DE2328472C3 - Verfahren zur magnetischen Resonanz-Spektroskopie und dafür geeignetes Impulsspektrometer - Google Patents

Verfahren zur magnetischen Resonanz-Spektroskopie und dafür geeignetes Impulsspektrometer

Info

Publication number
DE2328472C3
DE2328472C3 DE2328472A DE2328472A DE2328472C3 DE 2328472 C3 DE2328472 C3 DE 2328472C3 DE 2328472 A DE2328472 A DE 2328472A DE 2328472 A DE2328472 A DE 2328472A DE 2328472 C3 DE2328472 C3 DE 2328472C3
Authority
DE
Germany
Prior art keywords
resonance
standard sample
frequency
sample
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2328472A
Other languages
English (en)
Other versions
DE2328472A1 (de
DE2328472B2 (de
Inventor
Richard E. Winterthur Ernst (Schweiz)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Inc
Original Assignee
Varian Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Associates Inc filed Critical Varian Associates Inc
Publication of DE2328472A1 publication Critical patent/DE2328472A1/de
Publication of DE2328472B2 publication Critical patent/DE2328472B2/de
Application granted granted Critical
Publication of DE2328472C3 publication Critical patent/DE2328472C3/de
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4641Sequences for NMR spectroscopy of samples with ultrashort relaxation times such as solid samples

Description

Die Erfindung betrifft ein Verfahren zur magnetischen Resonanzspektroskopie nach dem Oberbegriff des Anspruchs 1 und ein dazu geeignetes Impulsspektrometer nach dem Oberbegriff des Anspruchs 7.
Es ist ein Verfahren zur magnetischen Resonanzspektroskopie nach dem Oberbegriff des Anspruchs 1 bekannt (US-PS 34 75 680).
Es ist ferner ein Verfahren zur magnetischen Resonanzspektroskopie bekannt, bei dem ebenfalls eine Meßprobe und eine Standardprobe mit einer von den Resonanzlinien der Meßprobe entfernten, vergleichsweise starken Resonanzlinie in einem polarisierenden Magnetfeld angeordnet werden und bei dem die MeD- und die Standardprobe jeweils gleichzeitig wiederholt mit Hochfrequenzimpulsen beaufschlagt werden, bei dem jedoch eine Mischung von erzwungenen Präzessionssignalen vorgenommen wird, und jeweils dem Unterschied zwischen der Resonanzfrequenz der Standardprobe zu den einzelnen Resonanzfrequenzen der Meßprobe entsprechende Mischprodukte erzeugt werden (CH-PS 3 65 560).
Bei der Verarbeitung von frei abklingenden Resonanzsignalen tritt ein spezielles Problem auf, das bei der erzwungenen Präzession nicht auftritt. Durch das im System vorhandene Rauschen haben die Signale am auslaufenden Ende jeweils ein sehr schlechtes Signal-Rausch-Verhältnis. Ein solches Signal kann vereinfacht so betrachtet werden, als ob es aus zwei Teilen bestünde, nämlich einem exponentiell abfallenden Signal und einem konstanten Rauschpegel. Am auslaufenden Ende des Signals ist dann ersichtlich das Signal-Rausch-Verhältnis außerordentlich schlecht.
Der Erfindung liegt die Aufgabe zugrunde, das Signal-Rausch-Verhältnis von Resonanzspektren, die aus frei abklingenden Resonanzsignalen erhalten werden, zu verbessern.
Ausgehend von dem bekannten Verfahren gemäß
Oberbegriff des Anspruchs 1 wird diese Aufgabe durch die im Kennzeichenteil des Anspruchs 1 genannten Maßnahmen gelöst
Ein Impulsspektrometer der im Oberbegriff des Anspruchs 7 genannten Art, wie es aus der US-PS 34 75 680 bekannt ist, wird zur Durchführung des örftndungsgemäßen Verfahrens gemäß Kennzeichenteil des Anspruchs 7 modifiziert
Um die durch große Intensitätsunterschiede zwischen den Resonanzsignalen der Meßprobe und denen der Standardprobe entstehenden Probleme zu beseitigen, wird gemäß einer speziellen Ausführungsform der Erfindung vorder Fouriertransformation das Resonanzsignal der Standardprobe von den Mischprodukten subtrahiert Dazu stehen verschiedene Möglichkeiten zur Verfugung, die den Unteransprüchen 3 bis 5 bzw. 8 zu entnehmen sind.
Bei den? aus der US-PS 34 75 680 bekannten Verfahren bzw. Spektrometer wurde mit Digitalisierung der Resonanzsignale und gegebenenfalls Mittelwertsbildung aufeinanderfolgender Resonanzsignale gearbeitet; das ist auch bei dem erfindungsgemäßen Verfahren bzw. Spektrometer möglich. Es ist jedoch ebenfalls möglich, die Mischprodukte einer analogen Fourier-Anafyse zu unterwerfen; zu diesem Zweck wird das Spektrometer gemäß Anspruch 9 oder 10 ausgebildet
Die Erfindung soll anhand der Zeichnung näher erläutert werden; es zeigt
F i g. 1 ein Blockschaltbild einer Ausführungsform eines Fourier-Differenzfrequenz-Spektrometers,
F i g. 2 schematisch die an verschiedenen Stufen des Betriebes eines Fourier-Differenzfrequenz-Spektrometers nach F i g. 1 auftretenden Spannungsverläufe,
Fig.3 bei A ein Zerfallsignal der freien Induktion einer Protonenresonanz bei 60 MHz nach Hüllendetektierung von einer 0,2volumprozentigen Lösung von Äthyläther in Kohlentetrachlorid bei Verwendung einer Standardkapillare mit einer Mischung von (H2O): (D2O)=I :3. Die Kurve B zeigt den gleichen Zerfall der freien Induktion nach Elimination des Signals der Standardprobe mittels einer polynomen Näherung,
F i g. 4 bei A eine Fouriertransformation des Signals B nach F i g. 3 und Kurve B eine einzelne Abtastung der gleichen Kurve,
Fig.5 Fourierdifferenzspektren für verschiedene Konzentrationen von Aceton und Di&ethylsulfoxid in Kohlentetrachlorid mit Cyclohexan als externem Standard in einer Kapillare,
F i g. 6 zwei Fourier-Differenzspektren der gleichen Substanz wie F i g. 5, jedoch bei Ablegung unterschiedlicher Signalamplituden an den Diodendetektor,
F i g. 7 ein Blockschaltbild einer zweiten Ausführungsform eines Fourier-Differerzfrequenz-Spektrometers, bei der der Analog-Digital-Wandler und Rechner nach F i g. 1 durch einfachere Einrichtungen ersetzt worden sind,
Fig.8 ein Teil einer Protonenresonanzantwort bei 60 MHz, wie sie dem analogen Fourier-Analysator nach F i g. 7 dargeboten wird,
F i g. 9 ein Blockschaltbild einer Form eines analogen Fourier-Analysätors, der mit FreqüenzVefschiebung arbeitet, um ungeradzahlige Harmonische der Standardprobe im System nach F i g. 7 unterdrücken zu können,
Fig. 10 graphisch die Abhängigkeit des Signal-Rausch-Verhältnisses von der inhomogenen Linienverbreiterung für ein Differemfrequenzspektrometer nach F i g. 7, im Vergleich mit einem Dauerstrich-Spektrometer-Ausgang, und
Figril einen Vergleich der Empfindlichkeit eines Dauerstrjch-Spektrometers verglichen mit der eines Differenzfrequenz-Spektrometers der in F i g, 7 dargestellten Art
Die in Fig. 1 dargestellte bevorzugte Ausführungsform eines Fourier-Differenzfrequenz-Spektrometers weist einen nicht dargestellten Elektromagneten auf, mit dem ein kräftiges unidirektionales Magnetfeld
ίο erzeugt wird. Die zu untersuchende Protonenprobe wird zusammen mit einer Standardprobe in einer Probenspinnersonde 11 in das Magnetfeld gebracht und die Resonanz der beiden Proben wird mit der bekannten Impulstechnik angeregt
Der HF-Ausgang eines Senders 12, beispielsweise 60 MHz, wird in einem rechnergesteuerten Diodengatter 13 üblicher Konstruktion getastet um die gewünschte Folge von HF-Impulsen für die Anregung der Spinsysteme in den beiden Proben zu erzeugen. Die Impulse werden in einem geeigneten Leistungsverstärker 14, beispielsweise einem 4,5-Vv^att-Verstärker, verstärkt so daß 90°-Impulse von etwa 50 wlikrosekunden Länge erzeugt werden, und diese werden an die beiden Proben über eine Sendespule 15 in der Sonde 11 angelegt Die Impulse sind in der schematischen Darstellung der Fig.2 der verschiedenen Signale im Fourier-Differenzspektroskopiesystem bei A dargestellt; die Signalpunkte A bis C sind im Blockschaltbild der F i g. 1 entsprechend bezeichnet
Das Zerfallsignal B der freien Induktion von beiden Proben wird von der Empfangsspule 16 erfaßt im Verstärker 17 verstärkt und durch einen konventionellen Diodendetektor 18 geführt in dem eine Glühdiode oder eine Germaniumdiode verwendet werden. Der Signalausgang C vom Detektor 18 wird mit einem Tiefpaßfilter 19 mit einer 3-dB-Frequenz von 500 Hz (Signalausgang D)gefiltert, in eine 1024-Punkte-Digitaldarstellung mittels eines Analog-Digital-Wandlers mit 9 bit + Vorzeichen umgewandelt, und zur Summe
ίο vorangegangener Zerfallsignale in einem geeigneten kleinen Rechner 21 addiert (Signal E) Die Summe wird mit doppelter Präzision in zwei Wörtern zu 16 bit gespeichert Das Signal von der Standardprobe wird in noch zu beschreibender Weise durch eine polynome Näherung nach Legendre sechster Ordnung unterdrückt wobei Fließkomma-Arithmetik verwendet wird (Signal F) Die Daten werden auf einfache Präzision reduziert und in bekannter Weise mit einer schnellen Fourier-Transformationsroutine (Signal G) Fouriertransformiert Das reine Absorptionsspektrum wird mittels einer frequenzabhängigen Phasen- und Amplituden-Einstellung erhalten. Das endgültige Spektrum wird auf einem ΛΎ-Schreiber 22 ausgeschrieben, wobei zwei Digi:al-/vnalog-Wandler 23,24 mit 14 bit + Vorzeichen verwendet werden. Die magnetische Feldhomogenititt wird automatisch justiert, wie noch erläutert wird. Ehe der nächste HF-Impuls angelegt wird, werden die restlichen x- und ,/-Komponenten der Magnetisierung mit einem kräftigen Impuls zerstört, der den Korrekturspulen für den linearen y-Gradienten zugeführt wird.
Die zu verwendende Standardprobe sollte eine einzelne kräftige Bezugslinie zeigen, die außerhalb des interssierenden Spektralbereiches liegt. Da die Bezugslinie leicht 100 bis 1000maI kräftiger sein kann als die Probenlinien, können i.tfglich'; Kohlenstoff-13-Satelliten der Bezugslinie als kräftige Linien in dem schwachen Differenzfrequenz-Spektrum erscheinen und deshalb sollten Kohlenstoff-13-Kerne, die mit dem Standard-
kern gekoppelt sind, vermieden werden. Auf der anderen Seite können mögliche Kohlenstoff-13-Satelliten für Kalibrierzwecke verwendet werden.
Substanzen, die als geeignete Bezugsverbindungen ohne Satelliten angesehen werden, sind beispielsweise folgende:
für Protonenresonanz: Wasser und Trifluoroaceton-Säure; die chemischen Verbindungen dieser Bezugslinien zeigen eine starke Ternperaturabhängigkeit und eine sorgfältige Temperaturregelung ist erforderlich: für Kohlenstoff-13-Resonanz: Kohlendisulfid und Kohlentetradilorid;und
für Phosphorresonanz: Phosphorsäure, Phosphortrioxid und weißer Phosphor in Kohlendisulfid.
Seitenbänder durch Probenspinnen können ebenfalls im Fourier-Differenzspektrum erscheinen und deshalb sollten solche Seitenbänder der kräftigen Bezugslinie ebenso vermieden werden Dan wirrl am besten HaHurrh erreicht, daß eine Standardkapillare in der Mitte der Probe verwendet wird. Diese wird nur geringfügig durch das Probenspinnen beeinflußt und diese Anordnung hat den zusätzlichen Vorteil, daß ein langsam abklingendes Resonanzsignal der Standardprobe durch die höhere Feldhomogenität erzeugt wird, das wichtig für einwandfreien Betrieb des Hüllendetektors ist. Vorzugsweise wird eine zusätzliche interne Standardprobe verwendet, um eine Frequenzmarkierung bekannter Art unabhängig von Suszeptibilitätseifekten zu setzen.
In F i g. 3 ist bei A ein Abklingsignal der freien Induktion einer 60-MHz-Protonenresonnnz nach Hüllendetektion von einer 0,2prozentigen Lösung von Äthyläther in Kohlentetrachlorid mit einer Standardkapillare dargestellt, die eine Mischung (H2O)^D2O)=I :3 enthielt. Die Summe von 128 frei abklingenden Resonanzsignaien wurde durch Gesamt-Mittelwertsbildung innerhalb einer Gesamtbetriebszeit von 256 Sekunden aufgenommen. Die Standardsignalintensität war 20mal größer als die gesamte Probensignalintensität. Die Amplitude der anregenden HF-Impulse wurde für maximale Signalstärke optimiert. F i g. 3 bei B zeigt den gleichen freien Induktionszerfall nach Eliminierung des Standardsignals mittels einer polynomen Näherung.
Die Fouriertransformierte des Signals B nach F i g. 3 ist in Fig.4 bei A dargestellt. Die schwachen Signale nahe der Nullfrequenz sind auf das unvollständig unterdrückte Resonanzsignai der Standardprobe zurückzuführen, das um den Faktor 67 kräftiger ist als die Mittellinie des Triplets. Ein relativ kräftiges Spin-Seitenband (SSB) der Standard-Wasserlinie ist erkennbar. Zum Vergleich zeigt F i g. 4 auch bei B ein Spektrum, das als einzelne Abtastung in der Gesamtzeit von 250 Sekunden unter Verwendung der gleichen Probe aufgezeichnet wurde. Dieses Spektrum wurde auf dem gleichen Gerät erhalten, ohne daß die Sonde oder der Vorverstärker neu abgestimmt wurden, und wobei eine interne Verrastung auf die Wasserlinie verwendet wurde. Die Fourier-Differenzspektroskopie ergibt also eine Empfindlichkeitssteigerung um einen Faktor von 9,5, was nahe bei den theoretischen Voraussagen liegt
Die Bildung der gewünschten Differenzfrequenzen zwischen den Linien der Meß- und der Standardprobe erfordert ein nichtlineares Detektorelement (18 in Fi g. 1). Hüiiendetektoren und quadratische Detektoren sind zwei solche geeignete Detektorarten. Ein idealer Hülldetektor läßt nur positive Signale durch und unterdrückt negative Signale. Die niederfrequenten Komponenten des delektierten Signals sind proportional der Hülle des ursprünglichen Signals. Wo die Frequenz des Standardprobensignals eine wesentlich höhere Amplitude hat als die Summe der Amplituden
-, der Meßprobenfrequenzen, ist die Umhüllende nahezu die lineare Kombination der Differenzfrequenzen zwischen der Meßprobenresonanz und der Standardprobenresonanz mit relativen Amplituden, wie sie durch die Meßprobenresonanzamplituden gegeben sind. Prak-
in tische Realisierungen von Hülldetektoren hpnihc~. auf Halbleiterdioden oder Glühdioden und erfordern ausreichend hohe Eingangssignale (mehrere Volt), um das nicht ideale Verhalten dieser Elemente bei kleinen Amplituden zu vermeiden.
is Der Ausgang eines idealen quadratischen Detektors ist gleich dem Quadrat des angelegten Eingangssignals und enthält bilineare Kreuzterme zwischen all·.
siirnallrnmrknnpntpn Dip Krpii/ΐΓ'πηρ 7u/icr>hr>n MpH. --ο ---r — .- .-. ~ .. ..—
proben- und Standardproben-Signalen können dadurch ausgewählt werden, daß ein ausreichend kraftiges Standardprubensignal verwendet wird. Quadratische Detektoren können dadurch realisiert werden, daß ausreichend schwache Sigrale an Diodendetektoren ang· legt werden, wobei die quadratische Kennlinie bei
>> kleinen Amplituden verwendet wird, oder mittels eines Analog-Vervielfacher-, oder eines doppelt abgeglichenen Mo^.'ilators, in den das gleiche Signal an beide Eingänge angelegt wird. Ein quadratischer Detektor erzeugt notwendigerweise einen angepaßten Filtereffekt, indem die Probenantwort un? die Bezugsantwort multipliziert werden. Er ist äuivalcr.t der Bewertung der Probenantwort mit dem lokalen Signal-Rausch-Verhältnis (wenn identische Linienformen für Proben- und Bezugslinien angenommen werden) und führt automats tisch zum optimalen Signal-Rausch-Verhältnis für das Fourier-transformierte Spektrum, wenn auch gleichzeitig die Auflösung herabgesetzt wird.
Im dargestellten System werden Hülldetektoren bevorzugt, weil der dynamische Bereich größer ist und
4(i die Auflösung höher als für einen quadratischen Detektor.
Fig.5 zeigt den Einfluß des Verhältnisses der Meßproben- zur Standardproben-Amplitude auf das Auftreten von Kombinationsfrequenzen, wo die Fou-
■Γ) rier-Differenzspektren für verschiedene Konzentrationen von Aceton und Dimethylsulfoxid in Kohlentetrachlorid mit Cyclohexan als externer Standard in einer Kapillare verwendet werden. Die relativen Signalintensitäten sind: A: (Cyclohexan): (Aceton): (Dimethylsulf-
so oxid) = 100:6:6; B: = 100:12:12; C: = 100 :3C :30 und D: = 100 :60 :60. Für die verschiedenen Kombinationsfrequenzen sind die erzeugenden Frequenzkombinationen wie folgt bezeichnet: c=f (Cyclohexan), a = f (Aceton) und d = f (Dimethylsulfoxid). Ein Lineardetektor mit einer Germaniumdiode wurde verwendet, die Spitzen-Signalspannungen betrugen 7 Volt Die stärkste unerwünschte Komponente ist die Differenzfrequenz zwischen Meßprobenresonanzen. Ersichtlich ist für befriedigendes Betriebsverhalten die Standardproben-Signalintensität vorzugsweise um einen Faktor 10 größer als die gesamte Meßprobenintensität
In den Fällen, in denen ein solch großer Intensitätsfaktor zwischen Standard- und Meßsignal (d. h. ein Faktor von 10) wegen des möglichen Verlustes an
b5 Empfindlichkeit der Signaiantwort nicht erwünscht ist, können die unerwünschten höheren Kombinationslinien, die beispielsweise auf der rechten Seite des Spektrums in der Zeichnung dargestellt sind, vom
Ausgangsspektrum dadurch eliminiert werden, daß bekannte Dekonvolutionstechniken im Rechner 21 verwendet werden, der auf das ursprüngliche Spektrum mit diesen höheren Kombinationslinien arbeitet, um ein endgültiges Spektrum zu erhalten, in dem die Linien in geeigneter Weise reduziert oder eliminiert sind.
Um rne Verstärkung des statistischen Rauschens durch nicnt lineare Effekte im Detektor zu vermeiden, sollte das Standardprobensignal für den überwiegenden Teil des aufgezeichneten Abklingvorgangs erheblich größer sein als das statistische Rauschen, nämlich Signalspannung/effektive Rauschspannung > 25. Die beiden erwähnten Bedingungen legen die minimale "utzbare Standardprobensignalamplitude fest.
Fig.b zeigt den Effekt der Signalamplitude am Diodendetektor auf das Auftreten von Kombinationsfrequenzen, wo die Fourier-Differenzspektren der Standardprobenlinie, die weit von den Meßprobenresonanzen entfernt liegt, bleibt jedoch.
Der zuverlässigste Vorgang ist die Anwendung eines Digitalnäherungsprozesses auf die Mischprodukte. Die Versuchsfunktion für den Näherungsprozeß wird so ausgewählt, daß das Standardprobensignal gut angenähert wird, sie ist jedoch zu unflexibel, um die höheren Frequenzen der Meßprobenresonanzen anzunähern. Das Standardprobensignal wird dann durch Subtraktion
in der Näherung Punkt für Punkt eliminiert. Eine naheliegende Wahl für die Versuchsfunktion ist eine Exponentialfunktion mit den freien Parametern A, B und C:
= κ + />exp(er)
(1η*ΛΙίΛ »t«*-J Λ λ— »InlnUrt«
pemäß F i g. 5 mit den relativen Signalintensitäten von 100:30:30 dargestellt sind. Spektrum A wurde mit einer SpitzeriMgnalspannung von 7 Volt erhalten, die am Diodendetektor unter Verwendung einer Germaniumdiode lagen; das Spektrum B wurde mit einer angelegten Signalspannung von 0,7 Volt erhalten. Für große Amplituden wirkt der Detektor als Hülldetektor, wie durch das Auftreten von höheren Kombinationsfrequenzen gezeigt wird (Fig.6 bei A). Bei kleinen Amplituden wird das Verhalten eines quadratischen Detektors angenähert, so daß nur Differenzfrequenzen auftre'.n können (Fig. 6 bei B). Die Linienverbreiterung durch den angepaßten Filtereffekt ist ebenfalls erkennbar.
Das Signal der Standardprobe kann mehrere Größenordnungen größer sein als das der Meßprobe, wie das erforderlich ist, um Nichtlinearitätseffekte im Detektorprozeß zu minimieren, und es ist von Vorteil, das Signal der Standardprobe zu eliminieren, ehe der freie Induktionszerfall Fourier-transformiert wird. Dadurch wird die Genauigkeit verbessert und die sichtbare Darbietung des transfomierten Spektrums verbessert. Irgendeine geeignete Technik kann dazu verwendet werden, das Signal der Standardprobe zu eliminieren, einschließlich Hochpaßfilter am Detektorausgang, digitales Hochpaßfilter, oder ein digitaler Näherungsprozeß.
Wenn ein Hochpaßfilter mit scharfem Abfall am Ausgang des Detektors verwendet wird, werden die niederfrequenten Komponenten des exponentiell abklingenden Standardprobensignals eliminiert, da das Hochpaßfilter die höheren Frequenzen des Signalzerfalls durchläßt. Es bleibt ein Einschwingvorgang am Beginn des freien Induktionszerfalls, der durch die anfängliche Diskontinuität des Standardprobensignals verursacht wird (verg!. Fig.2 bei D), die Form ist abhängig von den Eigenschaften des Filters. Zusätzlich werden Phasenverschiebungen und Amplitudenvariationen in das Meßprobensignal eingeführt, die eine kritische Einstellung des endgültigen Spektrums erfordern. Die Verwendung des Hochpaßfilters eliminiert die Notwendigkeit, einen Analog-Digital-Wandler hoher Auflösung zu verwenden, ist jedoch nur bei Standardlinien anwendbar, die ausreichend weit von den Meßprobenresonanzen entfernt liegen.
Ein äquivalenter digitaler Hochpaß-Filtervorgang kann auf die digitalisierten Daten angewandt werden, und durch geeignete Prozesse ist es möglich, die erwähnten Einschwingvorgänge ebenso wie Phasenverschiebungen zu eliminieren. Die Forderung nach einer In den meisten Fällen ist das Standardprobensignal
uüSrCiCiiCnu niCiiiCXpOnCntfai, UiTi uiC /-»uvjiliGn VOH Termen höherer Ordnung folgender Form zu erfordern:
= it +Σ hkcxp (kct) (2)
k = I
:-, Die Koeffizienten σ* werden mittels einer Expansion in Ausdrücken von orthogonalen linearen Kombinationen von Exponentialen bestimmt, wie beispielsweise von J. H. Lan ing und R. H. Bat tin beschrieben in »Random Processes in Automatic Control«, Seite 381,
«ι McGraw-Hill Publishers, New York (1956).
Es wurde festgestellt, daß die bequemste Näherung eine polynome Legendre-Näherung ist, wie sie von F. G. Hildebrand beschrieben ist in »Introduction to Numerical Analysis«. S. 272, McGraw-Hill Publishers,
j-i New York (1956). Ein Polynom vierten bis sechsten Grades ist in den meisten Fällen angemessen. Das Standardprobensignal wird um mehr als den Faktor 100 unterdrückt. Typischerweise verbleibt ein schwacher Einschwingvorgang in der Nähe der Nullfrequenz im
w endgültigen Fourier-transformierten Spektrum (vergl. F i g. 4 und 5).
Der dynamische Bereich des Analog-Digital-Wandlers sollte groß genug sein, um eine genaue Wiedergewinnung des Meßprobensignals zu ermöglichen, das
4-, erheblich schwächer sein kann als das Standardprobensignal. In den meisten praktischen Anwendungen der Fourier-Differenzspektroskopie wird das Meßprobensignal schwächer sein als die statistische Rauschspannung, und das Rauschen muß akkurat digitalisiert
>n werden, um die Wiedergewinnung des überdeckten Signals durch Signalmittelwertsbildung zu ermöglichen. Ein vollständig in statistisches Rauschen eingebettetes Signal kann mittels eines Signalmittelwertsprozesses wiedergewonnen werden, wenn die Digitalisierangsquanten kleiner sind als die effektive Rauschspannung; ein Faktor 2 reicht gewöhnlich aus. Um gleichzeitig das erheblich größere Standardprobensignal zu digitalisieren, ist ein dynamischer Bereich des Analog-Digital-Wandlers von 2v„t'Vcn erforderlich. In praktischen Anwendungsfällen kann dieses Verhältnis 100 bis 200 betragen. Ein Analog-Digital-Wandler mit 9 bis 10 bit reicht also im allgemeinen aus, vorausgesetzt, daß die Eingangsspannung so eingestellt wird, daß der Bereich voll ausgenutzt wird.
Der dynamische Bereich des Rechnerspeichers muß um die Zahl der bei der Signalmittelwertsbildung zu addierenden Abklingvorgänge größer sein als der Bereich des Wandlers. In den meisten kleinen Rechnern
erfordert das eine Darstellung des gemittelten Signals mit doppelter Präzision und erhöht den erforderlichen Speicherraum um den Faktor 2. Das kann dadurch vermieden werden, daß nur Differenzen zwischen aufeinanderfolgenden Analog-Digital-Umwandlungen > gespeichert werden. Diese Differenzen sind erheblich kleiner als das volle Signal, weil das starke Standardprobensignal sich nur langsam ändert.
Ein anderer bei der Fourier-Differenzspektroskopie einzustellender Parameter ist der, der die Magnetfeld- m homogenität bestimmt, und für diesen Zweck ist es erwünscht, einen automatischen Einstellvorgang zu verwenden, wie er beschrieben ist in R. R. Ernst. »Measurement and Control of Magnetic Field Homogeneity«, Review of Scientific Instruments, Band 39, S. 998 ι -, (19G8).
Das Integral der detektierten Mischprodukte kann als empfindliches Maß für die Homogenität verwendet werden, weil es äquivalent der Höhe einer Signalspitze im Fourier-iransformierien Spekiruiu isi. Die arifäiigii- _'u ehe Amplitude des freien Induktionszerfalls kann von Spur zu Spur durch konstruktive oder destruktive Interferenz aufeinanderfolgender Abklingvorgänge variieren, wobei diese Interferenz von Phasenvariationen abhängt, die durch Änderungen in der Präzessionsfre- r, quenz durch Magnetfeldvariationen verursacht sind. Diese Interferenz wird dadurch eliminiert, daß die x- und y-Komponenten der Magnetisierung unmittelbar vor dem Anlegen des nächsten HF-Impulses vollständig zerstört werden, und das wird dadurch erreicht, daß ein κι kräftiger Impuls an eine der Korrekturspulen für den linearen Feldgradienten gelegt wird, um die Präzessionsphasen statistisch zu verteilen, wie von R. Void und anderen beschrieben in Journal of Chemical Physics, Band 48, S. 3831 (1968) »Measurement of Spin n Relaxation in Complex Systems«.
Die Regelung eines einzelnen Parameters reicht oft aus (d. h. der lineare Gradient längs der Probenspinnerachse) und ein fester Betrag wird dem Shim-Strom addiert oder von diesem subtrahiert, je nachdem, ob das 4n vorangegangene Integral kleiner oder größer als das derzeitige war.
Fourier-Differenzspektroskopie ist unempfindlich gegen Magnetfeldvariationen oder Modulationen, die gleichförmig über das Probenvolumen sind, solange wie 4-, die Amplitude der Modulation klein gegen die Stärke des Magnetfeldes Wn ist. Die Unempfindlichkeit gegen Magnetfeldmodulationen vereinfacht die Konstruktion der Magnetstromversorgung und die Unterdrückung von Netzfrequenz-Brumm ist unkritisch. ,0
Die Unempfindlichkeit der Magnetfeldmodulation kann in zwei Fällen nicht verwirklicht werden:
a) ein schmalbandiger Empfänger kann eine Frequenzmodulation, die durch eine zeitabhängige Magnetfeldstärke verursacht ist, in eine Amplitudenmodulation des freien Induktionszerfalls durch frequenzabhängige Verstärkung umwandeln. Die Bandbreite des Empfängers wird also weit genug gewählt, um das Signal unverzerrt durchzulassen; t>o
b) eine Magnetfeldmodulation, die über das Probenvolumen inhomogen ist, bewirkt eine Amplitudenmodulation, und das ist im Falle des Probenspinnens wichtig.
b5
Die Fourier-Spektroskopie und konventionelle Adtast-NM R-Verfahren sind hinsichtlich Spinneraitenbänder im Falle einer zylindrischen Probe äquivalent.
Die Fourier-Differenz-Spektroskopie ist gegen SpinnerseitenbändT ebenfalls empfindlich. Insbesondere können die Spinnerseitenbänder des kräftigen Standardprobensignals erhebliche Amplitude haben.
Es ergibt sich somit, daß die Fourier-Differenz-Spektroskopie eine genaue und empfindliche NMR-Messung mit vergleichsweise einfacher und unkritischer Ausrüstung ermöglicht. Besonders strenge Forderungen hinsichtlich der Magnetfeldstabilität werden vermieden. Die Fourier-Differenz-Spektroskopie kann auf kompliziertere Fourier-Transformationstechniken erweitert werden; beispielsweise kann sie mit Refokussiermethoden kombiniert werden, wie sie von Becker und anderen im Journal of American Chemical Society, Band 91, S. 7784 (1969). J. S Wau gh. Journal of Molecular Spectroscopy, Band 35, S. 298 (1970) und A. Allerhand und anderen, Journal of American Chemical Society, Band 92, S. 4482 (1970) beschrieben werden, die unter geeigneten Bedingungen eine weitere Steigerung uei Einpnnuiiuiikeii eiiauucii. Sie kanu äüCii äüf uic Messung von Relaxationszeiten mittels der Fourier-Spektroskcpie angewandt werden.
Wie oben erläutert worden ist, kombiniert die Fourier-Differenz-Spektroskopie die hohe Empfindlichkeit der Fourier-Spektroskopie mit fast vollständiger Unempfindlichkeit gegen Magnetfeldvariationen und führt zu einfacher und billiger Instrumentierung, ausgenommen der Digitalrechner 21 nach Fig. 1, der zur Fourier-Transformation der freien Induktions-Abklir.gvorgänge erforderlich ist. In F i g. 7 ist eine andere Ausführungsform dargestellt, d. h„ ein Differenzfrequenzspektrometer, das die gleiche Unempfindlichkeit gegen Magnetfeldvariationen aufweist, die Forderung für einen Digitalrechner oder einen Digitalspeicher jedoch vermeidet. Der Rechner 12 wird durch einen einfachen phasenempfindlichen analogen Fourier-Analysator ersetzt und ergibt die gleiche Empfindlichkeit wie konventionelle Dauerstrich-Spektrometer. Der analoge Fourier-Analysator kann auch bei der konventionellen Fourier-Spektroskopie für die Fourier-Analyse von freien Induktionszerfallen verwendet werden, die in einem Signalmittelwertsbildner gespeichert rrid.
Abgesehen von der Datenanalyse und Empfindlichkeit ist die Differenzfrequenzspektroskopie äquivalent der Fourier-Differenzspektroskopie. Das Spinsystem wird mit einer sich wiederholenden Folge von kräftigen HF-Impulsen angeregt, die über einen Sender 12, Gatter 13 und Verstärker 14 an die Meß- und die Standard-Probe in der Sonde 11 angelegt werden. Die Antwort wird im Empfänger 17 verstärkt und bandbreitenmäßig begrenzt, und in einem Hüllendetektor 18 demoduliert. Hüllen-Gleichrichtung erzeugt Differenzen zwischen allen auftretenden Frequenzen. Die dominierenden Differenzfrequenzen ω,—ωο, die von den Frequenzen ω, der Probenresonanzen und der Frequenz ωο einer ausreichend kräftigen Standardlinie erzeugt werden, werden mittels eines Tiefpaßfilters 19 abgezogen. F i g. 8 zeigt einen Teil der Hüllen-detektierten Antwort von Acrylnitril mit Aceton als Standardprobe nach Tiefpaßfilterung.
Das Differenzfrequenzspektrum der Mischprodukte wird punktweise mittels eines phasenempfindlichen analogen Fourier-Analysators 25 bestimmt, der noch näher erläutert wird. Die Bezugsfrequenz wird durch einen spannungsgesteuerten Oszillator 26 geliefert, der dii-ch eine Spannung proportional der X-Position eines xy-Schreibers 27 betrieben wird, der dazu verwendet wird, das Ausgangssignal des Analysators aufzuzeich-
nen. Für phasenempfindlichen Betrieb ist es notwendig, Phasenkohärenz zwischen dem Eingangssignal und der Bezugsfrequenz des Analysators 25 aufrechtzuerhalten Has wird dadurch erreicht, daß die Impulsfolge, die das apinsystem anregt, mit der Bezugsfrequenz synchroni- ί siert wird. Eine einfache Digitalschaltung 28, die im Folgegenerator 29 enthalten ist, und vom spannungsgesteuerten Oszillator gesteuert wird, wird für diesen Zweck verwendet.
Der Ausgang des Analysators 25 ist ein periodischer Spannungsverlauf, der durch die periodische Anregung des Spinsystems erzeugt wird. Um am Schreiber 27 ein konstantes Signal zu erhalten, wird der Ausgang des Analysators über eine volle Periode gemittelt. Das könnte durch ein Tiefpaßfilter erreicht werden, wird η jedoch am besten mittels eines gegatterten Integrators 31 realisiert, der über eine Periode integriert, das Integral einer Halteschaltung zuführt und rückgestellt wird, ehe die nächste Periode integriert wird. Die notwendigen Scirdiiuperauuiieii wciucii νυιίί ruigc- >o generator 29 gesteuert.
Magnetische Instabilitäten können konstruktive oder destruktive Interferenz zwischen aufeinanderfolgenden freien Induktionszerfallen verursachen. Um eine Antwortamplitude unabhängig von der Feldinstabilität zu 2r> erhalten, ist es erwünscht, die restliche Quermagnetisierung mittels eines kräftigen Feldgradienten zu „erstören, der während einer kurzen Zeit unmittelbar vor dem nächsten HF-PuIs unter Kontrolle des Folgegenerators 29 an die Probe angelegt wird. w
Cie Zeitgabe der erforderlichen Operationen wird durch den Folgegenrator bewirkt, der eine Reihe von vier Monoflops 33 bis 36 aufweist, die nach dem Anstoßen einen einzelnen Impuls der in Klammern angegebenen Länge erzeugen. Die nacheilende Flanke jedes Impulses triggert den folgenden Monoflop. Die Impulslänge des variablen Monoflops bestimmt die Akkumulationszeit und damit die Auflösung. Jede Periode der Analyse besteht aus den vier in Fig. 8 dargestellten Phasen einschließlich einer Anregungsphase 1 von 50 Mikrosekunden, in der das Sendergatter offen ist und das Empfängergatter geschlossen; einer Akkumulationsphase II von 0,5 bis 2 Sekunden, in der das Sendergatter geschlossen und das Empfängergatter offen ist; einer Übertragungsphase III von 50 Millisekünden, in der das Integral zur Halteschaltung übertragen wird, und das Feld dehomogenisiert wird, um Quermagnetisierung zu zerstören, und einer Rückstellphase IV von 50 Millisekunden, in der der Integrator rückgestellt und das Feld dehomogenisiert wird. Am Ende der Phase IV wird das Eingangsgatter 37 für den Folgegenerator erregt, so daß der nächste Impuls vom spannungsgesteuerter. Oszillator 26 die nächste Folge synchron mit der Bezugsfrequenz des Analysators einleitet
Die Auflösung der Differenzfrequenzspektroskopie wird durch die Impulsabstände Tin analoger Weise wie bei der konventionellen Fourier-Spektroskopie bestimmt Für einen Impulsabstand von Γ Sekunden wird eine minimale volle Breite bei halber Höhe von 0,6A' Hz eo erhalten.
Ein einfacher phasenempfindlicher Fourier-Analysator 25, der zwischen Absorption und Dispersion unterscheidet, wird durch einen phasenempfindlichen Detektor realisiert Die Bezugsfrequenz <ar wird linear durch den Bereich der möglichen Eingangsfrequenzen O<o)r<wmaT durchgesteuert (sweep). Die Phasenkohärenz wird in der beschriebenen Weise hergestellt Das Ausgangssignal wird durch ein Tiefpaßfilter oder einen gegatterten Integrator 31 zum Schreiber 27 geschickt
Ein idealer phasenempfindlicher Detektor, der mit der Bezugsfrequenz ωΓ betrieben wird, liefert auch Gleichstrom am Ausgang für Eingangsfrequenzen ω = (2π+1) cor für /J= 1,2,... mit relativen Empfiivilichkeiten von l/(2n+ I). Dadurch kann eine Spiegelung des Hochfrequenzteils des Spektrums in den Niederfrequenzbereich verursacht werden, sobald das zu analysierende Frequenzspektrum mehr als zwei Oktaven überdeckt, so daß kein festes Filter gewählt werden kann, um die ungradzahligcn Harmonischen aller zutreffenden Eingangsfrequenzen zu unterdrücken. Gleichzeitig wird etwas hochfrequentes Rauschen herabgewandelt, so daß die effektive Rauschspannung um ein Maximum von 11% für weißes Rauschen erhöh! wird.
Es gibt verschiedene Verfahren, diesen Nachteil zu korrigieren, darunter spannungsgesteuerte Filter, Anaiug-Vervieiiauiier und Frequenzversumebuiig. Bei dem ersten Verfahren kann die zum Steuern des spannungsgesteuerten Bezugsfrequenzoszillators 26 verwendete Spannung gleichzeitig dazu verwendet werden, die Grenzfrequenz ω;, eines Tiefpaßfilters zu steuern, der die Bandbreite des Eingangssignals begrenzt so daß konstant Wi, ==2ωΛ
Der phasenempfindliche Detektor kann durch einen Analog-Vervielfacher ersetzt werden, der Eingangssignal und Bezugsspannung multipliziert. Bei einem echt linearen Multiplikator werden nur Summen- und Differenz-Frequenzen erzeugt und eine Gleichstromkomponente tritt ausschließlich dann auf, wenn die Bezugsfrequenz im Eingangssignal enthalten ist Hier tritt keine Antwort auf ungradzahlige Harmonische auf.
Bei dem Frequenzverschiebeverfahren gemäß F i g. 9 wird das zu analysierende Signal im Modulator 41 auf eine ausreichend hohe Trägerfrequenz ω0 (beispielsweise 20 — 100 kHz) von Oszillator 42 amplitudenmoduliert, und nach Filterung in einem Hochpaßfilter 43 in einem Phasendetektor 44 phasendr'ektiert, wobei eine Bezugsfrequenz ü)r=ct)c+£t) verwendet wird, die wieder durch einen spannungsgesteuerten Oszillator 26 erzeugt wird, der vom xy-Schreiber 27 getrieben wird. In diesem Falle wird die Anregungsimpulsfolge mit der Diffe» onzfrequenz ω = ωΓ—ωσ synchronisiert, die dadurch erhalten werden kann, daß o>r und ω0 im Mischer 45 gemischt werden, dem ein Tiefpaßfilter 46 folgt Durch Frequenzverschiebung ist es möglich, die relative Frequenzvariation von ωΓ so zu reduzieren, daß die ungradzahligen Harmonischen ωΓ leicht mittels eines festen Filters 47 eliminiert werden können.
Die beiden letzteren Methoden hängen von der Linearität entweder eines Vervielfachers oder eines Modulators ab, die praktisch in der Größenordnung von 0,2 — 1 % liegt; das Verfahren mit Analog-Vervielfacher ist leichter zu verwirklichen und ist attraktiver.
Der beschriebene Fourier-Analysator ist nicht nur auf die Differenzfrequenzspektroskopie anwendbar, sondern kann ebensogut für die Fourier-Analyse von freien Induktions-Abklingvorgängen in der konventionellen Fourier-Spektroskopie verwendet werden, bei der Messung von Relaxationszeiten durch Fourier-Techniken und für die Bestimmung von /-Spektren.
Um die Summe von freien Induktions-Abklingvorgängen zu Fourier-analysieren, die in einem Signalmittelwertsbildner gespeichert sind, wird der Signalmittelwertsbildner so eingestellt daß er seinen Inhalt kontinuierlich mit hoher Geschwindigkeit durch einen
t3
Digital-Analog-Wandler ausgibt Dieses Signal wird dem Eingang des Fourier-Analysators zugeführt Für phasenempfindliche Gleichrichtung ist es notwendig, jede Ausgangsfolge synchron mit der Bezugsfrequenz des Fourier-Aira'ysators einzuleiten.
Als Vergleich mit Dauerstrich-Spektroskopie sind das normierte Signal-Rausch-Verhältnis für Differerizfrequenzspektroskopie (A) und für Dauerstrich-Spektroskopie (B) in Fig. 10 über T2/??, dem Verhältnis von beobachteter zur natürlicher Linienbreite aufgetragen.
Die Empfindlichkeit ist auf die Empfindlichkeit der Dauerstrich-Spektroskopie für Tf=Ti normiert Die Empfindlichkeit der Differenzfrequenzspektroskopie ist unabhängig von der Querrelaxation oder Feldinhomogenität Das wird durch die Kompensationseffekte der wachsenden Linienbreite und abfallende Amplitude des freien Induktionszerfallsignals bewirkt
Im Falle der Fourier-Spektroskopie mit vielkanaliger Fourier-Analyse fehlt dieser Kompensationseffekt und die Empfindlichkeit fällt mit wachsender Linienbreite. Für Dauerstrich-Spektroskopie fällt die Empfindlichkeit auch für wachsende Inhomogenlinienbreite, sie ist jedoch unabhängig von der homogenen Linienbreite.
In praktischen Situationen ergeben sowohl Dauerstrich- als auch Differenzfrequenz-Verfahren ähnliche Empfindlichkeiten, bei starker inhomogener Verbreiterung kann Differenzfrequenzspektroskopie jedoch eine bessere Empfindlichkeit geben. Auf der anderen Seite können bei der Dauerstrich-Spektroskopie Experimente mit schnellem Durchlauf auch eine erhebliche Verbesserung der Empfindlichkeit erreichen, jedoch auf Kosten einer erheblichen Linienverbreiterung. Wie bei jeder Fourier-Technik hat die Differenzfrequenz-Spektroskopie den Vorteil, weder eine Sättigungsverbreitcrung noch eine Sweep-Verbreiterung zu liefern.
Ein Vergleich der Empfindlichkeit der Dauerstrich-Spektroskopie mit Differenzfrequenz-Spektroskopie ist in Fig. 11 dargestellt Zwei Spuren des 60-MHz-Protonen-Resonanz-Spektrums von 3voiumprozentigem Acrylnitril und lOvolumprozentigem Aceton als Standardprobe in Kohlentetrachlorid für Differenzfrequenz-Spektroskopie (A) und Dauerstrich-Spektroskopie (B) sind dargestellt Beide Experimente wurden mit dem gleichen Gerät und der gleichen innewohnenden Empfindlichkeit durchgeführt Die Abtastzeit betrug in beiden Fällen 5000 Sekunden, und das Tiefpaßfilter hatte eine Grenzfrequenz von 0,1 Hz. Die Signal-Rausch-Verhältnisse gemessen an der größten Signalspitze sind für Differenzfrequenz-Spektroskopie
ίο Vs/ VdT= 5 VxI Vss = 90 und für Dauerstrich-Spektroskopie 94.
Die bei stärkster Signalspitze gemessenen Empfindlichkeiten sind identisch innerhalb der Versuchsfehlergrenzen. Auf der anderen Seite ist es offensichtlich, daß
is im Differenzspektrum die schwächeren Linien schwächer erscheinen als im Dauerstrich-Spektrum. Das Sättigungsverhalten gekoppelter Spinsysteme scheint bei den beiden Experimenten unterschiedlich zu sein. Die Differenzfrequenz-Spektroskopie liefert eine einfache Meßtechnik, die unempfindiich gegen Magnetfeldvariationen ist und deren Empfindlichkeit und Auflösung wenigstens äquivalent der Dauerstrich-Spektroskopie ist Ein gewisser Nachteil der Differenzfrequenzspektroskopie der in Fig.7 dargestellten Art ist die kleine Abtastgeschwindigkeit die durch die Tatsache verursacht wird, daß während eines freien Induktionszerfalls nur ein einzelner Punkt des Spektrums aufgezeichnet werden kann. Im Gegensatz zur üblichen Fourier-Spektroskopie mit digitaler Daten speicherung ist es jedoch leicht möglich, willkürlich enge Teile eines breiten Spektrums mit hoher Auflösung und Genauigkeit aufzuzeichnen.
Es ist zu erwähnen, daß die obigen Faktoren, die die Differenzfrequenz-Spektroskopie betreffen, mit Aus nähme solcher, die die Abhängigkeit von der Feldstabili tät betreffen, ebenso auf die Fourier-Spektroskopie mit Feld-Frequenz-Verrastung anwendbar sind, bei denen nur ein einkanaliger Fourier-Analysator verwendet wird anstelle eines Rechners für die Fourier-Transfor-
4n mation des freien Induktionszerfallsignals.
Hierzu 4 Blatt Zeichnungen

Claims (10)

Patentansprflche:
1. Verfahren zur magnetischen Resonanzspektroskopie, bet dem eine Meßprcbe und eine Standardprobe mit einer von den Resonanzlinien der Meßprobe entfernten, vergleichsweise starken Resonanzlinie in einem polarisierenden Magnetfeld angeordnet werden, bei dem die MeB- und die Standardprobe jeweils gleichzeitig wiederholt mit Hochfrequenzimpulsen beaufschlagt werden und bei dem die nach Beendigung eines jeden Hochfrequenzimpulses auftretenden, aus den hochfrequenten, frei abklingenden Resonanzsignalen der MeB- und der Standardprobe zusammengesetzten Zerfallsignale empfangen und zur Gewinnung des Meßprobenspektrums einer Fouriertransformation unterworfen werden, dadurch gekennzeichnet, daß durch Mischung der frei abklingenden Resonanzsignale <j°r Meß- und der Standardprobe Mischprodukte bei Frequenzen erzeugt werden, weiche jeweils dem Unterschied zwischen der Resonanzfrequenz der Standardprobe zu den einzelnen Resonanzfrequenzen der Meßprobe entsprechen, und daß diese Mischprodukte Fourier- transformiert werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vor der Fouriertransformation das Resonanzsignal der Standardprobe von den Mischprodukten subtrahiert wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Mischprodukte hoch paßgefiltert werden.
4. Verfahren nach Anspruch 2, bei dem die Mischprodukte digitalisiert werci n, dadurch gekennzeichnet, daß auf die digitalisierten Mischprodukte ein digitaler Hochpaß-Filtervorgang angewandt wird.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß eine Näherungsfunktion für das Resonanzsignal der Standardprobe von den Mischprodukten subtrahiert wird.
6. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Mischprodukte einer analogen Fourier-Analyse unterworfen werden.
7. Impulsspektrometer für magnetische Kernresonanz, mit Einrichtungen zur Erzeugung eines polarisierenden Magnetfeldes, in dem eine Meßprobe und eine Standardprobe mit einer von den Resonanzlinien der Meßprobe entfernten, vergleichsweise starken Resonanzlinie angeordnet sind, mit einem Sender zur gleichzeitigen wiederholten Beaufschlagung der Meß- und der Standardprobe mit Hochfrequenzimpulsen, mit einem Empfänger zur Aufnahme der nach Beendigung eines jeden Hochfrequenzimpulses auftretenden, aus den hochfrequenten, frei abklingenden Resonanzsignalen der Meß- und der Standardprobe zusammengesetzten Zerfallsignale und mit einer Fourier-Transformationsschaltung zur Ermittlung des Meßprobenspek- bo trums aus den empfangenen Zerfallsignalen, dadurch gekennzeichnet, daß im Empfänger ein von den Zerfallsignalen beaufschlagtes nichtlineares Detektorelement (18) zur Erzeugung von Mischprodukten aus den frei abklingenden Resonanzsignalen der h'> Meß- und der Standardprobe bei Frequenzen, welche jeweils dem Unterschied zwischen der Resonanzfrequenz der Standardprobe zu den einzelnen Resonanzfrequenzen der Meßprobe entsprechen, vorgesehen ist, und daß diese Mischprodukte der Foprier-Transformationsschaltung (21, 25) zugefQhrtsind,
8. Spektrometer nach Anspruch 7, dadurch gekennzeichnet, daß zwischen das Detektorelement (18) und die Fourier-Transformationsschaltung (21, 25) eine Einrichtung geschaltet ist, mit der das Resonanzsignal der Standardprobe von den Niischprodukten subtrahiert wird.
9. Spektrometer nach Anspruch 7 oder 8 zur Durchführung des Verfahrens nach Anspruch 6, dadurch gekennzeichnet, daß an das Detektorelement (18) ein analoger Fourier-Analysator (25) angeschlossen ist, der phasenmäßig mit den hochfrequenten Impulsen synchronisiert ist, und daß ein Folgegenerator (29) vorgesehen ist, der von einem Bezugsfrequenzoszillator (26) gesteuert wird und Impulse liefert, die den Sender (12) und den Empfänger (17) wechselweise ein- und ausschalten.
10. Spektrometer nach Anspruch 9, dadurch gekennzeichnet, daß ein gegatterter Integrator (31) mit einer Halteschaltung zur Aufnahme des im Integrator gespeicherten Signalwertes an den Ausgang des analogen Fourier-Analysators (25) angeschlossen ist, der von zweiten Impulsen des Folgegenerators (29>gesteuert ist.
DE2328472A 1972-06-15 1973-06-05 Verfahren zur magnetischen Resonanz-Spektroskopie und dafür geeignetes Impulsspektrometer Expired DE2328472C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00263016A US3810001A (en) 1972-06-15 1972-06-15 Nuclear magnetic resonance spectroscopy employing difference frequency measurements

Publications (3)

Publication Number Publication Date
DE2328472A1 DE2328472A1 (de) 1974-01-03
DE2328472B2 DE2328472B2 (de) 1978-10-19
DE2328472C3 true DE2328472C3 (de) 1979-06-21

Family

ID=23000038

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2328472A Expired DE2328472C3 (de) 1972-06-15 1973-06-05 Verfahren zur magnetischen Resonanz-Spektroskopie und dafür geeignetes Impulsspektrometer

Country Status (5)

Country Link
US (1) US3810001A (de)
JP (1) JPS6155058B2 (de)
CA (1) CA990795A (de)
DE (1) DE2328472C3 (de)
FR (1) FR2190276A5 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177383A (en) * 1974-12-27 1976-07-05 Nippon Electron Optics Lab Parusu fuuriehenkankakujikikyomeisochi
JPS5516229A (en) * 1978-07-21 1980-02-04 Hitachi Ltd Fourier transformation type nuclear magnetic resonance device
US4238735A (en) * 1979-02-21 1980-12-09 Varian Associates, Inc. Indirect detection of nuclear spins of low gyromagentic ratio coupled to spins of high gyromagnetic ratio
US4718431A (en) * 1985-10-22 1988-01-12 Siemens Aktiengesellschaft Surface coil with calibration substance for use in a nuclear magnetic resonance apparatus
JPH01501685A (ja) * 1986-12-08 1989-06-15 ザ ボード オブ トラスティーズ オブ ザ リーランド スタンフォード ジュニア ユニバーシティ 自己照合型磁気共鳴分光装置
FR2628839B1 (fr) * 1988-03-18 1991-08-16 Thomson Cgr Procede de mesure des effets des courants de foucault
US5153515A (en) * 1988-04-01 1992-10-06 Trustees Of The University Of Penna. Methods of generating pulses for selectively exciting frequencies
US4959543A (en) * 1988-06-03 1990-09-25 Ionspec Corporation Method and apparatus for acceleration and detection of ions in an ion cyclotron resonance cell
US5221899A (en) * 1991-04-29 1993-06-22 The Trustees Of Columbia University In The City Of New York Signal acquisition in magnetic resonance analysis
US5451874A (en) * 1993-08-05 1995-09-19 Trw Inc. Method and system for providing heterodyne pumping of magnetic resonance
US6943548B1 (en) * 2001-06-22 2005-09-13 Fonar Corporation Adaptive dynamic range receiver for MRI
US7061239B2 (en) * 2004-04-30 2006-06-13 The Boc Group, Inc. Method for magnetic field tracking in a NMR check weighing system
US7064544B1 (en) * 2004-05-18 2006-06-20 General Electric Company Method and system of scaling MR spectroscopic data acquired with phased-array coils
US8106375B2 (en) * 2005-11-30 2012-01-31 The Trustees Of The University Of Pennsylvania Resistance-switching memory based on semiconductor composition of perovskite conductor doped perovskite insulator
US7666526B2 (en) * 2005-11-30 2010-02-23 The Trustees Of The University Of Pennsylvania Non-volatile resistance-switching oxide thin film devices
JP5203730B2 (ja) * 2008-01-28 2013-06-05 株式会社東芝 磁気共鳴診断装置
US9097769B2 (en) * 2011-02-28 2015-08-04 Life Services, LLC Simultaneous TX-RX for MRI systems and other antenna devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287629A (en) * 1956-08-29 1966-11-22 Varian Associates Gyromagnetic resonance methods and apparatus
US3475680A (en) * 1965-05-26 1969-10-28 Varian Associates Impulse resonance spectrometer including a time averaging computer and fourier analyzer

Also Published As

Publication number Publication date
CA990795A (en) 1976-06-08
JPS6155058B2 (de) 1986-11-26
FR2190276A5 (de) 1974-01-25
DE2328472A1 (de) 1974-01-03
US3810001A (en) 1974-05-07
JPS4952694A (de) 1974-05-22
DE2328472B2 (de) 1978-10-19

Similar Documents

Publication Publication Date Title
DE2328472C3 (de) Verfahren zur magnetischen Resonanz-Spektroskopie und dafür geeignetes Impulsspektrometer
DE2921252C2 (de)
DE2921253C2 (de)
EP0088970B1 (de) Verfahren zum Messen der magnetischen Kernresonanz für die NMR-Tomographie
DE2351671C3 (de) Verfahren zur Messung des gyromagnetischen Resonanzspektrums und Spektrometer zu dessen Durchführung
EP0184225A3 (de) Kernspin-Tomographie-Verfahren
DE2726270C2 (de)
DE1928454C3 (de) Hochfrequenz-Resonanzspektrometer
DE3604280A1 (de) Verfahren zur bestimmung der raeumlichen und der spektralen verteilung der kernmagnetisierung in einem untersuchungsbereich und anordnung zur durchfuehrung des verfahrens
DE2110175A1 (de) Verfahren und Vorrichtung zur automatischen Phasenkontrolle bei einer Fourier-Analyse von abgelesenen Impulsresonanzdaten
DE2504003C3 (de) Verfahren zum Messen der Elektronenspinresonanz und dafür geeignetes Spektrometer
DE1673188B2 (de) ENDOR-Spektrometer
DE2755091A1 (de) Messverfahren fuer magnetische kernresonanz
DE1200939B (de) Einrichtung zur Intensitaetsmessung eines schwachen magnetischen Feldes
EP0412602B1 (de) Kernresonanz-Spektroskopieverfahren und Anordnung zur Durchführung des Verfahrens
DE1274822B (de) Anordnung zum Messen gyromagnetischer Resonanzsignale
DE1262048B (de) Verfahren und Geraet zur Umwandlung der Dublett- oder Multiplett-Resonanzlinien in eine andere Zahl von Linien bei der chemischen Untersuchung und Analyse fluessiger oder in Loesung gebrachter Stoffe durch Kernresonanz
DE949357C (de) Verfahren und Geraet zum Messen und Steuern magnetischer Felder und zur Werkstoffpruefung
EP0248469B1 (de) Kernspintomographieverfahren
DE1962471A1 (de) Kernmagnetresonanz-Spektrometer
EP0237105A2 (de) Verfahren zum Bestimmen der spektralen Verteilung der Kernmagnetisierung in einem begrenzten Volumenbereich
DE3701849A1 (de) Verfahren und vorrichtung fuer die kernspintomographie
DE1523093C3 (de) Verfahren und Vorrichtung zur Messung von gyromagnetischen Resonanzsignalen einer ersten Teilchengruppe einer zu untersuchenden, noch eine zweite Teilchengruppe enthaltenden Substanz
DE3643577A1 (de) Verfahren zur schnellen acquisition von spinresonanzdaten fuer eine ortsaufgeloeste untersuchung eines objekts
DE1296417B (de) Verfahren und Vorrichtung zur Spin-Entkopplung gyromagnetischer Partikel

Legal Events

Date Code Title Description
OGA New person/name/address of the applicant
C3 Grant after two publication steps (3rd publication)