DE19923481A1 - Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator - Google Patents

Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator

Info

Publication number
DE19923481A1
DE19923481A1 DE19923481A DE19923481A DE19923481A1 DE 19923481 A1 DE19923481 A1 DE 19923481A1 DE 19923481 A DE19923481 A DE 19923481A DE 19923481 A DE19923481 A DE 19923481A DE 19923481 A1 DE19923481 A1 DE 19923481A1
Authority
DE
Germany
Prior art keywords
phase
lambda
threshold value
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19923481A
Other languages
English (en)
Inventor
Ekkehard Pott
Wolfgang Held
Martina Gottschling
Hermann Hahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE19923481A priority Critical patent/DE19923481A1/de
Priority to DE50006262T priority patent/DE50006262D1/de
Priority to EP00931209A priority patent/EP1183453B1/de
Priority to JP2000620235A priority patent/JP4377075B2/ja
Priority to PCT/EP2000/004325 priority patent/WO2000071877A1/de
Priority to ES00931209T priority patent/ES2219340T3/es
Publication of DE19923481A1 publication Critical patent/DE19923481A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

Die Erfindung betrifft ein Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysator mit wenigstens einem stromab des NO¶x¶-Speicherkatalysators angeordneten Gassensor, wobei nach Feststellung einer Entschwefelungsnotwendigkeit zur Entschwefelung eine Mindesttemperatur am NO¶x¶-Speicherkatalysator und ein fetter Arbeitsmodus der Verbrennungskraftmaschine mit lambda < 1 durch eine zumindest temporäre Beeinflussung wenigstens eines Betriebsparameters der Verbrennungskraftmaschine eingestellt wird. DOLLAR A Es ist vorgesehen, daß DOLLAR A a) in einer ersten Phase (t¶1¶) nach Feststellung der Entschwefelungsnotwendigkeit und Vorliegen der Mindesttemperatur die Verbrennungskraftmaschine (14) zunächst so lange auf einen mageren Arbeitsmodus mit lambda > 1 eingestellt wird, bis an dem Gassensor (21) ein vorgebbarer erster Schwellenwert (S¶m¶) für Lambda erreicht wird und DOLLAR A b) in einer zweiten Phase (t¶2¶) nach Erreichen des ersten Schwellenwertes (S¶m¶) die Verbrennungskraftmaschine (14) auf den fetten Arbeitsmodus mit lambda < 1 eingestellt wird, bis an dem Gassensor (21) ein vorgebbarer zweiter Schwellenwert (S¶f¶) für Lambda erreicht wird und DOLLAR A c) die erste Phase (t¶1¶) und nachfolgend die zweite Phase (t¶2¶) so lange wiederholt werden, bis ein vorgebbarer Verschwefelungsgrad erreicht wird.

Description

Die Erfindung betrifft ein Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.
Verfahren zur Entschwefelung von NOx-Speicherkatalysatoren sind bekannt. Dabei müssen während der Entschwefelung sogenannte Regenerationsparameter, wie eine Mindesttemperatur am NOx-Speicherkatalysator und ein Arbeitsmodus der Verbrennungskraftmaschine, mit λ ≦ 1 eingestellt werden.
Unter einem Arbeitsmodus der Verbrennungskraftmaschine mit λ < 1 überwiegt eine Konzentration reduzierender Gaskomponenten, wie CO, HC oder H2, eine Konzentration von Sauerstoff (fette Atmosphäre). Bei λ < 1 ist die Sauerstoffkonzentration dominierend, und es wird vermehrt NOx gebildet (magere Atmosphäre). Während eines Betriebes der Verbrennungskraftmaschine in magerer Atmosphäre wird neben NOx, durch eine Verbrennung wechselnder Schwefelanteile im Kraftstoffgemisch, SO2 gebildet. Dieses wird ebenso wie das NOx in magerer Atmosphäre von dem NOx-Speicherkatalysator absorbiert, wobei die SO2-Absorption zur Bildung von lokalen Inhomogenitäten infolge einer Sulfatkornbildung führen kann. Dieser Prozeß führt zu einer Reduzierung einer katalytisch aktiven Oberfläche und einer verringerten Kapazität des NOx-Speicherkatalysators und bietet einen Angriffspunkt für korrosive Prozesse, die eine dauerhafte Schädigung des NOx-Speicherkatalysators nach sich ziehen können.
Es ist daher bekannt, die Entschwefelung in wiederkehrenden Zyklen zu initiieren, wobei eine Feststellung einer Entschwefelungsnotwendigkeit anhand eines vorgebbaren Verschwefelungsgrades des NOx-Speicherkatalysators festgelegt werden kann. Ein solcher Verschwefelungsgrad läßt sich beispielsweise anhand eines NOx-Umsatzes bestimmen, bei dem ein Quotient aus einer Konzentration von NOx vor dem NOx- Speicherkatalysator und nach dem NOx-Speicherkatalysator gebildet wird. Nach Feststellung der Entschwefelungsnotwendigkeit werden dann geeignete Maßnahmen, beispielsweise eine Spätzündung, eine Nacheinspritzung von während oder nach eines Verbrennungsvorganges oder eine zylinderselektive Vertrimmung der Verbrennungskraftmaschine, durchgeführt, um die Regenerationsparameter einzustellen.
Eine Entschwefelungszeit ist dabei einerseits abhängig von der Höhe der Temperatur, die selbstverständlich auch über einer Mindesttemperatur liegen kann, und andererseits von einer Lage des Lambdawertes. Bei steigenden Temperaturen und/oder sinkenden Lambdawerten verkürzt sich die Entschwefelungszeit. Allerdings wird bei sehr niedrigen Lambdawerten überwiegend H2S gebildet, während bei Lambdawerten knapp unter 1 überwiegend SO2 entsteht. Eine Bildung von H2S sollte nach Möglichkeit unterdrückt werden, da diese geruchsintensiv und ausgesprochen giftig ist. Zudem ist ein vollständiger Umsatz der reduzierenden Gaskomponenten bei sehr niedrigen Lambdawerten nicht mehr möglich, so daß ein Schadstoffdurchbruch nicht vermieden werden kann.
Es ist bekannt, die Bildung von H2S durch eine periodische Beaufschlagung des NOx- Speicherkatalysators mit magerem und fettem Abgas zu unterdrücken. Da die SO2- Bildung kinetisch gegenüber der H2S-Bildung bevorzugt ist, kann durch Wahl einer hinreichend hohen Lambda-Wobblefrequenz die H2S-Bildung weitestgehend unterdrückt werden. Dabei ist nachteilig, daß sich die Entschwefelungszeit deutlich verlängert, und daß ein sich laufend ändernder Katalysatorzustand nicht berücksichtigt wird. So können Alterungserscheinungen, wie beispielsweise eine Abnahme einer Sauerstoffspeicherfähigkeit, nicht berücksichtigt werden.
Dem erfindungsgemäßen Verfahren liegt die Aufgabe zugrunde, die Entschwefelung unter Berücksichtigung zeitlich veränderlicher Katalysatorzustände durchzuführen. Dabei soll einerseits die H2S-Bildung weitestgehend unterdrückt werden und andererseits die Entschwefelungszeit möglichst gering gehalten werden, so daß ein Kraftstoffmehrverbrauch infolge der Entschwefelung reduziert werden kann.
Erfindungsgemäß wird diese Aufgabe durch das Verfahren zur Entschwefelung mit den im Anspruch 1 genannten Merkmalen gelöst. Dadurch, daß in einer ersten Phase nach Feststellung der Entschwefelungsnotwendigkeit und Vorliegen der Mindesttemperatur die Verbrennungskraftmaschine zunächst so lange auf einen mageren Arbeitsmodus der Verbrennungskraftmaschine mit λ < 1 eingestellt wird, bis an dem Gassensor ein vorgebbarer erster Schwellenwert für Lambda erreicht wird, und in einer zweiten Phase nach Erreichen des ersten Schwellenwertes die Verbrennungskraftmaschine auf den fetten Arbeitsmodus mit λ < 1 eingestellt wird, bis an dem Gassensor ein vorgebbarer zweiter Schwellenwert für Lambda erreicht wird, und die erste Phase und nachfolgend die zweite Phase so lange wiederholt werden, bis ein vorgebbarer Verschwefelungsgrad erreicht wird, kann die Entschwefelung mit sehr kurzen Entschwefelungszeiten und unter Bildung von weitestgehend nur SO2 vollzogen werden. Weiterhin hat es sich als vorteilhaft erwiesen, daß während der Entschwefelung eine Edelmetalldesaktivierung durch Sulfitbildung wesentlich geringer gehalten werden kann als bei einer Entschwefelung nach einem herkömmlichen Verfahren.
In einer bevorzugten Ausgestaltung des Verfahrens werden die Betriebsparameter der Verbrennungskraftmaschine derart eingestellt, daß sie einen frei applizierbaren Sollwert für Lambda vor dem NOx-Speicherkatalysator gewähren. Der Sollwert wird dabei als ein Kompromiß zwischen einer kurzen Entschwefelungszeit und einem geringen Übersteuern über die Schwellenwerte gewählt.
In einer weiteren bevorzugten Ausgestaltung des Verfahrens werden in jedem neuen Zyklus der Entschwefelung - also in der ersten und zweiten Phase - die Sollwerte und/oder die Schwellenwerte neu festgelegt. Diese können dann in Abhängigkeit von einer aktuell gespeicherten Schwefelmasse, einer Schwefelmasse zu Beginn der Entschwefelung, einer Katalysatortemperatur oder einer Dauer der ersten und zweiten Phase variiert werden. Denkbar ist weiterhin, während der Entschwefelung die Temperatur sowie die Schwellenwerte zu variieren. Durch die gezeigten Maßnahmen kann die Entschwefelung wesentlich dynamischer an den aktuellen Katalysatorzustand angepaßt werden.
Bevorzugt ist ferner, eine Berechnung der Sauerstoffspeicherfähigkeit zur Festlegung der Schwellenwerte und/oder Sollwerte heranzuziehen. Dabei hat es sich als besonders vorteilhaft erwiesen, den Sollwert für den Arbeitsmodus mit λ < 1 in Abhängigkeit von der berechneten Sauerstoffspeicherfähigkeit zu gestalten. So kann beispielsweise ab einem vorgebbaren Restsauerstoffgehalt des NOx-Speicherkatalysators der Sollwert in Richtung λ = 1 geändert werden, so daß das Übersteuern über den Schwellenwert geringgehalten werden kann. Damit sind auch mögliche Schadstoffdurchbrüche der reduzierenden Gaskomponenten weitestgehend unterdrückt.
Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine Anordnung eines Katalysatorsystems in einem Abgaskanal einer Verbrennungskraftmaschine;
Fig. 2 einen Verlauf von Lambda vor und hinter einem NOx- Speicherkatalysator während einer Entschwefelung und
Fig. 3 einen Verlauf von Lambda vor und hinter einem NOx- Speicherkatalysator während der Entschwefelung unter Berücksichtigung einer Sauerstoffspeicherfähigkeit.
In der Fig. 1 ist in schematischer Weise eine Anordnung eines Katalysatorsystems 10 in einem Abgaskanal 12 einer Verbrennungskraftmaschine 14 dargestellt. Das Katalysatorsystem 10 umfaßt einen NOx-Speicherkatalysator 16 und einen Vorkatalysator 18 sowie diverse Temperatursensoren 22. Weiterhin befinden sich Gassensoren 19, 20, 21 in dem Abgaskanal 12, die zur Erfassung wenigstens einer Gaskomponente eines Abgases der Verbrennungskraftmaschine dienen und ein Signal entsprechend einem Gehalt der Gaskomponente am Abgas bereitstellen. Solche Gassensoren 19, 20, 21 sind bekannt und können beispielsweise NOx-Sensoren oder Lambdasonden sein.
Ein Arbeitsmodus der Verbrennungskraftmaschine 14 kann mittels eines Motorsteuergerätes 24 geregelt werden. Wird beispielsweise ein Arbeitsmodus mit λ < 1 (fette Atmosphäre) gewünscht, so muß eine Sauerstoffkonzentration in einem Saugrohr 26 vor einer Verbrennung eines Kraftstoff-Luft-Gemisches gesenkt werden. Damit erhöhen sich die Anteile reduzierender Gaskomponenten im Abgas im Vergleich zu einem Anteil an Sauerstoff. Beispielsweise kann ein solcher Arbeitsmodus durch eine Reduzierung eines Volumenstroms angesaugter Luft mittels einer Drosselklappe 28 und durch gleichzeitige Zuführung sauerstoffarmen Abgases über ein Abgasrückflußventil 30 erfolgen.
In einem Arbeitsmodus mit λ < 1 (magere Atmosphäre) wird neben NOx auch SO2 im NOx-Speicherkatalysator 16 absorbiert, während die geringen Anteile reduzierender Gaskomponenten zumindest bei niedrigen Raumgeschwindigkeiten fast vollständig im Vorkatalysator 18 umgesetzt werden. In Abhängigkeit von einer NOx-Speicherkapazität und einer Desorptionstemperatur des NOx-Speicherkatalysators 16 muß die Verbrennungskraftmaschine 14 zur Regeneration mit λ ≦ 1 betrieben werden. In einem solchen Arbeitsmodus wird das zuvor absorbierte NOx an einer katalytisch aktiven Oberfläche des NOx-Speicherkatalysators 16 reduziert.
Ebenfalls absorbiertes SO2 wird in Form von Sulfat in dem NOx-Speicherkatalysator 16 eingelagert, wobei allerdings eine Reversibilität dieses Einlagerungsprozesses im Gegensatz zu der Einlagerung von NOx wesentlich höhere Temperaturen erfordert. Somit muß zur Entschwefelung eine Mindestentschwefelungstemperatur und ein Lambdawert ≦ 1 vorliegen (Regenerationsparameter).
Eine Entschwefelungsnotwendigkeit ergibt sich aus einer Effizienz des NOx- Speicherkatalysators 16 für eine Konvertierungsreaktion von NOx. Die Erfassung der Effizienz kann mit Hilfe des Gassensors 21 erfolgen, der eine NOx-Konzentration hinter dem NOx-Speicherkatalysator 16 mißt. Aufgrund von Erfahrungswerten oder über eine Messung der NOx-Konzentration vor dem NOx-Speicherkatalysator 16 - beispielsweise mit mindestens einem der Gassensoren 19, 20 - kann auf diese Weise ein Verschwefelungsgrad und damit die Effizienz bestimmt werden. Über die Temperatursensoren 22 läßt sich eine aktuelle Temperatur (Katalysatortemperatur) am NOx-Speicherkatalysator 16 erfassen, während der aktuelle Lambdawert vor dem NOx- Speicherkatalysator 16 wiederum über zumindest einen der Gassensoren 19 und/oder 20 bestimmbar ist.
Eine Entschwefelungszeit ist abhängig von der Temperatur am NOx-Speicherkatalysator 16 und der Lage des Lambdawertes. Mit steigender Temperatur und sinkendem Lambdawert nimmt die Entschwefelungszeit ab. Die Temperatur kann dabei deutlich über der Mindesttemperatur liegen und kann entsprechend einem Temperaturmodell auch während der Entschwefelung geändert werden.
Bei sehr niedrigen Lambdawerten führt die Entschwefelung überwiegend zu H2S, während bei Lambdawerten knapp unter 1 überwiegend SO2 gebildet wird. Da H2S geruchsintensiv ist, soll dessen Bildung im erfindungsgemäßen Verfahren weitestgehend unterdrückt werden. Weiterhin ist nachteilig, daß bei sehr niedrigen Lambdawerten eine vollständige Umsetzung der reduzierenden Gaskomponenten nicht mehr möglich ist, und somit sogenannte Schadstoffdurchbrüche auftreten. Da die H2S- Bildung kinetisch gehemmt ist gegenüber der SO2-Bildung, kann über einen periodischen Wechsel des Arbeitsmodus der Verbrennungskraftmaschine die H2S- Bildung zurückgedrängt werden.
In der Fig. 2 ist beispielhaft ein Verlauf eines Lambdawertes vor und hinter dem NOx- Speicherkatalysator 16 dargestellt. Der Verlauf des Lambdawertes vor dem NOx- Speicherkatalysator 16 (durchgezogene Linie) kann mittels des Gassensors 20 erfaßt werden, während der Gassensor 21 einen Verlauf des Lambdawertes hinter dem NOx- Speicherkatalysator 16 wiedergibt (gestrichelte Linie). Wenn zu einem Zeitpunkt T0 die Entschwefelungsnotwendigkeit festgestellt wird und beispielsweise noch nicht die Mindesttemperatur erreicht wurde, so kann in einer Aufheizphase t0 durch eine zumindest temporäre Beeinflussung wenigstens eines Betriebsparameters der Verbrennungskraftmaschine 14 eine Abgastemperatur erhöht werden. Dazu wird die üblicherweise zur Minderung eines Kraftstoffverbrauchs in dem mageren Arbeitsmodus betriebene Verbrennungskraftmaschine 14 auf einen Arbeitsmodus mit λ = 1 eingestellt, da das Abgas hier eine höhere Temperatur aufweist. Ein solches Vorgehen ist bekannt und soll hier nicht näher erläutert werden.
Nach Erreichen der Mindesttemperatur zu einem Zeitpunkt T1 wird während der Phase t1 die Verbrennungskraftmaschine 14 derart geregelt, daß sich vor dem NOx- Speicherkatalysator 16 ein Lambdawert entsprechend einem vorgebbaren Sollwert Wm einstellt. Der Sollwert Wm sollte dabei in einem Lambdabereich von 1,02 bis 4,00, bevorzugt 1,05 bis 1,7, insbesondere 1,15 bis 1,4, liegen.
Eine Änderung des Lambdawertes hinter dem NOx-Speicherkatalysator 16 findet zeitverzögert statt. Dabei basiert diese Zeitverzögerung nicht nur auf einem Totvolumen des NOx-Speicherkatalysators 16, sondern ist auch abhängig von einer Aus- und Einlagerung des Sauerstoffs in den NOx-Speicherkatalysator 16. In einem Bereich 40 steigt dabei der Lambdawert hinter dem NOx-Speicherkatalysator 16 steil an, wobei eine Steilheit des Anstiegs durch die Höhe des Sollwertes Wm bestimmbar ist. Je höher Wm liegt, um so steiler steigt der Bereich 40 an. Ab einem Zeitpunkt T2 erreicht der Lambdawert hinter dem NOx-Speicherkatalysator 16 einen ersten Schwellenwert Sm, woraufhin die Verbrennungskraftmaschine 14 auf den fetten Arbeitsmodus eingestellt wird. Dabei wird wiederum ein Sollwert Wf für Lambda vor dem NOx-Speicherkatalysator 16 festgelegt. Der Sollwert Wf liegt in einem Bereich von λ = 0,995 bis 0,65, bevorzugt 0,99 bis 0,75, insbesondere 0,98 bis 0,85.
Der den Wechsel des Arbeitsmodus auslösende Schwellenwert Sm läßt sich über folgende Gleichung ermitteln, wobei der Schwellenwert Sm jedoch immer mindestens den Wert λ = 1,01 aufweist:
Schwellenwert Sm = 1 + F.(Sollwert Wm-1)
Ein Faktor F liegt dabei in einem Bereich von 0,2 bis 0,99, bevorzugt 0,5 bis 0,9, insbesondere bei 0,6 bis 0,8.
Nach dem Wechsel des Arbeitsmodus ab dem Zeitpunkt T2 wird der NOx- Speicherkatalysator 16 für eine Phase t2 mit der fetten Atmosphäre entsprechend dem Sollwert Wf beaufschlagt. Kurz nach dem Erreichen des Schwellenwertes Sm steigt der Lambdawert in einem Bereich 42 noch kurzfristig an, da sich der Wechsel des Arbeitsmodus nur zeitverzögert hinter dem NOx-Speicherkatalysator 16 einstellt. In einem Bereich 44 fällt der Lambdawert hinter dem NOx-Speicherkatalysator 16 steil ab bis zu einem Lambdawert = 1 (Bereich 46). Dabei verharrt der Wert nahe λ = 1 in dem Bereich 46 so lange, bis ab einem Punkt 48 der im NOx-Speicherkatalysator 16 gespeicherte Sauerstoff und das zumindest teilweise zeitlich überlappend freigesetzte SOx soweit reduziert sind, daß das Lambdasignal allmählich in Richtung des Sollwertes Wf abdriftet (Bereich 50).
Der den erneuten Wechsel des Arbeitsmodus auslösende Schwellenwert Sf liegt dabei bevorzugt bei λ = 0,998 bis 0,95, ist dabei jedoch stets größer als der Sollwert Wf für den fetten Arbeitsmodus. In letzterem Fall ist er insbesondere über die folgende Gleichung festlegbar:
Schwellenwert Sf = Sollwert Wf + 0,1.(1,0-Sollwert Wf)
Beim Erreichen oder Unterschreiten eines vorgebbaren zweiten Schwellenwertes Sf wird die Verbrennungskraftmaschine 14 unter magerer Atmosphäre betrieben, und zwar entsprechend dem Sollwert Wm. Volumenbedingt fällt in einem Bereich 52 der Lambdawert hinter dem NOx-Speicherkatalysator 16 noch für kurze Zeit, um dann anschließend in einem Bereich 54 wieder anzusteigen. Eine Steilheit des Anstiegs im Bereich 54 wird dabei nicht nur durch die Lage des Sollwertes Wm bestimmt, sondern auch durch eine zusätzliche Sauerstoffeinlagerung in den NOx-Speicherkatalysator 16. Ab einem Punkt 56 ist eine Sauerstoffspeicherfähigkeit erschöpft, und daher steigt der Lambdawert in dem sich anschließenden Bereich 58 steiler an.
Ab dem Schwellenwert Sm wird dann wieder die Phase t2 eingeleitet, das heißt, ein Wechsel in fette Atmosphäre initiiert. Phase t1 und Phase t2 wiederholen sich so oft, bis ein vorgebbarer Verschwefelungsgrad erreicht wird und dann die Verbrennungskraftmaschine 14 wieder in einem Normalbetrieb geschaltet wird.
Die Fig. 3 zeigt eine bevorzugte Ausgestaltung des Verfahrens anhand der Verläufe von Lambda vor und hinter dem NOx-Speicherkatalysator 16. Dabei zeigen die ersten beiden Phasen t1 und t2 einen Verlauf, wie er bereits in der Fig. 2 geschildert wurde, und sind hier zur Verdeutlichung der bevorzugten Ausgestaltung nochmals mitaufgenommen worden. Die sich hieran anschließende Phase t2' wird nun in Abhängigkeit von einer berechneten Sauerstoffspeicherfähigkeit beeinflußt.
Die Berechnung der Sauerstoffspeicherfähigkeit läßt sich auf bekannte Weise unter Berücksichtigung von einem Katalysatorvolumen, dem Lambdawert vor dem NOx- Speicherkatalysator 16, der Katalysatortemperatur und einer Raumgeschwindigkeit des Abgases durchführen. Unter Berücksichtigung der berechneten Sauerstoffspeicherfähigkeit wird die Phase t2' in mindestens zwei Abschnitte t21' und t22' aufgeteilt. Dabei wird eine Dauer des Abschnittes t21' derart gewählt, daß in dieser Zeit 60% bis 99% des gespeicherten Sauerstoffs wieder entladen sind. Ab einem Zeitpunkt T3 findet ein Wechsel des Arbeitsmodus der Verbrennungskraftmaschine 14 in Richtung von λ = 1 statt, wobei der NOx-Speicherkatalysator 16 anschließend mit einem Lambdawert entsprechend einem vorgebbaren Sollwert Wf2 beaufschlagt wird.
Infolge der in Richtung λ = 1 verlagerten Sollwertvorgabe für den Abschnitt t22' der Phase t2' ändert sich auch die Steilheit des Abfalls des Lambdawertes hinter dem NOx- Speicherkatalysator 16 in dem Bereich 50, da diese - wie bereits erläutert - im wesentlichen von der Lage eines aktuellen Sollwertes W abhängt. Damit wird aber auch das zeitverzögerte Übersteuern des Lambdawertes in dem Bereich 52 in seiner Höhe und in seiner Dauer gemindert. Auf diese Weise können Schadstoffdurchbrüche stark verringert werden. Zudem wird aufgrund der geringeren Übersteuerung die sich anschließende Phase t1' verkürzt, so daß insgesamt die Entschwefelungszeit sinkt.
Die bevorzugte Aufteilung der Phase t2 kann in einem weiten Maße variabel gestaltet werden, wie es beispielhaft für die Phase t21' am Ende des Zeitstrahles aufgezeigt ist. So kann ab einem Zeitpunkt T6 eine Einstellung des Sollwertes Wf2 kontinuierlich erfolgen, so daß in einem Abschnitt t22" ein rampenförmiger Anstieg des Lambdawertes vor dem NOx-Speicherkatalysator 16 erfaßt werden kann. Ab einem Zeitpunkt T7 wird dann in einem Abschnitt t23" der NOx-Speicherkatalysator 16 mit einem Lambdawert entsprechend dem Sollwert Wf2 beaufschlagt. Zwar wird die Phase t2" durch den kontinuierlichen Wechsel von dem Sollwert Wf1 auf den Sollwert Wf2 geringfügig verlängert, jedoch können so Schadstoffdurchbrüche infolge eines zu späten Wechsels auf den Sollwert Wf2, beispielsweise durch eine fehlerhafte Berechnung des Punktes 48, an dem der Sauerstoff des NOx-Speicherkatalysators 16 entladen ist, gemindert werden. Eine Anzahl von Abschnitten t, die kumuliert die Phase t2 bilden, kann selbstverständlich frei gewählt werden. Notwendige Randbedingung ist lediglich, daß der Lambdawert in den einzelnen aufeinanderfolgenden Abschnitten t ansteigt. Jedem einzelnen Abschnitt t ist dann ein konstanter oder gemäß einer vorgebbaren Funktion veränderlicher Sollwert W zugeordnet.
Nach Ablauf einer vorgebbaren Zeitspanne oder nach jedem einzelnen Zyklus (Phase t1 und Phase t2) wird wiederum die Entschwefelungsnotwendigkeit anhand des Verschwefelungsgrades in bekannter Weise detektiert. Ist der Verschwefelungsgrad hinreichend gering, so wird die Verbrennungskraftmaschine 14 wieder in den Normalbetrieb geschaltet. Liegen jedoch weiterhin ungünstige Verschwefelungsgrade vor, so folgen wiederum Phasen t1 und t2. Dabei können die einzelnen Abschnitte t der Phase t2 dem nun vorliegenden Katalysatorzustand neu angepaßt werden. Auf diese Weise lassen sich die Schadstoffdurchbrüche und die Entschwefelungszeit wiederum deutlich verringern.
In einer weiteren Ausgestaltung des erfindungsgemäßen Verfahrens können neben der Sauerstoffspeicherfähigkeit auch andere, den Katalysatorzustand charakterisierende Parameter zur Ausgestaltung der Phasen t2 und t1 herangezogen werden. So kann in jedem Zyklus die Lage der Sollwerte W in Abhängigkeit von einer aktuell gespeicherten Schwefelmasse, einer Schwefelmasse zu Beginn der Entschwefelung, der Katalysator­ temperatur oder einer Dauer der vorangehenden Phasen t1 und t2 variiert werden. Ebenso können die Schwellenwerte Sm und Sf in Abhängigkeit von denselben genannten Parametern sowie in Abhängigkeit von den Sollwerten W variiert werden. Durch eine solche dynamische Anpassung an den aktuellen Katalysatorzustand ist eine weitere Optimierung der Entschwefelungszeit sowie eine weitere Reduzierung von Schadstoffdurchbrüchen möglich.
Weiterhin ist es denkbar, die Temperatur während der Entschwefelung zu variieren, insbesondere anzuheben. Ein solches Verfahren ist bekannt und soll in diesem Zusammenhang nicht näher erläutert werden.

Claims (13)

1. Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator mit wenigstens einem stromab des NOx-Speicherkatalysators angeordneten Gassensor, wobei nach Feststellung einer Entschwefelungsnotwendigkeit zur Entschwefelung eine Mindesttemperatur am NOx-Speicherkatalysator und ein fet­ ter Arbeitsmodus der Verbrennungskraftmaschine mit λ < 1 durch eine zumindest temporäre Beeinflussung wenigstens eines Betriebsparameters der Verbrennungs­ kraftmaschine eingestellt wird, dadurch gekennzeichnet, daß
  • a) in einer ersten Phase (t1) nach Feststellung der Entschwefelungsnotwendigkeit und Vorliegen der Mindesttemperatur die Verbrennungskraftmaschine (14) zunächst so lange auf einen mageren Arbeitsmodus mit λ < 1 eingestellt wird, bis an dem Gassensor (21) ein vorgebbarer erster Schwellenwert (Sm) für Lambda erreicht wird und
  • b) in einer zweiten Phase (t2) nach Erreichen des ersten Schwellenwertes (Sm) die Verbrennungskraftmaschine (14) auf den fetten Arbeitsmodus mit λ < 1 eingestellt wird, bis an dem Gassensor (21) ein vorgebbarer zweiter Schwel­ lenwert (Sf) für Lambda erreicht wird und
  • c) die erste Phase (t1) und nachfolgend die zweite Phase (t2) so lange wiederholt werden, bis ein vorgebbarer Verschwefelungsgrad erreicht wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Verbrennungskraftmaschine (14) während der ersten Phase (t1) auf einen mageren Arbeitsmodus entsprechend wenigstens einem Sollwert (Wm) eingestellt wird und während der zweiten Phase (t2) die Verbrennungskraftmaschine (14) in einem fetten Arbeitsmodus entsprechend wenigstens einem Sollwert (Wf) eingestellt wird (Sollwerte W).
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Sollwert (Wf) in einem Bereich von λ = 0,65 bis 0,995, bevorzugt 0,75 bis 0,99, insbesondere 0,85 bis 0,98, liegt.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Sollwert (Wm) in einem Bereich von λ = 1,02 bis 4, bevorzugt 1,05 bis 1,7, insbesondere 1,15 bis 1,4, liegt.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schwellenwert (Sm) nach der Formel
mit einem Faktor f in einem Bereich von 0,2 bis 0,99, bevorzugt 0,5 bis 0,9, insbesondere 0,6 bis 0,8, berechnet wird, wobei der Schwellenwert Sm mindestens bei λ = 1,01 liegt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Schwellenwert (Sf) nach der Formel
berechnet wird und in einem Lambdabereich von 0,95 bis 0,998 liegt.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sollwerte (W) in Abhängigkeit von einen Katalysatorzustand charakterisierenden Parametern eingestellt werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß als Parameter des Katalysatorzustands eine aktuell gespeicherte Schwefelmasse, eine Schwefel­ masse zu Beginn der Entschwefelung, eine Katalysatortemperatur, eine Sauerstoffspeicherfähigkeit oder eine Kombination derselben gewählt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Sollwerte (W) in Abhängigkeit von einer Dauer der Phasen (t1 und t2) festgelegt werden.
10. Verfahren nach den Ansprüchen 7 bis 9, dadurch gekennzeichnet, daß die Phase (t2) in Abhängigkeit von den den Katalysatorzustand charakterisierenden Parametern in wenigstens zwei Abschnitte (t) aufgeteilt wird, wobei jedem einzelnen Abschnitt (t) ein konstanter oder gemäß einer vorgebbaren Funktion veränderlicher Sollwert (W) zugeordnet wird und die Sollwerte in den einzelnen aufeinanderfolgenden Abschnitten (t) ansteigen.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß eine Dauer der einzelnen Abschnitte (t) in Abhängigkeit von den den Katalysatorzustand charak­ terisierenden Parametern festgelegt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß eine Dauer eines ersten Abschnitts (t21) der Phase (t2) derart festgelegt wird, daß in dieser Zeit 60 bis 99% einer in dem NOx-Speicherkatalysator (16) gespeicherten Sauerstoffmasse desorbiert ist.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Entschwefelung temperaturmoduliert wird.
DE19923481A 1999-05-21 1999-05-21 Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator Withdrawn DE19923481A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19923481A DE19923481A1 (de) 1999-05-21 1999-05-21 Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE50006262T DE50006262D1 (de) 1999-05-21 2000-05-13 VERFAHREN ZUR ENTSCHWEFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
EP00931209A EP1183453B1 (de) 1999-05-21 2000-05-13 VERFAHREN ZUR ENTSCHWEFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
JP2000620235A JP4377075B2 (ja) 1999-05-21 2000-05-13 内燃機関の排気通路内に配置された少なくとも1個のnox吸収触媒を脱硫する方法
PCT/EP2000/004325 WO2000071877A1 (de) 1999-05-21 2000-05-13 VERFAHREN ZUR ENTSCHWEFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
ES00931209T ES2219340T3 (es) 1999-05-21 2000-05-13 Procedimiento de desulfuracion de al menos un catalizador acumulador de nox dispuesto en un canal de gases de escape de un motor de combustion interna.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19923481A DE19923481A1 (de) 1999-05-21 1999-05-21 Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator

Publications (1)

Publication Number Publication Date
DE19923481A1 true DE19923481A1 (de) 2000-11-23

Family

ID=7908835

Family Applications (2)

Application Number Title Priority Date Filing Date
DE19923481A Withdrawn DE19923481A1 (de) 1999-05-21 1999-05-21 Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE50006262T Expired - Lifetime DE50006262D1 (de) 1999-05-21 2000-05-13 VERFAHREN ZUR ENTSCHWEFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50006262T Expired - Lifetime DE50006262D1 (de) 1999-05-21 2000-05-13 VERFAHREN ZUR ENTSCHWEFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR

Country Status (5)

Country Link
EP (1) EP1183453B1 (de)
JP (1) JP4377075B2 (de)
DE (2) DE19923481A1 (de)
ES (1) ES2219340T3 (de)
WO (1) WO2000071877A1 (de)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075138A1 (de) * 2001-03-20 2002-09-26 Audi Ag Verfahren zum aufheizen eines in strömungsrichtung nachgeordneten katalysators bei einem abgasanlagensystem eines verbrennungsmotors
USRE38051E1 (en) 1998-03-05 2003-04-01 Ford Global Technologies, Inc. Catalytic converter decontamination method
US6539704B1 (en) 2000-03-17 2003-04-01 Ford Global Technologies, Inc. Method for improved vehicle performance
EP1306531A2 (de) 2001-10-29 2003-05-02 Ford Global Technologies, Inc. Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
FR2835566A1 (fr) * 2002-01-28 2003-08-08 Toyota Motor Co Ltd Procede et appareil de maitrise des gaz d'echappement d'un moteur a combustion interne
WO2004059151A1 (de) * 2002-12-30 2004-07-15 Volkswagen Ag Verfahren und vorrichtung zur einstellung eines kraftstoff/luftverhältnisses für eine brennkraftmaschine
US6766641B1 (en) 2003-03-27 2004-07-27 Ford Global Technologies, Llc Temperature control via computing device
US6854264B2 (en) 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
US7003944B2 (en) 2003-03-27 2006-02-28 Ford Global Technologies, Llc Computing device to generate even heating in exhaust system
US7104045B2 (en) 2004-01-28 2006-09-12 Ford Global Technologies, Llc System and method for removing hydrogen sulfide from an emissions stream
US7146799B2 (en) 2003-03-27 2006-12-12 Ford Global Technologies, Llc Computer controlled engine air-fuel ratio adjustment
EP1965060A1 (de) * 2007-02-27 2008-09-03 HONDA MOTOR CO., Ltd. Abgasemissionssteuerungsvorrichtung und -verfahren für einen Verbrennungsmotor
DE10238771B4 (de) * 2002-08-23 2009-01-22 Umicore Ag & Co. Kg Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators
DE10115962B4 (de) * 2001-03-27 2009-03-05 Volkswagen Ag Verfahren zur Entschwefelung eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE102004002291B4 (de) * 2004-01-16 2010-01-07 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges
EP2148049A1 (de) 2008-07-25 2010-01-27 Volkswagen AG Verfahren zum Entschwefeln eines NOX-Speicherkatalysators
FR2935020A1 (fr) * 2008-08-14 2010-02-19 Renault Sas Procede pour la desulfuration d'un catalyseur d'oxydation apte a pieger des oxydes d'azote
DE10032560B4 (de) * 2000-07-05 2010-04-08 Volkswagen Ag Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE10059791B4 (de) * 2000-12-01 2010-06-10 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
DE102004002292B4 (de) * 2004-01-16 2010-08-12 Audi Ag Abgaskatalysator und Verfahren zum Betreiben einer Abgaskatalysatorvorrichtung
US7998447B2 (en) 2004-01-28 2011-08-16 Ford Global Technologies, Llc Method for removing hydrogen sulfide from an emissions stream
DE10123148B4 (de) * 2001-05-03 2011-09-15 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
DE10347275B4 (de) * 2003-08-18 2012-03-01 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines Katalysators
DE10156476B4 (de) * 2001-11-16 2012-10-31 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur Erkennung der fortschreitenden Verschwefelung eines NOx-Speicherkatalysators
DE10160704B4 (de) * 2001-12-11 2013-07-18 Volkswagen Ag Verfahren zum Betrieb von Abgasreinigungsvorrichtungen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19939988A1 (de) * 1999-08-24 2001-03-15 Daimler Chrysler Ag Verfahren zum Betreiben eines Dieselmotors
WO2006059470A1 (ja) 2004-11-30 2006-06-08 Isuzu Motors Limited 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
JP3915822B2 (ja) 2005-09-07 2007-05-16 いすゞ自動車株式会社 排気ガス浄化システムの脱硫制御方法及び排気ガス浄化システム
DE102012003310B4 (de) 2012-02-18 2022-01-27 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Aufheizung eines Abgaskatalysators
GB2502832A (en) * 2012-06-06 2013-12-11 Gm Global Tech Operations Inc Controlling a Desuiphation Process of a Lean NOx trap

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706608A1 (de) * 1997-02-20 1998-08-27 Ford Global Tech Inc Verfahren zur Entschwefelung einer Stickoxidfalle im Abgassystem eines Verbrennungsmotors
EP0892158A2 (de) * 1997-07-19 1999-01-20 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Überwachung der De-Sulfatierung bei NOx-Speicherkatalysatoren
EP0891806A2 (de) * 1997-07-19 1999-01-20 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration einer Schwefelfalle
DE19731624A1 (de) * 1997-07-23 1999-01-28 Volkswagen Ag Verfahren und Vorrichtung zur Überwachung der De-Sulfatierung bei NOx-Speicherkatalysatoren
DE19747222C1 (de) * 1997-10-25 1999-03-04 Daimler Benz Ag Verbrennungsmotoranlage mit Stickoxid-Speicherkatalysator und Betriebsverfahren hierfür
DE19837074A1 (de) * 1997-09-02 1999-03-04 Ford Global Tech Inc Rückkopplungsregelung zur Entschwefelung einer NOx-Falle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5758493A (en) * 1996-12-13 1998-06-02 Ford Global Technologies, Inc. Method and apparatus for desulfating a NOx trap
US5974788A (en) * 1997-08-29 1999-11-02 Ford Global Technologies, Inc. Method and apparatus for desulfating a nox trap

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19706608A1 (de) * 1997-02-20 1998-08-27 Ford Global Tech Inc Verfahren zur Entschwefelung einer Stickoxidfalle im Abgassystem eines Verbrennungsmotors
EP0892158A2 (de) * 1997-07-19 1999-01-20 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Überwachung der De-Sulfatierung bei NOx-Speicherkatalysatoren
EP0891806A2 (de) * 1997-07-19 1999-01-20 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zur Regeneration einer Schwefelfalle
DE19731131A1 (de) * 1997-07-19 1999-01-21 Volkswagen Ag Verfahren und Vorrichtung zur Regeneration einer Schwefelfalle
DE19731624A1 (de) * 1997-07-23 1999-01-28 Volkswagen Ag Verfahren und Vorrichtung zur Überwachung der De-Sulfatierung bei NOx-Speicherkatalysatoren
DE19837074A1 (de) * 1997-09-02 1999-03-04 Ford Global Tech Inc Rückkopplungsregelung zur Entschwefelung einer NOx-Falle
DE19747222C1 (de) * 1997-10-25 1999-03-04 Daimler Benz Ag Verbrennungsmotoranlage mit Stickoxid-Speicherkatalysator und Betriebsverfahren hierfür
EP0911498A2 (de) * 1997-10-25 1999-04-28 DaimlerChrysler AG Verbrennungsmotoranlage mit Stickoxid-Speicherkatalysator und Betriebsverfahren hierfür

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE38051E1 (en) 1998-03-05 2003-04-01 Ford Global Technologies, Inc. Catalytic converter decontamination method
US6539704B1 (en) 2000-03-17 2003-04-01 Ford Global Technologies, Inc. Method for improved vehicle performance
DE10032560B4 (de) * 2000-07-05 2010-04-08 Volkswagen Ag Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE10059791B4 (de) * 2000-12-01 2010-06-10 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
WO2002075138A1 (de) * 2001-03-20 2002-09-26 Audi Ag Verfahren zum aufheizen eines in strömungsrichtung nachgeordneten katalysators bei einem abgasanlagensystem eines verbrennungsmotors
DE10115962B4 (de) * 2001-03-27 2009-03-05 Volkswagen Ag Verfahren zur Entschwefelung eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10123148B4 (de) * 2001-05-03 2011-09-15 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
EP1306531A2 (de) 2001-10-29 2003-05-02 Ford Global Technologies, Inc. Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10156476B4 (de) * 2001-11-16 2012-10-31 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zur Erkennung der fortschreitenden Verschwefelung eines NOx-Speicherkatalysators
DE10160704B4 (de) * 2001-12-11 2013-07-18 Volkswagen Ag Verfahren zum Betrieb von Abgasreinigungsvorrichtungen
DE10303085B4 (de) * 2002-01-28 2011-08-11 Toyota Jidosha Kabushiki Kaisha, Aichi-ken Abgassteuerungsvorrichtung und -verfahren eines Verbrennungsmotors
FR2835566A1 (fr) * 2002-01-28 2003-08-08 Toyota Motor Co Ltd Procede et appareil de maitrise des gaz d'echappement d'un moteur a combustion interne
DE10238771B4 (de) * 2002-08-23 2009-01-22 Umicore Ag & Co. Kg Verfahren zur Desulfatisierung eines Stickoxid-Speicherkatalysators
WO2004059151A1 (de) * 2002-12-30 2004-07-15 Volkswagen Ag Verfahren und vorrichtung zur einstellung eines kraftstoff/luftverhältnisses für eine brennkraftmaschine
US7146799B2 (en) 2003-03-27 2006-12-12 Ford Global Technologies, Llc Computer controlled engine air-fuel ratio adjustment
DE102004009211B4 (de) * 2003-03-27 2011-11-24 Ford Global Technologies, Llc Steuervorrichtung für einen Motor zur Erzeugung von Erhitzung im Auspuffsystem
US7003944B2 (en) 2003-03-27 2006-02-28 Ford Global Technologies, Llc Computing device to generate even heating in exhaust system
US6854264B2 (en) 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
US6766641B1 (en) 2003-03-27 2004-07-27 Ford Global Technologies, Llc Temperature control via computing device
DE10347275B4 (de) * 2003-08-18 2012-03-01 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines Katalysators
DE102004002291B4 (de) * 2004-01-16 2010-01-07 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges
DE102004002292B4 (de) * 2004-01-16 2010-08-12 Audi Ag Abgaskatalysator und Verfahren zum Betreiben einer Abgaskatalysatorvorrichtung
US7998447B2 (en) 2004-01-28 2011-08-16 Ford Global Technologies, Llc Method for removing hydrogen sulfide from an emissions stream
US7104045B2 (en) 2004-01-28 2006-09-12 Ford Global Technologies, Llc System and method for removing hydrogen sulfide from an emissions stream
US7900440B2 (en) 2007-02-27 2011-03-08 Honda Motor Co., Ltd. Exhaust emission control device and method for internal combustion engine and engine control unit
EP1965060A1 (de) * 2007-02-27 2008-09-03 HONDA MOTOR CO., Ltd. Abgasemissionssteuerungsvorrichtung und -verfahren für einen Verbrennungsmotor
DE102008034992A1 (de) 2008-07-25 2010-01-28 Volkswagen Ag Verfahren zum Entschwefeln eines NOX-Speicherkatalysators
EP2148049A1 (de) 2008-07-25 2010-01-27 Volkswagen AG Verfahren zum Entschwefeln eines NOX-Speicherkatalysators
FR2935020A1 (fr) * 2008-08-14 2010-02-19 Renault Sas Procede pour la desulfuration d'un catalyseur d'oxydation apte a pieger des oxydes d'azote

Also Published As

Publication number Publication date
EP1183453B1 (de) 2004-04-28
JP4377075B2 (ja) 2009-12-02
JP2003500594A (ja) 2003-01-07
ES2219340T3 (es) 2004-12-01
WO2000071877A1 (de) 2000-11-30
DE50006262D1 (de) 2004-06-03
EP1183453A1 (de) 2002-03-06

Similar Documents

Publication Publication Date Title
EP1183453B1 (de) VERFAHREN ZUR ENTSCHWEFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
EP1250524B1 (de) VERFAHREN ZUR ENTSCHWEFELUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATORS
EP1272744B1 (de) VORRICHTUNG UND VERFAHREN ZUR ERMITTLUNG EINER REGENERATIONSNOTWENDIGKEIT EINES NOx-SPEICHERKATALYSATORS
EP1192343B1 (de) VERFAHREN ZUR INITIIERUNG UND ÜBERWACHUNG EINER ENTSCHWELFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR
EP1259718B1 (de) Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators
EP1301698B1 (de) Verfahren zur entschwefelung von wenigstens einem in einem abgaskanal einer verbrennungskraftmaschine angeordneten no x-speicherkatalysators
EP2253821B1 (de) Verfahren zur Reinigung der Abgase eines Verbrennungsmotors mit einem Katalysator
EP1180201B1 (de) Verfahren zur entschwefelung von einem in einem abgaskanal einer verbrennungskraftmaschine angeordneten nox-speicherkatalysator
EP1190164B1 (de) VERFAHREN ZUR ERFASSUNG EINER SCHÄDIGUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSTOR
DE10003903B4 (de) Vorrichtung und Verfahren zur Steuerung eines Betriebes eines Mehrzylindermotors für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage
DE10032560B4 (de) Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE10123148B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
EP1252420B1 (de) Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators
DE19735011B4 (de) Verbrennungsmotor mit Abgaskatalysator und Verfahren zum Betreiben eines Verbrennungsmotors
DE10115962B4 (de) Verfahren zur Entschwefelung eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10130053B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOX-Speicherkatalysators
EP1403492B1 (de) Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine
DE10010031B4 (de) Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10034143A1 (de) Verfahren zur Adaption eines Katalysatortemperatur-Sollbereichs für einen NOx-Speicherkatalysator
DE10249609B4 (de) Verfahren zur Steuerung eines NOx-Speicherkatalysators
DE10349854B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE10321311B4 (de) Verfahren zum Aufheizen eines Katalysators und Kraftmaschine mit Steuereinheit
DE10305616A1 (de) Steuergerät einer Brennkraftmaschine
DE10253613B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine eines Fahrzeugs, insbesondere eines Kraftfahrzeuges

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8141 Disposal/no request for examination