DE20316544U1 - Überwachungsvorrichtung zur Überwachung von Großwälzlagern - Google Patents

Überwachungsvorrichtung zur Überwachung von Großwälzlagern Download PDF

Info

Publication number
DE20316544U1
DE20316544U1 DE20316544U DE20316544U DE20316544U1 DE 20316544 U1 DE20316544 U1 DE 20316544U1 DE 20316544 U DE20316544 U DE 20316544U DE 20316544 U DE20316544 U DE 20316544U DE 20316544 U1 DE20316544 U1 DE 20316544U1
Authority
DE
Germany
Prior art keywords
monitoring device
bearing
movements
sensor
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE20316544U
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Components Biberach GmbH
Original Assignee
Liebherr Werk Biberach GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Werk Biberach GmbH filed Critical Liebherr Werk Biberach GmbH
Priority to DE20316544U priority Critical patent/DE20316544U1/de
Priority to EP04025540.8A priority patent/EP1528356B1/de
Publication of DE20316544U1 publication Critical patent/DE20316544U1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • F16C19/166Four-point-contact ball bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/381Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with at least one row for radial load in combination with at least one row for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

Überwachungsvorrichtung zur Überwachung von Großwälzlagern (1), die zwei Lagerringe (2, 4) und zwischen diesen laufende Wälzkörper (17, 18, 19; 27) aufweisen, mit einem Sensor (S1, S2, S3, S4) zur Erfassung von Relativbewegungen der Lagerringe (2, 4) zueinander, dadurch gekennzeichnet, dass zumindest zwei berührungslose Wegmesssensoren (S1, S2), von denen einer zur Bestimmung von Radialbewegungen und einer zur Bestimmung von Axialbewegungen der Lagerringe (2, 4) relativ zueinander vorgesehen ist, sowie eine mit den Wegmesssensoren (S1, S2) verbindbare Auswerteeinheit (25) vorgesehen sind, die die bestimmten Radial- und Axialbewegungen mit vorgegebenen Grenzwerten vergleicht und anhand des Vergleichs einen Lagerzustand bestimmt.

Description

  • Die vorliegende Erfindung betrifft eine Überwachungsvorrichtung zur Überwachung von Großwälzlagern, die zwei Lagerringe und zwischen diesen laufende Wälzkörper aufweisen, mit einem Sensor zur Erfassung von Relativbewegungen der Lagerringe zueinander.
  • Großwälzlager zeichnen sich in der Regel dadurch aus, dass die Mittenbohrung des inneren Lagerrings normalerweise im wesentlichen frei bleibt und nicht auf einer im wesentlichen massiven Welle sitzt. Wenigstens einer der Lagerringe wird über parallel zur Drehachse des Lagers angeordnete Schraubverbindungen mit einem Anschlussflansch des den Lagerring tragenden Bauteils verbunden. Solche Großwälzlager werden ein- oder mehrreihig mit verschiedenen Wälzkörpern wie Kugeln, Wälzzylindern, Wälzkegeln etc. ausgeführt und finden insbesondere bei Kranen, Baggern, Tagebauabraumgeräten oder Windenergieanlagen Verwendung.
  • Solche Großwälzlager müssen in einem regelmäßigen Zyklus einer Inspektion unterzogen werden, bei der aus sicherheitstechnischen Gründen die Laufbahnen auf Verschleiß und Ausbrüche untersucht werden sowie die Übergangsradien auf mög liche Risse überprüft werden. Herkömmlicherweise werden diese Inspektionen bei geöffnetem Großwälzlager durchgeführt, was wiederum die Demontage des Lagers aus dem Kran erforderlich macht. Es versteht sich, dass diese Demontage des Lagers zum Zwecke der Inspektion sehr aufwendig ist und zudem den Kran für eine , geraume Zeit außer Betrieb setzt.
  • Es wurde daher in jüngerer Zeit vorgeschlagen, in das Großwälzlager sogenannte Wirbelstromsensoren einzubauen, von denen ein hochfrequentes Magnetfeld ausgeht, welches in den Laufbahnen und Radien des Großwälzlagers Wirbelstrom induziert. Die entstehenden Magnetfelder werden durch Laufbahnverschleiß, Risse und dergleichen beeinflusst, so dass durch Messung des Magnetfeldes eine Aussage über den Verschleißzustand der Lagerflächen gemacht werden kann (vgl. Technische Mitteilungen Krupp, Ausgabe April 1993).
  • Weiterhin ist aus der DE 197 55 000 C1 eine Verschleißmessvorrichtung für Großwälzlager bekannt, die eine in einem Lagerring aufgenommene Sonde besitzt, die mit ihrem Ende in einen Lagerhohlraum ragt und zum gegenüberliegenden Lagerring vorspringt. In diesem ist eine Nut vorgesehen, in der der Kopf der Sonde bei verschleißfreiem Zustand des Lagers berührungslos läuft. Erleidet das Lager hingegen einen vorgegebenen Verschleiß, berührt der Sondenkopf die Oberfläche des gegenüberliegenden Lagerrings, wodurch ein Kontakt geschlossen wird und ein entsprechendes Signal erzeugt wird. Obwohl diese bekannte Verschleißmessvorrichtung übermäßigen Verschleiß auch ohne Öffnen des Großwälzlagers erkennen kann, wäre es wünschenswert, den Lagerzustand präziser angeben zu können.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine verbesserte Überwachungsvorrichtung der eingangs genannten Art zu schaffen, die Nachteile des Standes der Technik vermeidet und letzteren in vorteilhafter Weise weiterbildet. Vorzugsweise soll eine präzisere und differenziertere Aussage über den Lagerzustand getroffen werden können.
  • Erfindungsgemäß wird diese Aufgabe durch eine Überwachungsvorrichtung gemäß Anspruch 1 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Erfindungsgemäß besitzt die Überwachungsvorrichtung also zumindest zwei berührungslose Wegmesssensoren, von denen einer zur Bestimmung von Radialbewegungen und einer zur Bestimmung von Axialbewegungen der beiden Lagerringe relativ zueinander vorgesehen ist, sowie eine mit den Wegmesssensoren verbindbare Auswerteeinheit, die die bestimmten Radial- und Axialbewegungen mit vorgegebenen Grenzwerten vergleicht und anhand des Vergleichs den Lagerzustand bestimmt. Insbesondere kann anhand der bestimmten Radial- und Axialbewegungen das Kippspiel der beiden Lagerringe überwacht bzw. bestimmt werden und mit einem vorgegebenen Grenzwert verglichen werden, wobei anhand dieses Vergleichs der Lagerzustand bestimmt und angezeigt werden kann. Das Kippspiel der Lagerringe entspricht dabei der örtlichen axialen Bewegung der sich drehenden Teile in der Momentenebene und ist ein sicheres Maß für Verschleiß, Verformung oder Fehler wie Risse und dergleichen der Lagerringe. Auch Veränderungen in den Befestigungsschrauben der Lagerringe können über das Kippspiel erfasst werden, da eine vergrößerte Schraubendehnung in axialer Richtung das Kippspiel erhöht. Vorteilhafterweise können die beiden Wegmesssensoren voneinander beabstandet angeordnet sein und unterschiedliche Abschnitte des jeweiligen Lagerrings berührungslos abtasten, so dass eine sichere Aussage über das Kippspiel des Lagers abgeleitet werden kann. Die beiden Wegmesssensoren der Überwachungsvorrichtung sowie die zugehörige Auswerteeinheit bilden sozusagen eine Kippspiel-Erfassungsvorrichtung, mit Hilfe derer das Kippspiel der Lagerringe erfasst bzw. bestimmt werden kann. Die berührungslos arbeitenden Wegmesssensoren erleiden dabei keinerlei Verschleiß. Gegenüber Ein-/Aus-Tastern erlauben die Wegmesssensoren nicht nur die Anzeige eines kritischen Lagerverschleißes, sondern vielmehr eine qualifizierte Differenzierung des Verschleißzustands dahingehend, dass angezeigt werden kann, wie weit der Verschleiß vom kritischen Verschleiß noch weg ist bzw. inwieweit Verschleiß in nennenswertem Umfang überhaupt bereits aufgetreten ist.
  • Um eine kompakte Anordnung der Wegmesssensoren zu erreichen, können in Weiterbildung der Erfindung beide Wegmesssensoren Bewegungen in derselben Richtung messen, so dass beide Wegmesssensoren parallel zueinander ausgerichtet werden können. Um dennoch sowohl Axial- als auch Radialbewegungen der Lagerringe bestimmen zu können, kann hierbei ein Wegmesssensor eine zu der genannten Bewegungsrichtung senkrechte Messfläche abtasten, während der andere Wegmesssensor eine zu der Bewegungsrichtung keilförmig geneigte Schrägfläche abtastet. Die Auswerteeinheit bestimmt die Bewegungen senkrecht zu der genannten einen Bewegungsrichtung aus der Differenz der beiden Sensorsignale. Bei dieser Ausführung werden also Bewegungen in einer Richtung direkt erfasst, während Bewegungen in der Richtung senkrecht hierzu indirekt erfasst werden.
  • Die beiden Wegmesssensoren sind vorzugsweise in einer gemeinsamen Ebene angeordnet, die vorzugsweise die Drehachse des Lagers enthalten kann. Die Anordnung in einer gemeinsamen Ebene schließt bei der Wegerfassung über den Umfang mögliche Ungleichmäßigkeiten in der Bewegung aus und bewirkt eine erhöhte Messgenauigkeit. Die Differenzbildung des an der Schrägfläche erzeugten Sensorsignals und des an der senkrechten Messfläche erzeugten Sensorsignals kann frei von Störeinflüssen erfolgen.
  • Eine besonders geschützte und kompakte Anordnung kann dadurch erreicht werden, dass die beiden Wegmesssensoren radial ausgerichtet sind und Umfangsflächen der Lagerringe abtasten, wobei die beiden Sensoren vorzugsweise im Inneren eines Lagerrings angeordnet sind. Grundsätzlich wäre es auch denkbar, die Wegmesssensoren axial anzuordnen und Radialflächen der Lagerringe abzutasten. Die radiale Anordnung mit Abtastung von Umfangsflächen besitzt jedoch den Vorteil, dass mehr Platz zur Verfügung steht und die Wegmesssensoren nicht mit den Wälzkörpern kollidieren. Großwälzlager bilden regelmäßig Axiallager, so dass entsprechende auf radialen Lagerflächen laufende Wälzkörper vorgesehen sind.
  • Insbesondere können die beiden Sensoren im inneren Lagerring angeordnet sein und eine Innenumfangsfläche des äußeren Lagerrings abtasten, wobei der Kopf der Sensoren vorzugsweise im abgedichteten Lagerspalt des Großwälzlagers angeordnet ist. Bei Großwälzlagern für Krane ist regelmäßig der äußere Lagerring mit einer Außenverzahnung versehen, mit der ein Antriebsritzel des Drehwerks des Krans kämmt. Die Anordnung der Sensoren im inneren Lagerring besitzt dabei den Vorteil, dass die Messsensoren nicht mit der Verzahnung kollidieren.
  • Es versteht sich jedoch, dass die Sensoranordnung auch im umgekehrten Fall Verwendung finden kann, wenn das Großwälzlager eine Innenverzahnung aufweist. In diesem Fall sind die beiden Sensoren sozusagen spiegelbildlich, vorteilhafterweise im äußeren Lagerring, angeordnet und tasten eine Außenumfangsfläche des inneren Lagerringes ab.
  • Sind beide Sensoren radial angeordnet, tastet vorteilhafterweise einer der beiden Wegsensoren eine konische Ringumfangsfläche ab, während der andere eine zylindrische Ringumfangsfläche abtastet. Die Neigung der Schrägfläche gegenüber der senkrechten Fläche, auf die der andere Sensor gerichtet ist, kann unterschiedlich gewählt werden und nach einer Ausführung der Erfindung 20° oder weniger betragen.
  • In Weiterbildung der Erfindung bestimmt die Überwachungsvorrichtung nicht nur im Lagerspalt das Spiel der beiden Lagerringe relativ zueinander, sondern überwacht auch Bewegungen der Lagerringe, insbesondere deren Kippspiel, außerhalb des Lagerspalts. In Weiterbildung der Erfindung kann hierzu zumindest ein weiterer berührungsloser Wegmesssensor vorgesehen sein, mit Hilfe dessen axiale Bewegungen des Lagerrings im Bereich seines Befestigungsabschnitts, insbesondere am Anschlussflansch, an dem der Lagerring befestigt ist, bestimmt werden kann. Die Auswerteeinheit vergleicht die mit Hilfe des Wegmesssensors bestimmten Bewegungen des Lagerrings mit vorgegebenen Grenzwerten und kann in Abhängigkeit des Vergleichs den Zustand der Befestigung, insbesondere der Schraubenbefestigung des Lagerrings am Anschlussflansch, bestimmen und anzeigen.
  • Der genannte weitere Wegmesssensor kann dabei die axialen Bewegungen des Lagerrings außerhalb des Lagerspalts direkt messen. In diesem Fall ist der Wegmesssensor in axialer Richtung ausgerichtet und auf eine radiale Fläche des Lagerrings bzw. eines damit verbundenen Ringteils gerichtet.
  • Alternativ oder zusätzlich kann ein in radialer Richtung ausgerichteter Wegmesssensor vorgesehen sein, der auf eine zur radialen Richtung spitzwinklig geneigten Schrägfläche Bewegungen des Lagerrings in radialer Richtung misst. Über die spitzwinklig geneigte Schrägfläche kann aus den erfassten Radialbewegungen die entsprechenden Axialbewegungen des Lagerrings relativ zum Anschlussflansch von der Auswerteeinheit bestimmt werden.
  • Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele und zugehöriger Zeichnungen näher erläutert. In den Zeichnungen zeigen:
  • 1: einen ausschnittsweisen Axialschnitt durch ein Großwälzlager mit einer diesem zugeordneten Überwachungsvorrichtung nach einer bevorzugten Ausführung der Erfindung,
  • 2: eine vergrößerte, ausschnittsweise Axialschnittansicht eines Großwälzlagers ähnlich 1 mit einer alternativen Anordnung der Wegmesssensoren S1 und S2,
  • 3: einen Axialschnitt durch ein Großwälzlager mit einer zugeordneten Überwachungsvorrichtung nach einer weiteren Ausführung der Erfindung, und
  • 4: einen ausschnittsweisen Axialschnitt durch ein Großwälzlager mit einer diesem zugeordneten Überwachungsvorrichtung nach einer weiteren bevorzugten Ausführung der Erfindung.
  • Das in 1 gezeigte Großwälzlager 1 findet typischerweise in einem Kran Verwendung, dessen Oberwagen es drehbar zu dessen Unterwagen lagert. Es umfasst einen äußeren Lagerring 2, der eine Außenverzahnung 3 aufweist, sowie einen inneren Lagerring 4, der zweiteilig ausgebildet ist und einen Oberring 5 und einen Unterring 6 umfasst.
  • Der äußere Lagerring 2 ist mittels einer Vielzahl von Schrauben 7, die über den Umfang des Lagerrings verteilt sind, am Anschlussflansch 8 befestigt. Der innere Lagerring 4 ist in entsprechender Weise mittels einer Vielzahl von Schrauben 7 am Anschlussflansch 8 des den inneren Lagerring 4 tragenden Bauteils befestigt, wobei die Schrauben 7 gleichzeitig der Verbindung von Oberring 5 und Unterring 6 dienen können, jedoch nicht müssen. Die Schrauben 7 erstrecken sich parallel zur Drehachse des Großwälzlagers 1.
  • Wie 1 zeigt, besitzt der äußere Lagerring 2 einen radial nach innen vorspringenden Absatz 9, an dessen Ober- und Unterseiten jeweils eine radiale Lauffläche 10, 11 und an dessen Innenumfangsfläche eine Umfangslauffläche 12 ausgebildet ist. Der Absatz 9 springt dabei in eine insgesamt nutförmige, in Umfangsrichtung umlaufende Ausnehmung 13 vor, die in dem inneren Lagerring 4, genauer gesagt in dessen äußeren Umfangsfläche, ausgebildet ist. Die Ausnehmung 13 besitzt an ihren oberen und unteren Flanken radiale Laufflächen 14 und 15 sowie an ihrem Grund eine Umfangslauffläche 16, die jeweils den Lauffläche 10 und 11 bzw. 12 am Absatz 9 gegenüberliegen. Wie 1 zeigt, laufen zwischen den Laufflächen 10 und 14 bzw. 11 und 15 zylindrische Wälzkörper 17 und 18, die ein Axiallager bilden, sowie zwischen den Umfangslaufflächen 12 und 16 ebenfalls zylindrische Wälzkörper 19, die eine radiale Abstützung bewirken und ein Radiallager bilden. Die Wälzkörper können in an sich bekannter Weise durch einen Käfig 20 in Position gehalten werden. Der Lagerspalt 21 zwischen den beiden Lagerringen 2 und 4 kann durch Dichtungen 22 nach außen hin abgedichtet sein, so dass der Lagerraum gegen äußere Einflüsse geschützt ist.
  • Die dem Großwälzlager 1 zugeordnete Überwachungsvorrichtung umfasst in der gezeichneten Ausführungsform vier jeweils berührungslos arbeitende Wegmesssensoren S1, S2, S3 und S4. Die beiden Wegmesssensoren S1 und S2 sind dabei im Inneren des inneren Lagerrings 4 angeordnet und erstrecken sich jeweils in radialer Richtung. Der Kopf der Sensoren S1 und S2 springt dabei in den Lagerspalt 21 vor bzw. endet an diesem. Die Sensoren S1 und S2 tasten Umfangsflächen des äußeren Lagerrings 2 ab, die den Lagerspalt 21 partiell begrenzen. Wie 1 zeigt, tastet der Wegmesssensor S1 dabei eine zylindrische Umfangsfläche 23 zwischen den beiden Wälzkörperreihen 17 und 18 ab. Der zweite Wegmesssensor S2 tastet hingegen eine schräge Umfangsfläche des äußeren Lagerrings 2 ab, die leicht konisch ausgebildet ist, wie 1 zeigt. Der Kegelwinkel der konischen Umfangsfläche 24 beträgt vorzugsweise weniger als 25°.
  • Obwohl die beiden Wegmesssensoren S1 und S2 radialen Versatz zwischen den beiden Lagerringen 2 und 4 messen, kann aus der Differenz der Signale der beiden Wegmesssensoren S1 und S2 zusätzlich zu den Radialbewegungen zwischen den beiden Lagerringen 2 und 4 auch die auftretende Axialbewegung bestimmt werden, und zwar über die kegelige Umfangsfläche 24, deren Neigung bekannt ist. Die beiden Sensoren S1 und S2 sind mit der Auswerteeinheit 25 verbunden, die die Signale einerseits voneinander subtrahiert, um neben den Radialbewegungen auch die Axialbewegungen zu bestimmen, und andererseits mit vorgegebenen Grenzwerten vergleicht, um Verschleiß zu bestimmen und anzeigen zu können. Aus den über die Sensoren S1 und S2 bestimmten Radial- und Axialbewegungen kann das Kippspiel der beiden Lagerringe 2 und 4 zueinander bestimmt werden. Insbesondere dieses Kippspiel ist ein Maß für den Zustand des Lagers. Einerseits zeigen sich sowohl Verschleiß wie auch Verformung der Lagerringe als Kippspielvergrößerungen. Zum anderen erhöhen Fehler im Bauteil, wie z. B. Risse, das Kippspiel.
  • Wie 1 zeigt, können weiterhin auch außerhalb des Lagerspalts 21 angeordnete Wegmesssensoren S3 und S4 vorgesehen sein. Auch hier erfasst einer der Wegmesssensoren Bewegungen einer zur Sensorrichtung senkrecht stehenden Fläche, während der andere Sensor Bewegungen einer Schrägfläche erfasst. Der Sensor S4 ist axial, d.h. parallel zur Drehachse des Großwälzlagers 1 angeordnet und erfasst unmittelbar Axialbewegungen des äußeren Lagerrings 2 im Bereich der darin eingeschraubten Schrauben 7. Der Wegmesssensor S3 hingegen ist radial angeordnet und erfasst radiale Bewegungen der kegeligen Innenumfangsfläche 26 des den äußeren Lagerring 2 haltenden Lagerflansches. Auch hier kann in der beschriebenen Weise durch Differenzbildung zwischen den beiden Sensorsignalen zusätzlich zu dem unmittelbar erfassten Axialspiel auch das Radialspiel erfasst werden. Hieraus kann in Verbindung mit der bekannten Geometrie der Sensoranordnung das Kippspiel bestimmt werden. Die Auswerteeinheit 25 vergleicht dieses Kippspiel mit Grenzwerten, die vorgebbar sind, um anhand dieses Vergleichs den Lagerzustand zu bestimmen. Die Bestimmung des Kippspiels ist auch hier besonders vorteilhaft, da eine vergrößerte Dehnung der Schrauben in axialer Richtung das Kippspiel vergrößert.
  • Es versteht sich, dass die in 1 gezeigte Anordnung der Sensoren auch abgeändert werden kann. Wie 2 zeigt, können beispielsweise die beiden Sensoren S1 und S2 die Innenumfangsfläche des radial nach innen vorspringenden Absatzes 9 abtasten. Auch hier tastet der Sensor S1 eine zylindrische Umfangsfläche ab, während der Sensor S2 eine kegelige Umfangsfläche abtastet. Dies ermöglicht in der beschriebenen Weise neben der Bestimmung von Radialspiel auch die Bestimmung von Axialspiel, woraus wiederum das Kippspiel bestimmbar ist und mit entsprechenden Grenzwerten vergleichbar ist.
  • Weiterhin versteht es sich, dass das Großwälzlager verschieden ausgebildet sein kann. Wie 3 zeigt, kann die axiale Abstützung und die radiale Abstützung durch dieselben Wälzkörper bewirkt werden, insbesondere dann, wenn das Großwälzlager 1 als Kugellager ausgebildet ist. Wie 3 zeigt, kann das Großwälzlager 1 als zweireihiges Kugellager ausgebildet sein. Hierzu sind einerseits im äußeren Lagerring 2 und andererseits im inneren Lagerring 4 jeweils zwei im Querschnitt etwa halbkreisförmige Laufflächen ausgebildet (vgl. 3), die zusammen die Laufflächen für die als Kugeln ausgebildete Wälzkörper 27 bilden. Die Anordnung der Sensoren S1 bis S4 entspricht im wesentlichen der zuvor beschriebenen.
  • Wie 4 zeigt, kann das Großwälzlager 1 auch einreihig ausgebildet sein. In der in 4 gezeichneten Ausführung ist das Großwälzlager als einreihiges Kugellager ausgebildet. Die Anordnung der Sensoren S1 bis S4 entspricht im wesentlichen der zuvor beschriebenen.

Claims (12)

  1. Überwachungsvorrichtung zur Überwachung von Großwälzlagern (1), die zwei Lagerringe (2, 4) und zwischen diesen laufende Wälzkörper (17, 18, 19; 27) aufweisen, mit einem Sensor (S1, S2, S3, S4) zur Erfassung von Relativbewegungen der Lagerringe (2, 4) zueinander, dadurch gekennzeichnet, dass zumindest zwei berührungslose Wegmesssensoren (S1, S2), von denen einer zur Bestimmung von Radialbewegungen und einer zur Bestimmung von Axialbewegungen der Lagerringe (2, 4) relativ zueinander vorgesehen ist, sowie eine mit den Wegmesssensoren (S1, S2) verbindbare Auswerteeinheit (25) vorgesehen sind, die die bestimmten Radial- und Axialbewegungen mit vorgegebenen Grenzwerten vergleicht und anhand des Vergleichs einen Lagerzustand bestimmt.
  2. Überwachungsvorrichtung nach dem vorhergehenden Anspruch, wobei die Auswerteeinheit zur Bestimmung von Kippspielbewegungen der beiden Lagerringe relativ zueinander aus den Sensorsignalen, zum Vergleichen der Kippspielbewegungen mit vorgegebenen Grenzwerten und zur Bestimmung des Lagerzustands anhand des Vergleichs ausgebildet ist.
  3. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei beide Wegmesssensoren (S1, S2) zur Messung von Bewegungen in derselben Richtung vorgesehen sind, wobei ein Wegmesssensor (S1) eine zu der Bewegungsrichtung senkrechte Messfläche (23) und der andere Wegmesssensor (S2) eine zu der Bewegungsrichtung keilförmig geneigte Schrägfläche (24) abtastet und die Auswerteeinheit (25) zur Bestimmung der Bewegungen senkrecht zu der genannten einen Bewegungsrichtung aus der Differenz der beiden Sensorsignale ausgebildet ist.
  4. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei die beiden Wegmesssensoren (S1, S2) in einer gemeinsamen Ebene enthaltend die Drehachse des Lagers angeordnet sind.
  5. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei die beiden Wegmesssensoren (S1, S2) radial ausgerichtet sind und Umfangsflächen der Lagerringe (2, 4) abtasten.
  6. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei die beiden Wegmesssensoren (S1, S2) im Inneren eines Lagerrings (4) aufgenommen sind.
  7. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei die beiden Wegmesssensoren (S1, S2) im inneren Lagerring (4) angeordnet sind und eine Innenumfangsfläche des äußeren Lagerrings (2) abtasten.
  8. Überwachungsvorrichtung nach einem der Ansprüche 1 bis 6, wobei die beiden Wegmesssensoren (S1, S2) im äußeren Lagerring (2) angeordnet sind und eine Außenumfangsfläche des inneren Lagerrings (4) abtasten.
  9. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei einer der beiden Wegmesssensoren (S2) einer konische Ringumfangsfläche und der andere Wegmesssensor (S1) einer zylindrische Ringumfangsfläche zugewandt ist.
  10. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei die Schrägfläche (24) gegenüber der senkrechten Fläche (23) um 25° oder weniger geneigt ist.
  11. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei zumindest ein Wegmesssensor (S3, S4) außerhalb eines Lagerspalts (21) zwischen den beiden Lagerringen (2, 4) angeordnet ist.
  12. Überwachungsvorrichtung nach einem der vorhergehenden Ansprüche, wobei zumindest ein Wegmesssensor (S3) in axialer Richtung parallel zur Drehachse des Großwälzlagers angeordnet ist und Axialbewegungen eines Lagerrings erfasst.
DE20316544U 2003-10-28 2003-10-28 Überwachungsvorrichtung zur Überwachung von Großwälzlagern Expired - Lifetime DE20316544U1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE20316544U DE20316544U1 (de) 2003-10-28 2003-10-28 Überwachungsvorrichtung zur Überwachung von Großwälzlagern
EP04025540.8A EP1528356B1 (de) 2003-10-28 2004-10-27 Vorrichtung zur Überwachung von Grosswälzlagern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE20316544U DE20316544U1 (de) 2003-10-28 2003-10-28 Überwachungsvorrichtung zur Überwachung von Großwälzlagern

Publications (1)

Publication Number Publication Date
DE20316544U1 true DE20316544U1 (de) 2005-03-10

Family

ID=34306478

Family Applications (1)

Application Number Title Priority Date Filing Date
DE20316544U Expired - Lifetime DE20316544U1 (de) 2003-10-28 2003-10-28 Überwachungsvorrichtung zur Überwachung von Großwälzlagern

Country Status (2)

Country Link
EP (1) EP1528356B1 (de)
DE (1) DE20316544U1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007112748A2 (en) * 2006-04-02 2007-10-11 Vestas Wind Systems A/S A pitch bearing for a wind turbine, a wind turbine and a method for servicing a bearing
DE202007002609U1 (de) * 2007-02-19 2008-04-03 Landwehr, Markus Drehverbindung
EP1972918A2 (de) 2007-03-20 2008-09-24 ThyssenKrupp Fördertechnik GmbH Verfahren und Einrichtung zur Kontrolle der Laufbahnen von Grosswälzlagern
DE102008008727A1 (de) 2008-02-12 2009-08-13 Schaeffler Kg Lager mit Positionsgeber
DE102008026081A1 (de) 2008-05-30 2009-12-31 Schaeffler Kg Lagervorrichtung mit Positionsgeber
DE102008046357A1 (de) 2008-09-09 2010-03-11 Schaeffler Kg Sensoranordnung zur Bestimmung einer Kenngröße für den Verschleiß eines Wälzlagers und Windkraftanlage
EP1653079A3 (de) * 2004-10-29 2012-03-07 Ab Skf Windenergieanlage
EP2312172A3 (de) * 2008-06-30 2012-05-09 Nucor Corporation Schwenklagersystem
DE102012211566A1 (de) * 2012-07-03 2014-01-09 Wobben Properties Gmbh Überwachte Bauteilverbindung, Windenergieanlage, Verfahren zur Überwachung einer Bauteilverbindung auf ein ungewolltes Lösen der Bauteilverbindung im verbundenen Zustand
EP2743522A1 (de) * 2012-12-12 2014-06-18 IMO Holding GmbH Momenten- oder (Groß-)Wälzlager oder Drehverbindung mit Abstandssensor (en)
WO2014206383A1 (de) 2013-06-25 2014-12-31 Imo Holding Gmbh Federdrucksystem für lageranordnung und damit ausgestattete lageranordnung
DE102013010500A1 (de) 2013-06-25 2015-01-08 Imo Holding Gmbh Federdrucksystem für Lageranordnung und damit ausgestattete Lageranordnung
DE102007032972B4 (de) * 2007-07-16 2015-08-06 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Messvorrichtung und Verfahren zur Erfassung einer axialen Verschiebung einer Welle
DE102018200573A1 (de) * 2018-01-15 2019-07-18 Zf Friedrichshafen Ag Schwenkantrieb mit Zustandsüberwachung
DE102021100222A1 (de) 2021-01-08 2022-07-14 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung von verschiedenen Varianten einer Baureihe von Rundachslagern

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887237A4 (de) * 2005-05-31 2011-11-02 Mitsubishi Heavy Ind Ltd Struktur für drehkranzlager
DE102009039030A1 (de) * 2009-08-28 2011-03-03 Prüftechnik Dieter Busch AG Vorrichtung und Verfahren zur Erfassung der Belastung drehbar gelagerter Rotorblätter
CN102072259A (zh) * 2011-01-24 2011-05-25 南京工大数控科技有限公司 一种内植传感器的智能回转支承
DE102012024269A1 (de) * 2012-12-12 2014-06-12 Imo Holding Gmbh Momentenlager mit Abstandssensorik
DE102016116113A1 (de) * 2016-08-30 2018-03-01 Thyssenkrupp Ag Lager und Verfahren zur Verschleißüberwachung und/oder Lastmessung
CN106979755A (zh) * 2017-03-31 2017-07-25 武汉理工大学 汽车水泵轴承轴向游隙自动测量仪
ES2793651T3 (es) 2017-11-08 2020-11-16 Schaeffler Monitoring Services Gmbh Procedimiento y dispositivo para supervisar un juego de cojinete de cojinetes de rodamiento
CN109470192A (zh) * 2018-12-18 2019-03-15 南京磁谷科技有限公司 一种电磁轴承轴向传感器的安装结构
CN109915492A (zh) * 2019-04-23 2019-06-21 中铁工程服务有限公司 一种盾构机主轴承监测装置
DE102019216422A1 (de) * 2019-10-24 2021-04-29 Aktiebolaget Skf Wälzlager mit einem Ultraschallabstandssensor
US10975908B1 (en) 2019-10-29 2021-04-13 Schaeffler Monitoring Services Gmbh Method and device for monitoring a bearing clearance of roller bearings
DE102019217788A1 (de) * 2019-11-19 2021-05-20 Aktiebolaget Skf Lager mit Abstandssensoren und konischer Nut
DE102019217789A1 (de) * 2019-11-19 2021-05-20 Aktiebolaget Skf Lager mit Abstandssensoren und konischen Nuten
DE102019218143A1 (de) * 2019-11-25 2021-05-27 Aktiebolaget Skf Lager mit einem gleitendem Zielobjekt und zugehörigem Sensor
DE102019218144A1 (de) 2019-11-25 2021-05-27 Aktiebolaget Skf Lager mit einem Abstandsmesssystem und zugehöriger Nut
DE102020200032A1 (de) * 2020-01-03 2021-07-08 Thyssenkrupp Ag Wälzlager mit Positionsbestimmungseinrichtung
DE102020103421A1 (de) * 2020-02-11 2021-08-12 Liebherr-Components Biberach Gmbh Wälzlager mit Überwachungsvorrichtung
DE102020206785B4 (de) 2020-05-29 2024-02-15 Thyssenkrupp Ag Wälzlager mit einem Sensor und Montagewerkzeug
DE102020128097A1 (de) * 2020-10-26 2022-04-28 Aktiebolaget Skf Wälzlageranordnung
CN114033794B (zh) * 2021-11-16 2022-11-15 武汉理工大学 一种回转支承运行状态在线监测装置
DE102022200165A1 (de) * 2022-01-10 2023-07-13 Aktiebolaget Skf Wälzlageranordnung
NL2032602B1 (en) 2022-07-26 2024-02-05 Itrec Bv Slew bearing with load monitoring

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228731A1 (de) * 1985-12-19 1987-07-15 SKF Industrial Trading & Development Co, B.V. Drehlager
DE4128807A1 (de) * 1991-08-30 1993-03-04 Hoesch Ag Vorrichtung zum ueberwachen von waelzlagern
DE69202939T2 (de) * 1991-08-26 1996-03-07 Roulements Soc Nouvelle Lineare Messwertgeber für kleine Verschiebungen in magnetischen Kreisen und mit solchen Gebern ausgestattete Kugellager.
DE19755000C1 (de) * 1997-12-11 1999-03-04 Krupp Ag Hoesch Krupp Verschleißmessvorrichtung für Großwälzlager
DE19919007A1 (de) * 1999-04-27 2000-11-16 Fag Automobiltechnik Ag Einrichten zum Messen von Lagerdaten

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336996A (en) 1992-08-21 1994-08-09 The Duriron Company, Inc. Hall effect monitoring of wear of bearing supporting a rotor within a stationary housing
US5955880A (en) 1996-12-05 1999-09-21 Beam; Palmer H. Sealless pump rotor position and bearing monitor
JP2001231217A (ja) 2000-02-14 2001-08-24 Teikoku Electric Mfg Co Ltd キャンドモータの軸方向軸受摩耗検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228731A1 (de) * 1985-12-19 1987-07-15 SKF Industrial Trading & Development Co, B.V. Drehlager
DE69202939T2 (de) * 1991-08-26 1996-03-07 Roulements Soc Nouvelle Lineare Messwertgeber für kleine Verschiebungen in magnetischen Kreisen und mit solchen Gebern ausgestattete Kugellager.
DE4128807A1 (de) * 1991-08-30 1993-03-04 Hoesch Ag Vorrichtung zum ueberwachen von waelzlagern
DE19755000C1 (de) * 1997-12-11 1999-03-04 Krupp Ag Hoesch Krupp Verschleißmessvorrichtung für Großwälzlager
DE19919007A1 (de) * 1999-04-27 2000-11-16 Fag Automobiltechnik Ag Einrichten zum Messen von Lagerdaten

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1653079A3 (de) * 2004-10-29 2012-03-07 Ab Skf Windenergieanlage
WO2007112748A2 (en) * 2006-04-02 2007-10-11 Vestas Wind Systems A/S A pitch bearing for a wind turbine, a wind turbine and a method for servicing a bearing
WO2007112748A3 (en) * 2006-04-02 2008-03-06 Vestas Wind Sys As A pitch bearing for a wind turbine, a wind turbine and a method for servicing a bearing
DE202007002609U1 (de) * 2007-02-19 2008-04-03 Landwehr, Markus Drehverbindung
EP1972918A2 (de) 2007-03-20 2008-09-24 ThyssenKrupp Fördertechnik GmbH Verfahren und Einrichtung zur Kontrolle der Laufbahnen von Grosswälzlagern
DE102007013160A1 (de) 2007-03-20 2008-09-25 ThyssenKrupp Fördertechnik GmbH Verfahren und Einrichtung zur Kontrolle der Laufbahnen von Großwälzlagern
DE102007032972B4 (de) * 2007-07-16 2015-08-06 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Messvorrichtung und Verfahren zur Erfassung einer axialen Verschiebung einer Welle
DE102008008727A1 (de) 2008-02-12 2009-08-13 Schaeffler Kg Lager mit Positionsgeber
DE102008026081A1 (de) 2008-05-30 2009-12-31 Schaeffler Kg Lagervorrichtung mit Positionsgeber
US8395475B2 (en) 2008-05-30 2013-03-12 Schaeffler Technologies AG & Co. KG Bearing device having position indicator
EP2312172A3 (de) * 2008-06-30 2012-05-09 Nucor Corporation Schwenklagersystem
US8567082B2 (en) 2008-06-30 2013-10-29 Nucor Corporation Slew bearing system
WO2010028630A1 (de) * 2008-09-09 2010-03-18 Schaeffler Kg Sensoranordnung zur bestimmung einer kenngrösse für den verschleiss eines wälzlagers und windkraftanlage
DE102008046357A1 (de) 2008-09-09 2010-03-11 Schaeffler Kg Sensoranordnung zur Bestimmung einer Kenngröße für den Verschleiß eines Wälzlagers und Windkraftanlage
DE102012211566A1 (de) * 2012-07-03 2014-01-09 Wobben Properties Gmbh Überwachte Bauteilverbindung, Windenergieanlage, Verfahren zur Überwachung einer Bauteilverbindung auf ein ungewolltes Lösen der Bauteilverbindung im verbundenen Zustand
US9926916B2 (en) 2012-07-03 2018-03-27 Wobben Properties Gmbh Monitored component connection, wind power installation, method of monitoring a component connection for unwanted release of the component connection in the connected condition
EP2743522A1 (de) * 2012-12-12 2014-06-18 IMO Holding GmbH Momenten- oder (Groß-)Wälzlager oder Drehverbindung mit Abstandssensor (en)
WO2014206383A1 (de) 2013-06-25 2014-12-31 Imo Holding Gmbh Federdrucksystem für lageranordnung und damit ausgestattete lageranordnung
DE102013010500A1 (de) 2013-06-25 2015-01-08 Imo Holding Gmbh Federdrucksystem für Lageranordnung und damit ausgestattete Lageranordnung
DE102013010500B4 (de) 2013-06-25 2018-12-27 Imo Holding Gmbh Mit Federdrucksystem ausgestattete Lageranordnung
DE102018200573A1 (de) * 2018-01-15 2019-07-18 Zf Friedrichshafen Ag Schwenkantrieb mit Zustandsüberwachung
DE102021100222A1 (de) 2021-01-08 2022-07-14 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung von verschiedenen Varianten einer Baureihe von Rundachslagern

Also Published As

Publication number Publication date
EP1528356A3 (de) 2006-03-01
EP1528356B1 (de) 2015-01-28
EP1528356A2 (de) 2005-05-04

Similar Documents

Publication Publication Date Title
EP1528356B1 (de) Vorrichtung zur Überwachung von Grosswälzlagern
EP3507513B1 (de) Lager und verfahren zur verschleissüberwachung und/oder lastmessung
EP0922870B1 (de) Verschleissmessvorrichtung für Grosswälzlager
DE112006003783B4 (de) Verfahren und Vorrichtung zur Lastmessung
DE102006028294A1 (de) Radiallageranordnung mit einer diese zentrierenden Spannringanordnung
EP2276658B1 (de) Messlager, insbesondere für einen radsatz eines schienenfahrzeuges
DE69724343T2 (de) Schwenkkugellager mit eingebautem Messaufnehmer
EP1924834B1 (de) Sensoranordnung
DE3927077A1 (de) Mittenfreies grosswaelzlager
DE102017207814A1 (de) Schwenklager mit Dichtungsanordnung
WO2014090347A1 (de) Momenten- oder wälzlageranordnung mit sensorik
DE112005003355T5 (de) Lagervorrichtung für ein Fahrzeugrad
DE10149642A1 (de) Kreisringförmiges Sensorgehäuse
EP4081719B1 (de) Wälzlager mit überwachungsvorrichtung
EP2743522A1 (de) Momenten- oder (Groß-)Wälzlager oder Drehverbindung mit Abstandssensor (en)
DE102019217789A1 (de) Lager mit Abstandssensoren und konischen Nuten
AT524361B1 (de) Wälzlageranordnung
DE19713688B4 (de) Wälzlager mit einer Wegmeßeinrichtung
DE102019218884B4 (de) Großwälzlager und Verfahren zur Verschleißmessung
DE10242341A1 (de) Magnetischer Codierer und Radlager-Baugruppe, die diesen anwendet
EP3611088B1 (de) Tretlager und fahrrad mit einem solchen tretlager
DE102010005511A1 (de) Rollenlageranordnung
WO2011064060A1 (de) WÄLZLAGER MIT EINER MAßVERKÖRPERUNG
DE19908091A1 (de) Einrichtung zum Erfassen eines Drehwinkels
DE102014223219A1 (de) Lageranordnung mit einem Kraftsensor sowie Sensorwälzkörper für eine solche Lageranordnung

Legal Events

Date Code Title Description
R163 Identified publications notified
R207 Utility model specification

Effective date: 20050414

R150 Utility model maintained after payment of first maintenance fee after three years

Effective date: 20061123

R151 Utility model maintained after payment of second maintenance fee after six years

Effective date: 20091116

R152 Utility model maintained after payment of third maintenance fee after eight years

Effective date: 20111103

R081 Change of applicant/patentee

Owner name: LIEBHERR-COMPONENTS BIBERACH GMBH, DE

Free format text: FORMER OWNER: LIEBHERR-WERK BIBERACH GMBH, 88400 BIBERACH, DE

Effective date: 20120126

R082 Change of representative

Representative=s name: LORENZ SEIDLER GOSSEL RECHTSANWAELTE PATENTANW, DE

Effective date: 20120126

Representative=s name: RECHTS- UND PATENTANWAELTE LORENZ SEIDLER GOSS, DE

Effective date: 20120126

R071 Expiry of right
R071 Expiry of right