - ethylacetat (20 ml).16 layers were washed with saturated sodium chloride, dried (MgSO4) and evaporated to give the title compound as an oil. This oil was dissolved in - ethyl acetate (20 ml).

Til opløsningen blev der langsomt sat hexan (100 ml), og 5 bundfaldet blev frafiltreret. Udbytte: 2,4 g. NMR-spek-tret (i DMSO-dg) viste absorptioner ved 5,75 (q, 2H), 5,05 (m, IH), 4,40 (s, IH), 3,95 - 2,95 (m, 2H), 1,40 (s, 3H), 1,25 (s, 3H) og 1,10 (s, 9H) ppm.To the solution was added hexane (100 ml) slowly and the precipitate was filtered off. Yield: 2.4 g. The NMR spectrum (in DMSO-dg) showed absorptions at 5.75 (q, 2H), 5.05 (m, 1H), 4.40 (s, 1H), 3, 95 - 2.95 (m, 2H), 1.40 (s, 3H), 1.25 (s, 3H) and 1.10 (s, 9H) ppm.

10 Eksempel 14 2,2,2-Trichlorethyl-6-a-brompenicillanat-l,1-dioxid.Example 14 2,2,2-Trichloroethyl-6-a-brompenicillanate-1,1-dioxide.

2,2,2-Trichlorethyl-6-a-brompenicillanat blev oxideret med kaliumpermanganat i det væsentlige ved fremgangsmåden ifølge Eksempel 12, hvorved vandtes titelfor-15 bindeisen i et udbytte på 79%. NMR-spektret af produktet (i CDClg) viste absorptioner ved 5,30 til 4,70 (m, 4H), 4,60 (s, IH), 1,70 (s, 3H) og 1,50 (s, 3H) ppm.2,2,2-Trichloroethyl 6-a-brompenicillanate was oxidized with potassium permanganate substantially by the procedure of Example 12, whereby the title compound was obtained in a yield of 79%. The NMR spectrum of the product (in CDCl 3) showed absorbances at 5.30 to 4.70 (m, 4H), 4.60 (s, 1H), 1.70 (s, 3H) and 1.50 (s, 3H) ) ppm.

DK 166353BDK 166353B

1717

Eksempel 15 •Penicillansyre-1,1-dioxid.Example 15 • Penicillanic acid 1,1-dioxide.

Til en omrørt opslæmning af 6,5 g zinkpulver i 100 ml af en 70:30 iseddikesyre/tetrahydrofuran-blanding blev 5 der portionsvis i løbet af 5 minutter sat 4,0 g 2,2,2-trichlorethyl-6-a-brompenicillanat-l,1-dioxid. Blandingen blev omrørt ved stuetemperatur i 3 timer og derefter filtreret. Filtratet blev koncentreret til et volumen på 10 ml, og den gulbrune opløsning blev blandet med 50 ml vand 10 og 100 ml ethylacetat. pH-Værdien blev indstillet på 1,3, og lagene blev adskilt. Den organiske fase blev vasket med mættet natriumchloridopløsning, tørret under anvendelse af magnesiumsulfat og derefter koncentreret til tørhed i vakuum. Inddampningsresten blev tritureret under 15 ether i 20 minutter. Herved vandtes 553 mg af titelforbindelsen som et fast stof. NMR-spektret (i CDCl^/DMSO-dg) viste absorptioner ved 11,2 (bred s, IH), 4,65 (m, IH), 4,30 (s, IH), 3,40 (m, 2H), 1,65 (s, 3H) og 1,50 (s, 3H) ppm.To a stirred slurry of 6.5 g of zinc powder in 100 ml of a 70:30 glacial acetic acid / tetrahydrofuran mixture, 5 g of 2,2,2-trichloroethyl 6-a-brompenicillanate was added portionwise over 5 minutes. -l, 1-dioxide. The mixture was stirred at room temperature for 3 hours and then filtered. The filtrate was concentrated to a volume of 10 ml and the tan solution was mixed with 50 ml of water 10 and 100 ml of ethyl acetate. The pH was set to 1.3 and the layers separated. The organic phase was washed with saturated sodium chloride solution, dried using magnesium sulfate and then concentrated to dryness in vacuo. The residue was triturated under 15 ether for 20 minutes. Thereby 553 mg of the title compound was obtained as a solid. The NMR spectrum (in CDCl3 / DMSO-dg) showed absorptions at 11.2 (broad s, 1H), 4.65 (m, 1H), 4.30 (s, 1H), 3.40 (m, 2H ), 1.65 (s, 3H) and 1.50 (s, 3H) ppm.

20 Eksempel 16Example 16

Benzyl-6-a-brompenicillanat-1,1-dioxid.Benzyl 6-alpha-bromopenicillanate 1,1-dioxide.

Benzyl-6-a-brompenicillanat blev oxideret med kali-umpermanganat i det væsentlige som ved fremgangsmåden i-følge Eksempel 12, hvorved vandtes titelforbindelsen i 25 94% udbytte. NMR-spektret (i CDCl^) viste absorptioner ved 7,35 (s, 5H), 5,10 (m, 3H), 4,85 (m, IH), 4,40 (s, IH), 1,50 (s, 3H) og 1,25 (s, 3H) ppm.Benzyl 6-α-brompenicillanate was oxidized with potassium permanganate substantially as in the procedure of Example 12, thereby obtaining the title compound in 94% yield. The NMR spectrum (in CDCl3) showed absorptions at 7.35 (s, 5H), 5.10 (m, 3H), 4.85 (m, 1H), 4.40 (s, 1H), 1.50 (s, 3H) and 1.25 (s, 3H) ppm.

Eksempel 17Example 17

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

30 En opløsning af 4,0 g benzyl-6-a-brompenicillanat- 1,1-dioxid i 50 ml tetrahydrofuran blev kombineret med en opløsning af 1,06 g natriumbicarbonat i 50 ml vand.A solution of 4.0 g of benzyl-6-a-brompenicillanate-1,1-dioxide in 50 ml of tetrahydrofuran was combined with a solution of 1.06 g of sodium bicarbonate in 50 ml of water.

Til blandingen blev der sat 2,0 g af en 50% suspension af 5% palladium-på-kul i vand, hvorefter denne blanding blev 35 rystet under en atmosfære af hydrogen ved et tryk på 46,5 18To the mixture was added 2.0 g of a 50% suspension of 5% palladium-on-charcoal in water, after which this mixture was shaken under an atmosphere of hydrogen at a pressure of 46.5

DK 166353 BDK 166353 B

-50 psig. i 20 minutter. Katalysatoren blev frafiltreret, og derefter blev der tilsat 30 ml tetrahydrofuran og 3,0 g af en 50% suspension af 5% palladium-på-kul. Den resulterende blanding blev rystet under en atmosfære af hy-5 drogen ved tryk fra 42.til 45 psig. i 65 minutter. Reaktionsblandingen blev derefter filtreret, og tetrahydro-furanen blev afdampet. Ethylacetat blev sat til den vandige inddampningsrest, og pH blev indstillet på 7,1. Ethylacetatlaget blev fjernet, og frisk ethylacetat blev 10 tilsat til den resterende vandige fase. pH-Værdien blev sænket til 1,5, og lagene blev adskilt. Den vandige fase blev ekstraheret yderligere med ethylacetat, og de samlede ethylacetatopløsninger blev vasket med mættet natrium-chloridopløsning og tørret (MgS04). Inddampning i vakuum 15 gav en gummi, der blev tritureret under ether. Herved vandtes 31 mg penicillansyre-l,l-dioxid som et gult fast stof. NMR-spektret (i CDCl^/DMSO-dg) viste absorption ved 9,45 (bred s, IH), 4,60 (t, IH), 4,25 (s, IH), 3,40 (d, 2H), 1,65 (s, 3H) og 1,30 (s, 3H) ppm.-50 psig. for 20 minutes. The catalyst was filtered off and then 30 ml of tetrahydrofuran and 3.0 g of a 50% suspension of 5% palladium-on-charcoal were added. The resulting mixture was shaken under an atmosphere of the hydrogen at pressures from 42 to 45 psig. for 65 minutes. The reaction mixture was then filtered and the tetrahydrofuran was evaporated. Ethyl acetate was added to the aqueous evaporation residue and the pH was adjusted to 7.1. The ethyl acetate layer was removed and fresh ethyl acetate was added to the remaining aqueous phase. The pH was lowered to 1.5 and the layers separated. The aqueous phase was further extracted with ethyl acetate and the combined ethyl acetate solutions were washed with saturated sodium chloride solution and dried (MgSO 4). Evaporation in vacuo gave a gum which was triturated under ether. This gave 31 mg of penicillanic acid 1,1-dioxide as a yellow solid. The NMR spectrum (in CDCl3 / DMSO-dg) showed absorption at 9.45 (broad s, 1H), 4.60 (t, 1H), 4.25 (s, 1H), 3.40 (d, 2H) ), 1.65 (s, 3H) and 1.30 (s, 3H) ppm.

20 Eksempel 18 6,6-Dibrompenicillansyre-l,1-dioxid.Example 18 6,6-Dibrompenicillanic acid 1,1-dioxide.

Til dichlormethanopløsningen af 6,6-dibrompenicil-lansyre fra Præparation K blev der sat 300 ml vand efter* .¾ fulgt af dråbevis tilsætning over en periode på 30 minutr 25 ter af 105 ml 3N natriumhydroxid. pH-Værdien stabiliserede ved 7,0. Det vandige lag blev fjernet, og det organiske lag blev ekstraheret med vand (2 x 100 ml). Til de samlede vandige opløsninger blev der ved -5°C sat en præblandet opløsning fremstillet ud fra 59,25 g kaliumper-30 manganat, 18 ml koncentreret phosphorsyre og 600 ml vand, indtil den lyserøde farve af permanganatet holdt sig. Tilsætningen tog 50 minutter, og 550 ml oxidationsmiddel var nødvendigt. På dette tidspunkt blev der tilsat 500 mL ethylacetat, og derefter blev pH sænket til 1,23 ved til-35 sætning af 105 ml 6N saltsyre. Derefter blev der i løbet af 10-15 minutter ved ca. 10°C tilsat 250 ml 1M natrium-bisulfit. Under tilsætningen af natriumbisulfitopløsnin- 19To the dichloromethane solution of 6,6-dibrompenicil lanoic acid from Preparation K, 300 ml of water was added after *. Af followed by dropwise addition over a period of 30 minutes of 25 ml of 105 ml of 3N sodium hydroxide. The pH stabilized at 7.0. The aqueous layer was removed and the organic layer was extracted with water (2 x 100 ml). To the total aqueous solutions was added at -5 ° C a premixed solution prepared from 59.25 g of potassium permanganate, 18 ml of concentrated phosphoric acid and 600 ml of water until the pink color of the permanganate remained. The addition took 50 minutes and 550 ml of oxidizer was needed. At this point, 500 mL of ethyl acetate was added, and then the pH was lowered to 1.23 by the addition of 105 mL of 6N hydrochloric acid. Then, within 10-15 minutes, at ca. 10 ml of 250 ml of 1M sodium bisulfite. During the addition of sodium bisulfite solution 19

DK 166353 BDK 166353 B

gen holdtes pH ved 1,25-1,35 ved anvendelse af 6N saltsyre. Den vandige fase blev mættet med natriumchlorid, og de to faser blev adskilt. Den vandige opløsning blev ekstraheret med yderligere ethylacetat (2 x 150 ml), og 5 de samlede ethylacetatopløsninger blev vasket med saltopløsning og tørret (MgSO^). Dette gav en ethylacetatopløsning af 6,6-dibrompenicillansyre-l,l-dioxid.gene was maintained at pH 1.25-1.35 using 6N hydrochloric acid. The aqueous phase was saturated with sodium chloride and the two phases were separated. The aqueous solution was extracted with additional ethyl acetate (2 x 150 mL) and the combined ethyl acetate solutions were washed with brine and dried (MgSO4). This gave an ethyl acetate solution of 6,6-dibrompenicillanic acid 1,1-dioxide.

6,6-Dibrompenicillansyre-l,l-dioxidet kunne isoleres ved at fjerne opløsningsmidlet i vakuum. En prøve 10 isoleret på denne måde ud fra et analogt præparat havde smp. 201°C (dek.). NMR-spektret (CDCl^/DMSO-dg) viste absorptioner ved 9,35 (s, IH), 5,30 (s, IH), 4,42 (s, 1¾ 1,63 (s, 3H) og 1,50 (s, 3H) ppm. IR-spektret (KBr-plade) viste absorptioner ved 3846-2500, 1818, 1754, 1342 og 15 1250-1110 cm-1.The 6,6-dibrompenicillanic acid 1,1-dioxide could be isolated by removing the solvent in vacuo. A sample 10 isolated in this way from an analog preparation had m.p. 201 ° C (dec.). The NMR spectrum (CDCl3 / DMSO-dg) showed absorptions at 9.35 (s, 1H), 5.30 (s, 1H), 4.42 (s, 1¾ 1.63 (s, 3H), and 1, 50 (s, 3H) ppm. The IR spectrum (KBr plate) showed absorptions at 3846-2500, 1818, 1754, 1342 and 15 1250-1110 cm -1.

Eksempel .19 6-Chlor-6-iodpenicillansyre-l,1-dioxid.Example .19 6-Chloro-6-iodopenicillanic acid 1,1-dioxide.

Til en opløsning af 4,9 g 6-chlor-6-iodpenicillan-syre i 50 ml dichlormethan blev der sat’ 50 ml vand, og 20 derefter blev pH hævet til 7,2 ved anvendelse af 3N natriumhydroxid. Lagene blev adskilt, og det vandige lag blev afkølet til 5°C. Til denne opløsning blev der derefter dråbevis over en periode på 20 minutter sat en præblandet opløsning fremstillet ud fra 2,61 g kaliumperman-25 ganat, 1,75 ml koncentreret phosphorsyre og 50 ml vand. pH-Værdien holdtes ved 6, og temperaturen holdtes under 10°C under tilsætningen. På dette tidspunkt blev der tilsat 100 ml ethylacetat, og pH blev indstillet på 1,5.To a solution of 4.9 g of 6-chloro-6-iodo-penicillanic acid in 50 ml of dichloromethane was added 50 ml of water and then the pH was raised to 7.2 using 3N sodium hydroxide. The layers were separated and the aqueous layer was cooled to 5 ° C. To this solution was then added dropwise over a period of 20 minutes a premixed solution prepared from 2.61 g of potassium permanganate, 1.75 ml of concentrated phosphoric acid and 50 ml of water. The pH was maintained at 6 and the temperature kept below 10 ° C during the addition. At this point, 100 ml of ethyl acetate was added and the pH was adjusted to 1.5.

Til blandingen blev der derefter sat 50 ml 10% natrium-30 bisulfit, idet temperaturen holdtes under 10°C, og pH ved ca. 1,5 ved tilsætning af 6N saltsyre. pH-Værdien blev sænket til 1,25, og lagene blev adskilt. Det vandige lag blev mættet med natriumchlorid og ekstraheret med ethylacetat. De samlede organiske opløsninger blev va-35 sket med saltopløsning, tørret (MgSO^) og inddampet i vakuum, hvorved vandtes 4,2 g af titelforbindelsen, smp. 143-145°C. NMR-spektret (CDCl^) viste absorptioner vedTo the mixture was then added 50 ml of 10% sodium bisulfite, keeping the temperature below 10 ° C and the pH at ca. 1.5 by the addition of 6N hydrochloric acid. The pH was lowered to 1.25 and the layers separated. The aqueous layer was saturated with sodium chloride and extracted with ethyl acetate. The combined organic solutions were washed with brine, dried (MgSO4) and evaporated in vacuo to give 4.2 g of the title compound, m.p. 143-145 ° C. The NMR spectrum (CDCl3) showed absorptions at

DK 166353BDK 166353B

20 4,86 (s, IH), 4,38 (s, IH), 1,60 (s, 3H) og 1,43 (s,3H) ppm. IR-spektret (KBr-plade) viste absorptioner ved 1800, 1740 og 1250-1110 cm-1.4.86 (s, 1H), 4.38 (s, 1H), 1.60 (s, 3H) and 1.43 (s, 3H) ppm. The IR spectrum (KBr plate) showed absorptions at 1800, 1740 and 1250-1110 cm -1.

Eksempel 20 5 6-Brom-6-iodpenicillansyre-l,1-dioxid.Example 20 6-Bromo-6-iodopenicillanic acid 1,1-dioxide.

Til en opløsning af 6,0 g 6-brom-6-iodpenicillansy-re i 50 ml dichlormethan blev der sat 50 ml vand. pH-Vær-dien blev hævet til 7,3 med 3N natriumhydroxid, og det vandige lag blev fjernet. Det organiske lag blev ekstra-10 heret med 10 ml vand. De samlede vandige faser blev afkølet til 5°C, og en præblandet opløsning af 284 g kalium-permanganat i 2 ml koncentreret phosphor syre og 50 ml vand blev tilsat dråbevis mellem 5° og 10°C. Tilsætningen tog 20 minutter. På dette tidspunkt blev der tilsat 50 ml 15 ethylacetat, og pH af blandingen blev sænket til 1,5 med 6N saltsyre. Til dette tofase-system blev der dråbevis sat 50 ml. 10% natriumbisulfit, idet pH holdtes ved ca.1,5 ved tilsætning af 6N saltsyre. Yderligere 50 ml ethylacetat blev tilsat, og derefter blev pH sænket til 1,23. La-20 gene blev adskilt, og det vandige lag blev mættet med na-triumchlorid. Den mættede opløsning blev ekstraheret med ethylacetat (3 x 50 ml), og de samlede ethylacetatlag blev vasket med saltopløsning, tørret (MgSO^) og inddampet i vakuum. Inddampningsresten blev tørret i højvakuum, 25 hvilket gav 4,2 g af titelforbindelsen, smp. 145-147°C. NMR-spektret (CDCl^) viste absorptioner ved 4,90 (s, IH), 4,30 (s, IH), 1,60 (s, 3H) og 1,42 (s, 3H) ppm. IR-spek-tret (KBr-plade) viste absorptioner ved 1800, 1740, 1330 og 1250-1110 cm"1.To a solution of 6.0 g of 6-bromo-6-iodo-penicillanic acid in 50 ml of dichloromethane was added 50 ml of water. The pH was raised to 7.3 with 3N sodium hydroxide and the aqueous layer removed. The organic layer was extracted with 10 ml of water. The combined aqueous phases were cooled to 5 ° C and a premixed solution of 284 g of potassium permanganate in 2 ml of concentrated phosphoric acid and 50 ml of water was added dropwise between 5 ° and 10 ° C. The addition took 20 minutes. At this point, 50 ml of ethyl acetate was added and the pH of the mixture was lowered to 1.5 with 6N hydrochloric acid. To this two-phase system, 50 ml was added dropwise. 10% sodium bisulfite, keeping the pH at about 1.5 by the addition of 6N hydrochloric acid. An additional 50 ml of ethyl acetate was added and then the pH was lowered to 1.23. The layers were separated and the aqueous layer was saturated with sodium chloride. The saturated solution was extracted with ethyl acetate (3 x 50 ml) and the combined ethyl acetate layers were washed with brine, dried (MgSO 4) and evaporated in vacuo. The residue was dried under high vacuum to give 4.2 g of the title compound, m.p. 145-147 ° C. The NMR spectrum (CDCl3) showed absorptions at 4.90 (s, 1H), 4.30 (s, 1H), 1.60 (s, 3H) and 1.42 (s, 3H) ppm. The IR spectrum (KBr plate) showed absorptions at 1800, 1740, 1330 and 1250-1110 cm -1.

30 Eksempel 21 6-Chlor- 6 -brompenic illansy re-1,1-dioxid.Example 21 6-Chloro-6-brompenic illansyrene-1,1-dioxide.

Oxidation af 6-chlor-6-brompenicillansyre med kali-umpermanganat ved fremgangsmåden ifølge Eksempel 20 gav 6-chlor-6-brompenicillansyre-l, 1-dioxid.Oxidation of 6-chloro-6-brompenicillanic acid with potassium permanganate by the procedure of Example 20 gave 6-chloro-6-brompenicillanic acid 1,1-dioxide.

DK 166353BDK 166353B

2121

Eksempel 22Example 22

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

Ethylacetatopløsningen af 6,6-dibrompenicillansyre" 1,1-dioxid fra Eksempel 18 blev kombineret med 705 ml 5 mættet natriumbicarbonatopløsning og 8,88 g 5% palladium-på-kul-katalysator. Blandingen blev rystet under en at-mosfære af hydrogen ved et tryk på ca. 5 kg/cm i ca. 1 time. Katalysatoren blev frafiltreret, og pH af den vandige fase af filtratet blev indstillet på 1,2 med 6N 10 saltsyre. Den vandige fase blev mættet med natriumchlo-rid. Lagene blev adskilt, og den vandige fase blev ekstraheret med yderligere ethylacetat (3 x 200 ml). De samlede ethylacetatopløsninger blev tørret (MgS04) og inddampet i vakuum, hvorved vandtes 33,5 g (58% udbytte 15 baseret på 6-aminopenicillansyre) af penicillansyre-1,1-dioxid. Dette produkt blev opløst i 600 ml ethylacetat, opløsningen blev affarvet med aktivt kul, og opløsningsmidlet blev afdampet i vakuum. Produktet blev vasket med hexan. Herved vandtes 31,0 g rent produkt.The ethyl acetate solution of 6,6-dibrompenicillanic acid 1,1-dioxide from Example 18 was combined with 705 ml of 5 saturated sodium bicarbonate solution and 8.88 g of 5% palladium-on-carbon catalyst. The mixture was shaken under an atmosphere of hydrogen at a pressure of about 5 kg / cm for about 1 hour The catalyst was filtered off and the pH of the aqueous phase of the filtrate was adjusted to 1.2 with 6N 10 hydrochloric acid. The aqueous phase was saturated with sodium chloride. separated and the aqueous phase was extracted with additional ethyl acetate (3 x 200 ml) The combined ethyl acetate solutions were dried (MgSO 4) and evaporated in vacuo to give 33.5 g (58% yield 15 based on 6-aminopenicillanic acid) of penicillanic acid This product was dissolved in 600 ml of ethyl acetate, the solution was decolorized with activated charcoal and the solvent was evaporated in vacuo, the product was washed with hexane to give 31.0 g of pure product.

20 Eksempel 23Example 23

Hydrogenolyse af hver af 6-chlor-6-iodpenicillan-syre-1,1-dioxid, 6-brom-6-iodpenicillansyre og 6-chlor-6-brom-penicillansyre ved fremgangsmåden ifølge Eksempel 22 gav i hvert enkelt tilfælde penicillansyre-1,1-dioxid.Hydrogenolysis of each of 6-chloro-6-iodo-penicillanic acid-1,1-dioxide, 6-bromo-6-iodo-penicillanic acid and 6-chloro-6-bromo-penicillanic acid by the procedure of Example 22 in each case gave penicillanic acid-1 , 1-dioxide.

25 Eksempel'24Example 24

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

Til en omrørt suspension af 786 mg 6-chlor-6-iod-penicillansyre-1,1-dioxid i 10 ml benzen blev der sat 0,3 ml triethylamin efterfulgt af 0,25 ml trimethylsilyl-30 chlorid ved ca. 0°C. Omrøring blev fortsat i 5 minutter ved ca. 0°C og derefter ved tilbagesvalingstemperaturen for opløsningsmidlet i 30 minutter. Reaktionsblandingen blev afkølet til 25°C, og det udfældede materiale blev frafiltreret. Filtratet blev afkølet til ca. 0°C, og 35 1,16 g tri-n-butyltinhydrid og nogle få milligram azobis-To a stirred suspension of 786 mg of 6-chloro-6-iodo-penicillanic acid 1,1-dioxide in 10 ml of benzene was added 0.3 ml of triethylamine followed by 0.25 ml of trimethylsilyl chloride at ca. 0 ° C. Stirring was continued for 5 minutes at ca. 0 ° C and then at the reflux temperature of the solvent for 30 minutes. The reaction mixture was cooled to 25 ° C and the precipitated material was filtered off. The filtrate was cooled to ca. 0 ° C and 1.16 g of tri-n-butyltin hydride and a few milligrams of azobic acid

DK 166353BDK 166353B

22 isobutyronitril blev tilsat. Reaktionsblandingen blev om-rørt og bestrålet med ultraviolet lys i 1 time ved ca.22 isobutyronitrile was added. The reaction mixture was stirred and irradiated with ultraviolet light for 1 hour at ca.

0°C og derefter i 3,5 timer ved tilbagesvalingstemperatu- · ren for opløsningsmidlet. En yderligere mængde tri-n-bu-5 tyltinhydrid (1,1 ml) og en katalytisk mængde af azobis-isobutyronitril blev tilsat, og omrøring og bestråling ved tilbagesvalingstemperaturen blev fortsat i yderligere 1 time. Reaktionsblandingen blev derefter hældt i 50 ml kold 5% natriumbicarbonat, og tofasesystemet blev omrørt 10 i 30 minutter. Ethylacetat (50 ml) blev tilsat, og pH blev indstillet på 1,5 med 6N saltsyre. Lagene blev adskilt, og det vandige lag blev ekstraheret med ethylacetat. De samlede ethylacetatopløsninger blev vasket med saltopløsning, tørret (MgSO^) og inddampet i vakuum. Ind-15 dampningsresten blev tritureret under hexan pg dérefter udvundet ved filtrering. Herved vandtes 0,075 mg af titelforbindelsen .0 ° C and then for 3.5 hours at the reflux temperature of the solvent. An additional amount of tri-n-butyltin hydride (1.1 ml) and a catalytic amount of azobis-isobutyronitrile were added and stirring and irradiation at the reflux temperature were continued for an additional 1 hour. The reaction mixture was then poured into 50 ml of cold 5% sodium bicarbonate and the two-phase system was stirred for 30 minutes. Ethyl acetate (50 ml) was added and the pH was adjusted to 1.5 with 6N hydrochloric acid. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined ethyl acetate solutions were washed with brine, dried (MgSO4) and evaporated in vacuo. The evaporation residue was triturated under hexane and subsequently recovered by filtration. There was thus obtained 0.075 mg of the title compound.

Eksempel 25Example 25

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

20 Til en omrørt suspension af 0,874 g 6-brom-6-iod- penicillansyre-1,1-dioxid i 10 ml benzen blev der ved ca.To a stirred suspension of 0.874 g of 6-bromo-6-iodo-penicillanic acid 1,1-dioxide in 10 ml of benzene was added at ca.

5°C sat 0,3 ml triethylamin efterfulgt af 0,25 ml trime-thylsilylchlorid. Omrøring blev fortsat ved ca. 5°C i 5 minutter og derefter i 30 minutter ved tilbagesvalings-25 temperaturen for opløsningsmidlet. Reaktionsblandingen blev afkølet til stuetemperatur, og de faste stoffer blev frafiltreret. Filtratet blev afkølet til ca. 5°C, og 1,05 ml tri-n-butyltinhydrid og en katalytisk mængde af azo-bisisobutyronitril blev tilsat. Blandingen blev bestrålet 30 med ultraviolet lys i 1 time ved ca. 5°C og blev derefter hældt i 30 ml kold 5% natriumbicarbonat. Blandingen blev omrørt i 30 minutter, og derefter blev der tilsat 50 ml ethylacetat. Blandingen blev syrnet til pH 1,5, og lagene blev adskilt. Det vandige lag blev ekstraheret med ethyl-35 acetat (2 x 25 ml), og de samlede ethylacetatlag blev vasket med saltopløsning, tørret (MgSO^) og inddampet i vakuum. Inddampningsresten blev tørret i højvakuum, og 30 23At 5 ° C, 0.3 ml of triethylamine was added followed by 0.25 ml of trimethylsilyl chloride. Stirring was continued at ca. 5 ° C for 5 minutes and then for 30 minutes at the reflux temperature of the solvent. The reaction mixture was cooled to room temperature and the solids were filtered off. The filtrate was cooled to ca. 5 ° C and 1.05 ml of tri-n-butyltin hydride and a catalytic amount of azo-bisisobutyronitrile were added. The mixture was irradiated with ultraviolet light for 1 hour at ca. 5 ° C and was then poured into 30 ml of cold 5% sodium bicarbonate. The mixture was stirred for 30 minutes and then 50 ml of ethyl acetate was added. The mixture was acidified to pH 1.5 and the layers separated. The aqueous layer was extracted with ethyl acetate (2 x 25 mL) and the combined ethyl acetate layers were washed with brine, dried (MgSO 4) and evaporated in vacuo. The evaporation residue was dried in high vacuum, and 23

DK 166353 BDK 166353 B

ml hexan blev tilsat. Det uopløselige materiale blev frafiltreret, hvorved der vandtes 0,035 g af titelforbindelsen.ml of hexane was added. The insoluble material was filtered off to give 0.035 g of the title compound.

Eksempel 26 5 Pivaloyloxymethyl-6,6-dibrompenicillanat-l, 1-dioxid.Example 26 Pivaloyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide.

Til en opløsning af 4,73 g pivaloyloxymethyl-;6,6-dibrompenicillanat i 15 ml dichlormethan blev der sat 3,80 g 3-chlorperbenzoesyre ved 0-5°C. Reaktionsblandingen blev omrørt ved 0-5°C i 1 time og derefter ved 25°C 10 i 24 timer. Den filtrerede reaktionsblanding blev inddampet til tørhed i vakuum, og inddampningsresten blev fordelt mellem ethylacetat og vand. pH-Værdien af den vandige fase blev indstillet på 7,5, og lagene blev adskilt. Ethylacetatfasen blev tørret (Na2SO^) og inddam-15 pet i vakuum, hvorved vandtes titelforbindelsen.To a solution of 4.73 g of pivaloyloxymethyl-; 6,6-dibrompenicillanate in 15 ml of dichloromethane was added 3.80 g of 3-chloroperbenzoic acid at 0-5 ° C. The reaction mixture was stirred at 0-5 ° C for 1 hour and then at 25 ° C for 24 hours. The filtered reaction mixture was evaporated to dryness in vacuo and the residue was partitioned between ethyl acetate and water. The pH of the aqueous phase was adjusted to 7.5 and the layers separated. The ethyl acetate phase was dried (Na 2 SO 4) and evaporated in vacuo to give the title compound.

Eksempel 27Example 27

Oxidation af hver af de tilsvarende 6,6-dihalogenpe-nicillansyreestre under anvendelse af 3-chlor-20 perbenzoesyre ved fremgangsmåden ifølge Eksempel 26 gav de følgende forbindelser: 3- phthalidyl-6,6-dibrompenicillanat-l, 1-dioxid, 4- crotonolactonyl-6-chlor-6-iodpenicillanat-l, 1-dioxid, Y-butyrolactonyl-6-brom-6-iodpenicillanat-l, 1-dioxid, 25 acetoxymethyl-6-chlor-6-brompenicillanat-l, 1-dioxid, pivaloyloxymethyl-6-chlor-6-iodpenicillanat-l, 1-dioxid, hexanoyloxymethyl-6,6-dibrompenicillanat-l, 1-dioxid, 1- (acetoxy) ethyl-6,6-dibrompenicillanat-l, 1-dioxid, 1- (isobutyryloxy) ethyl-'6-brom-6-iodpenicillanat-l, 1-dio-30 xid, 1-methyl-l- (acetoxy) ethyl-6,6-dibrompenicillanat-l, 1-dioxid, 1-methyl-l- (hexanoyloxy) ethyl-6-chlor-6-brompenicillanat, methoxycarbortyloxymethyl-6,6-dibrompenicillanat-l, 1-dio- .Oxidation of each of the corresponding 6,6-dihalogenepicillanic acid esters using 3-chloro-20-perbenzoic acid by the procedure of Example 26 gave the following compounds: 3- phthalidyl-6,6-dibrompenicillanate-1,1-dioxide, 4- crotonolactonyl-6-chloro-6-iodopenicillanate-1,1-dioxide, Y-butyrolactonyl-6-bromo-6-iodopenicillanate-1,1-dioxide, acetoxymethyl-6-chloro-6-brompenicillanate-1,1-dioxide , pivaloyloxymethyl-6-chloro-6-iodopenicillanate-1,1-dioxide, hexanoyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide, 1- (acetoxy) ethyl-6,6-dibrompenicillanate-1,1-dioxide, 1- (isobutyryloxy) ethyl-6-bromo-6-iodopenicillanate-1,1-dioxide, 1-methyl-1- (acetoxy) ethyl-6,6-dibrompenicillanate-1,1-dioxide, 1- methyl 1- (hexanoyloxy) ethyl-6-chloro-6-brompenicillanate, methoxycarbortyloxymethyl-6,6-dibrompenicillanate-1,1-dio-.

35 xid, propoxycarbonyloxymethyl-6-chlor-6-iodpenicillanat-l, 1-dioxid, 24Oxide, propoxycarbonyloxymethyl-6-chloro-6-iodopenicillanate-1,1-dioxide, 24

DK 166353 BDK 166353 B

1- (ethoxycarbonyloxy) ethyl-6,6-dibrompenicillanat-l, 1-dioxid, 1- (butoxycarbonyloxy) ethyl-6-brom-6-iodpenicillanat-l, 1-dioxid, 5 1-methyl-l- (methoxycarbonyloxy) ethyl-6,6-dibrompenicillå-nat-1,1-dioxid og 1-methyl-l- (isopropoxycarbonyloxy) ethyl-6,6-dibrompeni-cillanat-1,1-dioxid.1- (ethoxycarbonyloxy) ethyl 6,6-dibrompenicillanate-1,1-dioxide, 1- (butoxycarbonyloxy) ethyl-6-bromo-6-iodopenicillanate-1,1-dioxide, 1-methyl-1- (methoxycarbonyloxy) ethyl 6,6-dibrompenicillanate-1,1-dioxide and 1-methyl-1- (isopropoxycarbonyloxy) ethyl 6,6-dibrompenicillanate-1,1-dioxide.

Eksempel 28 10 Pivaloyloxymethyl-penicillanat-1,1-dioxid.Example 28 Pivaloyloxymethyl penicillanate-1,1-dioxide.

Til en opløsning af 1,0 g pivaloyloxymethyl-6,6-dibrompenicillanat-1,1-dioxid i 10 ml methanol blev der sat 3 ml 1M natriumbicarbonat og 200 ml 10% palladium-på-,kul. Reaktionsblandingen blev rystet kraftigt under en 15 atmosfære af hydrogen ved et tryk på ca. 5 kg/cm , indtil hydrogenoptagningen ophørte. Blandingen blev derefter filtreret, og hovedparten af methanolen blev fjernet ved inddampning i vakuum. Vand og ethylacetat blev sat til ind dampningsresten, og pH blev indstillet på 8,5. Lagene 20 blev adskilt, og det organiske lag blev vasket med vand, tørret (Na280^) og inddampet i vakuum. Herved vandtes pivaloyloxymethylpenicillanat-1,1-dioxid.To a solution of 1.0 g of pivaloyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide in 10 ml of methanol was added 3 ml of 1M sodium bicarbonate and 200 ml of 10% palladium-on-charcoal. The reaction mixture was shaken vigorously under an atmosphere of hydrogen at a pressure of ca. 5 kg / cm until hydrogen uptake ceased. The mixture was then filtered and the majority of the methanol removed by evaporation in vacuo. Water and ethyl acetate were added to the evaporation residue and the pH was adjusted to 8.5. The layers 20 were separated and the organic layer was washed with water, dried (Na2804) and evaporated in vacuo. Pivaloyloxymethylpenicillanate-1,1-dioxide was thereby obtained.

Eksempel 29Example 29

Hydrogenolyse af hver af 6,6-dihalogen-penicillan-25 syreester-l,l-dioxiderne fra Eksempel 27 ved fremgangsmåden ifølge Eksempel 28 gav de følgende forbindelser: 3- phthalidyl-penicillanat-l, 1-dioxid, 4- crotonolactonyl-penicillanat-l, 1-dioxid, Y-butyrolacton-4-yl-penicillanat-l, 1-dioxid, 3 0 acetoxymethyl-penicillanat-1,1-dioxid, pivaloyloxymethyl-penicillanat-1,1-dioxid, hexanoyloxymethyl-penicillanat-1,1-dioxid, 1-(acetoxy)ethyl-penicillanat-1,1-dioxid, 1- (isobutyryloxy) ethyl-penicillanat-1,1-dioxid, 35 1-methyl- (acetoxy) ethyl-penicillanat-1,1-dioxid, 1-methyl-l- (hexanoyloxy) ethyl-penicillanat-1,1-dioxid, 25Hydrogenolysis of each of the 6,6-dihalo-penicillanic acid ester-1,1-dioxides of Example 27 by the procedure of Example 28 gave the following compounds: 3-phthalidyl-penicillanate-1,1-dioxide, 4-crotonolactonyl-penicillanate -1,1-dioxide, Y-butyrolacton-4-yl-penicillanate-1,1-dioxide, acetoxymethyl-penicillanate-1,1-dioxide, pivaloyloxymethyl-penicillanate-1,1-dioxide, hexanoyloxymethyl-penicillanate-1 , 1-dioxide, 1- (acetoxy) ethyl-penicillanate-1,1-dioxide, 1- (isobutyryloxy) ethyl-penicillanate-1,1-dioxide, 1-methyl (acetoxy) ethyl-penicillanate-1.1 -dioxide, 1-methyl-1- (hexanoyloxy) ethyl-penicillanate-1,1-dioxide, 25

DK 166353 BDK 166353 B

methoxycarbonyloxymethyl-penicillanat-1,1-dioxider # propoxycarbonyloxymethyl-penicillanat-1, 1-dioxid, 1- (ethoxycarbonyloxy) ethyl-penicillanat-1,1-dioxid, 1- (butoxycarbonyl) ethyl-penicillanat-1,1-dioxid, 5 1-methyl-l- (inethoxycarbonyloxy) ethyl-penicillanat-1,1-dioxid og 1-methyl-l- (isopropoxycarbonyloxy) ethy 1-penici liana t- 1,1-dioxid.methoxycarbonyloxymethyl-penicillanate-1,1-dioxides # propoxycarbonyloxymethyl-penicillanate-1,1-dioxide, 1- (ethoxycarbonyloxy) ethyl-penicillanate-1,1-dioxide, 1- (butoxycarbonyl) ethyl-penicillanate-1,1-dioxide, 5 1-methyl-1- (inethoxycarbonyloxy) ethyl penicillanate-1,1-dioxide and 1-methyl-1- (isopropoxycarbonyloxy) ethyl 1-penicilliana t-1,1-dioxide.

Eksempel 30 10 Pivaloyloxymethyl-6,6-dibrompenicillanat-l, 1-dioxid.Example 30 Pivaloyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide.

En omrørt opløsning af 3,92 g 6,6-dibrompenicillan-syre-1,1-dioxid i 20 ml Ν,Ν-dimethylfomamid blev afkølet til 0°Cr og derefter blev der tilsat 1,29 g diisopro-pylethylamin. Herefter blev der tilsat 1,51 g chlorme-15 thylpivalat. Denne reaktionsblanding blev omrørt ved 0°C i 3 timer og derefter ved stuetemperatur i 16 timer. Reaktionsblandingen blev derefter fortyndet med 25 ml ethyl-acetat og 25 ml vand. Lagene blev adskilt, og det vandige lag blev ekstraheret med ethylacetat. De samlede ethyl-20 acetatlag blev vasket med kold 5% natriumbicarbonatopløs-ning, vand og saltopløsning. Ethylacetatopløsningen blev derefter behandlet med Darco (et aktiveret trækul), tørret (MgSO^) og inddampet i vakuum til en brun olie, der vejede 2,1 g. Denne olie blev chromatograferet på 200 g 25 silicagel under anvendelse af dichlormethan som eluerings-middel. De fraktioner, der indeholdt det ønskede produkt, blev samlet og genchromatograferet på silicagel, hvorved vandtes 0,025 g af titelforbindelsen. NMR-spektret (GDCl^) viste absorptioner ved 6,10 (q, 2H), 5,00 (s, IH), 4,55 30 (s, IH), 1,60 (s, 3H), 1,50 (s, 3H) og 1,15 (s, 9H) ppm.A stirred solution of 3.92 g of 6,6-dibrompenicillanic acid 1,1-dioxide in 20 ml of Ν, Ν-dimethyl fomamide was cooled to 0 ° Cr and then 1.29 g of diisopropylethylamine was added. Then 1.51 g of chloromethyl pivalate was added. This reaction mixture was stirred at 0 ° C for 3 hours and then at room temperature for 16 hours. The reaction mixture was then diluted with 25 ml of ethyl acetate and 25 ml of water. The layers were separated and the aqueous layer was extracted with ethyl acetate. The combined ethyl-acetate layers were washed with cold 5% sodium bicarbonate solution, water and brine. The ethyl acetate solution was then treated with Darco (an activated charcoal), dried (MgSO4) and evaporated in vacuo to give a brown oil weighing 2.1 g. This oil was chromatographed on 200 g of silica gel using dichloromethane as eluent. . The fractions containing the desired product were pooled and re-chromatographed on silica gel to give 0.025 g of the title compound. The NMR spectrum (GDCl ^) showed absorptions at 6.10 (q, 2H), 5.00 (s, 1H), 4.55 (s, 1H), 1.60 (s, 3H), 1.50 (s, 3H) and 1.15 (s, 9H) ppm.

Eksempel 31Example 31

Pivaloyloxymethyl-penicillanat-1,1-dioxid.Pivaloyloxymethyl penicillanate 1,1-dioxide.

Til en omrørt opløsning af 60 mg pivaloyloxymethyl·- 6,6-dibrompenicillanat-l, 1-dioxid i 5 ml benzen blev der 35 sat 52 μΐ tri-n-butyltinhydrid efterfulgt af en katalytisk mængde af azobisisobutyronitril. Reaktionsblandin- 26To a stirred solution of 60 mg of pivaloyloxymethyl-6,6-dibrompenicillanate-1,1-dioxide in 5 ml of benzene was added 52 μΐ of tri-n-butyltin anhydride followed by a catalytic amount of azobisisobutyronitrile. Reaction mixture 26

DK 166353 BDK 166353 B

gen blev afkølet til ca. 5°C og blev derefter bestrålet med ultraviolet lys i 1 time. Reaktionsblandingen blev hældt i 20 ml kold -5% natriumbicarbonat og omrørt i 30 minutter. Ethylacetat blev tilsat, og pH af den vandige 5 fase blev indstillet på 7,0. Lagene blev adskilt, og den vandige fase blev ekstraheret yderligere med ethylacetat.gene was cooled to ca. 5 ° C and then irradiated with ultraviolet light for 1 hour. The reaction mixture was poured into 20 ml of cold -5% sodium bicarbonate and stirred for 30 minutes. Ethyl acetate was added and the pH of the aqueous phase was adjusted to 7.0. The layers were separated and the aqueous phase was further extracted with ethyl acetate.

De samlede ethylacetatopløsninger blev vasket med saltopløsning, tørret (MgSO^) og inddampet i vakuum. Inddamp-ningsresten blev tørret i højvakuum i 30 minutter. Herved 10 vandtes 70 mg af en gul olie, der ved NMR-spektroskopi viste sig at indeholde titelforbindelsen sammen med nogle urenheder indeholdende n-butyl-grupper.The combined ethyl acetate solutions were washed with brine, dried (MgSO4) and evaporated in vacuo. The evaporation residue was dried in high vacuum for 30 minutes. Thereby, 10 mg of a yellow oil was obtained which, by NMR spectroscopy, was found to contain the title compound along with some impurities containing n-butyl groups.

Eksempel 32 6,6-Dibrompenicillansyre-l,l-dioxid.Example 32 6,6-Dibrompenicillanic acid 1,1-dioxide.

15 Til en opløsning af 359 mg 6,6-dibrompenicillansy- re i 30 ml dichlormethan blev der sat 380 mg 3-chlorper-benzoesyre ved 0-5°C. Reaktionsblandingen blev omrørt ved 0-5°C i 30 minutter og derefter ved 25°C i 24 timer.To a solution of 359 mg of 6,6-dibrompenicillanic acid in 30 ml of dichloromethane was added 380 mg of 3-chloroperbenzoic acid at 0-5 ° C. The reaction mixture was stirred at 0-5 ° C for 30 minutes and then at 25 ° C for 24 hours.

Den filtrerede reaktionsblanding blev inddampet i vakuum, 20 hvorved vandtes titelforbindelsen.The filtered reaction mixture was evaporated in vacuo to give the title compound.

Eksempel 33Example 33

Benzyl-6,6-dibrompenicillanat-l,1-dioxid.Benzyl 6,6-dibromopenicillanate-l, 1-dioxide.

En blanding af 10,0 g 6,6-dibrompenicillansyre-l,1-dioxid, 2,15 g natriumbicarbonat, 3,06 ml benzylbromid 25 og 100 ml Ν,Ν-dimethylformamid blev omrørt ved stuetemperatur natten over. Det meste af opløsningsmidlet blev fjernet ved inddampning i vakuum, og inddampningsresten blev fordelt mellem ethylacetat og vand. Det organiske lag blev fjernet, vasket med IN saltsyre og med mættet 30 natriumchlorid og tørret (Na2S04). Inddampning i vakuum gav 11,55 g af titelforbindelsen. NMR-spektret (i CDCl^) viste absorptioner ved 7,40 (s, 5H), 5,30 (m, 2H), 4,95 (s, IH), 4,55 (s, IH), 1,50 (s, 3H) og 1,20 (s, 3H) ppm.A mixture of 10.0 g of 6,6-dibrompenicillanic acid-1,1-dioxide, 2.15 g of sodium bicarbonate, 3.06 ml of benzyl bromide 25 and 100 ml of Ν, Ν-dimethylformamide was stirred at room temperature overnight. Most of the solvent was removed by evaporation in vacuo and the residue was partitioned between ethyl acetate and water. The organic layer was removed, washed with 1N hydrochloric acid and with saturated sodium chloride and dried (Na 2 SO 4). Evaporation in vacuo afforded 11.55 g of the title compound. The NMR spectrum (in CDCl3) showed absorptions at 7.40 (s, 5H), 5.30 (m, 2H), 4.95 (s, 1H), 4.55 (s, 1H), 1.50 (s, 3H) and 1.20 (s, 3H) ppm.

2727

DK 166353 BDK 166353 B

Eksempel 34Example 34

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

Til en opløsning af 2,0 g benzyl-6,6-dibrompenicil-lanat-1,1-dioxid i 50 ml tetrahydrofuran blev der sat en 5 opløsning af 0,699 g natriumbicarbonat i 50 ml vand efterfulgt af 2,0 g 5% palladium-på-kul. Denne blanding blev derefter rystet under en atmosfære af hydrogen ved ca. 50 psig. i 70 minutter. Tetrahydrofuranen blev fjernet ved fordampning, og inddampningsresten blev fordelt 10 mellem ethylacetat og vand ved pH 7,37. Det vandige lag blev fjernet, og frisk ethylacetat blev tilsat. pH-Vær-dien blev sænket til 1,17, og ethylacetatet blev fjernet og vasket med mættet natriumchloridopløsning. Inddamp-ning i vakuum gav 423 mg af titelforbindelsen.To a solution of 2.0 g of benzyl 6,6-dibrompenicil lanate-1,1-dioxide in 50 ml of tetrahydrofuran was added a solution of 0.699 g of sodium bicarbonate in 50 ml of water followed by 2.0 g of 5% palladium. -on-carbon. This mixture was then shaken under an atmosphere of hydrogen at ca. 50 psig. for 70 minutes. The tetrahydrofuran was removed by evaporation and the residue was partitioned between ethyl acetate and water at pH 7.37. The aqueous layer was removed and fresh ethyl acetate was added. The pH was lowered to 1.17 and the ethyl acetate was removed and washed with saturated sodium chloride solution. Evaporation in vacuo afforded 423 mg of the title compound.

1515

Eksempel 35Example 35

Penicillansyre-1,1-dioxid.Penicillanic acid 1,1-dioxide.

2,2,2-Trichlorethyl-6,6-dibrompenicillanat-l,1-dioxid blev reduceret med zinkstøv i en blanding af is-20 eddikesyre og tetrahydrofuran, i det væsentlige ifølge Eksempel .15. Udbyttet var 27%.2,2,2-Trichloroethyl 6,6-dibrompenicillanate-1,1-dioxide was reduced with zinc dust in a mixture of glacial acetic acid and tetrahydrofuran, essentially according to Example 15. The yield was 27%.

Eksempel 36 1-(Ethoxycarbonyloxy) ethyl-6,6-dibrompenicillanat-l,1-25 dioxid.Example 36 1- (Ethoxycarbonyloxy) ethyl 6,6-dibrompenicillanate -1,225 dioxide.

En blanding af 2,26 g 6,6-dibrompenicillanat-l,l- dioxid, 1,02 ml 1-(ethoxycarbonyloxy)ethylchlorid, 1,32 ml diisopropylethylamin og 10 ml Ν,Ν-dimethylformamid blev omrørt ved stuetemperatur i 28 timer. Reaktions-30 blandingen blev fortyndet med 100 ml ethylacetat og blev derefter vasket successivt med vand, fortyndet saltsyre, mættet natriumbicarbonat og mættet natriumchlorid. Den tørrede ethylacetatopløsning blev inddampet i vakuum, hvorved vandtes 1,50 g af en olie, der blev chromatogra-35 feret på silicagel. Herved vandtes 353 mg af titelforbindelsen forurenet med noget 1-(ethoxycarbonyloxy)ethyl-6-brompenicillanat.A mixture of 2.26 g of 6,6-dibrompenicillanate-1,1-dioxide, 1.02 ml of 1- (ethoxycarbonyloxy) ethyl chloride, 1.32 ml of diisopropylethylamine and 10 ml of Ν, Ν-dimethylformamide was stirred at room temperature for 28 hours. . The reaction mixture was diluted with 100 ml of ethyl acetate and then washed successively with water, dilute hydrochloric acid, saturated sodium bicarbonate and saturated sodium chloride. The dried ethyl acetate solution was evaporated in vacuo to give 1.50 g of an oil which was chromatographed on silica gel. There was thus obtained 353 mg of the title compound contaminated with some 1- (ethoxycarbonyloxy) ethyl-6-brompenicillanate.

DK 166353 BDK 166353 B

2828

Eksempel 37 1- (Ethoxycarbonyloxy) ethyl-penicillanat-1,1-dioxid.Example 37 1- (Ethoxycarbonyloxy) ethyl penicillanate-1,1-dioxide.

En portion (230 mg) af produktet fra Eksemel 36 blev opløst i 10 ml toluen. Hertil blev der sat 0,4 ml 5 tri-n-butyltinhydrid efterfulgt af 0f164 g azobisisobu-tyronitril, og blandingen blev opvarmet til 70-80°C i 3,5 timer. Opløsningsmidlet blev fjernet ved inddampning i vakuum, og inddampningsresten blev opløst i 25 ml ace-tonitril. Acetonitrilopløsningen blev vasket med hexan 10 flere gange og blev derefter inddampet· i vakuum. Inddampningsresten blev opløst i ether, og etheropløsningenblev vasket med 5% kaliumfluored efterfulgt af mættet natrium-chlorid. Den tørrede (Na2S04) etheropløsning blev inddampet i vakuum, og inddampningsresten blev chromatograferet 15 p| silicagel, hvorved vandtes 0,043 g af titelforbindelsen. NMR-spektret (i CDCl^) viste absorptioner ved 6,75 (m), 4,60 (m), 4,30 (m), 4,15 (s), 4,00 (s), 3,30 <d) og 1,75-1,00 (m) ppm.An aliquot (230 mg) of the product of Example 36 was dissolved in 10 ml of toluene. To this was added 0.4 ml of 5-tri-n-butyltin hydride, followed by 0164 g of azobisisobutyronitrile, and the mixture was heated to 70-80 ° C for 3.5 hours. The solvent was removed by evaporation in vacuo and the residue was dissolved in 25 ml of acetonitrile. The acetonitrile solution was washed with hexane 10 several times and then evaporated in vacuo. The residue was dissolved in ether and the ether solution was washed with 5% potassium fluoride followed by saturated sodium chloride. The dried (Na 2 SO 4) ether solution was evaporated in vacuo and the residue was chromatographed 15 p | silica gel to give 0.043 g of the title compound. The NMR spectrum (in CDCl3) showed absorptions at 6.75 (m), 4.60 (m), 4.30 (m), 4.15 (s), 4.00 (s), 3.30 < d) and 1.75-1.00 (m) ppm.

Claims (4)

1. Penicillansyre-1,1-dioxid-derivater, kendetegnet ved, at de er derivater med den almene formel V H 0 0 5 Ϊ ; » / CH - x ά \ ch3 -L 3 (III) o f‘, C(X)R 10 eller basesalte deraf, hvor R er hydrogen, en in vivo let hydrolyserbar esterdannende gruppe udvalgt blandt 3-phthalidyl, 4-crotonolactonyl, γ-butyrolactonyl eller en gruppe med formlen:1. Penicillanic acid 1,1-dioxide derivatives, characterized in that they are derivatives of the general formula V H 0 0 5 Ϊ; '/ CH - x ά \ ch3 -L 3 (III) of', C (X) R 10 or base salts thereof, wherein R is hydrogen, an in vivo readily hydrolyzable ester forming group selected from 3-phthalidyl, 4-crotonolactonyl, γ -butyrolactonyl or a group of the formula: 15 R2 0 R2 0 -C-O-C-R* eller -C-O-C-O-R* i 3 *3 R hvor og R^ hver er hydrogen eller alkyl med 1-2 C-20 atomer, og R^ er alkyl med 1-5 C-atomer, eller en sædvanlig penicillincarboxy-beskyttende gruppe udvalgt blandt tetrahydropyranyl, trialkylsilyl med 1-3 C-atomer i hver alkylgruppe, benzyl, 4-nitro-benzyl, benz-hydryl, 2,2,2-trichlorethyl, t-butyl eller phenacyl, og X 25 og Y hver er hydrogen, chlor, brom eller iod med den betingelse, at når X og Y er ens, skal de begge være brom.R 2 is R 2 is -COCR * or -COCOR * in 3 * 3 R where and R 1 is each hydrogen or alkyl of 1 to 2 C-20 atoms and R 2 is alkyl of 1 to 5 C atoms, or a usual penicillin carboxy protecting group selected from tetrahydropyranyl, trialkylsilyl having 1-3 C atoms in each alkyl group, benzyl, 4-nitrobenzyl, benzhydryl, 2,2,2-trichloroethyl, t-butyl or phenacyl, and X 25 and Y each is hydrogen, chlorine, bromine or iodine with the condition that when X and Y are the same, they must both be bromine. 2. Forbindelse ifølge krav 1, kendetegnet ved, at R er hydrogen.A compound according to claim 1, characterized in that R is hydrogen. 3. Forbindelse ifølge krav 2, kendeteg-30 n e t ved, at X er brom, og Y er hydrogen.A compound according to claim 2, characterized in that X is bromine and Y is hydrogen. 4. Forbindelse ifølge krav 2, kendetegnet ved, at X og Y begge er'brom.A compound according to claim 2, characterized in that X and Y are both bromine.
DK145690A 1979-03-05 1990-06-14 Penicillanic acid 1,1-dioxide DERIVATIVES DK166353C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US1780879A 1979-03-05 1979-03-05
US1781079A 1979-03-05 1979-03-05
US1780879 1979-03-05
US1781079 1979-03-05

Publications (4)

Publication Number Publication Date
DK145690A DK145690A (en) 1990-06-14
DK145690D0 DK145690D0 (en) 1990-06-14
DK166353B true DK166353B (en) 1993-04-13
DK166353C DK166353C (en) 1993-09-06

Family

ID=26690337

Family Applications (2)

Application Number Title Priority Date Filing Date
DK092680A DK159852C (en) 1979-03-05 1980-03-04 PROCEDURE FOR THE PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE OR BASIC SALTS OR IN VIVO EASY HYDRAULIZABLE ESTERS
DK145690A DK166353C (en) 1979-03-05 1990-06-14 Penicillanic acid 1,1-dioxide DERIVATIVES

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DK092680A DK159852C (en) 1979-03-05 1980-03-04 PROCEDURE FOR THE PREPARATION OF PENICILLANIC ACID-1,1-DIOXIDE OR BASIC SALTS OR IN VIVO EASY HYDRAULIZABLE ESTERS

Country Status (36)

Country Link
KR (1) KR850001339B1 (en)
AR (1) AR225031A1 (en)
AT (1) AT366693B (en)
AU (1) AU522572B2 (en)
BG (1) BG33292A3 (en)
CH (1) CH644608A5 (en)
CS (1) CS215130B2 (en)
DD (1) DD149367A5 (en)
DE (1) DE3008257C2 (en)
DK (2) DK159852C (en)
EG (1) EG14437A (en)
ES (1) ES8103094A1 (en)
FI (1) FI70024C (en)
FR (1) FR2450836B1 (en)
GB (1) GB2045755B (en)
GR (1) GR67234B (en)
HK (1) HK66587A (en)
HU (1) HU186304B (en)
IE (1) IE49535B1 (en)
IL (1) IL59515A (en)
IN (1) IN153685B (en)
IT (1) IT1130300B (en)
KE (1) KE3464A (en)
LU (1) LU82215A1 (en)
MX (1) MX6032E (en)
MY (1) MY8500319A (en)
NL (1) NL180317C (en)
NO (2) NO800618L (en)
PL (1) PL125197B1 (en)
PT (1) PT70897A (en)
RO (1) RO80112A (en)
SE (2) SE449103B (en)
SG (1) SG55884G (en)
SU (1) SU1192626A3 (en)
UA (1) UA6342A1 (en)
YU (1) YU42328B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419284A (en) * 1981-03-23 1983-12-06 Pfizer Inc. Preparation of halomethyl esters (and related esters) of penicillanic acid 1,1-dioxide
IN159362B (en) * 1981-03-23 1987-05-09 Pfizer
PT76526B (en) * 1982-04-19 1986-01-21 Gist Brocades Nv Preparation of 6-alpha-bromo- and/or 6,6-dibromopenicillanic acid 1,1-dioxides
IT1190897B (en) * 1982-06-29 1988-02-24 Opos Biochimica Srl PROCEDURE FOR THE PREPARATION OF THE 1-ETHOXYCARBONYLOXYETHYL ACID ACID 6- (D (-) - ALPHA AMINOALPHA-PHENYLACETAMIDE) -PENICILLANIC
US4606865A (en) * 1982-09-20 1986-08-19 Astra Lakemedel Aktiebolag Methods for the preparation of α-bromodiethylcarbonate
EP0139048A1 (en) * 1983-10-18 1985-05-02 Gist-Brocades N.V. Process for the dehalogenation of 6,6-dibromopenicillanic acid 1,1-dioxide
EP0139047A1 (en) * 1983-10-18 1985-05-02 Gist-Brocades N.V. Process for the preparation of 6,6-dibromopenicillanic acid 1,1-dioxide
US4596677A (en) * 1984-04-06 1986-06-24 Bristol-Myers Company Anhydropenicillin intermediates

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN149747B (en) * 1977-06-07 1982-04-03 Pfizer
CA1158639A (en) * 1978-12-11 1983-12-13 Eric M. Gordon 6-bromopenicillanic acid sulfone
DE3068390D1 (en) * 1979-01-10 1984-08-09 Beecham Group Plc Penicillin derivatives, process for their preparation and pharmaceutical compositions containing certain of these compounds
IE49881B1 (en) * 1979-02-13 1986-01-08 Leo Pharm Prod Ltd B-lactam intermediates

Also Published As

Publication number Publication date
IE800429L (en) 1980-09-05
NL180317C (en) 1987-02-02
IL59515A (en) 1983-02-23
HK66587A (en) 1987-09-25
NO823127L (en) 1980-09-08
FR2450836B1 (en) 1986-03-21
SU1192626A3 (en) 1985-11-15
YU42328B (en) 1988-08-31
ES489185A0 (en) 1981-02-16
ATA119080A (en) 1981-09-15
DD149367A5 (en) 1981-07-08
NL8001285A (en) 1980-09-09
RO80112A (en) 1982-10-26
YU58580A (en) 1983-02-28
SE449103B (en) 1987-04-06
FI70024C (en) 1986-09-12
SE8603309D0 (en) 1986-08-04
BG33292A3 (en) 1983-01-14
AR225031A1 (en) 1982-02-15
GB2045755A (en) 1980-11-05
LU82215A1 (en) 1980-09-24
PL222448A1 (en) 1981-01-02
SE8000512L (en) 1980-09-06
EG14437A (en) 1984-09-30
DK145690A (en) 1990-06-14
DE3008257A1 (en) 1980-09-11
DK92680A (en) 1980-09-06
AU522572B2 (en) 1982-06-17
IN153685B (en) 1984-08-04
CS215130B2 (en) 1982-07-30
MX6032E (en) 1984-10-04
DK145690D0 (en) 1990-06-14
PL125197B1 (en) 1983-04-30
UA6342A1 (en) 1994-12-29
NL180317B (en) 1986-09-01
IT8020367A0 (en) 1980-03-05
PT70897A (en) 1980-04-01
KR850001339B1 (en) 1985-09-19
AU5610480A (en) 1980-09-11
NO800618L (en) 1980-09-08
FI70024B (en) 1986-01-31
ES8103094A1 (en) 1981-02-16
DK166353C (en) 1993-09-06
SG55884G (en) 1985-03-08
MY8500319A (en) 1985-12-31
KE3464A (en) 1984-10-12
DK159852B (en) 1990-12-17
DE3008257C2 (en) 1984-03-01
FI800661A (en) 1980-09-06
DK159852C (en) 1991-05-06
FR2450836A1 (en) 1980-10-03
CH644608A5 (en) 1984-08-15
GR67234B (en) 1981-06-25
AT366693B (en) 1982-04-26
IL59515A0 (en) 1980-06-30
IE49535B1 (en) 1985-10-16
SE8603309L (en) 1986-08-04
IT1130300B (en) 1986-06-11
HU186304B (en) 1985-07-29
GB2045755B (en) 1983-01-26

Similar Documents

Publication Publication Date Title
KR840000797B1 (en) Process for preparing 6 -hydroxy alkyl-penicillanic acid derivatives
EP0005889B1 (en) Process for the preparation of beta-lactam derivatives, the novel derivatives so obtainable and pharmaceutical compositions containing them
NO161000B (en) ANALOGUE PROCEDURE FOR PREPARING A THERAPEUTIC ACTIVE PENEMKARBOXYLIC ACID OR ESTER.
DK166353B (en) Penicillanic acid 1,1-dioxide DERIVATIVES
NO148375B (en) ANALOGUE PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVITY 3-CHLORO-7-ALFA-AMINO-ACYLCEPHALOSPORINE
US4420426A (en) 6-Alpha-halopenicillanic acid 1,1-dioxides
IE43845B1 (en) 4-thia-1-azabicyclo/4.2.0/oct-2-ene derivatives
IE50507B1 (en) 2-acetoxymethyl-penam compounds
US4590073A (en) 6-substituted penicillanic acid 1,1-dioxide compounds
US4260598A (en) Method for increasing antibacterial effectiveness of a β-lactam antibiotic
US4051132A (en) Process for epimerizing beta-lactam antibiotic compounds by means of an acid quench
NO148376B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTIC ACTIVITY 7-ACYLAMINO-3-HALOGEN-CEPHALOSPORINE COMPOUNDS
CH636617A5 (en) Process for preparing cephalosporin analogues
US4167630A (en) Process for epimerizing beta-lactam antibiotic compounds, and related products
US4714761A (en) 6,6-dihalopenicillanic acid 1,1-dioxides and process
US4762920A (en) 6,6-Dihalopenicillanic acid 1,1-dioxides
JPH02178262A (en) 1-(2&#39;-halopropionyl)pyrrolidin-2-one derivative
JPS60120884A (en) Intermediate for penicillanic acid 1,1-dioxide and ester of same
US4613462A (en) 6-substituted penicillanic acid 1,1-dioxide compounds
CA1152999A (en) Process for the preparation of derivatives of clavulanic acid
US5604222A (en) Method for the preparation of 2-chloro sulfinyl azetidinones
GB2125807A (en) Preparation of penicillin and cephalosporin compounds and novel intermediates useful therein
JPH0466584A (en) Production of 7-amino-3-chloromethyl-delta3-cephem-4-carboxylic esters
JPH0247474B2 (en)
JPH0354672B2 (en)

Legal Events

Date Code Title Description
PUP Patent expired