DE2013946C3 - Schaltungsanordnung zur Durchschaltung von Datensignalen in Zeitmultiplex-Vermittlungsanlagen - Google Patents

Schaltungsanordnung zur Durchschaltung von Datensignalen in Zeitmultiplex-Vermittlungsanlagen

Info

Publication number
DE2013946C3
DE2013946C3 DE2013946A DE2013946A DE2013946C3 DE 2013946 C3 DE2013946 C3 DE 2013946C3 DE 2013946 A DE2013946 A DE 2013946A DE 2013946 A DE2013946 A DE 2013946A DE 2013946 C3 DE2013946 C3 DE 2013946C3
Authority
DE
Germany
Prior art keywords
memory
line
signals
time
message
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
DE2013946A
Other languages
English (en)
Other versions
DE2013946B2 (de
DE2013946A1 (de
Inventor
Michael Jay Cambridge Mass. Marcus (V.St.A.)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
Western Electric Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Electric Co Inc filed Critical Western Electric Co Inc
Publication of DE2013946A1 publication Critical patent/DE2013946A1/de
Publication of DE2013946B2 publication Critical patent/DE2013946B2/de
Application granted granted Critical
Publication of DE2013946C3 publication Critical patent/DE2013946C3/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/04Selecting arrangements for multiplex systems for time-division multiplexing

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

Die Erfindung betrifft eine Schaltungsanordnung zur Durchschaltung von auf Eingangsleitungen in bestimmten Zeitkanälen ankommenden Datensignalen auf entsprechende Ausgangsleitungen in gleichen oder verschiedenen Zeitkanälen, wobei das Vermittlungsnetzwerk an jedem Kreuzpunkt zwischen den Eingangsund Ausgangsleitungen Koppelpunkte besitzt.
In RaummultipIeX'Fernsprechanlagen wird eine feste Verbindung zwischen einem rufenden und einem
gerufenen Teilnehmer über einen Weg hergestellt, der
der Verbindung für die Dauer des Gesprächs individuell und ununterbrochen zugeordnet ist Die Geheimhaltung Ist dabei durch eine räumliche Trennung sichergestellt.
> Im Gegensatz dazu benutzen bei Zeitmultiplex-Fern-/Sprechanlagen eine Anzahl von Verbindungen eine
einzige Übertragungsleitung gemeinsam.
Jeder Verbindung wird die gemeinsame Übertragungsleitung für ein kurzes, periodisch wiederkehrendes
1" Intervall, einem Zeilkanal zugeordnet. In diesen Zeitkanälen werden Abtastwerte über die Leitung gegeben und beim gerufenen Teilnehmer zur Wiederherstellung des ursprünglichen Signals benutzt Die Geheimhaltung ist dabei durch eine zeitliche Trennung
1' der einzelnen Gespräche sichergestellt
Sowohl bei Raummultiplex- als auch bei Zeitmultiplexanlagen treten sogenannte Blockierungen auf, wenn eine oder mehrere Vermittlungsstufen zwischen die rufende und gerufene Teilnehmerleitung eingefügt sind.
-'" In Raummultiplex-Verrnittlungsnetzwerken werden Blockierungen in erster Linie durch eine Redundanz der zur Verfügung stehenden Netzwerkwege möglichst kleingehalten. Bei Zeitmultiplex-Vermiulungsnetzwerken ist es bekannt, Blockierungen durch eine Zeitkanal-
-'"· umsetzung zu vermeiden. Dazu werden Impulsschieber eingangs- und ausgangsseitig in die Zeitmultiplexleitungen zum bzw. vom Vermittlungsnetzwerk eingeschaltet oder zwischen den Stufen des Vermilllungsnetzwerkes angeordnet (DE-AS 12 94 483). Dann kann eine über
!" einen Zeitkanal einer ersten Zeitmuitiplexleitung laufende Verbindung in andere Kanäle nachfolgender Zeitmultiplexleitungen verschoben und bis zu ihrem Bestimmungsort geführt werden.
Da der Aufwand für solche Zeitmultiplex-Vermitt-
J' lungsnetzwerke einschließlich ihrer Steuerung hoch ist. hat sich die Erfindung die Aufgabe gestellt, für ein Zeitmultiplex-Vermitllungsnetzwerk die Vorteile der integrierten Schaltungstechnik möglichst weilgehend nutzbar zu machen und dabei die Steuerung des Vermittlungsnetzwerkes zu vereinfachen, wobei die Blockierungswahrscheinlichkeit zusätzlich verringert sein soll.
Zur Lösung der Aufgabe geht die Erfindung aus von einer Schaltungsanordnung der eingangs genannten Art und ist dadurch gekennzeichnet, daß pro Koppelpunkt ein Speicherpaar /ur Zeitkanalumsetzung vorgesehen ist, so daß während eines Zeitabschnittes jeweils der eine Speicher /ur Aufnahme von Signalen von der Eingangsleitung und der andere Speicher zur Aussendung der Signale an die entsprechende Ausgangsleitung des Vermittlungsnetzwerkes vorgesehen ist und daß die Funktion der Speicher in aufeinanderfolgenden Abschnitten abwechselt.
Die Koppelpunkte lassen sich leicht als integrierte Schaltungen ausführen, und zwar einschließlich der Speicher, die bequem als Schieberegister ausgebildet sein können, so daß der Aufwand pro Koppelpunkt klein bleibt. Die .Steuerungsprobleme werden dadurch vereinfacht, daß eine Unterteilung in einen Raummultiplex- und einen Zeitmulliplexteil möglich ist. Die gemeinsame Steuerung braucht bloß einen geeigneten Raummultiplexweg durch das Koppelfeld aufzufinden, während die Zuordnung der Zeitkanäle automatisch mit Hilfe der Koppelpurtkte erfolgen kann. Die gemeinsame Steue-
"' rung ist mit der Zeitmultiplex-Wegführung einer Verbindung nur bei deren Aufbau und Abbau beschäftigt. Darüber hinaus kann gemessen an dem Aufbau für das Vermittlungsnetzwerk die Blockierwahrscheinlich-
keit verringert und außerdem die Zuverlässigkeit erhöht werden, weil die Zwischenspeicher für die Zeilkanalumsetzung dezentralisiert sind.
Von besonderer Bedeutung ist die Speicherfähigkeit der Koppelpunkte, die die Zeitkanalumsetzung ermög- "> licht In einer Matrix solcher Koppelpunkte, die nachfolgend wegen ihrer Speicherfähigkeit auch »Kreuzpunktspeicher« genannt werden, erreicht ein bestimmtes Signal in einem ersten Zeitkanal einer Eingangsleitung eine Ausgangsleitung im gleichen oder iu einem anderen Zeilkanal über einen bestimmten Koppelpunkt Das Signal wird im Kreuzpunktspeicher durch Betätigen des Speichereingangs während des ersten Zeilkanals gespeichert. Im nächsten, wiederkehrenden Zyklus von Zeitkanälen, der Rahmen genannt f> wird, überträgt der Kreuzpunktspeicher alle während des jeweiligen Rahmens gespeicherten Signale zur Ausgafjgsleitung. Es wird nicht versucht, die Reihenfolge der Signale im Speicher gegenüber der Reihenfolge zu ändern, mit der die Signale vom Speicher -'< > aufgenommen worden sind. Beim Entleeren jedes Kreuzpunktspeichers setzt dieser jedoch -,utoniuiisch einen anderen Speicher in Tätigkeit, der der gleichen Ausgangsleitung, aber einer anderen Eingangsleitung zugeordnet ist. j>
Unter dem Einfluß einer gemeinsamen Steuerung gibt ein örtlicher Speicher für jede Vermittlungsstufe den Zeitpunkt für die Betätigung jedes Koppelpunktspeichereingangs an. um die Möglichkeit zu schaffen, daß in bestimmten Zeitkanälen einer Vielzahl von t·· Eingangsleitungen ankommende Eingangssignale während des nachfolgenden Rahmens auf die richtige Ausgangsleitung übertragen werden. Dabei ist natürlich erforderlich, daß der örtliche Speicher und die gemeinsame Steuerung die Zeilkanäle kennen, in i· welchen die Signale die gewünschte Ausgangsleitung erreichen, da diese Zeitkanäle die Eingangskanäle der nächsten Vermittlungsstufe bilden. Demgemäß wird eine zeilliche und räumliche, durch den örtlichen Speicher bestimmte Aufzeichnung in jeder Vermitt- >" lungsstufe vorgenommen.
Der örtliche Speicher kann so ausgelegt sein, daß er einen Zeilkanal für die Nachrichtensignale einer neuen Verbindung bestimmt. Dies geschieht dadurch, daß die neuen Nachrichtensignale in einen Zeitkanal zwischen »> zwei ber:its belegte Kanäle in einen Kreuzpunktspeicher in jeder Vermittlungsstufe der Verbindung eingibt. Dadurch wird bewirkt, daß Signale in den nachfolgenden Zeitkanälen des Rahmens bei ihrem Austreten aus jeder Zwischenstufe urd auf der letzten Ausgangslei- '>" tung andere Zeitkanäle belegen, während die Folge der von jedi-r Eingangsleitjng auf dem Weg zu einer gemeinsamen Ausgangsleitung aufgenommenen Signale beibehalten wird. Dieser Einfügungsvorgang läßt sich zweckmäßig durch ein in sich zurückgeführtes Schiebe- >r. register bewirken, das jedesmal dann, wenn ein neuer Kanal einzufügen ist. eine Stufe an einem Ende der in sich geschlossenen Schleife hinzufügt.
Eine Leitungskonzentration kann durch eine Vermitt lungsstufe von Koppelpunkten durchgeführt werden, «> die eine einzige Ausgangsleitung zur Übertragung von Nachrichtensignalen und eine einzige Ausgangsleitung zur Übertragung von Überwachungssignale besitzt. Die Nachrichten- und Überwachungssignale werden in vorbestimmten Zeitkanälen auf die Eingangsleitungen <<'< der Konzentratorstufe gegeben.
Die gemeinsame Steuerung bestimmt den Verlauf einer neuen Verbindung einfach dadurch, daß festgestellt wird, welche Zwischenstufen-Multiplexleitungen freie Zeitkanäle aufweisen und welche Koppelpunkte mit Zugriff zu den gewählten Multiplexleitungen die neue Nachricht aufnehmen können. Diese Informationen stehen einfach durch eine Abfrage des örtlichen Speichers jeder Stufe zur Verfugung.
Mit Vorteil kann das Vermittlungsnetzwerk nach einem Ausführungsbeispiel der Erfindung Signale für die gleiche Gesprächsverbindung in aufeinanderfolgenden Zeitkanälen des gleichen Rahmens so lange aufnehmen, wie genügend Raum in den Koppelpunktregistern verfügbar ist. Dadurch wird die Multiplexübertragung von Signalen unterschiedlicher Frequenz auf einfache Weise dadurch ermöglicht, daß den Signalen höherer Frequenz entsprechend mehr Zeitkanäle in jedem Rahmen zugeordnet werden.
In den Zeichnungen zeigen
Fig. IA — IC eine Anzahl von Zeitmultiplex-Vermittlungsnetzwerken nach dem Stand der Technik,
Fig. 2 ein Vermiltlungsnetzwerk und seine örtliche Steuerung nach einem Ausführu^sbeispiel der Erfindung,
F i g. 3 ein Zeitdiagramm für die Steuersignale, die während eines Intervalls von zwei Rahme0 an das Netzwerk nach F i g. 2 angelegt werden,
Fig. 4A-4H den Informationsfluß durch eine der Speichereinrichiungen des örtlichen Speichers in F ι g. 2,
F i g. 5 das Blockschaltbild eines größeren Netzwerks der in F i g. 2 dargestellten Art,
Fig. 6 das Blockschaltbild eines vielstufigen Netzwerks, bei dem in jeder Stufe eine Anordnung der in F i g. 2 und 5 gezeigten Art verwendet wird,
Fig. 7 ein vereinfachtes Blockschaltbild einer vollständigen Anlage, die in jeder Vermiltlungsstufe eine Anordnung der in F i g. 2 und 5 gezeigten Art benutzt,
Fig. 8 ein Diagramm, das das Fortschreiten einer Nachricht über aufeinanderfolgende Stufen eines Netzwerkes erläutert, bei dem in jeder Stufe eine Anordnung der in Fig. 2 und 5 gezeigten An benutz: wird,
Fig. 9 das Blockschaltbild der Steuerausrüstung, die zur Erleichterung der Zeitkanalzuordnung im Net/werk nach F i g. 2 benötigt wird,
Fig. 10-12 ein genaueres Blockschaltbild der AnIa ge nach Fig. 7. wobei die Zuordnung Jer F ι g. 10 - 12 in Fi g. 13 dargestellt ist.
Entsprechend Fig. IA-IC stehen drei bekannte Anordnungen zur Verfügung, um Zeitmulnplextnformationen über ein Net/werk zu geben. Zu Anfang wurden Zeitmultiplexinformationen in codierter Form in der in Fig. IA gezeigttn Art über Zeitmultiplexgatter über tragen. Die Eingangsmultiplexleitungen 100—103 können also je eine Vielzahl von bestimmten Nachrichten in Zeiimultiplexkanälen führen, die über Vermittlungsstufen 105 und 110 sowie zwischengeschaltete Multiplexleitungen 106—109 zu Zeitkanälen in Ausgangsmultiplexleitungen 111 — 114 übertragen werden. Bei dieser Anordnung kann eine Nachricht von jeder Einganjjsmultiplexleitunf auf jede Ausgangsmultiplexleitung geschaltet werden, aber es muß der gleiche Zeitkanal zur Aufrechterhaltung des Synchronismus in der Anlage über das Netzwerk beibehalten werde,'!, beispielsweise kann eine auf der Multiplexleitung 101 im Zeitkanal A ankommende Nachricht auf die Zeitmultiplexleitung 114 geschaltet wurden, solange sie im Kanal A bleibt. Dies läßt sich beispielsweise dadurch erreichen, daß die Zeitmultiplexgatter 120 und 121 gleichzeitig während des Zeitkanals A betätigt werden, so daß die Nachricht
über die Vcrbindufigslcitung 108 läuft.
Der I lauptnachteil dieser Anordnung zeigt sich, wenn man für das obige Beispiel die Möglichkeit betrachtet, daß der Zcilkanal A durch andere Nachrichten in nachfolgenden Stufen des Netzwerks belegt ist, die über die abgehenden Multiplexlcilungcri 111 — 114 erreicht werden. In einem solchen Fall kann die Verbindung für eine Nachricht im Zeitkanal A der Mültiplexleitung 101 nicht durchgcschaltet werden. Dies nennt man eine Blockierung der Verbindung. Solche Blockierungen können trotz der Tatsache auftreten, daß einige Kanäle auf den abgehenden Mulliplexleitungen frei sind. Es ergibt sich also ein schwieriges Verkehrsproblem.
Bekannte Lösungen dieses Blockierungsproblems sind in den Fig. IB und IC dargestellt. Eine Verzögerungseinrichtung, die in jeden Übertragungsweg einer Vcrmittlungsstufe eingeschaltet ist, ermöglicht einen Austausch von Zeitkanälen, wodurch die Herstellung einer Verbindung über diese oiüfc ermöglicht wird, solange irgendein Zeitkanal auf jeder, die Übertragungsstrecke bildenden Zeitmultiplexleitung zur Verfugung steht. In Fig. IB wird prinzipiell die gleiche Anordnung wie in Fig. IA benutzt mit der Ausnahme, daß eine Speichermöglichkeit in den zwischengcschalteten Multiplexleitungen vorgesehen ist. Ein Eingangszeitkanal wird also wie vorher auf eine zwisrhengeschaltele Mültiplexleitung unter Beibehaltung seines ursprünglichen Kanals geschaltet Die Verzögerung durch die jeweilige Einrichtung 130—133 gibt jedoch die Möglichkeit, daß das Signal beim Verlassen der zwischengeschalteten Mültiplexleitung in einem anderen Zeitkanal erscheint. Betrachtet man wiederum das in Verbindung mit Fig. IA erläuterte Beispiel, so kann, wenn der Kanal A auf der Multiplexleilung 114 belegt ist, eine über die Mültiplexleitung 101 im Kanal A ankommende Nachricht trotzdem über die Mültiplexleitung 108 und die Kreuzpunkte 120 und 121 übertragen werden, indem die Nachricht in der Einrichtung 132 (Fig. IB) einfach so verzögert wird, daß sie auf der Mültiplexleitung 114 im vorher freien Kanal B erscheint. Fig. IC zeigt eine weitere bekannte Anordnung, bei der ein Zeitkanalaustausch benutzt wird. In diesem Fall ist die Übertragungsfrequenz innerhalb des Netzwerkes verschieden von der auf den Multiplexleitungen. Dabei werden Nachrichtensignale in den Speichereinrichtungen 140 und 141 verzögert, bis Zeitkanäle über die Schaltermatrix 142 und auf den Ausgangsmultiplexleitungen 111 — 114 verfügbar sind.
In Fig. 2 ist ein Vermittlungsnetzwerk und seine Steuerung nach eiru;m Ausführungsbeispiel der Erfindung gezeigt. Eis wird zwar auch hier das Zeitkanal-Austauschprinzip benutzt, aber die Anordnung unterscheidet sich von den in den F i g. 1B und 1C dargestellten bekannten Anordnungen dadurch, daß das gleiche Element die Verzögerungs- und Schaltoperation durchführt Fig.2 enthält eine 2 · 2-Matrix solcher Elemente 210—213, die im folgenden Kreuzpunktspeicher genannt und durch einen örtlichen Speicher 215 gesteuert wird. Die Eingangsmultiplexleitung 2Oi hat über die Kreuzpunktspeicher 210 bzw. 211 Zugriff zu Ausgangsmultiplexleitungen 203 bzw. 204. Auf entsprechende Weise hat die Eingangsmultiplexleitung 202 Zugriff zu den Ausgangsmultiplexleitungen 203 und 204 über Kreuzpunktspeicher 212 bzw. 213.
Die Kreuzpunktspeicher 210—213 sind in ihrem Aufbau identisch und enthalten bei diesem Ausführungsbeispiel je ein Paar von Schieberegistern, ein Paar von Zählern und zugeordnete logische Schaltungen, wie dies für den Speicher 211 angegeben ist. Es sei jedoch darauf hingewiesen, daß auch andere Speicher- oder Verzögerungsanordnungen für den gleichen Zweck benutzt
■·. werden können. Die Schieberegister 230 und 231 führen für Signale von der Eingangsmultiplexleitung 201 eine Speicheroperation aus, bei der ein erstes Element eingegeben und das letzte Element ausgegeben wird. Die Zähler 235 uhd 236 zeichnen die Anzahl der in
in jedem Rahmen in das entsprechende Register eingegebenen Nachrichtensignale auf und steuern die Ausgabe der gleichen Anzahl von Nachrichtensignalen im nächsten Rahmen auf die Mültiplexleitung 204. Die Nachrichtensignale auf der Eingangsmultiplexleitung
r> 201 werden über die Leitung 220 beim Empfang eines entsprechenden Kommandos vom örtlichen Speicher 215 auf der Steuerleitung 221 an den Speicher 211 gegeben. Diese Nachrichtensignalp werden sequentiell }fi ciiies lief beiden Schieberegister 230 und 231 des Speichers 211 eingeschoben und dort für einen vollständigen Zyklus von Zeitkanälen, also einen Rahmen, festgehalten. Am Ende des Rahmens veranlaßt ein Signal der gemeinsamen Steuerung auf der Leitung 222 den Speicher 211, seinen während des vorhergehen-
21S den Rahmens aufgenommenen Inhalt sequentiell an die Ausgangsmultiplexleitung 204 über die Leitung 223 zu geben. Der Speicher 211 ist so ausgelegt, daß er nach seiner Efi. teerung den Speicher 213 über die Leitung 224 veranlaßt, damit anzufangen, seinen Inhalt an die
in Mültiplexleitung 204 zu geben.
Die Verwendung von zwei Schieberegistern 230 und 231 im Speicher 211 ermöglicht die gleichzeitige Speicherung und Ausgabe während jedes Rahmens. Während also ein Register Nachrichtensignale von der
j) Eingangsmultiplexleitung 201 aufnimmt, gibt das andere Register die während des vorhergehenden Rahmens gespeicherten Nachrichtensignale an die Ausgangsmultiplexleitung 204.
Der örtliche Speicher 215 enthält ein Paar von in sich
•in zurückkehrenden Schieberegistern 240 und 241, von denen jedes die Speicheroperation für ein Paar von Kreuzpunktspeichern steuert. Das Register 240 veranlaßt also die Speicher 210 und 211, Nachrichtensignale von der Eingangsmultiplexleitung 201 aufzunehmen,
π und das Register 241 veranlaßt die Speicher 212 und 213, Nachrichtensignale von der Eingangsmultiplexleitung 202 aufzunehmen. Die Register 240 und 241 enthalten von der gemeinsamen Steuerung gelieferte Adresseninformationen, die dann nacheinander in aufeinanderfol-
>n genden Zeitkanälen an die jeweiligen Kreuzpunktspeicher gegeben werden.
Die Betriebsweise läßt sich am besten anhand der Übertragung von Nachrichtensignalen über das Netzwerk verstehen. Es sei beispielsweise angenommen, daß
v> eine Nachricht im Kanal 3 auf der Eingangsmultiplexleitung 201 zur Ausgangsmultiplexleitung 204 übertragen wird. In diesem Fall gibt die gemeinsame Steuerung die Adresse des Speichers 211 in das Register 240, derart, daß die Adresse am Ende des zweiten Zeitkanals jedes
wi nachfolgenden Rahmens auf der Leitung 250 erscheint Für den augenblicklichen Rahmen sei angenommen, daß das Register 230 Daten von der Mültiplexleitung 201 aufnimmt, während das Register 231 während des vorhergehenden Rahmens aufgenommene Daten an die
• Mültiplexleitung 204 abgibt.
Die Adresseninformation, im vorliegenden Fall eine binäre »0«, wird auf der Leitung 225 zum Speicher 210 und über den Inverter 245 sowie die Leitung 221 zum
Speicher 211 gegeben. Der Inverter 245 ändert die binäre »0« in eine binäre »I«, die das UND-Gatter 232 über die Leitung 221 betätigt. Der Zähler 235 läuft weiter, und das Register 230 wird über das UND-Gatter 233 in Tätigkeit gesetzt. Beim Erscheinen des Zeilkanals 3 im augenblicklichen Rahmen wird also das Register 230 das auf der EingangsmuUiplexleitung 201 zur Verfügü™ig,stehende Nachrichtensignal über die Leitung 220 und das UND-Gatter 233 aufnehmen.
Am Ende des augenblicklichen Rahmens wird das Flipflop 234 durch die gemeinsame Steuerung über die Leitung 222 in den entgegengesetzten Zustand gebracht, wodurch sich die Speicheroperalionen im nächsten Rahmen umkehren. Bei diesem Beispiel wird das Register 231 zur Aufnahme von Nachrichtensignalen von der Multiplexleitung 201 über die Leitung 220 und das UND-Gatter 237 veranlaßt, während das Register 230 beginnt, seinen Inhalt in umgekehrter Reihenfolge an die iviuiiipiexieitung 204 über das UND-Gatter 238, das ODER-Gatter 239 und die Ausgangsleitung 223 zu geben. Der Zähler 235, der die Anzahl der auszulesenden Signale während des vorhergehenden Rahmens gespeichert hat, steuert die Leseoperation. Bei Erreichen des Zählwertes veranlaßt der Zähler 235 den Speicher 213 über das ODER-Gatter 242 und die Leitung 224, eine ähnliche Leseoperation während eines nachfolgenden Teiles des Rahmens durchzuführen. Der Inhalt des Kanals 3 wird also in abwechselnden Rahmen in das Register 230 oder 231 eingegeben und im nächsten Rahmen an die Ausgangsmultipiexleitung 223 angelegt.
Nachrichtenvermittlung
Es sei jetzt der Informationsfluß in allen Kanälen zwischen den Eingangs- und Ausgangsmultiplexleilungen betrachtet. Gemäß Fig.3 wird angenommen, daß jede Multiplexleitung 8 Zeitkanäle enthält. Aus Gründen der Bequemlichkeit sind die Nachrichtensignale in diesen Zeitkanälen auf der Eingangsmultiplexleitung mit A — Hund auf der Eingangsmultiplexleitung 201 mit J-Q bezeichnet. Es wird weiterhin angenommen, daß Nachrichtensignale A — E und J-L auf die Ausgangsmultiplexleitung 203 und Nachrichtensignale F-H und M— Q auf die Ausgangsmultiplexleilung 204 übertragen werden. Diese Operationen werden einfach dadurch verwirklicht, daß die Kanalzuordnungen auf den Eingangsmultiplexleitungen bestimmt und die entsprechenden Kreuzpunktspeicher in den zugeordneten Zeitkanälen betätigt werden. Wie in Fig.3 angegeben, wird also der Speicher 210 während der den Nachrichtensignalen A-E zugeordneten Zeitkanälen auf der Eingangsmultiplexleitung 201 betätigt und der Speicher 211 während der den Nachrichtensignalen F-H zugeordneten Zeitkanäle auf der gleichen Eingangsmultiplexleitung. Entsprechend werden die Speicher 212 und 213 während derjenigen Zeitkanäle auf der Eingangsmultiplexleitung 202 betätigt, die den Nachrichtensignalen /—Lbzw. M-Qzugeordnet sind.
Während jedes Rahmens, beispielsweise π und η +1 in Fig.3, werden die ankommenden Nachrichtensignale wie angegeben gespeichert, und die während des vorhergehenden Rahmens gespeicherten Nachrichtensignale werden zu der mit dem Ausgang der bezeichneten Kreuzpunktspeicher verbundenen Ausgangsmultiplexleitung übertragen. Entsprechend F i g. 3 werden die Nachrichtensignale in den jeweiligen Speichern in einer Folge während eines Rahmens registriert und in umgekehrter Reihenfolge an die entsprechende AüsgangsfriUltiplexleitung gegeben. Beispielsweise kommt eine Folge Von Nachrichtensignalen A-E auf der Eingangsmultiplexleitung 201 während der Zeitkanäle Ij 2> 4, 6 und 7 des Rahmens η an, Diese Nachrichtensignale oder Ablaslwerte werden in der gleichen Reihenfolge im Speicher 210 aufgenommen. Sie werden dann im Rahmen n+1 in umgekehrter Reihenfolge während der Zeitkanäle 1—5 aus dem Speicher 210 gelesen und an die Ausgangsmultiplexlei-
iö tung 203 angelegt. So kommt beispielsweise das Nachrichtensignale B während des Zeitkanals 2 im Rahmen π im Speicher 210 an und wird im Zeitkanal 4 des Rahmens n+ 1 an die Ausgangsmultiplexleitung 203 gegeben. Nachdem alle im Register 201 gespeicherten
Ϊ5 Ablastwerte ausgelesen sind, veranlaßt der Speicher 210 automatisch den Speicher 212, seinen Inhalt an die Multiplexleitung 203 zu geben. Der Inhalt des Speichers 212 stammt von der Eingangsmultiplexleitung 202 und besiehi aus den Äbiasiwerieii /, K iiiirf Dcf Gesamtinhalt der Speicher 210 und 212 beträgt also maximal 8 Abtastwerte, die in beliebiger Kombination aus den 8 Zeitkanälen jeder der Eingangsmultiplexleitungen 201 und 202 abgeleitet sind. Sie können auf beiden Eingangsmultiplexleitungen im gleichen Zeitkanal erscheinen, wie durch die Signale B und / im Zeitkanal 2 des Rahmens π in Fi g. 3 angegeben. Dabei ist es von Bedeutung, daß zwar die Signale einer bestimmten Nachricht im gleichen Zeitkanal in aufeinanderfolgenden Rahmen auf der Eingangsmultiplexleitung erscheinen, aber in anderen Zeitkanälen auf der Ausgangsmultiplexleitung auftreten können, und zwar nur in Abhängigkeit von der Gesamtzahl von während eines gegebenen Rahmens gespeicherten Nachrichtensignalen. Dies läßt sich anhand von Fig. 3 erkennen, wenn man annimmt, daß das Nachrichlensignal B im Zeilkanal 2 während des Rahmens η hinzugefügt worden ist. Man sieht, daß während des Übertragungsteils des Rahmens η in F i g. 3 die Speicher 210 und 212 gemeinsam 7 Nachrichtensignale an die Ausgangsmultiplexleitung 203 gegeben haben. Das die Nachricht B darstellende Signal ist noch nicht auf den Übertragungsweg im vorhergehenden Rahmen hinzugefügt worden. Nachdem die Nachricht B während des Rahmens π im vorher freien Zeitkanal 2 hinzugefügt worden ist, ergibt sich, daß im Rahmen n+ 1 die dem Nachrichtensignal C folgenden Signale einen anderen Zeitkanal auf der Ausgangsmultiplexleitung 203 als während des F ahmens π einnehmen. Anders gesagt, die letztgenannten Nachrichlensignale werden um einen Zeitkanal zurückgedrängt, um das neue Nachrichtensignal aufnehmen zu können. Eine neue, zusätzlich auf einen der Übertragungswege über das Netzwerk gegebene Nachricht ändert also nicht die Reihenfolge der vorhandenen Nachrichten, sondern es wird ein Nachrichtensignal zwischen zwei vorhandene Nachrichtensignale eingefügt und die ihm folgenden Nachrichtensignale werden verzögert.
örtliche Steueroperation
Die Einfügungsmöglichkeit bei diesem Netzwerk wird durch einen örtlichen Speicher 215 (Fig.2) geschaffen, in dem Umlauf-Schieberegister 240 und 241 je die Adresse eines Paares der Kreuzpunktspeicher 210—213 speichern. Die Arbeitsweise dieser Umlauf-Schieberegister zur Verwirklichung der Einfügungsoperation bei den Kreuzpunktspeichern läßt sich anhand der in den Fig.4A—4H dargestellten Eingabe- und Ausgabeoperalionen für die Adressenregister verste-
hen. In Pig.4Ä ist die normale Operation der Register angegeben. Von den 8 verfügbaren Stufen, die den acht von dem Netzwerk nach Fig. 2 benutzten Zeilkanälen entsprechen, sind nur sieben im Augenblick belegt, und zwar enthalten die Stufen 1-5, 7 und 8 die Adressen C-G1 A und B. Die nichtbelegle Stufe 6 ist durch eine Querscliraffur bezeichnet. Wenn jede Adresse die erste Stufe erreicht, so wird sie an das zugeordnete Paar von Kireuzpunktspeichern angelegt, und in Abhängigkeit von der Adresse wird der jeweils richtige Speicher betätigt. Gleichzeitig wird die in der ersten Stufe enthaltene Adresse zur achten Stufe und zur Hilfsstufe verschoben, und alle anderen Adressen rücken um eine Stufe im Register vor.
Anhand von F i g. 413 erkennt man, daß die ursprünglichen Adressen um eine Stufe weiter gerückt sind, so daß die Adresse C jetzt die Hilfsstufe belegt. Die gemeinsame Steuerung hat jetzt festgestellt, daß eine
1 ;
neue INiIlIIl 1
Augenblick auf der zugeordneten Eingangsmultiplexleitung nicht belegt ist. Da die Nachrichtensignale A und B die Zeitkanäle 1 bzw. 2 bei diesem Beispiel einnehmen, wird das neue Nachrichtensignal /zwischen die in den entsprechenden Kreuzpunktspeichern registrierten Nachrichtensignale B und C eingefügt. Wenn demgemäß die Adressen die in Fig. 4B angegebenen Positionen erreicht haben, gibt die gemeinsame Steuerung die Adresse für das Nachrichtensignal / in die achte Stufe des Registers ein, wobei die erste Stufe nur mit der Hilfsstufe verbunden ist.
Entsprechend Fig.4C ist jetzt die Hilfsstufe in das Register eingeschaltet. Dies bedeutet, daß die acht Stufen des örtlichen Speicherregisters auf neun Stufen vergrößert worden sind. Dies wäre natürlich nicht verträglich mit dem acht Zeilkanäle enthaltenden Rahmen, wenn es für mehr als einen Zyklus fortdauert. Demgemäß wird entsprechend Fig.4D die Hilfsstufe aus dem Umlaufweg am Ende des augenblicklichen Zyklus herausgenommen, in diesem Fall in Gegenwart eines freien Zeilkanals. Durch das Herausnehmen der Hilfsstufe aus dem Umlaufweg zu diesem Zeitpunkt wird einfach nur die Anzahl der freien Stufen in dem normal 8stufigen Register 240 verringert, und man erhält entsprechend Fig.4D das gewünschte Ergebnis, wobei die Adresse / im Augenblick die dritte Stufe in einer Position zwischen den Adressen B und C einnimmt.
Ein ähnlicher Vorgang läuft beim Entladen des Registers entsprechend den Fig.4E—4H ab. Bei diesem Beispiel wird angenommen, daß das Register entsprechend Fig.4D belegt ist und daß die Adresse / entfernt werden soll, um auf diese Weise zu dem Zustand gemäß Fig.4A zurückzukehren. Der Zyklus endet nach der Adresse G in der Stufe 6 entsprechend Fig.4E. Demgemäß wird entsprechend Fig.4F die Stufe S aus dem Register herausgenommen, wenn sie die Adresse /enthält.
Der Zyklus läuft weiter mit einem 7stufigen Register, bis die Adresse A zu Beginn des nächsten Zyklus in der Stufe 8 ankommt Dann wird entsprechend Fig.4G eine Null in die Stufe 7 gebracht. Anschließend ist entsprechend Fig.4H die normale Betriebsweise des 8stufigen Registers wieder hergestellt
Die zur Durchführung dieser Operationen erforderlichen logischen Schaltungen sind bekannt und in Fig. 2 durch einfache Schalter mit 3 Schaltungen in Verbindung mit den örtlichen Speicherregistern 240 und 241 dargestellt Beispielsweise stehen die Schaltarme 251 und 255 normalerweise mit den Kontakten 252 bzw. 256 in Verbindung, so daß die Hilfsstufe 262 isoliert ist und 8 Stufen des Registers im Umlaufweg liegen. Eine neue Adresse wird eingegeben, indem der Schaltarm 255 nach Eingabe der vorhergehenden Adresse in die Stufe 261 auf den Kontakt 257 bewegt wird. Nachdem die neue Adresse in die Stufe 261 eingegeben ist, wird der Kontaktarm 255 auf den Kontakt 258 gebracht, wodurch zeitweilig ein 9stufiges Register entsteht. Am Ende des augenblicklichen Zyklus wird der normale Umlauf darin wieder hergestellt, indem der Kontaktarm 255 auf den Kontakt 256 zurückgebracht wird. Zur Entfernung einer Adresse aus dem Register wird der Kontaktarm 251 zum Kontakt 253 bewegt, nachdem die zu entfernende Adresse in die Stufe 261 eingetreten ist. Vor der letzten Schiebeoperation im augenblicklichen Zyklus geht der Kontaktarm 251 auf den Kontakt 254, um eine Null-Adresse in die Stufe 260 zu geben. Am ir„,u .ι.,- /..Li,.,, ,.,;,.! ,i„- νn„in\,i„rm ία ....f ,inn
f r ι ι \J ^ \j ^, j ^_, \ rv f Lf ^? Vf I ■ U *Jä %*l IV W Il lill\ lUI IM - f ft UUI U W ■ I Koniakt 252 zurückgebracht, um den normalen Umlauf über das 8stufige Register wieder herzustellen.
Größere Netzwerke
Die prinzipielle, in Verbindung mit F i g. 2 beschriebene Vermittlungsanordnung läßt sich auch auf größere Vermitilungsanordnungen anwenden. So ist in Fig. 5 beispielsweise ein 4 · 4-Schalter 501 dargestellt, der 16 Kreuzpunktspeicher enthält. Ein solcher Schalter für 64 Zeitkanäle je Eingangsmultiplexleitung benötigt einen
Jö Speicher 502 in der örtlichen Steuerung 505, der 64 Adressen, nämlich je eine für jeden Zeitkanal aufnehmen kann. Jede Adresse besteht aus 8 Binärziffern oder Bits, die den Bestimmungsort für jedes der Nachrichtensignale angeben, die auf den vier Eingangsmultiplexleitungen während jedes Zeitkanals ankommen. Da jedes ankommende Nachrichtensignal für einen von vier Kreuzpunktspeichern bestimmt sein kann, sind insgesamt 8 Bits in den Speicheradressen erforderlich, wobei 2 Bits jeder Eingangsmultiplexleitung und 6 Bits jedem der 64 Zeitkanäle für jede Eingangsmultiplexleitung zugeordnet sind. In diesem Fall enthält daher der örtliche Speicher 8 paarweise angeordnete Umlauf-Schieberegister, so daß in jedem Zeitkanal eine Adresse mit 8 Bits von der Ausgangsstufe zum Decoder 503 gegeben wird, wo jedes Bitpaar decodiert wird, um eine von vier Betätigungsleitungen zu aktivieren, die die vier, einer Eingangsmultiplexleitung zugeordneten Kreuzpunktspeicher steuern.
Das Grundprinzip für die Kreuzpunktspeicher-Ar-
beitsweise ist bei dem in F i g. 5 gezeigten 4 · 4-Schalter beibehalten. Der wesentliche Unterschied gegenüber bekannten Vermittlungsanordnungen ergibt sich aus der vertikalen Kettenoperation, bei der jeder Kreuzpunktspeicher in einer Spalte so ausgelegt ist, daß er nach
seiner Entleerung den nächsten Speicher in der Kette veranlaßt seinen Inhalt an die zugeordnete Ausgangsmultiplexleitung zu geben. Diese Operation wird einfach dadurch verwirklicht daß jeder der der obersten Eingangsmultiplexleitung zugeordneten Kreuzpunktspeicher zu Anfang jedes Rahmenintervalls betätigt wird.
Dadurch ergibt sich dann eine Reihenfolge beibehaltende Ordnung von Zeitkanälen zwischen jeder der Eingangs- und Ausgangsmultiplexleitungen. Die Über-
"G3 tragung einer neuen Nachricht über das Netzwerk ändert die Operationsreihenfolge der Kreuzpunktspeicher nicht Statt dessen wird einfach nur jedes neue Nachrichtensignal zwischen bereits übertragene Nach-
richtertsignale eingefügt, wobei nachfolgend übertrage ne Nachrichtensignale um einen Zeilkanal verzögert werden. Auf entsprechende Weise verschwindet beim Übertragungsende einer bestimmten Nachricht die durch Signale dieser Nachricht belegte Position, und alle nachfolgenden Nachrichtensignale rücken um einen Zeitkanal in der Übertragungsrcihenfolge vor.
In Fig.6 ist ein Netzwerk dargestellt, in welchem jeder der Blöcke einen 4 · 4-Schalter der in Verbindung mit F i g. 5 beschriebenen Art darstellt. Dieses Netzwerk enthält 32 Eingangsmultiplexleitungen mit je 64 iZeitkanälen. Das Netzwerk zeigt eine gewisse Ähnlich-Ikeit mit bekannten Koordinatenschalter-Netzwerken. Demgemäß entsprechen die oberen vier Spalten von 4 · 4-Schallern einem ersten Koordinatenschalterrah-•men und die unteren vier Spalten von 4 · 4-Schaltern einem zweiten Koordinatenschalterrahmen. Die beiden Scilalterrahmen sind dann querverbunden, um ein Typisches VenniiiiuNgsneUwerk zu bilden, das sich leicht durch die 4 · 4-Kreuzpunktspeicher nach der Erfindung verwirklichen läßt.
Arbeitsweise der Anlage
Ein Netzwerk, das die Anforderungen einer vollständigen Anlage erfüllen kann, ist in Fig. 7 gezeigt. Das zentrale Vermittlungsnetzvverk 73 ist von der in Fig.6 gezeigten ArL Auf der Eingangsseite dieses Netzwerks ist eine Konzentratorstufe 72 angeordnet, die Informationen auf einer Vielzahl von Eingangsmultiplexleitungen aufnehmen kann. Beispielsweise werden von Anschlußstationen, wie den Fernsprechapparaten 70— 1 bis 70-/7, über Teilnehmerschaltungen 71 — 1 bis 71 - η empfangene Nachrichten im Multiplexer 700 zur Übertragung über die Eingangsmulliplexleitung 710 kombiniert. Der Konzentrator 72 nimmt die auf den Eingangsmultiplexleitungen in einer vorbestimmten Anzahl von Zeitkanälen ankommenden Nachrichten- und Überwachungssignale auf, wobei einige der Zeitkanäle Überwachungssignale führen, die nachfolgend über eine Steuermultiplexleitung 720 zur gemeinsamen Steuerung 78 gegeben werden. Die Nachrichtensignale in den restlichen Zeitkanälen auf jeder Eingangsmultiplexleitung gehen über eine zwischengeschaltete Multipiexieitung 721 zum zentralen Vermittlungsnetzwerk 73.
Die gemeinsame Steuerung 78 nimmt die Überwachungssignale auf und benutzt sie zur Herstellung und Unterbrechung von Netzwerkverbindungen, die für die ^Nachrichtenübertragung erforderlich sind. i Dazu gehört die Herstellung von Verbindungen über einen Expander 75, der das Gegenstück des Konzentrators 72 ist und dazu dient, die von dem zentralen Vermittlungsnetzwerk 73 empfangenen Nachrichtensignale zur richtigen Ausgangsmultiplexleitung zu geben, beispielsweise der Leitung 751.
Zur Aufgabe des Expanders gehört das Mischen von Nachrichtensignalen aus dem Netzwerk mit Überwachungssignalen aus der gemeinsamen Steuerung 78 sowie das Zugeben von Tonzeichen, beispielsweise Besetztzeichen, Wählzeichen usw. Jede Ausgangsmultiplexleitung endet an einem Demultiplexer, der wiederum die Nachrichtensignale zu den richtigen Bestimmungsanschlüssen gibt So werden Nachrichtensignale auf der Multipiexieitung 751 über den Demultiplexer 76 zu den entsprechenden Demodulatoren in den Leitungsschaltungen 77—1 bis 77 — π geführt, die den gewünschten Bestimmungsstationen 78— 1 bis 78 — η entsprechen.
Es handelt sich natürlich um ein Vierdrahlnet/.werk, von dem nur eine Übertragungsrichtung dargestellt ist.
Teilnehmerleitungseinheit
Es sei jetzt auf das im einzelnen dargestellte Netzwerk gemäß Fig. 10—12 übergegangen. Die Teilnehmerlcitungseinheit entsprechend Fig. 10 hat die Funktion, Signale vom Fernsprechapparat 70—1 in eine Form umzuwandeln, die von dem Vermittlungsnetz-
ίο werk ausgewertet werden kann. Außerdem soll die Übertragung von Analog- oder Digitalnachrichten sowie von Steuersignalen zum Fernsprechapparat ermöglicht werden. Die Teilnehmerleilungseinheit 71 — 1 ist so ausgelegt, daß sie den Aushängezustand des Fernsprechapparates 70—1 feststellt und verschiedene Tonzeichen sowie Sprachsignale zu und vom r-ernsprechapparat überträgt. Die Zweidraht-Teilnehmerleitung 1000 wird durch den Gabelübertrager 1001 in ein Vieiuraniiysiem uiiigcSeiii, das einseitig gerichtete Sende- und Empfangswege 1020 bzw. 1021 aufweist. Die Sekundärwicklungen des Gabelübertragers sind an einen Delta-Modulator 1002 bzw. einen Delta-Demodulator 1003 angeschaltet. Änderungen des Stromes auf der Teilnehmerleitung 1000, die eine Anzahl von Aktivierungszuständen des Fernsprechapparates 70—1 anzeigen, werden auf der Primärseite des Gabelübertragers 1001 festgestellt und im Multiplexverfahren mit Nachrichtensignalen kombiniert, bevor sie den Konzentrator 72 erreichen.
Es wird in bekannter Weise eine Delta-Modulation zur Übertragung der Nachrichtensignale über das Netzwerk benutzt. Demgemäß werden aufeinanderfolgende Abtastwerte des Analogsignals vom Fernsprechapparat 70—1 im Delta-Modulator 1002 codiert. Kurz gesagt wird das Analog-Signal vom Gabelübertrager 1001 an eine Vergleichs- oder Differen/schaltung 1005 angelegt, wo es mit dem Ausgangssignal des Integrators 1006 verglichen wird. Das Ausgangssignal der Vergleichsschaltung 1005 wiJd wiederum an einen Abtaster oder Impulsmodulator 1007 angelegt, der einen Binärimpuls »1« liefert, wenn das Differenzsignal positiv ist, und einen Binärimpuls »0«, wenn das Differenzsignal negativ ist, und zwar jedesmal dann, st-enn ein Taktimpuls auf der Leitung 1008 ankommt. Das »quantisierte« Ausgangssignal des Abtasters 1007 wird dann zum Integrator 1006 übertragen, und die Operation wird im nächsten Zeitintervall wiederholt.
Das Ausgangssignal des Abtasters 1007 geht außerdem als Folge von Binärsignalen »1« und »0« zum Sendeweg 1020. Zweckmäßig kann die Übertragungsfrequenz dieser deltamodulierten Signale zur einfacheren Handhabung im Vermittlungsnetzwerk unter Verwendung einer Pulscodemodulation an diesem Punkt verringert werden. Die Teilnehmerleitungseinheit 71 — 1 wandelt außerdem die auf dem Empfangsweg 1021 ankommenden, deltamodulierten Signale im Delta-Demodulator 1003 in analoge Form um.
Die Funktion des Konzentrators 72 (F ig. 11) besteht darin, den Verkehr von schwach belasteten Eingangsmultiplexleitungen aufzunehmen und an eine kleinere Zahl von stark belasteten Zwischenmultiplexleitungen weiterzugeben. Die deltacodierten Signale auf dem Sendeweg 1020 gehen zuerst zum Multiplexer 1100. Beim vorliegenden Beispiel werden Informationen von 50 Fernsprechapparaten einschließlich des Apparates 70—1 im Multiplexer 1100 aufgenommen, um das Bilden von Gruppen auf den Schalterrahmen des Amtes zu erleichtern. Das Ausgangssignal des Multiplexers 1100
besteht dann aus einem Bitstrom in einem Rahmen mit 64 Zeitkanälen, zu denen 50 Zeitkanäle für Naehrichtensignale und 14 Zeitkanäle gehören, die für Überwachungsinformationen reserviert sind, beispielsweise Bedienungsanforderungen und Trennanforderungen. Diese Mischung vo!. Informationen wird an den Konzentrator 72 über die Eingangsmultiplexleitung 710 gegeben. Die Anzahl der in einen Konzentrator eintretende Eingangsmultiplexleitungen hängt von dem in der Anlage zulässigen Blockierungsgrad ab. Berechnungen zeigen, daß ein brauchbarer Wert in Abhängigkeit von der Belegung der einzelnen Teilnehmerleitungen zwischen vier und neun Eingangsmultiplexleitungen liegt. In Fig. 11 sind 5 Eingangsmultiplexleitungen gezeigt.
Der Konzentrator 72 ähnelt in seinem Aufbau dem 4 χ 4-Schalter nach Fig.5 mit der Ausnahme, daß die Anzahl der Eingangs- und Ausgangsmultiplexleitungen von dem Konzentrationsverhältnis abhängt. Eine der Ausgangsmultiplexleitungen, nämlich die Steuermultiplexleiiung 720, wird zur periodischen Abtastung der auf den Fingangomultiplexleitungen ankommenden Oberwachungsinformationen und zur Übertragung diesjr Informationen zu deren Prüfung über die entsprechenden Krcu/punktspeicher 1120—1124 zur gemeinsamen Steuerung 78 benutzt. Die anderen Ausgänge, im vorliegenden Fall nur die Zwischenmultiplexleitung 721, führen die konzentrierten Nachrichtensignale von den Kreurpunktspeichern 1125 — 1129 zum Schalter 730 in der ersten Stufe des zentralen Vermittlungsnetzwerkes 73. Bei dem dargestellten Beispiel liegt also eine Konzentration von 5 : 1 vor.
!ede Eingangsmultiplexleitung ist einem Schieberegister mit b4 Bits zugeordnet, beispielsweise dem Register 1110. dessen Inhalt kontinuierlich umläuft. F.in »!«-Signal auf der Multiplexleitung 710 in einem der Überwachung zugeordneten Zeitkanal gibt an, daß der dem entsprechenden Überwachungszeitkanal zugeordnete Teilnehmer ausgehängt hat und daß die gemeinsame Steuerung 78 eine »I« in das entsprechende Schieberegister einschreiben muß. Kin getrennt angeschlossener Speicher hält die Information bezüglich von Überwachungs-Bits fest, die abgetastet und zur gemeinsamen Steuerung 78 übertragen werden müssen.
Nach Verlassen des Konzentrator 72 laufen die Nachrichlensignalc über die Zwischenmultiplexleitung 721 zum Schalter 730 im zentralen Vermittlungsnetzwerk 73 mit vier Rahmen, über welches sie sich dann verzweigen und schließlich in Expanderschaltungen ankommen, beispielsweise dem Expander 75. Dort wird die erforderliche Wegführung zu den entsprechenden Demodiilalorcn und zugeordneten Teilnchmcranschlüs sen vorgenommen
Der Expander 75 erhall eine Folge von Nachrichtensignalen vom Schalter 740 über die /wischenmultiplexleitung 741 sowie von jedem der anderen Schalter in der Ausgangsstufe des zentralen Vermittlungsnetzwerkcs 73 über entsprechende /.wisehenmtiltiplexleitungen. Wie oben angegeben, ist der Bestimmungsort für jedes dieser Nachrichtensignale vorbestimmt, aber ihre Zeilkäflalzuordntingcn ändern sich entsprechend dem Zustand des Netzwerkes in jedem aufeinanderfolgen' den Zcitkanal. Das Problem besteht dann darin, sicherzustellen, daß die richtige Gruppe von Demodula* toren die für die entsprechenden Teilnehmer bestimmten Signale erhält, während gleichzeitig sichergestellt sein muß, daß ein bestimmtes Nachrichtensignal den richtigen Demodulator im gleichen Zcitkanal des augenblicklichen Rahmens wie jedes der anderen Signale der gleichen Nachricht erreicht, die in den vorhergehenden und nachfolgenden Rahmen empfangen worden sind.
Bei dem vorliegenden Ausführungsbeispiel der Erfindung wird dieses Problem auf die in Fig. 12 dargestellte Weise gelöst Der Expander 75 enthält einen 2 χ S-Kreuzpunklspeicherschalter, der die gewünschte Expansion von der ZwischenrmiJ'iplexleitung 741 auf die fünf Ausgangsmultiplexleitungen einschließlich der Multiplexleitung 751 vornimmt. Die Eingangssignale des Expanders 75 sind Nachrichtensignale von dem zentralen Vermittlungsnetzwerk 73 auf der Zwischenmultiplexleitung 741 und Uberwachungssigna-Ie von der gemeinsamen Steuerung 78. Mit Hilfe der zehn Kreuzpunktspeicher im Expander 75 werden diese Signale neu geordnet und auf die fünf Ausgangsmultiplexleitungen gegeben. Dies geschieht unter Steuerung eines örtlichen Speichers 1210 mit 64 Wörtern. Die Ausgangsmultiplexleitungen sind an Demodulatoren 77—1 bis 77-π über entsprechende Kreuzpunktspeicher im Demultiplexer 76 angeschaltet Im vorliegenden Fall bedient jede Ausgangsmultiplexleitung 50 Demodulatoren. Signale auf den Ausgangsmultiplexleitungen werden dem richtigen Demultiplexer-Kreuzpunktspeicher und dem entsprechenden Demodulator durch Speicher 1220—1224 mit 64 Wörtern zugeführt, wobei jeder Speicher einer der Ausgangsmultiplexleitungen zugeordnet ist. Um das Einführen eines FM-Rauschens in die Signale zu vermeiden, erhalten die Demodulatoren die gespeicherten Nachrichtensignale von den entsprechenden Demultiplexer-Kreuzpunktspeichem wäh-end eines festen Zeitkanals.
Die Kreuzpunktspeicher im Demultiplexer 76 enthalten demgemäß je ein zweistufiges Register, das für eine Verzögerung um einen einzigen Zeitkanal sorgt.
Es dürfte zweckmäßig sein, jetzt zu prüfen, auf weiche Weise ein Weg über das Netzwerk entsprechend dem Ausführungsbeispiel der Erfindung festgestellt und hergestellt wird Für die feststellung eines Weges über das Net/werk muß zu Anfang bestimmt werden, welcher von den Schaltern im Netzwerk 73 an der Verbindung teilnimmt. Wie oben erwähnt, handelt es sich um eine Vierdrahtanlage, die im Effekt zwei getrennte Vermittlungsnelzwerke enthält, und zwar eines für jede Übertragungsrichtung. Zur Erläuterung sei angenommen, daß die beiden Netzwerke symmetrisch betrieben werden, so daß die Bestimmung eines Netzwerkweges für beide Netzwerke gleich ist.
Zusätzlich erfordert die Bestimmung eines Netzwerkweges die Speicherung von Leitweginformalionen in den die Kreuzpunktspeicher steuernden örtlichen Speichern und eine Einrichtung zur Feststellung dieser gespeicherten Informationen bei Bedarf.
Sind der Ausgangs und der Endpunkt einer Nachrichtenverbindung vorgegeben, so werden die möglichen Übertragungswege für die Nachricht zwischen diesen Punkten eindeutig durch die Art des Netzwerkes selbst bestimmt. Die Bestimmung eines Weges schließt demnach eine Prüfung der Blockierungsmöglichkeiten der Netzwerkwege ein. Dazu zählen eine Zwischenmultipiexleitungs^Fehianpassung und eine ZwischcnmultiplexleitungS'Sätligung. Der erstgenannte Fall tritt auf, wenn eine gewählte Folge von Zwisclicnmulliplexleiiungen nicht miteinander verbunden werdet! kann, weil einer der Kreuzpunktspeichcr auf dem gewählten Weg voll belegt ist, und der letztgenannte Fall tritt ein, wenn alle 64 Zeitkanäle in
irgendeinem Teil des gewählten Weges belegt sind. Zur Auswahl eines Weges muß daher die gemeinsame Steuerung 78 feststellen, ob freie Zeitkanäle auf den Zwischenmultipiexleilungen vorhanden sind und ob in denjenigen Kreuzpunktspeichern, die Zugriff zu den gewählten Zwischenmultiplexleitungen haben, Raum zur Aufnahme von Nachrichtensignalen verfügbar ist
Steuerinformationen hinsichtlich der Verfügbarkeit von Zwischenmul.tiplexleitungen werden im Speicher in Form eines einzigen Bit für jeden Kreuzpunklspeicher aufgenommen. Der gleiche Binärzustand dieses Bits gibt an, ob beiden Bedingungen hinsichtlich verfügbarer Zwischenmultiplexleitungen und Kreuzpunktspeichern genügt ist Für die Anlage mit vier Schalterrahmen und 1024 Kreuzpunktspeichern entsprechend Fi g. 7 werden daher nur 1024 Bits zur Speicherung der erforderlichen Wegdaten benötigt. Die gemeinsame Steuerung 78 ist so programmiert, daß sie die richtigen Bits im Speicher für die entsprechenden Steuerpunkte im Netzwerk liefert, wenn nur die Nachrichtenanschlüsse gegeben sind.
Nachdem die Kreuzpunktspeicher identifiziert sind, über welche eine bestimmte Nachricht übertragen werden wird, muß die gemeinsame Steuerung 78 festlegen, in welchen Zeitkanälen die Naehrichlcnsigna-Ie in jeder Netzwerkstufe ankommen. Diese Bestimmung wird leicht unter Verwendung der Leitweginformation getroffen, nämlich der Kreuzpunktspeicher, über welche die Nachricht laufen wird und des augenblicklichen Zustandes des Netzwerks. Hierzu muß man die Anzahl von Nachrichten kennen, die über die Kreuzpunktspeicher auf dem gewählten Weg übertragen werden sowie die Zeitkanäle, in welchen diese Nachrichten in den gewählten Kreuzpunktspeichern aufgenommen werden.
F.in Beispiel für die Art und Weise, auf welche diese Information gewonnen wird, ist in F i g. 8 gezeigt. Dort ist ein Teil des Netzwerks nach F i g. 7 einschließlich des Konzentrator 72 und des zwischengeschalteten Schal ters 730 gezeigt. Wie in F i g. 8 angegeben, wird die Anzahl von Verbindungen, die über jeden der Kreuzpunktspeicher 1127 und 801 während eines gewählten Rahmenintervalls laufen, durch Zahlen angezeigt, die auf der rechten Seite der die Speicher darstellenden Blöcke erscheinen. Im vorliegenden Fall soll das Ergebnis bei der Einfügung einer neuen Nachricht auf die Eingangsmultiplexleitung 711 unter Belegung des Zeitkanals 12 betrachtet werden, wobei die Nachricht mit der Zwischenmultiplexleitung 731 am Ausgang des Schalters 730 verbunden werden muß. Signale dieser Nachricht werden zuerst in den Kreuzpunktspeicher 1127 des Konzentrators 72 eingegeben. Entsprechend der auseinandergezogenen Ansicht in F i g. 8 zeigt sich, daß der Kreuzpunktspeicher 1127 vorher 5 Nachrichlensignale in den Zeitkanälen 1, 4, 7, 15 und 19 enthalten hat. Da die betrachtete Nachricht den Zeitkanal 12 belegt, wird jedes Signal dieser Nachricht zwischen die Signale eingefügt, die die Zeitkanäle 7 und 15 belegen. Am Ende des ersien Rahmens, in welchem die neue Nachricht übertragen wird, enthält also dei* Kreuzpunklspeicher U27 eine Folge von 6 Nachrichtensignalen, die in den Zeilkanälen Ij 4, 7j 12) 15 und 19 ankommen* Es ist dann das im Zeitkanal 12 ankommende Signal in den Kreuzpunkt· speicher 1127 eingefügt worden und belegt dort eine Position zwischen den in den Zeitkanäien 7 und 15 ankommenden Signalen. Während des nächsten Rahmeninlervalls geben dann die KfeuzpürtklspeiGhef 1125—1129 ihren Inhalt nacheinander auf die Zwischenmultiplexleitung 721, beginnend mit dem Speicher 1125. Wie in Verbindung mit Fig.2 beschrieben, werden die Speicher so entleert, daß ein erstes Element eingegeben und ein letztes Element ausgegeben wird, so daß das Nachrichtensignal, das den Zeitkanal 12 auf der Eingangsmultiplexleitung 711 belegt, nach den vier Nachrichtensignalen vom Speicher 1125, den drei Nachrichtensignalen vom Speicher 1126 und den beiden Nachrichtensignalen, die nach dem Signal im Kanal 12 in den Speicher 1127 eingegeben worden sind, aus dem Kreuzpunktspeicher 1127 gelesen und auf die Multiplex-Ieitung 721 gegeben werden. Das fragliche Nachrichtensignal wird also denjenigen Zeitkanal auf der Multiplexleitung 721 belegen, der den Zeilkanälen folgt, die die vorhergehenden 4 + 3 + 2 Nachrichtensignale enthalten, also den Zeitkanal 10.
Damit dieses Nachrichtensignal, das sich jczt im Zeitkanal 10 auf der Multiplexleitung 721 befindet, die vorgesehene Multiplexleitung 731 erreicht, muß es im Speicher 730 in derjenigen vertikalen Spalte von Kreuzpunktspeichern gespeichert werden, die den Speicher 801 enthält Wie in Fi g. 7 angegeben, tritt die Multiplexleitung 721 in den Schalter 730 in der ersten Stufe ein, so daß der Kreuzpunktspeicher 801 benutzt werden muß.
Um denjenigen Zeitkanal zu bestimmen, in welchem dieses Nachrichtensignal aus dem Schalter 730 austreten wird, muß nur während eines gegebenen Rahmens die Anzahl von Nachrichtensignalen festgestellt werden, die nach dem betrachteten Nachrichtensignal in den Speicher 801 eintreten. Wie in dem Diagramm rechts vom Schalter 730 angegeben (F i g. 8), hat der Speicher 801 vor dem Empfang dieser Nachricht im Zeitkanal 10 Signale enthalten, die während der 5 Zeitkanäle 5, 7,15, 20 und 25 empfangen worden sind. In dem betrachteten Rahmen wird also das Nachrichtensignal des Kanals 10 in den Speicher 801 zwischen die in den Zeitkanälen 7 und 15 empfangenen Nachrichtensignale eingefügt, so daß dann die Reihenfolge der Kanalbelegung 5,7,10,15, 20,25 lautet, da Signale der Kanäle 15,20 und 25 in den Speicher 801 nach dem Signal des Kanals 10 eingegeben worden sind. Das Signal des Kanals 10 wird aus dem Speicher 801 gelesen und im Zeitkanal 4 auf die Zwischenmultiplexleitung 731 gegeben. Die betrachtete Nachricht hat also ihre Position vom Zeitkanal 12 zum Zeitkanal 10 beim Durchlauf des Konzentrators 72 und vom Zeitkanal 10 zum Zeitkanal 4 beim Durchlauf durch den Schalter 730 geändert.
Das vorstehend beschriebene Verfahren zur Bestim miing des Ausgangszeitkanals in jeder Stufe des Netzwei ks erfordert die Kenntnis aller Nachrichten, die im Augenblick über jeden Kreuzpunktspeicher übertragen werden. Diese Information läßt sich aus Daten ableiten, die in der gemeinsamen Steuerung 78 aufgezeichnet sind und die F.inzelheiten der Leitweglenkung jeder im Augenblick übertragenen Nachricht betreffen.
Entsprechend dem Ausführungsbeispiel der Erfindung wird diese Information jedoch leicht aus den örtlichen Speichern gewönnen. Wenn beispielsweise der örtliche Speicher den Konzentrator 72 (F ig, 8) Während der Informationsgewinnung in einem bestimmten Rahmenintervall prüft, wird die Anzahl der in die Speichef 1125 Und 1126 eingegebenen Signale gezählt. Entsprechend werden die nach dem Zeitkanal 12 in den Speicher 1127 eingegebenen Signale gezählt.
Der Ausgangskanal auf der Multiplexleitung 731 wird
1?
einfach dadurch bestimmt, daß die Anzahl von Nachrichtensignalen Oberwacht wird, die nach dem Zeitkanal 10 in den Speicher 801 gegeben worden sind. Die zur Durchführung dieser Zähloperalion erforderlichen Schaltungen sind in Fig.9 gezeigt. Dort ist der örtliche Speicher für den Schalter 730 genauer dargestellt. Der örtliche Speicher für den Konzentrator 72 und den Expander 75 arbeitet auf ähnliche Weise. Jeder Grundschalter, beispielsweise der Schalter 730, benötigt vier Umlaufschieberegister der in Fig.2 dargestellten Art, die je 64 Wörter mit 2 Bits aufnehmen können. Eines dieser Register (901 in Fig.9) steuert 4 Kreuzpunktspeicher einschließlich des Speichers 801. Im normalen Betrieb läßt das Register 901 die gespeicherte Information kontinuierlich umlaufen, wobei das in der ersten Registerstufe gespeicherte Wort zur nachfolgenden Weiterleitung an den richtigen Kreuzpunktspeicher im Schalter 730 zum Decoder 902 gegeben wird.
Wenn eine neue Kreuzpunktspeicheradresse in das Schieberegister 901 eingegeben werden soll, so wird die Adresse zunächst in das Register 903 eingegeben, und die Adresse des Zeitkanals, für den sie bestimmt ist, wird in das Kanalregister 904 gegeben. Wenn diese Kanaladresse entsprechend der Angabe durch den Taktgeber 905 in der Vergleichsschaltung 906 mit dem augenblicklichen Zeitkanai übereinstimmt, so fügt die Rückkopplungssteuerung 907 die gewünschte Adresse aus dem Register 903 auf die in Verbindung mit den Fig. 4A-4C beschriebene Weise in das Register 901 ein. Wenn der letzte, eine Adresse enthaltende Zeitkanal die erste Stufe des Registers 901 erreicht, wird die Rückkopplungssteuerui.g 907 iranlaßt, den Einfügungsvorgang zu beenden unJ den normalen Umlauf im Register 901 wieder herzustellen. N- iTnalerweise wird, wenn die letzte Adresse im Register 901 die Ausgangsstufe erreicht, das durch einen Vergleich dieser Registerstufe mit dem augenblicklichen Zeitkanal erzeugte Signal den Decoder 902 sperren, wodurch verhindert wird, daß die Kreuzpunktspeicher im Schalter 730 weitere Nachrichtensignale während dieses Rahmens aufnehmen.
Um zu bestimmen, in welchem Zeitkanal ein Nachrichtensignal aus dem Schalter 730 austreten wird, muß die gemeinsame Steuerung 78 an den entsprechenden örtlichen Speicher (Fig.9) die Bezeichnung der Zwischenmultiplexleitung 721, des Eingangszeitkanals und der Zwischenmultiplexleitung 731 übertragen. Diese Bezeichnungen werden in den entsprechenden Registern 910, 904 und 903 gespeichert. Zu Beginn des nächsten Rahmens nach der Aufnahme dieser Bezeichnungen wird die aus jedem Schieberegister, beispielsweise dem Schieberegister 901, gewonnene Adresse mit der Bezeichnung der Multiplexleitung 731 in einer Vergleichsschaltung verglichen, beispielsweise der Vergleichsschaltung 908.
Der Akkumulator 911 wird bei Feststellung jeder Übereinstimmung weitergeschaltet, die einen aktiven Zeitkanal auf einer Stufe des Schalters 730 anzeigt, welcher demjenigen Zeitkanal vorangeht, in welchem die neue Naehrieht ankommt. Beispielsweise müßte in Fig.8 gezählt werden, wie oft die Schieberegister des örtlichen Speichers die erste Stufe des Schalters 730 bezeichnen, d.h., die Multiplexleitung 721 mit der Nummer, die die vierte Spalte des Schalters 730 bezeichnet, und die Multiplexleitung 731, die angibt, daß eine Adresse zürn Speicher 801 gesendet wird. Der Akkumulator 911 wird also jedesmal dann weiterge-
schaltet, wenn die Schieberegister des örtlichen Speichers die Bezeichnung der vierten Spalte des Schalters 730 zwischen dem ersten Zeitkanal und dem Eingangszeilkanal enthalten. Dadurch wird im Effekt die Anzahl von Nachrichtensignalen gezählt, die den Speicher 801 durchlaufen, bevor die neue Nachricht dort ankommt
Die Vergleichsinformation wird zur Galterschaltung 915 übertragen, die die Schalterstufe prüft, am der die Information abgeleitet worden ist sowie die Beziehung zwischen dem augenblicklichen Zeitkanai und dem Eingangszeitkanal. Die im Akkumulator 911 zu addierende Zahl wird auf diese Weise bestimmt. Am Ende des Rahmens enthält der Akkumulator 911 die Bezeichnung des Ausgangszeitkanals, die dann zur Wiederholung des Vorgangs für diejenigen Schalter benutzt werden kann, die diese Naehrieht nachfolgend durchläuft.
Jeder örtliche Speicher zeichnet die Bezeichnung des Eingangs- und Ausgangszeitkanals auf. Wenn die Zeitkanäle einer Naehrieht für alle Stufen des Netzwerks bestimmt worden sind, betätigt die gemeinsame Steuerung alle Schalter auf dem Nachrichtenweg, um die erforderlichen Änderungen im gleichen Rahmen durchzuführen. Wenn eine Nachrichtenübertragung beendet ist, wird die Verbindung auf ähnliche Weise aufgelöst. Auf der Grundlage von Informationen in der gemeinsamen Steuemng 78 hinsichtlich des Weges, dem die Nachricht folgt, läßt sich der zugeordnete Zeitkanal auf ähnliche Weise verfolgen. Wenn dies geschehen ist, veranlaßt die gemeinsame Steuerung 78 alle Stufen gleichzeitig zur Auflösung der Verbindung.
Der Vorteil bei der Verwendung von Umlaufspeichern zur Aufnahme genauer Leitweginformationen beruht auf der Tatsache, daß die gemeinsame Steuerung nur entscheiden muß, durch welchen der Schalter im Netzwerk die Naehrieht laufen wird, um vollständige Leitweginformationen festzulegen. Die Einzelheiten der Zeitkanalzuordnungen werden automatisch durch das Vermittlungsnetzwerk selbst bearbf-itet. Die gemeinsame Steuerung muß also nur verhältnismäßig wenige Informationen bezüglich stehender Netzwerkverbindungen speichern, für die sie die genauen Einzelheiten jederzeit ableiten kann, und das Netzwerk selbst kann Verbindungen herstellen, wenn ihm der gewünschte Hauptweg angegeben wird. Die im Vermittlungsnetzwerk vorgesehene Fähigkeit zur Verarbeitung von Informationen verringert die Speicheranforderungen in der gemeinsamen Steuerung.
Ein wichtiger Vo/teil dieser Anordnung ergibt sich aus der Tatsache, daß jeder Kreuzpunktspeicher Nachrichtensignale an Zwischenmultiplexleitungen blockweise zu Beginn jedes Rahmens anlegt, wodurch sichergestellt wird, daß der gesamte unbenutzte Speicherraum am Ende eines Rahmens erscheint. Wenn mehrere Nachrichtensignale in benachbarten Zeitkanälen am Eingang eines Vermittlungsnetzwerks dieses Typs erscheinen und dem gleichen Weg durch das Netzwerk folgen, kommen sie am Ende des Netzwerks zusammen und in der gleichen Reihenfolge an, wenn die Netzwerk-Kreuzpunktspeicher nach dem Prinzip arbeiten, daß ein erstes Element eingegeben und ausgegeben wird. Wenn der Speicher dagegen entsprechend Fig. 2 nach dem Prinzip arbeitet, Eingabe letztes Element Ausgabe erstes Element, so wird die Reihenfolge bei ungerader Anzahl von Stufen im Netzwerk umgekehrt, dagegen aber richtig sein, wenn eine gerade Anzahl von Stufen im Netzwerk vorhanden ist. Bei Anlieferung von Nachrichten unterschiedlicher Länge zum Konzentra-
tor können diese Nachrichten dann mit Vorteil auf einer EingangsmuHiplexleitung zusammengefügt werden, so daß alle verfügbaren Zeitkanäle ausgenutzt werden. Sie kommen dann auf der Ausgangsmultiplexleitung des Netzwerks als Blöcke von Nachrichtensignalen in der gleichen Reihenfolge an, wie sie auf der Eingangsmultiplexleitung empfangen werden.
Das Vermittlungsnetzwerk nach diesem Ausführungsbeispiel der Erfindung kann auch Teilnehmerleitungen miteinander verbinden, die mit unterschiedlichen Bit-Frequenzen arbeiten, vorausgesetzt, daß die Bit-Frequenzen alle Vielfache einer kleinen Bit-Frequenz
L'O
sind. Beispielsweise kann das Netzwerk Nachrichten vermitteln, die gleichzeitig auf den Eingangsmultiplexleitungen mit Frequenzen von 10, JO und 40 Kilobit ankommen, indem diejenigen Multiplexleiiungen, die Informationen mit Bitfrequenzen von 30 und 40 Kilobit übertragen, so behandelt werden, daß sie drei bzw. vier benachbarte Zeitkanäle auf den Zwischenmultiplexleitungen benötigen. Selbstverständlich ist, wenn keine genaue Synchronisation zwischen diesen verschiedenen Oberlragungsfrequenzen vorhanden ist, eine gewisse Pufferspeicherung erforderlich.
Hierzu 12 Blatt Zeichnungen

Claims (5)

Patentansprüche:
1. Schaltungsanordnung zur Durchschaltung von auf Eingangsleitungen in bestimmten Zeitkanälen ankommenden Datenleitungen auf entsprechende Ausgangsleitungen in gleichen oder verschiedenen Zeitkanälen, wobei das Vermittlungsnetzwerk an jedem Kreuzpunkt zwischen den Eingangs- und Ausgangsleilungen Koppelpunkte besitzt, d a durch gekennzeichnet, daß pro Koppelpunkt ein Speicherpaar (230, 231) zur Zeitkanalumsetzung vorgesehen ist, so daß während eines Zeitabschnittes jeweils der eine Speicher (230) zur Aufnahme von Signalen von der Eingangsleitung (201) und der andere Speicher (231) zur Aussendung der Signale an die entsprechende Ausgangsleitung des Vermittlungsnetzwerkes vorgesehen ist und daß die Funktion der Speicher in aufeinanderfolgenden Abschnitte ^ abwechselt
2. Schaltungsanordnung nach Anspruch I. gekennzeichnet durch eine Steuereinrichtung (78), die einem ersten Zeitkanai auf einer durch einen Koppelpunkt (211) bedienten Eingangsleitung (201) ein Signal zuordnen und einen Zeitkanai auf der durch diesen Koppelpunkt bedienten Ausgangsleitung (204) anhand der Anzahl von vorher belegten Zeitkanälen zuordnen, die die gleiche Ausgangsleitung benutzen.
3. Schaltungsanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Speicher (230, 231) Vielbitschieberegister sind, die Signale von einer Eingangslettung(201)/.u einei Ausgangsleitung (204) nach dem Prinzip übertragen, daß ein als erstes eingespeichertes Element als lt.ztes Element ausgegeben wird.
4. Schaltungsanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Steuereinrichtung ein an die zugeordneten Koppelpunkte (210—213) angeschaltete Speicherschaltung (215) aufweisen und daß die Speicherschaltung ein in sich zurückgeführtes Schieberegister (240) sowie Schaltungen (251—262) enthält, die Informationen in das Schieberegister einfügen und aus ihm entfernen, derart, daß die zugeordneten Koppelpunkte während geeigneter Zeitkanäle betätigt werden.
5. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jeder Koppelpunkt eine Betätigungsschaltung (242) enthält, die aufgrund der Übertragung von Signalen zur Ausgangsleitung (204) in Tätigkeit treten und den dann im Sendebetrieb befindlichen Speicher eines anderen Koppelpunktes (213) veranlassen, mit der Übertragung der dort gespeicherten Signale zur gleichen Ausgangsleitung (204) zu beginnen.
DE2013946A 1969-03-26 1970-03-24 Schaltungsanordnung zur Durchschaltung von Datensignalen in Zeitmultiplex-Vermittlungsanlagen Expired DE2013946C3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US81061869A 1969-03-26 1969-03-26

Publications (3)

Publication Number Publication Date
DE2013946A1 DE2013946A1 (de) 1970-10-08
DE2013946B2 DE2013946B2 (de) 1978-05-03
DE2013946C3 true DE2013946C3 (de) 1979-01-11

Family

ID=25204251

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2013946A Expired DE2013946C3 (de) 1969-03-26 1970-03-24 Schaltungsanordnung zur Durchschaltung von Datensignalen in Zeitmultiplex-Vermittlungsanlagen

Country Status (9)

Country Link
US (1) US3573381A (de)
JP (1) JPS4836964B1 (de)
BE (1) BE747803A (de)
DE (1) DE2013946C3 (de)
ES (1) ES378489A1 (de)
FR (1) FR2040005A5 (de)
GB (1) GB1291178A (de)
NL (1) NL165904C (de)
SE (1) SE383951B (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1252526A (de) * 1969-04-14 1971-11-03
FR2041673A5 (de) * 1969-05-22 1971-01-29 Cit Alcatel
FR2045248A5 (de) * 1969-06-27 1971-02-26 Cit Alcatel
US3700819A (en) * 1970-12-07 1972-10-24 Bell Telephone Labor Inc Time division switching system with time slot interchange
US3668318A (en) * 1970-12-14 1972-06-06 Bell Telephone Labor Inc Time division hybrid arrangement
US3678205A (en) * 1971-01-04 1972-07-18 Gerald Cohen Modular switching network
FR2129186A5 (de) * 1971-03-18 1972-10-27 Constr Telephoniques
BE795164A (fr) * 1972-02-08 1973-05-29 Ericsson Telefon Ab L M Procede de commande de portes de jonctions communes dans un central a modulation par impulsions codees
US3761619A (en) * 1972-03-10 1973-09-25 U Pommerening Digital central switching office for telephone system
US3740479A (en) * 1972-03-20 1973-06-19 Marconi Co Ltd Improvements in or relating to junctors
SE354764B (de) * 1972-05-18 1973-03-19 Ericsson Telefon Ab L M
US4005272A (en) * 1974-08-14 1977-01-25 Arthur A. Collins, Inc. Time folded TST (time space time) switch
US4186277A (en) * 1976-01-23 1980-01-29 Siemens Aktiengesellschaft Time division multiplex telecommunications switching network
SE424498B (sv) * 1977-09-09 1982-07-19 Ellemtel Utvecklings Ab Digitalt veljarenet
FR2440672A1 (fr) * 1978-10-30 1980-05-30 Cit Alcatel Commutateur spatial multiplex
DE3045606C2 (de) * 1980-12-03 1984-04-05 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung für Zeitmultiplex-Fernmeldevermittlungsanlagen für Mehrkanalverbindungen
JPH01152672U (de) * 1988-04-13 1989-10-20
US5548588A (en) * 1995-01-31 1996-08-20 Fore Systems, Inc. Method and apparatus for switching, multicasting multiplexing and demultiplexing an ATM cell
US8169296B1 (en) * 2006-07-31 2012-05-01 EADS North America, Inc. Switch matrix

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL217828A (de) * 1956-06-05
US3391390A (en) * 1964-09-09 1968-07-02 Bell Telephone Labor Inc Information storage and processing system utilizing associative memory

Also Published As

Publication number Publication date
BE747803A (fr) 1970-08-31
NL7004299A (de) 1970-09-29
GB1291178A (en) 1972-10-04
US3573381A (en) 1971-04-06
NL165904B (nl) 1980-12-15
ES378489A1 (es) 1972-06-16
SE383951B (sv) 1976-04-05
JPS4836964B1 (de) 1973-11-08
NL165904C (nl) 1981-05-15
FR2040005A5 (de) 1971-01-15
DE2013946B2 (de) 1978-05-03
DE2013946A1 (de) 1970-10-08

Similar Documents

Publication Publication Date Title
DE2013946C3 (de) Schaltungsanordnung zur Durchschaltung von Datensignalen in Zeitmultiplex-Vermittlungsanlagen
DE2417091C3 (de) Schaltungsanordnung zur Übertragung von PCM-Wörtern über eine Zeit-Raum-Zeitstufe in einer Zeitmultiplex-Vermittlungsanlage
DE2655192C2 (de) Raummultiplex-Koppelfeld für eine Zeitmultiplex-Nachrichtenvermittlungsanlage
DE1512071B2 (de) Zeitmultiplex-Vermittlungsanlage mit amtsentfernten Wählsternschaltern
DE2419251B2 (de) Zeitstufe fuer pcm-zeitmultiplexkoppelfelder
DE2441099A1 (de) System zur vermittlung und uebertragung digitaler nachrichten ueber ein stufenvermittlungsnetzwerk
DE2036815B2 (de) Schaltungsanordnung fur eine Nebenstellenanlage mit einer beschränkten Anzahl von Nebenstellen
DE2036796C3 (de) Schaltungsanordnung für die zweidrahtmäßige Durchschaltung von PCM-Wörtern über Multiplexleitungen
EP0017835B1 (de) Schaltungsanordnung zur Steuerung der Übertragung von Digital-Signalen, insbesondere PCM-Signalen, zwischen Anschlussstellen eines Zeitmultiplex-Fernmeldenetzes, insbesondere PCM-Zeitmultiplex-Fernmeldenetzes
DE2857028C1 (de) Integriertes Waehl- und UEbertragungsnetz
DE2045889C2 (de) Fernsprechvermittlungsanlage
DE1813946A1 (de) Signaluebertragungseinrichtung fuer ein Zeitmultiplexsystem
EP0005833A1 (de) Verfahren und Schaltungsanordnung zur Herstellung von Konferenzverbindungen in einem PCM-Zeitmultiplexvermittlungssystem
DE1512066B2 (de) Schaltungsanordnung zum übertragen von Nachrichten zwischen zwei Zeitmultiple x-Fernsprechvermittlungsämtern
DE1537011A1 (de) Zeitmultiplex-Nachrichtenuebertragungsanlage
DE2619391A1 (de) Nachrichtensystem mit vielfachzugriff und dezentraler vermittlung
DE1262357B (de) Schaltungsanordnung fuer elektronische Fernsprechvermittlungsanlagen mit einem endmarkierten Koppelfeld
DE1230091B (de) Zeitmultiplex-Vermittlungsanordnung in Fernmeldeanlagen, insbesondere Fernsprechvermittlungsanlagen
DE2137923A1 (de) Schaltungsanordnung zur Durchfuhrung von Zeitmultiplex Leitungen durch Raummultiplex-Nachnchtenvermittlungsanlagen
DE2803065C2 (de) Unbegrenzt erweiterbares Umkehrkoppelfeld für Fernmelde- insbesondere Fernsprechanlagen
DE2347378C2 (de) Nachrichtenvermittlung mit digitalcodierten Informationen
EP0173274B1 (de) Verfahren und Schaltungsanordnung zur Herstellung und zum Betreiben einer Zeitvielfach-Breitbandverbindung
DE1512858C3 (de) Verfahren zum Aufbau von Verbindungen in einem Fernmelde-, insbesondere Fernsprechnetz
DE1512833B2 (de) Nachrichtemnterpolationsanlage
DE2856897C1 (de) Digitale Zeitmultiplex-Vermittlungsanordnung

Legal Events

Date Code Title Description
C3 Grant after two publication steps (3rd publication)
8339 Ceased/non-payment of the annual fee