EP1252420B1 - Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators - Google Patents
Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators Download PDFInfo
- Publication number
- EP1252420B1 EP1252420B1 EP01942402A EP01942402A EP1252420B1 EP 1252420 B1 EP1252420 B1 EP 1252420B1 EP 01942402 A EP01942402 A EP 01942402A EP 01942402 A EP01942402 A EP 01942402A EP 1252420 B1 EP1252420 B1 EP 1252420B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- regeneration
- untreated
- state parameter
- catalytic converter
- lean
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1461—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1463—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0811—NOx storage efficiency
Definitions
- the invention relates to an apparatus and a method for controlling a NO x regeneration of an arranged in the exhaust system of an internal combustion engine for motor vehicles NO x storage catalytic converter with the features mentioned in the independent claims.
- NO x is reduced by the reducing agents CO and HC on the NO x storage catalyst.
- the catalyst is associated with a so-called NO x storage, which absorbs the NO x under these conditions (summarized with the catalyst component to the NO x storage catalyst).
- a storage capacity of the NO x storage catalytic converter is naturally limited, so that at regular intervals a NO x regeneration must be initiated by a change in rich atmosphere.
- a rich setpoint is given for this purpose, namely until a lambda probe arranged downstream of the NO x storage catalytic converter falls below a predetermined rich threshold value. Subsequently, a normal operation of the internal combustion engine is resumed.
- EP 872 633 A and EP 0598 917 A describe methods for NO x regeneration of an NO x storage catalytic converter, wherein a NO x charge state of the storage catalytic converter is determined and a regeneration need is determined when a threshold value for the loading state is exceeded. The regeneration is either terminated after the expiration of a predetermined duration depending on the previously determined load state or the NO x discharge is followed by calculation.
- the NO x stored in the form of nitrate must first diffuse from deeper layers of the NO x storage in the direction of the interface.
- the diffusion inhibition is not taken into account in the conventional methods for controlling the NO x regeneration, because it is assumed here that after reaching the rich threshold value, complete NO x regeneration is already present.
- the NO x regeneration is in fact only incomplete, so that a subsequent lean phase is shortened and, as a result, fuel consumption is usually increased as well.
- the object of the present invention is therefore to provide an apparatus and a method with which the NO x regeneration can be controlled so that a complete emptying of the NO x storage is ensured.
- the device has means with which the mentioned method steps can be performed.
- These means may comprise a controller in which a Procedure for controlling the multiple NOx regeneration is stored in digitized form.
- the control unit can be integrated into an already frequently existing engine control unit.
- the sizes mentioned allow a particularly reliable determination of a need to initiate the multiple NO x regeneration. In this way, an unnecessary multiple NO x regeneration and thus an unnecessary fuel consumption can be avoided.
- the multiple NO x regeneration is realized in that first an NO x storage catalytic converter is charged n times with an exhaust gas in accordance with a rich desired specification (rich phases).
- the specification of the lean target specification can also be made as a function of the value of the rich target specification.
- such a lean setpoint is at least 0.04 units to choose greater than the bold setpoint.
- the number (n) of the fat phases can be fixed in principle. It has, however proved to be advantageous, depending on a level of deviation of the To determine state parameters. For example, is the absorbency of the current Lean phase has fallen sharply compared to a previous lean phase, so will consequently increased the number. Preferably, this number, in order To prevent growth against infinity, limit by specifying a maximum value.
- a success of previous multiple NO x regenerations can also be taken into account. This can be done, for example, such that the state parameters are compared before and after the previous multiple NO x regeneration. If the multiple NO x regeneration has not led to an improvement in the storage properties of the NO x storage catalytic converter to the desired extent, then the number of fat phases for the next multiple NO x regeneration can be increased. In a particularly preferred and simple manner, such a determination can be realized by specifying threshold values for the success of the preceding multiple NO x regeneration. If these threshold values are undershot, then the number (n) is increased. It goes without saying that a reduction in the number (n) of the fat phases can be carried out in the same way by reducing the number again in the previous "successful multiple NO x regeneration", of course only up to a minimum of two fat phases.
- FIG. 1 schematically shows an internal combustion engine 10 with an exhaust gas purification system 14 arranged in the exhaust gas system.
- the exhaust gas purification system 14 comprises a precatalyst 16, for example in the form of a three-way catalytic converter and a NO x storage catalytic converter 18 arranged downstream thereof Equipped with sensors that allow to record the local air conditions, gas compositions and temperatures.
- the gas sensor 24 is for example a lambda probe, which then provides information about an air ratio immediately after the internal combustion engine 10.
- the gas sensor 26 carries a NO x -sensitive measuring device, so that NO x emissions downstream of the NO x storage 18 (NO x breakthrough emissions) can be detected.
- NO x sensor usually also allows a simultaneous determination of the air conditions, thus providing a lambda value downstream of the NO x storage 18.
- the signals detected by the sensors are usually sent to an engine control unit 28 passed.
- the engine control unit 28 among other things, procedures in digital Form, which is a control of a combustion process in the Allow internal combustion engine 10.
- an exhaust gas recirculation rate of an exhaust gas recirculation device 30, a Intake volume in a suction pipe 32 with a throttle valve 34 and not one here represented injection system can be influenced such that optionally rich, adjust stoichiometric or lean mixtures.
- Such control is known and should therefore not be explained in detail at this point.
- a control unit 36 is present - here integrated in the engine control unit 28 - in which also the signals detected by the sensors are provided.
- a procedure for controlling a multiple NO x regeneration of the NO x storage catalytic converter 18 is stored in digitized form.
- a NO x raw emission m roh is usually increased.
- the reducing agents carbon monoxide CO and unburned hydrocarbons HC necessary for the conversion of the NO x are not sufficiently available under such conditions.
- the catalyst has a NO x storage, which binds NO x as nitrate.
- NO x storage By diffusion, the nitrate migrates with increasing duration of the lean phase in deeper layers of the NO x storage.
- the nitrate bound in the deeper layers must therefore initially diffuse in the direction of an interface between the exhaust gas and the NO x storage catalyst 18. Since this process is much slower than the reaction with the reducing agents CO and HC, there is a diffusion inhibition at the end of the NO x regeneration. Nevertheless, to ensure a largely complete emptying of the NO x storage, proceed as follows:
- Every lean operating phase of the internal combustion engine 10 is at least the detected one state parameter of the NO x storage catalytic converter 18 based on the measured or calculated NO x raw -Rohemission m and the NO x -sensitive measuring device detected NO x -Durchbruchsemission m. Furthermore, a deviation of the state parameters of a current lean operating phase and the state parameters in a previous lean operating phase is determined and in the presence of a regeneration need of the NO x storage 18 depending on the deviation, the NO x regeneration performed n times (multiple NO x -Regeneration).
- a NO x -Absorptionstre A of the NO x storage 18 is suitable for a given NO x raw m raw, A.
- the determination of a deviation ⁇ A 1 is shown in FIG.
- the NO x absorption capacity A decreases with increasing raw emission m roh .
- the NO x absorption capacity A can ideally reach a value 1, that is to say the entire raw emission is bound in the NO x storage catalytic converter 18 and no breakthrough emission m can be detected at the gas sensor 26.
- the absorption capacity A decreases because first the nitrate bound at the interface must diffuse into deeper layers of the NO x storage.
- the curve 40 shows a curve of the absorption capacity A at a fresh and unloaded NO x storage catalyst 18.
- the curve 42 shows the curve of the absorption capacity A in a NO x storage catalyst 18, the storage capacity is already reduced compared to the fresh state, for example by a thermal damage or sulfur loading is present.
- the curve 44 has been detected in time subsequent to the curve 42, and here the absorption capacity is further reduced.
- FIG. 3 shows the time profiles of the breakdown emission m of a fresh storage catalytic converter (curve 52), a curve in a current lean phase (curve 56) and a profile in a preceding lean phase (curve 54).
- the time interval t begins with a complete regeneration (NOx or SO x regeneration) and ends when a predetermined breakthrough emission mt is reached. Accordingly, the time intervals to, t 'and t "can be determined from the intersection points 58, 60, 62 with the curves 52, 54, 56. By forming the difference, a deviation ⁇ t 1 is obtained between the time intervals t' and t".
- the deviations ⁇ A 1 , ⁇ t 1 can be read into a characteristic map whose output variable is a number n of the rich phases of the multiple NO x regeneration.
- a characteristic map whose output variable is a number n of the rich phases of the multiple NO x regeneration.
- very small deviations DA 1 , ⁇ t 1 , n is set to the value 1, so that the NO x regeneration is carried out in a manner known per se.
- the solid bold line represents the lambda value before the NO x storage catalyst 18, and the broken line shows the history of the lambda value downstream thereof.
- the internal combustion engine 10 is operated under lean conditions, wherein the state parameters are continuously determined in the aforementioned manner.
- a changeover to a first rich phase takes place, in which the internal combustion engine 10 is adjusted to a rich desired value SV f .
- an implementation of the absorbed NO x takes place in the region of the interface and the interface of nearby layers of the NO x storage.
- T 2 ⁇ falls further.
- the reducing agents CO and HC formed by the change in a rich atmosphere to an increased extent are therefore no longer used to the full extent for the reduction of NO x .
- a lean exhaust gas is again provided on the engine side, in accordance with a lean setpoint specification SV m .
- the NO x raw emission m roh emitted by the internal combustion engine 10 is relatively low or can largely be compensated by the still existing reducing agents CO, HC, so that re-absorption in the NO x reservoir takes place only to a very limited extent.
- the value of the lean setpoint SV m it is also conceivable to determine the value as a function of the position of the rich setpoint SV f .
- a lean setpoint SV m * exceeds the fat setpoint SV f by at least 0.04, so that if necessary also SV m * can still be in the rich range.
- a new threshold SW m * must be set, which is between the two setpoints SV m *, SV f .
- a number n of the fat phases during the multiple NO x regeneration can preferably be determined in such a way that depending on a height of the deviations (for example ⁇ A 1 , ⁇ t 1 ) a value is output with the aid of the characteristic field.
- the number n can be determined as a function of the state parameters A, m, t, m raw before and after a previous multiple NO x regeneration.
- FIG. 5 shows a corresponding flowchart. First, it is detected in a step S1 in the manner already described to what extent the state parameters of a current lean phase differ from a preceding lean phase. If there is only a slight deviation, the number n is set to 1 (step S2) and a NO x regeneration of a conventional type is performed. For larger deviations, the number n is set to a value greater than 1 (step S3).
- a subsequent query it is checked whether a previous multiple NO x regeneration has been successfully performed (step S 4).
- the state parameters are compared before and after the multiple NO x regeneration, wherein, in principle, as the positive deviation increases, an increased success, that is, a NO x storage capacity which is greater for the next lean phase, is available.
- the determined value is still limited to a maximum value n max (step S9).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
- eine NOx-Absorptionsfähigkeit des NOx-Speicherkatalysator bei einer vorgegebenen NOx-Rohemission und/oder
- eine NOx-Durchbruchsemission bei einer vorgegebenen NOx-Rohemission und/oder
- ein Zeitintervall, beginnend mit einer vollständigen Regeneration (NOx- oder SOx-Regeneration) bis zum Erreichen einer vorgegebenen NOx-Durchbruchsemission und/oder
- eine NOx-Rohemission bei einer vorgegebenen NOx-Absorptionsfähigkeit
- Figur 1
- ein Prinzipschaltbild einer Verbrennungskraftmaschine mit einer Abgasreinigungsanlage, die einen NOx-Speicherkatalysator beinhaltet;
- Figur 2
- einen Verlauf einer Absorptionsfähigkeit in Abhängigkeit von einer NOx- Rohemission;
- Figur 3
- einen Verlauf einer NOx-Durchbruchsemission in Abhängigkeit von der Zeit;
- Figur 4
- die Verläufe der Luftverhältnisse stromab und stromauf des NOx- Speicherkatalysators während einer Mehrfach-NOx-Regeneration und
- Figur 5
- ein Ablaufdiagramm zur Steuerung der Mehrfach-NOx-Regeneration.
Claims (17)
- Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang (12) einer Verbrennungskraftmaschine (10) für Kraftfahrzeuge angeordneten NOx-Speicherkatalysators (18), bei dem(a) in jeder mageren Betriebsphase der Verbrennungskraftmaschine (10) zumindest ein Zustandsparameter des NOx-Speicherkatalysators (18) anhand einer gemessenen oder berechneten NOx-Rohemission (mroh) der Verbrennungskraftmaschine (10) und einer stromab des NOx-Speicherkatalysators (18) durch eine NOx-sensitive Messeinrichtung (26) erfassten NOx-Durchbruchsemission (m) im Abgas ermittelt wird,(b) eine Abweichung des mindestens einen Zustandsparameters einer aktuellen mageren Betriebsphase von dem mindestens einen Zustandsparameter einer vorhergehenden mageren Betriebsphase ermittelt wird und(c) bei Vorliegen einer Regenerationsnotwendigkeit und in Abhängigkeit von der Abweichung eine Mehrfach-NOx-Regeneration mit einer Anzahl von n Fettphasen durchgeführt wird, wobei n ≥ 2 ist.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der mindestens eine Zustandsparameter eine NOx-Absorptionsfähigkeit (A) des NOx-Speicherkatalysators (18) bei einer vorgegebenen NOx-Rohemission (mroh,A) umfasst.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der mindestens eine Zustandsparameter eine NOx-Durchbruchsemission (m) bei einer vorgegebenen NOx-Rohemission (mroh,m) umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Zustandsparameter ein Zeitintervall (t) beginnend mit einer vollständigen NOx- oder SOx-Regeneration bis zum Erreichen einer vorgegebenen NOx-Durchbruchsemission (mt) umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine Zustandsparameter eine NOx-Rohemission (mroh) bei einer vorgegebenen NOx-Absorptionsfähigkeit (Am,roh) umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine ermittelte Zustandsparameter (A, m, t, mroh) auf mindestens einen Zustandsparameter (A0, m0, t0, mroh,0) eines frischen NOx-Speicherkatalysators normiert wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass während der Mehrfach-NOx-Regeneration der NOx-Speicherkatalysator (18)in n Fettphasen mit einem Abgas entsprechend einer fetten Sollvorgabe (SVf) beaufschlagt wird, bis jeweils stromab des NOx-Speicherkatalysators (18) ein fetter Schwellenwert (SWf) entsprechend einem Lambdawert im Bereich von λ = 0,999 bis 0,95 erreicht wird undjeweils beginnend mit Ende der Fettphasen in n-1 bis n Magerphasen mit einem Abgas entsprechend einer mageren Sollvorgabe (SVm, SVm*) beaufschlagt wird, bis stromab des NOx-Speicherkatalysators (18) ein magerer Schwellenwert (SWm, SWm*) im Bereich von λ = 1,001 bis 1,2 erreicht wird.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die magere Sollvorgabe (SVm) im Bereich von λ = 1,05 bis 1,5 liegt.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die magere Sollvorgabe (SVm*) einen Lambdawert aufweist, der zumindest um 0,04 über der fetten Sollvorgabe (SVf) liegt.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl (n) der Fettphasen in Abhängigkeit von einer Höhe der Abweichung des mindestens einen Zustandsparameters (A, m, t, mroh) bestimmt wird.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Anzahl (n) durch einen vorgegebenen Maximalwert (nmax) begrenzt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl (n) der Fettphasen in Abhängigkeit von dem mindestens einen Zustandsparameter (A, m, t, mroh) vor und nach einer vorhergehenden Mehrfach-NOx-Regeneration bestimmt wird.
- Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die Anzahl (n) erhöht wird, wenn eine Abweichung des mindestens einen Zustandsparameters (A, m, t, mroh) vor der Mehrfach-NOx-Regeneration und nach derselben einen vorgegebenen Schwellenwert (SWM,A, SWM,m, SWM,t, SWM,m,roh) unterschreitet.
- Vorrichtung zur Steuerung einer NOx-Regeneration eines im Abgasstrang (12) einer Verbrennungskraftmaschine (10) für Kraftzeuge angeordneten NOx-Speicherkatalysators (18), bei der Mittel vorhanden sind, mit denen(a) in jeder mageren Betriebsphase der Verbrennungskraftmaschine (10) zumindest ein Zustandsparameter des NOx-Speicherkatalysators (18) anhand einer gemessenen oder berechneten NOx-Rohemission (mroh) der Verbrennungskraftmaschine (10) und einer stromab durch eine NOx-sensitive Messeinrichtung (26) erfassten NOX-Durchbruchsemission (m) im Abgas ermittelbar ist,(b) eine Abweichung des mindestens einen Zustandsparameters einer aktuellen mageren Betriebsphase von dem mindestens einen Zustandsparameter einer vorhergehenden mageren Betriebsphase ermittelbar ist und(c) bei Vorliegen einer Regenerationsnotwendigkeit und in Abhängigkeit von der Abweichung eine Mehrfach-NOx-Regeneration mit einer Anzahl von n Fettphasen und n ≥ 2 durchführbar ist.
- Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass diese Mittel ein Steuergerät (36) umfassen, in dem eine Prozedur zur Steuerung der Mehrfach-NOx-Regeneration in digitalisierter Form hinterlegt ist.
- Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass das Steuergerät (36) Teil eines Motorsteuergerätes (28) ist.
- Vorrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass stromab des NOx-Speicherkatalysators (18) ein zur Bestimmung der Luftverhältnisse geeigneter Gassensor (26) im Abgasstrang (12) angeordnet ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2000101310 DE10001310A1 (de) | 2000-01-14 | 2000-01-14 | Vorrichtung und Verfahren zur Steuerung einer NOx-Regeneration eines NOx-Speicherkatalysators |
DE10001310 | 2000-01-14 | ||
PCT/EP2001/000242 WO2001051778A1 (de) | 2000-01-14 | 2001-01-10 | Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1252420A1 EP1252420A1 (de) | 2002-10-30 |
EP1252420B1 true EP1252420B1 (de) | 2005-11-16 |
Family
ID=7627493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01942402A Expired - Lifetime EP1252420B1 (de) | 2000-01-14 | 2001-01-10 | Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1252420B1 (de) |
DE (2) | DE10001310A1 (de) |
WO (1) | WO2001051778A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10217455B4 (de) * | 2002-04-19 | 2010-01-07 | Audi Ag | Verfahren zum Betrieb eines NOx-Adsorbers sowie NOx-Adsorber-Steuerung |
DE10226873B4 (de) * | 2002-06-12 | 2012-05-31 | Volkswagen Ag | Verfahren zur Steuerung der Betriebsartenwahl einer Verbrennungskraftmaschine |
DE10249609B4 (de) * | 2002-10-18 | 2011-08-11 | Volkswagen AG, 38440 | Verfahren zur Steuerung eines NOx-Speicherkatalysators |
DE102004011582B4 (de) * | 2004-03-10 | 2011-04-14 | Audi Ag | Verfahren zur Verringerung der Abgasemissionen von Kraftfahrzeugverbrennungsmotoren sowie Kraftfahrzeug |
GB2484505A (en) * | 2010-10-12 | 2012-04-18 | Gm Global Tech Operations Inc | Method and apparatus for regeneration of lean NOx trap in an internal combustion engine |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5437153A (en) * | 1992-06-12 | 1995-08-01 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
DE4415650C2 (de) * | 1994-05-04 | 1997-04-03 | Daimler Benz Ag | Verfahren zur Beeinflussung der Zeitdauer bis zum Erreichen der Aktivierungstemperatur einer im Abgasstrang einer luftverdichtenden Einspritzbrennkraftmaschine angeordneten Abgasreinigungsvorrichtung |
DE19716275C1 (de) * | 1997-04-18 | 1998-09-24 | Volkswagen Ag | Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine |
DE19750226C1 (de) * | 1997-11-13 | 1998-10-29 | Daimler Benz Ag | Motorregelsystem für einen Dieselmotor |
DE19753718C1 (de) * | 1997-12-04 | 1999-07-08 | Daimler Chrysler Ag | Verfahren zum Betreiben eines Dieselmotors |
DE19800665C1 (de) * | 1998-01-10 | 1999-07-01 | Degussa | Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators |
DE19823921A1 (de) * | 1998-05-28 | 1999-12-02 | Siemens Ag | Verfahren zur Überprüfung des Wirkungsgrades eines NOx-Speicherkatalysators |
DE19823923C2 (de) * | 1998-05-28 | 2003-04-17 | Siemens Ag | Verfahren zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine |
DE19828609A1 (de) * | 1998-06-26 | 1999-12-30 | Siemens Ag | Verfahren zur Regeneration eines NO¶x¶-Speicherkatalysators für eine Brennkraftmaschine |
DE19830829C1 (de) * | 1998-07-09 | 1999-04-08 | Siemens Ag | Verfahren zur Regeneration eines NOx-Speicherkatalysators |
-
2000
- 2000-01-14 DE DE2000101310 patent/DE10001310A1/de not_active Withdrawn
-
2001
- 2001-01-10 EP EP01942402A patent/EP1252420B1/de not_active Expired - Lifetime
- 2001-01-10 DE DE50108080T patent/DE50108080D1/de not_active Expired - Lifetime
- 2001-01-10 WO PCT/EP2001/000242 patent/WO2001051778A1/de active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP1252420A1 (de) | 2002-10-30 |
DE10001310A1 (de) | 2001-07-19 |
DE50108080D1 (de) | 2005-12-22 |
WO2001051778A1 (de) | 2001-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1183453B1 (de) | VERFAHREN ZUR ENTSCHWEFELUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSATOR | |
EP1175252B1 (de) | Anordnung zur reinigung eines abgases einer verbrennungskraftmaschine und verfahren zum betrieb einer solchen anordnung | |
DE19961165A1 (de) | Verfahren zur Entschwefelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NO¶x¶-Speicherkatalysators | |
EP1272744B1 (de) | VORRICHTUNG UND VERFAHREN ZUR ERMITTLUNG EINER REGENERATIONSNOTWENDIGKEIT EINES NOx-SPEICHERKATALYSATORS | |
DE102017115399A1 (de) | Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors | |
DE102015215365A1 (de) | Verfahren zur Regeneration von Abgasnachbehandlungskomponenten eines Verbrennungsmotors sowie Abgasnachbehandlungsvorrichtung für einen Verbrennungsmotor | |
EP1252420B1 (de) | Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators | |
EP1301698B1 (de) | Verfahren zur entschwefelung von wenigstens einem in einem abgaskanal einer verbrennungskraftmaschine angeordneten no x-speicherkatalysators | |
EP1190164B1 (de) | VERFAHREN ZUR ERFASSUNG EINER SCHÄDIGUNG VON WENIGSTENS EINEM IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NOx-SPEICHERKATALYSTOR | |
EP1179124B1 (de) | Verfahren zur entschwefelung | |
DE10160704B4 (de) | Verfahren zum Betrieb von Abgasreinigungsvorrichtungen | |
EP1370758B1 (de) | Verfahren zur steuerung eines warmlaufs eines katalysatorsystems | |
DE10115962B4 (de) | Verfahren zur Entschwefelung eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators | |
DE10130053B4 (de) | Verfahren und Vorrichtung zur Entschwefelung eines NOX-Speicherkatalysators | |
DE10010031B4 (de) | Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators | |
DE10034143A1 (de) | Verfahren zur Adaption eines Katalysatortemperatur-Sollbereichs für einen NOx-Speicherkatalysator | |
DE60108441T2 (de) | Verfahren zur Erkennung der Betriebsbereitschaft eines Katalysator für den Auspuff einer Brennkraftmaschine | |
EP1188915B1 (de) | Verfahren zur Regelung einer NOx-Regeneration eines NOx-Speicherkatalysators | |
EP1210509B1 (de) | Verfahren zur regelung eines verbrennungsvorgangs in einer verbrennungskraftmaschine wärhrend einer regeneration eines speicherkatalysators | |
DE10036390B4 (de) | Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators | |
DE102017201399A1 (de) | Abgasnachbehandlungssystem | |
DE10032560A1 (de) | Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator | |
DE10114523B4 (de) | Verfahren zur Steuerung einer NOx-Regeneration eines im Abgasstrang einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators | |
EP1264096B1 (de) | Verfahren und vorrichtung zur durchführung einer nox-regeneration eines in einem abgaskanal einer verbrennungskraftmaschine angeordneten nox-speicherkatalysators | |
EP1435444A2 (de) | Verfahren zum emissionsstabilen Betrieb eines Verbrennungsmotors sowie emissionsstabiles Kraftfahrzeug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020814 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: POTT, EKKEHARD Inventor name: HINZE, SOEREN |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20041206 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50108080 Country of ref document: DE Date of ref document: 20051222 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060301 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060817 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170131 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170131 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50108080 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108080 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180110 |