DE69933486T2 - Vorrichtung zur Abgabe von Medikamenten - Google Patents

Vorrichtung zur Abgabe von Medikamenten Download PDF

Info

Publication number
DE69933486T2
DE69933486T2 DE69933486T DE69933486T DE69933486T2 DE 69933486 T2 DE69933486 T2 DE 69933486T2 DE 69933486 T DE69933486 T DE 69933486T DE 69933486 T DE69933486 T DE 69933486T DE 69933486 T2 DE69933486 T2 DE 69933486T2
Authority
DE
Germany
Prior art keywords
patient
volume
duration
atomizer
inspiratory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE69933486T
Other languages
English (en)
Other versions
DE69933486D1 (de
Inventor
Jonathan Stanley Harold Denyer
Anthony Dyche
Richard Ivan Prince
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Respironics UK Ltd
Original Assignee
Respironics UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Respironics UK Ltd filed Critical Respironics UK Ltd
Application granted granted Critical
Publication of DE69933486D1 publication Critical patent/DE69933486D1/de
Publication of DE69933486T2 publication Critical patent/DE69933486T2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/005Sprayers or atomisers specially adapted for therapeutic purposes using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0063Compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/06Sprayers or atomisers specially adapted for therapeutic purposes of the injector type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0085Inhalators using ultrasonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Emergency Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Surgical Instruments (AREA)
  • Control Of Multiple Motors (AREA)

Description

  • Diese Erfindung betrifft Vorrichtungen zur Abgabe vom Medikamenten und insbesondere aber nicht ausschließlich Zerstäuber und dosimetrische Inhalationshilfen.
  • Es sind zahlreiche verschiedene Typen von Zerstäubern zur direkten Abgabe von Medikamenten in die Lunge eines Patienten bekannt, gewöhnlich zur Behandlung von Erkrankungen der Atemwege. Zerstäuber geben das Medikament normalerweise in der Form von Tröpfchen oder eines trockenen Pulvers ab. In den meisten Zerstäubern erfolgt die Zerstäubung des Medikaments in einen Luftstrom kontinuierlich, unabhängig davon, ob der Patient ein- oder ausatmet. Die kontinuierliche Zerstäubung hat jedoch zur Folge, dass ein signifikanter Anteil des Medikaments während des Ausatmens verloren geht.
  • Die allgemein bekannten Zerstäuber sind entweder pneumatisch bestätigt, mit Hilfe einer Druckluftquelle, die an den Zerstäuber angeschlossen ist, der die Flüssigkeit zerstäubt, oder es sind Ultraschallzerstäuber, die die Flüssigkeit mit einem piezoelektrischen Kristall zerstäuben. In jüngerer Zeit ist ein siebartiger Zerstäuber entwickelt worden, bei dem das Medikament durch ein feines Sieb gedrückt wird, um Tröpfchen des Medikaments zu erzeugen. Ein weiterer Typ eines Zerstäubers oder Inhalationsgerätes ist von der Art, die einen piezoelektrischen Vibrator in Verbindung mit einer elektrostatischen Ladungsplatte verwendet, um ein Trockenpulver zu fluidisieren und als Aerosol in einem Luftstrom zu dispergieren. Ein solcher Zerstäuber wird in US 5 694 920 beschrieben.
  • Der optimale Durchmesser der Partikel oder Tröpfchen des Medikaments beträgt etwa 1–5 μm. Wenn die Partikel oder Tröpfchen größer sind als dieser Wert, werden sie mit hoher Wahrscheinlichkeit im Luftweg aufprallen, bevor sie die Lunge erreichen, und wenn sie kleiner sind als 1 μm, haben sie die Tendenz, beim Ausatmen wieder aus der Lunge ausgetragen zu werden, ohne dass sie sich in der Lunge absetzen.
  • Zerstäuber und Inhalationsgeräte dispergieren die kleinen Partikel des Medikaments in einen Luftstrom oder einen Strom eines anderen Gases, der zu einem Patienten führt. Soweit auf die Luft Bezug genommen wird, die als Träger für das darin mitgeführte Medikament dient, sollen andere Gase eingeschlossen sein, die als Träger für das Medikament geeignet sind.
  • Ein bekannter Zerstäuber analysiert die Druckänderungen innerhalb der Vorrichtung während der ersten drei Atemzüge, um eine mittlere Form des Atmungsmusters zu bestimmen. Ein zeitlich abgestimmter Zerstäubungsimpuls beginnt, wenn die nachfolgende Einatmungsphase einsetzt, so dass die Zerstäubung während der ersten 50% der Einatmungsphase stattfindet. Dies ist in 1 illustriert, wo das Atmungsmuster und der Impuls überlagert dargestellt ist. Dadurch wird der Verlust an Medikament während der Ausatmung auf etwa 3% reduziert. 1 zeigt die Atemzüge in einer Graphik, in der der Durchsatz gegen die Zeit aufgetragen ist. Wenn die Behandlung beginnt, atmet der Patient durch den Zerstäuber dreimal ein und aus, bevor die Behandlung einsetzt. Die ersten drei Atemzüge werden gemessen, so dass der zeitlich abgestimmte Zerstäubungsimpuls während 50% der mittleren Einatmungszeit auftritt. Die Dauer der Einatmungsphase ist mit T1, T2 und T3 angegeben. Diese Zeitspannen werden gemittelt und durch 2 dividiert, um die Impulslänge für den nächsten, vierten Atemzug zu bestimmen, bei dem die Behandlung beginnt. Für jeden nachfolgenden Atemzug wird die Dauer des Zerstäubungsimpulses bestimmt, indem die Dauer der Einatmungsphasen der vorherigen drei Atemzüge summiert und durch 3 dividiert wird, um einen Mittelwert zu erhalten, und indem dann durch 2 dividiert wird. Die an den Patienten abgegebene Dosis ist direkt proportional zur Dauer des Zerstäubungsimpulses, und somit wird die Zerstäubungsperiode summiert, und der Zerstäuber wird abgeschaltet oder zeigt an, dass der Patient aufhören sollte, sobald die an den Patienten verabreichte Dosis die für diese Behandlung vorgeschriebene Menge des Medikaments erreicht.
  • Es sind andere Zerstäuber bekannt, bei denen der zeitlich abgestimmte Zerstäubungsimpuls auf einen anderen Wert als 50% der Dauer der Einatmung festgelegt ist. Bei diesen anderen Zerstäubern muß jedoch die Impulslänge für jeden Patienten durch das medizinische Personal eingestellt werden. Viele der Zerstäuber sind deshalb nur für den Gebrauch in einer kontrollierten Umgebung, etwa in einem Krankenhaus geeignet. Die Einstellung der Impulslänge für jeden Patienten bedeutet, dass die meisten Zerstäuber nicht für den Heimgebrauch durch einen Patienten geeignet sind.
  • Es wird verwiesen auf unsere parallel anhängige internationale Patentveröffentlichung Nr. WO 97/48 431. 2 und 3 der vorliegenden Anmeldung zeigen den Zerstäuber, der in der oben genannten parallelen Patentanmeldung offenbart ist. In 2 ist ein Mundstück 1 gezeigt, durch das ein Patient in Richtung des Pfeiles 2 inhaliert. Unterhalb des Mundstücks 1 befindet sich ein entfernbarer Zerstäuberteil 3, der seinerseits auf einem Sockel 4 ruht.
  • Der Sockel 4 ist in 3 genauer gezeigt. Gemäß 3 weist der Sockel 4 einen Einlaß 5 auf, durch den Luft unter Druck von einem Kompressor (nicht gezeigt) zugeführt wird. Die Druckluft wird über ein Rohr 6 zu einem Verteiler 7 geleitet, der die Strömung der Druckluft zu einem Luftauslaß 8 steuert, der Luft in den in 2 gezeigten Zerstäuberteil 3 lenkt. Der Sockel 4 enthält außerdem einen Drucksensor 9, der über einen Port 10 den Druck im Inneren des Zerstäuberteils 3 erfaßt.
  • Wie wieder in 2 gezeigt ist, strömt Luft unter Druck durch den Luftauslaß 8 des Sockels 4 und wird durch eine rohrförmige Säule 11 zu einer Zerstäuberdüse 12 geleitet, aus der die Luft unter Druck austritt. Im Weg der aus der Düse 12 austretenden Druckluft ist ein Deflektor 13 angeordnet, so dass die Druckluft seitlich abgelenkt wird und unterhalb eines Schildes 14 durchströmt. Der Durchtritt der Druckluft durch das obere Ende der rohrförmigen Säule 11 bewirkt, dass das Medikament 15 zwischen der äußeren Oberfläche der rohrförmigen Säule 11 und der inneren Oberfläche einer die rohrförmige Säule 11 umgebenden Hülse 16 nach oben angesaugt wird. Das Medikament 15 wird in den Luftstrom zerstäubt und in dem Luftstrom unterhalb des Randes des Schildes 14 und nach oben durch das Mundstück 1 zu einem Patienten mitgenommen.
  • Der Drucksensor 9 im Sockel 4 überwacht das Atmungsmuster eines Patienten, und auf der Grundlage des Atmungsmusters wird der Verteiler 7 so gesteuert, dass er die Druckluft nur während der ersten 50% einer Inhalationsphase zum Zerstäuberteil 3 zuführt.
  • Während oben ein spezieller Typ eines Zerstäubers beschrieben wurde, ist die vorliegende Anmeldung für den Einsatz in einem beliebigen Typ eines Zerstäubers geeignet.
  • Die Erfindung bezieht sich auch auf andere Vorrichtungen zur Abgabe von Medikamenten, beispielsweise auf Dosimeter, bei denen eine Dosis eines Medikaments in Tröpfchen- oder Pulverform in eine Dosimeterkammer oder Haltekammer freigesetzt wird, aus der es der Patient inhaliert. Diese Vorrichtungen sind besonders geeignet für ältere Patienten oder Kinder, die Schwierigkeiten beim Gebrauch eines Multidosis- oder Trockenpulver-Inhalationsgerätes haben, z.B. weil es ihnen schwerfällt, die Freisetzung des Medikaments mit dem Beginn der Einatmungsphase zu koordinieren oder weil ihre Atmungsdurchsätze zu klein sind. Dosimeter werden z.B. in der internationalen Patentveröffentlichung Nr. WO 96/13294 beschrieben.
  • Gemäß einem ersten Aspekt der vorliegenden Erfindung umfaßt eine Drogenabgabevorrichtung Mittel zur Bestimmung des Atmungsvolumens einschließlich Mitteln zur Messung des Spitzenluftstroms des Patienten, ein Zeitglied zum Messen der Dauer der Einatmungsphase und einer Einrichtung zur Vorherbestimmung des Einatmungsvolumens und zur Berechnung des Einatmungsvolumens auf der Basis des Spitzenluftstroms, der durch die Meßeinrichtung bestimmt wurde, und der Dauer der Einatmungsphase mithilfe des Zeitgliedes.
  • Entsprechend einem zweiten Aspekt der Erfindung umfaßt ein nicht-therapeutisches Verfahren zur Vorhersage des Einatmungsvolumens eines Patienten mit der oben beschriebenen Medikamentenabgabevorrichtung:
    • (i) Messen des Spitzenluftstroms des Patienten;
    • (ii) Messen der Dauer der Einatmungsphase eines Patienten;
    • (iii) Berechnen des Einatmungsvolumens auf der Basis des gemessenen Spitzenluftstroms und der gemessenen Dauer der Einatmungsphase des Patienten; wobei keine Medikamente dem Patienten zugeführt werden.
  • Messung des Einatmungsvolumens des Patienten hat es bisher erforderlich gemacht, den Einatmungsstrom des Patienten kontinuierlich zu überwachen, typischerweise alle zehn Millisekunden. Der Durchsatz wird integriert über die Dauer der Einatmungsphase zur Bestimmung des Einatmungsvolumens. Dagegen bestimmt die vorliegende Erfindung das Einatmungsvolumen eines Patienten wesentlich einfacher. Die vorliegende Erfindung reduziert die erforderliche Datenverarbeitung, so dass die Kosten des Gesamt-Zerstäubergerätes reduziert werden. Der Spitzenluftstrom kann wesentlich einfacher ermittelt werden, und kann einfacher verwendet werden an einer Berechnung zur Bestimmung des Einatmungsvolumens.
  • Einige oder alle Werte, die in der Berechnung verwendet werden, sind Mittelwerte, die aus einer Anzahl von vorangegangenen Messungen jedes Atmungsmusters des Patienten abgeleitet werden. Beispielsweise beginnt der Patient das Einatmen durch die Vorrichtung, und die Medikamente werden während der ersten drei Atemzüge nicht abgegeben. Die ersten drei Atemzüge werden analysiert durch Aufzeichnen der Dauer der Einatmungsphase und des Spitzenluftstroms während des Einatmens, wie es erforderlich ist zur Bestimmung der Dauer eines Zerstäubungsimpulses. Die Abgabe des Medikaments erfolgt während des vierten und der weiteren Atemzüge. In jedem Fall werden die Werte der Berechnungen abgeleitet von einer Anzahl vorangegangener Messungen der Einatmungsphase eines Patienten, im vorliegenden Fall drei Einatmungsphasen.
  • Wenn die Vorrichtung, wie bevorzugt, ein Zerstäuber ist, wird die Zerstäubung verursacht durch einen Druckgasstrom, der durch den Zerstäuber strömt und von einer Gaszufuhreinrichtung zugeführt wird. Dieses Gas ist normalerweise Luft, und die Zufuhreinrichtung ist vorzugsweise ein Kompressor, der mit einem Speicher zusammenarbeitet. Während der Zerstäubung wird Gas von dem Speicher verwendet zur Zerstäubung des Medikaments, und der Kompressor erzeugt Druckluft zum Füllen des Speichers. Wenn die Einatmungsphase eines Patienten sehr lang ist, kann der Speicher geleert werden, so dass die Zerstäubung unterbrochen wird. Der Zerstäuber umfaßt daher vorzugsweise eine Einrichtung zur Begrenzung der Dauer des Impulses zur Aufrechterhaltung des Speichers in einem Zustand, in dem er über einige Druckluft verfügt. Außerdem kann der Speicher ein Ventil aufweisen, das, wenn der Speicher gefüllt ist, Gas an die Atmosphäre austreten läßt und auf diese Wei se verhindert, dass der Speicher in gefährlicher Weise überfüllt wird. Es ist häufig vorzuziehen, den Kompressor stets in Betrieb zu halten und überschüssige Luft an die Atmosphäre abzugeben, anstatt den Kompressor ein- und auszuschalten.
  • In diesem Dokument bedeutet "obere Luftwege eines Patienten" den Mund und die Luftröhre und, sofern ein Zerstäuber verwendet wird, vorzugsweise einschließlich des Volumens der Zerstäuberkammer.
  • Die Bestimmung der Länge der Impulse ermöglicht es, den Anteil der Inhalationszeit, während der die Zerstäubung stattfindet, über 50% hinaus gegen 100% auszudehnen. Dies führt dazu, dass der Patient seine Behandlung in kürzerer Zeit erhält, da es weniger Atemzüge braucht, die erforderliche Dosis des Medikaments abzugeben. Allerdings ist es zwecklos, die Abgabe des Medikaments in die Luft fortzusetzen, die vom Patienten gegen Ende seiner Einatmungsphase eingeatmet wird (das Endvolumen), da sie in den oberen Luftwegen verbleiben wird. Das Medikament, das nicht über die oberen Luftwege hinaus kommt, geht verloren, wenn der Patient ausatmet.
  • Es ist daher vorteilhaft, einen Impuls mit ein Medikament enthaltender Luft zu erzeugen, der länger ist als 50%, jedoch endet, bevor das Endvolumen der Einatmung beginnt. Dies hat den Vorteil, dass ein Patient die Behandlung eher annimmt, wenn die Länge der Behandlung reduziert ist.
  • Zudem erlaubt die Erfindung die automatische Optimierung der Impulslänge, ohne dass sie durch das medizinische Personal eingestellt werden muß. Das bedeutet, dass die Impulslänge auf der Grundlage des Atmungsmusters des Patienten zu dem Zeitpunkt, an dem das Medikament verabreicht wird, automatisch an jeden Patienten angepaßt wird. Somit kann ein Zerstäuber oder eine andere Medikamentenabgabevorrichtung von dem Patienten außerhalb der kontrollierten Umgebung eines Krankenhauses benutzt werden und kann insbesondere auch zu Hause benutzt werden. Außerdem ist es möglich, dass das Gerät anzeigt, wenn eine bestimmte Dosis verabreicht worden ist, so dass der Patient nicht die Anzahl der Atemzüge zu zählen braucht, die er genommen hat.
  • Ausführungsformen der vorliegenden Erfindung werden nachstehend als Beispiel und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben, in denen zeigen:
  • 1 eine Graphik, die das Einatmungsmuster eines Patienten im Verlauf der Zeit angibt und zeigt, wann der Zerstäubungsimpuls in den ersten 50% der Einatmungsphase auftritt, wie es bei einem bekannten Zerstäuber der Fall ist;
  • 2 u. 3 einen bekannten Zerstäuber, der Zerstäubungsimpulse während der ersten 50% der Einatmungsphase erzeugt;
  • 4 ein Flußdiagramm, das zeigt, wie der Zerstäubungsimpuls während der Einatmung bestimmt wird;
  • 5 eine Graphik, in der das vorhergesagte Atemvolumen gegen das gemessene Atemvolumen aufgetragen ist;
  • 6 ein Flußdiagramm, das die Begrenzung der Impulslänge in Abhängigkeit von der Zufuhr von Druckgas zeigt;
  • 7 den Zerstäuber zusammen mit einer Quelle für Druckgas;
  • 8 einen Luftakkumulator im Luft-Zufuhrsystem;
  • 9 ein Blockdiagramm, das zeigt, wie der Zerstäuber gesteuert wird; und
  • 10 eine Skizze eines Dosimeters gemäß der vorliegenden Erfindung.
  • Diese Erfindung bezieht sich u.a. auf Zerstäuber von der Art, die Zerstäubungsimpulse erzeugen, wie bei dem oben beschriebenen herkömmlichen Zerstäuber.
  • Die Erfindung ist jedoch nicht auf den oben beschriebenen speziellen Zerstäuber beschränkt, sondern kann auf andere Zerstäuber angewandt werden. Der Einfachheit halber wird die nachstehende Beschreibung der vorliegenden Erfindung auf die Komponenten der herkömmlichen Vorrichtung Bezug nehmen, wie sie in 2 und 3 gezeigt, ist, und weil viele dieser Komponenten, z.B. der Verteiler, in der vorliegenden Erfindung verwendet werden können. Der Zerstäuber kann ein Strahlzerstäuber, ein Ultraschallzerstäuber oder ein Druck-Siebzerstäuber sein.
  • Bei Strahlzerstäubern gibt es zwei Arten, nämlich Luftstrahlzerstäuber und Flüssigkeitsstrahlzerstäuber. Ein Beispiel eines Luftstrahlzerstäubers, der mit einer Druckluftquelle zur Zerstäubung einer Flüssigkeit arbeitet, wird in EP 0 627 266 beschrieben (Medic-Aid Limited). Ein Beispiel eines Flüssigkeitsstrahlzerstäubers, der eine Flüssigkeit durch eine oder mehrere Düsenauslässe preßt, um ein Spray aus feinen Tröpfchen zu erzeugen, wird in WO 94/07607 beschrieben (Boehringer Ingelheim International GmbH et al).
  • Ultraschallzerstäuber, die Flüssigkeit mit Hilfe von Ultraschallwellen zerstäuben, die gewöhnlich von einem oszillierenden piezoelektrischen Element erzeugt werden, haben viele Formen, einschließlich solcher, bei denen Flüssigkeit mit dem piezoelektrischen Element in direktem Kontakt steht, solcher, bei denen ein verstärkendes Zwischenglied, typischerweise ein eingeschlossenes Fluid, zwischen dem piezoelektrischen Element und der Flüssigkeit vorhanden ist, und solcher, bei denen das piezoelektrische Element ein Sieb in Schwingungen versetzt, von dem Aerosol erzeugt wird. Beispiele für Ultraschallzerstäuber werden beschrieben in US 4 533 082 (Maehara et al.) und US 5 261 601 (Ross et al.).
  • Die Zerstäuber, die in diesen Dokumenten beschrieben werden, haben ein Gehäuse, das ein Reservoir aufweist, das eine Menge der abzugebenden Flüssigkeit aufnimmt, und das Gehäuse hat eine perforierte Membran, die mit dem Reservoir in Berührung steht, und einen Ultraschall-Vibrator, der mit dem Gehäuse verbunden ist, um die perforierte Membran in Schwingungen zu versetzen.
  • Ein anderes Beispiel eines Ultraschallzerstäubers wird in WO 97/29851 beschrieben (Fluid Propulsion Technologies, Inc). Ein Beispiel eines Druck-Siebzerstäubers, der ein piezoelektrisches Element enthalten kann oder nicht, wird in WO 96/13292 beschrieben (Aradigm Corporation).
  • Die Ausdehnung des Anteils der Inhalationsphase des Patienten, in der die Zerstäubung stattfindet, auf mehr als 50% führt dazu, dass die Patienten ihre Behandlung schneller erhalten, da weniger Atemzüge benötigt werden, um das geforderte Volumen des Medikaments abzugeben. Um jedoch die Vergeudung des Medikaments zu vermeiden, das im Endvolumen des Einatmungsvolumens des Patienten zerstäubt wird, muß der Zerstäubungsimpuls beendet werden, bevor das Endvolumen erreicht wird. Das Endvolumen ist das Luftvolumen, das von einem Patienten am Ende des Einatmungsvolumens eingeatmet wird und in den oberen Luftwegen (dem Mund und der Luftröhre) verbleibt und nicht in die unteren Bereiche der Lunge eintritt. Das Medikament, das in dieses Endvolumen zerstäubt wird, geht verloren, wenn der Patient ausatmet, zusammen mit etwa in Luft zerstäubtem Medikament, das im Zerstäuber zurückgeblieben ist, da es nicht die Lungen erreicht.
  • Das Endvolumen ist das Volumen der oberen Luftwege des Patienten und ist proportional zur Größe des Patienten. Natürlich wird das Endvolumen als ein Prozentsatz des Einatmungsvolumens variieren, da sich das Atemvolumen signifikant ändert, je nach Art und Ausmaß der Atembeschwerden, unter denen der Patient leidet. Die optimale Dauer des Zerstäubungsimpulses wäre deshalb die Zeit vom Beginn der Einatmung bis zu dem Punkt während der Einatmungsphase, bei der das noch einzuatmende Volumen gleich dem Endvolumen ist. Die Zerstäubung würde dann beendet, und das verbleibende Endvolumen würde das zerstäubte Medikament aus der Vorrichtung und den oberen Luftwegen des Patienten entfernen und in die Lunge bringen. Somit wird der Prozentsatz der Einatmung, in der zerstäubtes Medikament abgegeben wird, maximiert, und dadurch wird die Behandlungszeit minimiert und dennoch eine Vergeudung des Medikaments vermieden. Die Länge des Zerstäubungsimpulses ist vom Einatemvolumen des Patienten abhängig. Der Zerstäuber muß deshalb das Atemvolumen des Patienten messen, vorzugsweise von Atemzug zu Atemzug, um, beispielsweise anhand der vorherigen drei Atemzüge, ein mittleres Einatemvolumen für den nächsten Atemzug zu berechnen. Somit wird der Zerstäubungsimpuls wie folgt berechnet:
    Figure 00100001
  • In dem Zerstäuber ist ein Zeitgeber enthalten, der an den Drucksensor 9 (in 3 gezeigt) angeschlossen ist, um die Dauer der Einatmung zu messen. Weiterhin enthält der Zerstäuber eine Speichereinrichtung, in der ein Schätzwert für das Endvolumen eines speziellen Patienten gespeichert ist. Da diese Größe für einen speziellen Patienten eine Konstante ist, kann sie am Beginn eines Behandlungszyklus eingegeben werden, und sie wird abgeschätzt auf der Grundlage der Größe des Patienten. Der Zerstäuber enthält eine Einrichtung zur Messung des Atemvolumens eines Patienten. Gemäß einer Form der Erfindung wird der Atemstrom des Patienten fortlaufend überwacht, typischerweise alle 10 Millisekunden, und dieser Atemstrom wird über die Dauer der Einatmung integriert. Ein anderer, einfacherer Weg zur Messung des Atemvolumens eines Patienten wird später in dieser Beschreibung beschrieben werden.
  • Der Zerstäuber enthält auch eine Einrichtung zur Berechnung der Zeit des Zerstäubungsimpulses auf der Grundlage der Dauer der Einatmung, des Atemvolumens und des Endvolumens. Die Berechnungseinheit führt die oben skizzierte Berechnung aus.
  • In Anbetracht der Tatsache, dass sich der Zerstäuber an das Atmungsmuster eines Patienten anpaßt, wenn der Patient zu atmen beginnt, erfolgt keine Zerstäubung während der ersten drei Atemzüge. Diese ersten drei Atemzüge werden dazu verwendet, das Atmungsmuster des Patienten zu analysieren. Der Strömungsdurchsatz der ersten drei Atemzüge wird gemessen, und hieraus wird die Dauer der Einatmungsphase der ersten drei Atemzüge berechnet und ein Mittelwert gebildet. Die mittlere Dauer der Einatmungsphase wird dann in der Berechnung dazu benutzt, die Impulslänge des Zerstäubungsimpulses während des vierten Atemzuges zu bestimmen. Während der Patient weiterhin ein- und ausatmet, werden außerdem die vorherigen drei Atmungsmuster gemessen und zur Berechnung der nächsten Impulsdauer verwendet. Wenn sich das Atmungsmuster eines Patienten während der Behandlung verbessert, wird sich somit der Zerstäuber an diese Veränderung anpassen, um die während jedes Atemzuges verabreichte Dosis zu optimieren.
  • Die von dem Zerstäuber und dem Patienten ausgeführten Schritte werden nun unter Bezugnahme auf 4 beschrieben. Als erste Operation repräsentiert ein Block 30 den Beginn der Inhalation durch einen Patienten. Der Zeitgeber zeichnet die Zeit auf, zu der die Inhalation beginnt, wie in Block 31 gezeigt ist, und während der Inhalation wird eine Berechnung ausgeführt, um das Atemvolumen des Patienten vorherzusagen, wie in Block 33 gezeigt ist. Dieser Schritt wird weiter unten in dieser Beschreibung detaillierter beschrieben werden, es ist jedoch zu bemerken, dass die Berechnung Daten erfordert, die in die Berechnung einbezogen werden müssen, nämlich die Inhalationszeit und den Spitzenstrom als ein Mittelwert aus den letzten drei Atemzügen, wie in Block 32 gezeigt ist. Die Impulszeit wird dann durch die Berechnungseinrichtung berechnet, wie in Block 34 gezeigt ist, und die Impulszeit wird angepaßt, wie in Block 35 gezeigt ist, falls die Impulslänge den Akkumulator leeren würde, aus dem die Druckluft zum Zerstäuber zugeführt wird. Dieser Schritt, in Block 35 gezeigt, wird ebenfalls weiter unten in dieser Beschreibung näher erläutert werden. Der Zerstäubungsimpuls erfolgt während der Inhalation, und nachdem er beendet ist, wird eine Berechnung ausgeführt, um zu bestimmen, welche Dosis zerstäubt worden ist. Am Ende des Atemzuges werden, wie in Block 38 gezeigt ist, Einzelheiten des Spitzenstromes bei der Einatmung durch den Patienten und die Dauer der Einatmung aufgezeichnet, so dass Berechnungen zur Bestimmung der Impulslänge für die nachfolgenden Atemzüge gemacht werden können. Dies ist in Block 39 gezeigt.
  • Weiter oben wurde eine einfachere Vorhersage des Atemvolumens erwähnt. Es versteht sich, dass die Messung des Atemvolumens durch Integration des gemessenen Strömungsdurchsatzes über die Zeit der Einatmung eine beträchtliche Rechenleistung erfordert und verhältnismäßig teuer ist. Es wird ein einfacheres Verfahren zur Bestimmung des Atemvolumens vorgeschlagen, das wesentlich einfachere Berechnungen und wesentlich einfachere Messungen für die Verwendung in einer solchen Berechnung erfordert. Um die Messung auszuführen, enthält der Zerstäuber einen Spitzenstromdetektor zur Erfassung des Spitzenwertes des Strömungsdurchsatzes bei der Einatmung.
  • Das berechnete oder vorhergesagte Atemvolumen wird abgeleitet aus dem Spitzenstrom, der vom Spitzenstromdetektor gemessen wurde, und der Dauer der Einatmung, die vom Zeitgeber gemessen wurde. Die Berechnungseinheit für das Atemvolumen führt die folgende Berechnung aus:
    Figure 00120001
    C ist eine Konstante, und es zeigt sich, dass C = 0,7.
  • 5 ist eine Graphik, in der das vorhergesagte Atemvolumen gegen das gemessene Atemvolumen aufgetragen ist. Jeder Punkt in der Graphik repräsentiert einen Patienten, dessen Atemvolumen durch eine komplexe Berechnung des Atemvolumens gemessen wurde, durch Integration des Einatemstroms des Patienten über die Dauer der Einatmung, und das vorhergesagte Atemvolumen nach dem neuen, einfacheren Berechnungsverfahren. Man erkannt, dass die vorhergesagten Atemvolumen äußerst präzise sind und somit das vorhergesagte Atemvolumen in der Berechnung der Zeit des Zerstäubungsimpulses verwendet werden kann.
  • Die Verwendung eines Kompressors mit niedrigem Durchsatz in Verbindung mit einem Akkumulator (Speicher) zur Zufuhr von Druckluft zu dem Zerstäuber wird in unserer früheren Patentanmeldung beschrieben, die als WO 97/48431 veröffentlicht worden ist, auf die weiter oben Bezug genommen wurde. In der Vergangenheit wurde die Größe des Kompressors und des Akkumulators so gewählt, dass der maximale Impuls, der von der Vorrichtung abgegeben werden kann (gegenwärtig 50% der Einatmungszeit) für irgendeinen gegebenen Impuls oder für den mittleren Ausstoß des Kompressors nicht das Volumen des Akkumulators überschreitet. Da nun die Impulszeit variabel ist, ist es bevorzugt, die maximale Impulszeit zu berechnen, die vom Luft-Zufuhrsystem her verfügbar ist. Für Patienten, die einen etwas höheren Einatmungsbedarf haben, wird die Impulszeit für die Zerstäubung reduziert, so dass die Zufuhrkapazität des Luft-Zufuhrsystems nicht überschritten wird. Die Berechnung wird Atemzug für Atemzug ausgeführt, unter der Annahme, dass der Akkumulator mit einem konstanten Durchsatz aus dem Kompressor gefüllt wird.
  • Das Luftvolumen, das dem Akkumulator vom Ende des vorherigen Impulses bis zum Beginn des nächsten Impulses zugeführt wird, wird berechnet und dann zu dem Volumen addiert, das am Ende des vorherigen Impulses verblieben ist.
  • 6 ist ein Flußdiagramm, das die Berechnungen zeigt, die ausgeführt werden, um sicherzustellen, dass das Luftvolumen das Volumen des Akkumulators nicht überschreitet. Wenn berechnet wird, dass die Luft im Akkumulator oberhalb des Maximalvolumens des Akkumulators ist, wird das Volumen auf den Maximalwert gesetzt V = Vmax). Der Grund ist, dass ein automatisches Entlüftungsventil vorhanden ist, das das im Akkumulator gespeicherte Luftvolumen begrenzt. Die maximale Impulszeit kann dann berechnet werden auf der Grundlage der Abflußrate der Luft aus dem Akkumulator, d.h., des Durchsatzes des Zerstäuberstrahls minus Durchsatz des Kompressors. Wenn diese das im Akkumulator verfügbare Volumen überschreitet, so wird die Impulszeit auf das aktuelle Akkumulatorvolumen begrenzt. Das Volumen des Akkumulators am Ende des Impulses wird dann berechnet, damit es am Beginn der nächsten Berechnung zu Beginn der nächsten Einatmungsphase des Patienten benutzt werden kann. Somit wird die maximale Impulszeit für einzelne Atemzüge berechnet, ohne dass die Kapazität des Luft-Zufuhrsystems überschritten wird. Der Kompressor hat einen konstanten Ausstoß-Durchsatz, typischerweise 1,5 Liter pro Minute, und der Zerstäuberstrahl hat einen Durchsatz von 6 Litern pro Minute während des Impulses. Der Akkumulator hat ein Volumen von annähernd 150 ml bei Normaldruck und -temperatur.
  • 7 zeigt den Zerstäuber 50, der durch einen flexiblen Schlauch 52 mit der Luftzufuhr 51 verbunden ist.
  • In 8 ist der Akkumulator gezeigt, der ein Entlüftungsventil 63 zur Begrenzung der maximalen Ausdehnung des Akkumulators hat. Wenn jeder Impuls an den Zerstäuber abgegeben wird, wird der Durchmesser des Akkumulators reduziert, und das Entlüftungsventil 63 wird geschlossen.
  • Der Kompressor kann durch Netzspannung oder aus einer Batterie versorgt werden. Die Pumpe, insbesondere eine mit Netzspannung gespeiste Pumpe, arbeitet während des Gebrauchs kontinuierlich und bläht den Akkumulator auf. Wenn der Druck im Akkumulator ein gefordertes Niveau erreicht, wird ein Druckschalter in einem in der Hand gehaltenen Teil des Zerstäubers aktiviert, wie in einer oben erwähnten früheren Patentanmeldung beschrieben wird. Dadurch wird der Zerstäuber eingeschaltet. Wenn die Behandlung abgeschlossen ist, wird der Kompressor ausgeschaltet. Der Akkumulator kollabiert, und der Druckschalter in dem in der Hand gehaltenen Teil des Zerstäubers deaktiviert die Einheit.
  • Gemäß 8 versorgt die Pumpe den Akkumulator über einen Einlaß 64 mit Luft. Das Aufblähen der Membran 61 des Akkumulators wird durch eine Anordnung gesteuert, die einen Arm 62 aufweist, der mit einem Entlüftungsventil 63 verbunden ist. Wenn die Membran 61 des Akkumulators die maximal gewünschte Ausdehnung erreicht, berührt sie den Arm 62, um das Entlüftungsventil 63 zu öffnen. Dieses gibt den Luftstrom aus dem Kompressor an die Atmosphäre ab und hält den Akkumulator auf einer festen Ausdehnung. Während des Gebrauchs wird Luft über einen Auslaß 65 aus dem Akkumulator abgelassen, und die Membran 61 schrumpft und verliert den Kontakt zu dem Ventilarm 62, der das Ventil 63 schließt, so dass der Kompressor den Akkumulator wieder aufladen kann, bis der Ventilarm 62 wieder das Entlüftungsventil 63 betätigt.
  • Ist es auch vorteilhaft, den Akkumulator zur Atmosphäre zu entlüften, wenn der Kompressor ausgeschaltet wird, und dies wird dadurch erreicht, dass der Hauptschalter 66 mit einem Drehknopf 67 auf der Oberseite des Akkumulators montiert ist. Die Unterseite des Knopfes 67 weist einen Nocken 68 auf, der den Ventilarm 62 berührt, um das Ventil 63 zu öffnen und so den Druck aus dem Akkumulator abzulassen. Gleichzeitig wird der Kompressor ausgeschaltet. Wenn der Kompressor wieder eingeschaltet wird, löst sich der Nocken 68 vom Ventilarm 62, so dass das Entlüftungsventil 63 geschlossen wird.
  • 9 illustriert eine vereinfachte Form der Art und Weise, in der all die Komponenten des Zerstäubers miteinander verbunden sind. Der Kompressor und Akkumulator 70 sind als vom in der Hand gehaltenen Teil des Zerstäubers 71 getrennt dargestellt, jedoch verbunden durch einen Schlauch 72, der die Druckluft in den Zerstäuber 71 leitet. Im Kompressor- und Akkumulatorteil 70 ist die Pumpe gezeigt, die den Akkumulator mit Druckluft versorgt. Im Zerstäuberteil 71 wird der Zerstäuber durch das Vorhandensein von Druckluft im Schlauch 72 am Druckschalter 73 eingeschaltet. Der Zerstäuberteil 74 des Zerstäubers wird durch ein Ventil oder einen Verteiler 75 gesteuert, der die Druckluftimpulse steuert. Das Atmungsmuster eines Patienten wird von einem Sensor 76 detektiert, der Information über das Atmungsmuster an den Mikrocontroller 77 liefert, der seinerseits den Verteiler 75 steuert. Wenn eine Dosis des Medikaments abgegeben worden ist, so wird eine Anzeigeeinrichtung wie etwa eine LED oder ein Summer 78 durch den Mikrocontroller aktiviert um anzuzeigen, dass die Behandlung des Patienten abgeschlossen ist.
  • Eine weitere Ausführungsform der Erfindung ist in 10 gezeigt, wobei es sich um ein Dosimeter 80 handelt, das eine Haltekammer 81 aufweist, die an einem Ende einen Auslaß 82 hat, der mit einem Mundstück 83 verbunden ist. Ein Drucksensor 84 ist zwischen dem Mundstück 83 und der Haltekammer 81 angeordnet. Dieser Sensor 84 mißt den Druck im Mundstück, woraus der Strömungsdurchsatz der vom Patienten ein- und ausgeatmeten Luft gemessen werden kann. Das Mundstück 83 hat auch ein Entlüftungsventil 85, das es einem Patienten erlaubt, durch das Mundstück 83 auszuatmen, ohne die Haltekammer 81 zu füllen. Näheres über das Entlüftungsventil wird weiter unten beschrieben.
  • Innerhalb der Haltekammer ist ein Kolben 86 gezeigt, der sich in Längsrichtung bewegt, um das Volumen an Luft zu variieren, das in der Haltekammer 81 für einen Patienten beim Einatmen zur Verfügung steht. Der Kolben hat eine Zahnstange 87, die durch das Ende der Haltekammer 81 herausragt, so dass die Zähne mit dem Finger eines Elektromagneten 88 in Eingriff kommen können. Ein Lufteinlaß 89 befindet sich am linken Ende der Haltekammer und erlaubt es, dass Luft in den Raum hinter dem Kolben eintreten oder daraus austreten kann, wenn sich der Kolben nach rechts oder links bewegt.
  • Im Gebrauch wird der Kolben 86 zurückgezogen, um die Haltekammer 81 mit Luft zu füllen. Die Luft in der Haltekammer 81 wird dann mit einem Medikament beladen, entweder in der Form von flüssigen Tröpfchen oder in der Form einer Wolke aus Pulver. Diese wird über einen Port 82 in die Haltekammer 81 abgegeben, und dies erfordert normalerweise das Entfernen des Mundstücks 83. Ein Mundstück 83 kann dann wieder eingesetzt werden, und ein Patient atmet durch das Mundstück 83 ein und aus. Während der Einatmung atmet der Patient die mit Medikamenten beladene Luft aus der Haltekammer 81 ein, und während der Ausatmung wird die ausgeatmete Luft durch das Ventil 85 an die Atmosphäre abgegeben. Während der Ausatmung verriegelt der Elektromagnet 88 die Zahnstange 87 des Kolbens 86, so dass dieser sich nicht bewegt und somit die Haltekammer nicht mit ausgeatmeter Luft gefüllt wird. Gemäß der Erfindung kann sich jedoch der Kolben 86 nur während eines Teils der Einatmungsphase frei bewegen, und er wird durch den Elektromagneten 88 in seiner Position verriegelt, während der Patient das Endvolumen einatmet. Nachdem der Kolben einmal verriegelt ist, ist das Ventil 85 so ausgebildet, dass der Druckabfall im Mundstück 83, der durch das Verriegeln des Kolbens 86 verursacht wird, das Ventil 85 öffnet, so dass Umgebungsluft in das Mundstück eingesogen werden kann. Natürlich kann in dem Mundstück auch ein separates Ventil vorgesehen sein, um diese Funktion geeignet auszuführen.
  • Die Berechnung der Impulslänge, während der der Kolben 86 sich frei bewegen kann, um die Abgabe des Medikaments an den Patienten zu ermöglichen, wird auf die gleiche Weise bestimmt, wie oben in Bezug auf den Zerstäuber beschrieben wurde. Die Atmung des Patienten während der vorherigen drei Atemzüge wird von dem Sensor 84 so überwacht, dass die gleichen Berechnungen angestellt werden können, wie oben beschrieben wurde. Beim nachfolgenden Atemzug detektiert der Sensor den Beginn des Atemzuges, und nach der Dauer des Impulses wird der Kolben verriegelt.
  • Eine solche Anordnung verringert den Verlust des Medikaments, das im Endvolumen an Luft vorhanden ist, das normalerweise vom Patienten eingeatmet wird.
  • Diese Erfindung ist auch auf andere Typen von medizinischen Inhalationsgeräten anwendbar. Wie z.B. im Einleitungsteil dieser Beschreibung beschrieben wurde, wird in US 5 649 920 ein Inhalationsgerät für Trockenpulver beschrieben, das einen piezoelektrischen Vibrator und eine elektrostatische Ladungsplatte benutzt, um ein trockenes Pulver zu fluidisieren und in den Luftstrom des Patienten zu dispergieren. Die elektrostatische Ladungsplatte kann in Abhängigkeit vom Atmungsmuster des Patienten betätigt werden, so dass Impulse erzeugt werden, in denen das pulverförmige Medikament in den zum Patienten führenden Luftstrom abgegeben wird. Die Länge der Impulse kann genau auf die gleiche Weise wie bei den zuvor beschriebenen Ausführungsformen so bestimmt werden, dass das trockene Pulver nicht in das Endvolumen des zum Patienten führenden Luftstroms dispergiert wird.

Claims (8)

  1. Vorrichtung zur Abgabe von Medikamenten, umfassend Mittel zur Vorhersage des Atemvolumens eines Patienten, gekennzeichnet durch eine Einrichtung zur Messung der Maximalatemströmung eines Patienten, einen Zeitnehmer zur Messung der Dauer der Einatmungsphase und einen Atemvolumen-Vorausberechner zur Berechnung des Atemvolumens auf der Grundlage der durch die Maximalatemströmung-Meßeinrichtung gemessenen Maximalatemströmung und der vom Zeitnehmer gemessenen Dauer der Einatmungsphase.
  2. Vorrichtung gemäß Anspruch 1, bei welcher einige oder alle der in den Berechnungen verwendeten Werte Mittelwerte sind, die aus einer Anzahl vorhergehender Messungen des Atemmusters des Patienten gewonnen werden.
  3. Vorrichtung gemäß Anspruch 1 oder 2, welche Vorrichtung ein Zerstäuber ist.
  4. Zerstäuber (50) gemäß Anspruch 3, ferner umfassend eine Einrichtung zur Bestimmung der Dauer eines Zerstäubungsstoßes während der Einatmungsphase, welche Bestimmungseinrichtung die genannte Einrichtung zur Vorhersage des Atemvolumens umfaßt, sowie Mittel zu Speicherung eines Schätzwerts des Volumens eines oberen Luftwegs des Patienten und eine Einrichtung zur Berechnung der Dauer des Stoßes auf der Grundlage des Atemvolumens, das durch die Einrichtung zur Vorhersage des Atemvolumens bestimmt wird, sowie der von der Zeitnehmereinrichtung gemessenen Dauer der Einatmungsphase sowie des von der Speichereinrichtung gespeicherten geschätzten Volumens eines oberen Luftwegs des Patienten.
  5. Zerstäuber (50) gemäß Anspruch 3, ferner umfassend: eine Einrichtung zur Zerstäubung eines Medikaments; eine Einrichtung zur Überwachung eines Atemmusters eines Patienten; und eine Einrichtung zur Steuerung der Zerstäubungseinrichtung zur Zerstäubung des Medikaments in Stößen, wobei die Länge der Stöße und ihr Anteil an der Einatmungsphase des Atemmusters durch die Steuereinrichtung in Abhängigkeit von dem durch die Überwachungseinrichtung überwachten Atemmuster variiert werden.
  6. Vorrichtung gemäß Anspruch 1 oder 2, welche Vorrichtung ein Abstandstück ist.
  7. Verfahren zur Vorhersage des Atemvolumens (33) eines Patienten mittels einer Vorrichtung gemäß einem der vorhergehenden Ansprüche 1 bis 6, umfassend die folgenden Schritte: (i) Messung einer Maximalatemströmung eines Patienten; (ii) Messung der Dauer der Einatmungsphase eines Patienten; (iii) Berechnung des Atemvolumens auf der Grundlage der gemessenen Maximalatemströmung und der gemessenen Dauer der Einatmungsphase des Patienten, wobei an den Patienten kein Medikament verabreicht wird.
  8. Verfahren gemäß Anspruch 7, bei welchem Berechnungen anhand von Mittelwerten durchgeführt werden, die aus einer Anzahl vorhergehender Messungen des Atemmusters des Patienten gewonnen werden.
DE69933486T 1998-10-26 1999-10-26 Vorrichtung zur Abgabe von Medikamenten Expired - Lifetime DE69933486T2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9823434A GB2343122B (en) 1998-10-26 1998-10-26 Improvements in and relating to nebulisers
GB9823434 1998-10-26

Publications (2)

Publication Number Publication Date
DE69933486D1 DE69933486D1 (de) 2006-11-16
DE69933486T2 true DE69933486T2 (de) 2007-07-12

Family

ID=10841321

Family Applications (2)

Application Number Title Priority Date Filing Date
DE69924862T Expired - Lifetime DE69924862T2 (de) 1998-10-26 1999-10-26 Vorrichtung zur abgabe von medikamenten
DE69933486T Expired - Lifetime DE69933486T2 (de) 1998-10-26 1999-10-26 Vorrichtung zur Abgabe von Medikamenten

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE69924862T Expired - Lifetime DE69924862T2 (de) 1998-10-26 1999-10-26 Vorrichtung zur abgabe von medikamenten

Country Status (15)

Country Link
US (1) US6367470B1 (de)
EP (2) EP1124602B1 (de)
JP (1) JP4199931B2 (de)
CN (1) CN1324256A (de)
AT (2) ATE293469T1 (de)
AU (1) AU759191B2 (de)
BR (1) BR9914793A (de)
CA (1) CA2347699C (de)
DE (2) DE69924862T2 (de)
ES (2) ES2241330T3 (de)
GB (1) GB2343122B (de)
NO (1) NO20012039L (de)
NZ (1) NZ511209A (de)
PL (1) PL347479A1 (de)
WO (1) WO2000024445A1 (de)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0003197D0 (en) 2000-02-11 2000-04-05 Aid Medic Ltd Improvements in and relating to controlling drug delivery
US8820316B2 (en) * 2000-02-11 2014-09-02 Respironics Respiratory Drug Delivery (Uk) Ltd Drug delivery apparatus
ATE444771T1 (de) * 2000-02-11 2009-10-15 Respironics Respiratory Drug D Wirkstoffabgabevorrichtung
US7971588B2 (en) 2000-05-05 2011-07-05 Novartis Ag Methods and systems for operating an aerosol generator
US8336545B2 (en) * 2000-05-05 2012-12-25 Novartis Pharma Ag Methods and systems for operating an aerosol generator
US7080644B2 (en) * 2000-06-28 2006-07-25 Microdose Technologies, Inc. Packaging and delivery of pharmaceuticals and drugs
DE10053913A1 (de) * 2000-10-31 2002-05-08 Inst Aerosol Medizin Inamed Gm Verfahren und Apparatur zur Optimierung einer Dosisabscheidung bei einer inhalatorischen Medikamentenapplikation
EP1471960B1 (de) * 2002-01-07 2019-03-13 Novartis AG Vorrichtungen zur vernebelung von flüssigkeiten zur inhalation
AU2003235678A1 (en) * 2002-01-15 2003-07-30 Aerogen, Inc. Systems and methods for clearing aerosols from the effective anatomic dead space
GB2384198B (en) 2002-01-18 2005-03-02 Profile Drug Delivery Ltd Nebulizer metering
DE10243371B4 (de) * 2002-09-18 2006-06-14 Pari GmbH Spezialisten für effektive Inhalation Aeorosoltherapiegerät
GB2396825B (en) * 2002-11-20 2004-12-08 Profile Respiratory Systems Lt Improved inhalation method and apparatus
GB2395437C (en) * 2002-11-20 2010-10-20 Profile Respiratory Systems Ltd Improved inhalation method and apparatus
FR2861460B1 (fr) * 2003-10-28 2007-03-09 Valois Sas Dispositif de pulverisation de produit fluide.
BRPI0507910B8 (pt) * 2004-02-24 2021-06-22 Microdose Therapeutx Inc dispositivo para inalação de ar para administração de um medicamento
DE102005016102B3 (de) * 2005-04-08 2006-10-26 Altana Pharma Ag Vorrichtung zur Dosierung und Trockenvernebelung
JP4887652B2 (ja) 2005-04-21 2012-02-29 ソニー株式会社 噴流発生装置及び電子機器
EP1722412B1 (de) * 2005-05-02 2012-08-29 Sony Corporation Sprühstrahlvorrichtung mit entsprechendem elektronischen Gerät
US8721561B2 (en) * 2005-05-10 2014-05-13 Nspire Health, Inc. Method and apparatus for analyzing pulmonary performance
KR101488403B1 (ko) 2005-05-18 2015-02-04 엠펙스 파마슈티컬즈, 인코포레이티드 에어로졸화된 플루오로퀴놀론 및 이의 용도
US8524735B2 (en) * 2005-05-18 2013-09-03 Mpex Pharmaceuticals, Inc. Aerosolized fluoroquinolones and uses thereof
CA2607747C (en) 2005-05-25 2015-12-01 Aerogen, Inc. Vibration systems and methods
CA2617989C (en) * 2005-08-23 2015-11-10 Aerogen, Inc. Self-sealing t-piece and valved t-piece
US8415390B2 (en) 2008-05-30 2013-04-09 Microdose Therapeutx, Inc. Methods and compositions for administration of oxybutynin
US9119777B2 (en) 2008-05-30 2015-09-01 Microdose Therapeutx, Inc. Methods and compositions for administration of oxybutynin
US8439033B2 (en) 2007-10-09 2013-05-14 Microdose Therapeutx, Inc. Inhalation device
US8371294B2 (en) * 2008-02-29 2013-02-12 Microdose Therapeutx, Inc. Method and apparatus for driving a transducer of an inhalation device
WO2010042549A1 (en) 2008-10-07 2010-04-15 Mpex Pharmaceuticals, Inc. Inhalation of levofloxacin for reducing lung inflammation
HUE038428T2 (hu) 2008-10-07 2018-10-29 Horizon Orphan Llc Aeroszol fluorokinolon készítmények javított farmakokinetika érdekében
MX2011012265A (es) * 2009-05-21 2012-04-11 Microdose Therapeutx Inc Sistema de casete rotatorio para inhalador de polvo seco.
US8985101B2 (en) 2009-05-21 2015-03-24 Microdose Therapeutx, Inc. Method and device for clamping a blister within a dry powder inhaler
US20110000481A1 (en) * 2009-07-01 2011-01-06 Anand Gumaste Nebulizer for infants and respiratory compromised patients
JP5927118B2 (ja) 2009-08-15 2016-05-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 噴霧状薬剤を用いる、複数の対象者の治療を遠隔から監視及び/又は管理するシステム及び方法
JP2013501565A (ja) 2009-08-15 2013-01-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 監視されるべき複数の被験者にエアロゾル化した薬の治療送達を可能にするためのシステム及び方法
PT2473170T (pt) 2009-09-04 2019-08-23 Horizon Orphan Llc Utilização de levofloxacina em aerossol para tratamento de fibrose cística
EP3431128A1 (de) 2010-01-05 2019-01-23 MicroDose Therapeutx, Inc. Inhalationsvorrichtung
US10092552B2 (en) 2011-01-31 2018-10-09 Avalyn Pharma Inc. Aerosol pirfenidone and pyridone analog compounds and uses thereof
TWI546023B (zh) 2011-10-27 2016-08-21 菲利浦莫里斯製品股份有限公司 具有氣溶膠生產控制之電操作氣溶膠產生系統
JP6501264B2 (ja) 2012-07-24 2019-04-17 アヴァリン ファーマ インク. エアロゾルのピルフェニドン及びピリドンのアナログの化合物、及び、その使用
CA2882405C (en) 2013-03-15 2019-12-03 Trudell Medical International Ventilator circuit, adapter for use in ventilator circuit and methods for the use thereof
CA3172586A1 (en) 2013-07-31 2015-02-05 Avalyn Pharma Inc. Aerosol imatininb compounds and uses thereof
US10286163B1 (en) 2014-03-04 2019-05-14 Philip J. Paustian On demand aerosolized delivery inhaler
CN107820433B (zh) 2015-06-29 2020-12-01 皇家飞利浦有限公司 用于医学气雾剂递送设备的控制设备
CN107847184B (zh) * 2015-06-30 2021-01-22 皇家飞利浦有限公司 用于医学喷雾剂递送设备的控制设备
GB201617246D0 (en) * 2016-10-11 2016-11-23 British American Tobacco (Investments) Limited Aerosol provision system and method
WO2018071435A1 (en) 2016-10-11 2018-04-19 Microdose Therapeutx, Inc. Inhaler and methods of use thereof
ES2925780T3 (es) * 2017-03-23 2022-10-19 Stamford Devices Ltd Sistema de suministro de aerosol
EP3410078A3 (de) 2017-06-01 2019-05-08 nSpire Health, Inc. Vorrichtung und verfahren zur kalibrierung und/oder validierung von lungenfunktionstestausrüstung
CN107376070A (zh) * 2017-07-17 2017-11-24 太仓秦风广告传媒有限公司 一种便携式定量释放的雾化治疗仪
WO2019110099A1 (en) 2017-12-06 2019-06-13 Qrumpharma Inc. Inhalable clofazimine formulation
WO2020040818A1 (en) 2018-08-23 2020-02-27 Qrumpharma Inc. Compositions of clofazimine, combinations comprising them, processes for their preparation, uses and methods comprising them
CN109172963B (zh) * 2018-10-19 2021-05-14 青岛大学附属医院 具有连续给药功能的雾化理疗器
JP2022512208A (ja) 2018-12-13 2022-02-02 マンカインド コーポレイション ベダキリンの組成物、それらを含む組み合わせ、それらを調製するための方法、それらを含む使用及び治療方法
CN109745601B (zh) * 2019-01-11 2024-10-15 广州瑞普医疗科技有限公司 雾化过程监测方法、系统、计算机设备、存储介质及装置
BR112021023832A8 (pt) 2019-06-04 2023-02-28 Thirty Holdings Ltd Métodos e composições para geração de óxido nítrico e usos dos mesmos
EP3980032A1 (de) 2019-06-04 2022-04-13 Thirty Respiratory Limited Verfahren und zusammensetzungen zur erzeugung von stickoxid und verwendungen davon zur abgabe von stickoxid über die atemwege
GB2610721B (en) 2020-04-23 2024-07-31 Thirty Respiratory Ltd Compositions for treating and combatting tuberculosis
BR112022021454A2 (pt) 2020-04-23 2023-01-31 Thirty Respiratory Ltd Óxido nítrico ou composições liberadoras de óxido nítrico para uso no tratamento de sars-cov e sars-cov-2
KR20230054611A (ko) 2020-06-01 2023-04-25 애드벤트 테라퓨틱스 인크. 불용성 활성 성분을 포함하는 약제학적 조성물
WO2022240897A1 (en) 2021-05-10 2022-11-17 Sepelo Therapeutics, Llc Pharmaceutical composition comprising delafloxacin for administration into the lung
EP4129322A1 (de) 2021-08-05 2023-02-08 Zambon S.p.A. Behandlung von bronchiektasie ohne zystische fibrose
WO2023028364A1 (en) 2021-08-27 2023-03-02 Sepelo Therapeutics, Llc Targeted compositions and uses therof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3741208A (en) 1971-02-23 1973-06-26 B Jonsson Lung ventilator
DE3021326A1 (de) 1980-06-06 1981-12-17 Drägerwerk AG, 2400 Lübeck Einrichtung zur messung von mindestens zwei pneumatischen lungenparametern und messverfahren hierzu
AU553251B2 (en) 1981-10-15 1986-07-10 Matsushita Electric Industrial Co., Ltd. Arrangement for ejecting liquid
DE3636669C2 (de) * 1986-10-28 2001-08-16 Siemens Ag Anordnung zur Zufuhr von Aerosol zu den Luftwegen und/oder Lungen eines Patienten
US4832012A (en) * 1987-07-08 1989-05-23 Vortran Medical Technology, Inc. Intermittent signal actuated nebulizer
US5134995A (en) * 1989-05-19 1992-08-04 Puritan-Bennett Corporation Inspiratory airway pressure system with admittance determining apparatus and method
US5259373A (en) 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
US5152456A (en) 1989-12-12 1992-10-06 Bespak, Plc Dispensing apparatus having a perforate outlet member and a vibrating device
GB2273660B (en) * 1992-09-11 1996-07-17 Aid Medic Ltd Drug delivery arrangement
IL107120A (en) 1992-09-29 1997-09-30 Boehringer Ingelheim Int Atomising nozzle and filter and spray generating device
GB9311614D0 (en) 1993-06-04 1993-07-21 Aid Medic Ltd Nebulizer
DE69424992T2 (de) 1994-02-14 2000-10-26 Aradigm Corp., Hayward Inhalationsübungsgerät
GB9421687D0 (en) 1994-10-27 1994-12-14 Aid Medic Ltd Dosimetric spacer
EP0788387A4 (de) 1994-10-28 1998-07-08 Aradigm Corp Vorrichtung und verfahren zum herstellen von aerosolnebel für atmungserleichternde medizin
WO1996027266A1 (en) 1995-02-28 1996-09-06 Philips Electronics N.V. Telecommunication system
US5694920A (en) 1996-01-25 1997-12-09 Abrams; Andrew L. Inhalation device
US5584468A (en) 1996-01-26 1996-12-17 Meglino; Don A. Privacy inserts for chain link fences
GB9602969D0 (en) 1996-02-13 1996-04-10 The Technology Partnership Plc Liquid supply apparatus
US5823179A (en) * 1996-02-13 1998-10-20 1263152 Ontario Inc. Nebulizer apparatus and method
GB2316323B (en) 1996-06-20 1999-09-22 Aid Medic Ltd Dispensing system

Also Published As

Publication number Publication date
EP1124602A1 (de) 2001-08-22
AU6357599A (en) 2000-05-15
DE69924862T2 (de) 2006-03-02
CA2347699C (en) 2008-05-20
DE69924862D1 (de) 2005-05-25
CN1324256A (zh) 2001-11-28
NZ511209A (en) 2003-08-29
JP2002528185A (ja) 2002-09-03
GB2343122A (en) 2000-05-03
WO2000024445A1 (en) 2000-05-04
CA2347699A1 (en) 2000-05-04
PL347479A1 (en) 2002-04-08
GB9823434D0 (en) 1998-12-23
NO20012039D0 (no) 2001-04-25
ATE293469T1 (de) 2005-05-15
ES2273304T3 (es) 2007-05-01
ATE341356T1 (de) 2006-10-15
JP4199931B2 (ja) 2008-12-24
GB2343122B (en) 2003-01-08
EP1525893B1 (de) 2006-10-04
EP1124602B1 (de) 2005-04-20
ES2241330T3 (es) 2005-10-16
US6367470B1 (en) 2002-04-09
EP1525893A3 (de) 2005-05-04
BR9914793A (pt) 2001-07-10
AU759191B2 (en) 2003-04-10
EP1525893A2 (de) 2005-04-27
DE69933486D1 (de) 2006-11-16
NO20012039L (no) 2001-06-13

Similar Documents

Publication Publication Date Title
DE69933486T2 (de) Vorrichtung zur Abgabe von Medikamenten
DE69835300T2 (de) Vorrichtung zur inhalation
DE69230613T2 (de) Verfahren und vorrichtung zum abgeben von medikamenten in aerosolform
DE69737998T2 (de) Abgabevorrichtung
DE3636669C2 (de) Anordnung zur Zufuhr von Aerosol zu den Luftwegen und/oder Lungen eines Patienten
US6584971B1 (en) Drug delivery apparatus
EP0983103B1 (de) Vorrichtung zur applikation eines medikament-aerosols über die lunge
DE60029883T2 (de) Medizinischer Vernebler
EP1292347B1 (de) Wirkstoffabgabevorrichtung
DE69530845T2 (de) Gerät zur intrapulmonaren Arzneiverabreichung in therapeutisch relevanten Einatmungsfluss/Volumenwerten
EP1258264B1 (de) Vorrichtung zum Verabreichen von Aerosolen
US8820316B2 (en) Drug delivery apparatus
AU2003286259B2 (en) Improved inhalation method and apparatus
DE10040528A1 (de) Inhalationsvorrichtung und Verfahren zur Erzeugung eines Partikelnebels für Inhalationszwecke
WO2018010733A1 (de) Inhalationsverfahren mit gesteuerter zyklischer aktivierung
CA2589389C (en) Improvements in and relating to drug delivery apparatus

Legal Events

Date Code Title Description
8364 No opposition during term of opposition