DE19758744C2 - Laser Scanning Microscope - Google Patents

Laser Scanning Microscope

Info

Publication number
DE19758744C2
DE19758744C2 DE19758744A DE19758744A DE19758744C2 DE 19758744 C2 DE19758744 C2 DE 19758744C2 DE 19758744 A DE19758744 A DE 19758744A DE 19758744 A DE19758744 A DE 19758744A DE 19758744 C2 DE19758744 C2 DE 19758744C2
Authority
DE
Germany
Prior art keywords
laser
monitor diode
scanning microscope
optics
beam splitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19758744A
Other languages
German (de)
Inventor
Guenter Schoeppe
Stefan Wilhelm
Ulrich Simon
Hartmut Heinz
Bernhard Groebler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Microscopy GmbH
Original Assignee
Carl Zeiss Jena GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7818405&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19758744(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Carl Zeiss Jena GmbH filed Critical Carl Zeiss Jena GmbH
Application granted granted Critical
Publication of DE19758744C2 publication Critical patent/DE19758744C2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Laserscanmikroskop mit einer Laseranordnung zur Beleuchtung einer zu untersuchenden Probe und einer die Laserleistung überwachenden Monitordiode sowie einer das Probenlicht detektierenden Detektorvorrichtung, wobei der Laseranordnung (13.1, 13.2) ein Strahlteiler (18) nachgeordnet ist, der einen Teil des Laserlichts zu der Monitordiode (19) auskoppelt und zwischen dem Strahlteiler (18) und der Monitordiode (19) eine DOLLAR A wellenlängenselektiv ansteuerbare Filtereinheit (21) vorgesehen ist, die auf einzelne Wellenlängen der Laseranordnung (13.1, 13.2) einstellbar ist, wobei vermittels der Monitordiode (19) die von der Filtereinheit (21) durchgelassenen Intensitäten einzelner Wellenlängen der Laseranordnung (13.1, 13.2) meßbar sind.Laser scanning microscope with a laser arrangement for illuminating a sample to be examined and a monitor diode monitoring the laser power as well as a detector device which detects the sample light, the laser arrangement (13.1, 13.2) being followed by a beam splitter (18) which forms part of the laser light to the monitor diode (19) decouples and between the beam splitter (18) and the monitor diode (19) a DOLLAR A wavelength selectively controllable filter unit (21) is provided, which can be adjusted to individual wavelengths of the laser arrangement (13.1, 13.2), the monitor diode (19) being used by the Filter unit (21) transmitted intensities of individual wavelengths of the laser arrangement (13.1, 13.2) can be measured.

Description

Im Handbook of Biological Confocal Microscopy, Second Edition, Plenum Press New York and London 1995 ist auf S. 519, Fig. 6 eine Fasereinkopplungsoptik beschrieben.In the Handbook of Biological Confocal Microscopy, Second Edition, Plenum Press New York and London 1995 on page 519, Fig. 6 a fiber coupling optics is described.

Auf Seite 595, Fig. 14 wird ein telezentrisches System für mehrere Detektionsstrahlengänge beschrieben.On page 595, Fig. 14, a telecentric system for multiple detection beam paths is described.

US 5283433 zeigt eine Einkoppeloptik für Detektionsstrahlengänge.US 5283433 shows a coupling optics for Detection beam paths.

DE 43 23 129 A1 beschreibt in Spalte 6 zentrierbare und bezüglich ihres Durchmessers variierbare Konfokalblenden. US 5444528, US 5377003, US 5317379, US 5216484 beschreiben die Wirkungsweise eines AOTF.DE 43 23 129 A1 describes in column 6 centerable confocal diaphragms which can be varied in terms of their diameter. US 5444528, US 5377003, US 5317379, US 5216484 describe the mode of action of an AOTF.

US 5081350, EP 283256 A1, WO 90/00754 beschreiben eine Faserverbindung zwischen Laser und Scaneinheit.US 5081350, EP 283256 A1, WO 90/00754 describe one Fiber connection between laser and scanning unit.

In EP 283256 A2 wird ein Mikroskop mit scannender Faser beschrieben, bei der an der Faser ausgangsseitig eine Optik befestigt ist, um das Licht in einem Lichtpunkt zu konvergieren. Zur Überwachung der Laserleistung ist eine Monitordiode vorgesehen.EP 283256 A2 describes a microscope with scanning fiber described in which an optic on the output side of the fiber is attached to the light in a point of light converge. To monitor the laser power is a Monitor diode provided.

In einem Laser- Scanning-Mikroskop werden beleuchtungsseitig jedoch mehrere Wellenlängen eingestrahlt und auch mehrere Wellenlängenbänder detektiert.In a laser scanning microscope, the illumination side however, several wavelengths irradiated and also several Wavelength bands detected.

Aufgabe der vorliegenden Erfindung ist es, bei einer Beleuchtung mit mehreren Wellenlängen die Zuverlässigkeit des Meßergebnisses auf einfache Weise zu erhöhen.The object of the present invention is in a Lighting with multiple wavelengths the reliability of the To increase the measurement result in a simple manner.

Die Aufgabe wird bei einem Laserscanmikroskop nach dem Oberbegriff des Anspruchs 1 durch die kennzeichnenden Merkmale gelöst.The task is performed using a laser scanning microscope Preamble of claim 1 by the characterizing Features resolved.

Bevorzugte Weiterbildungen sind Gegenstand der abhängigen Ansprüche. Preferred developments are the subject of the dependent Claims.  

Darstellung der Wirkungsweise und Vorteile der erfindungsgemäßen Lösungen anhand der Ausführungsbeispiele gemäß der schematischen Darstellungen Fig. 1-6Representation of the mode of operation and advantages of the solutions according to the invention on the basis of the exemplary embodiments according to the schematic representations of FIGS. 1-6

Es zeigen:Show it:

Fig. 1 eine modulare Anordnung aus Mikroskop M, Scankopf S und Lasereinheit Fig. 1 shows a modular arrangement of microscope M, scan head S and laser unit

Fig. 2 eine Darstellung des Strahlverlaufs im Scankopf S Fig. 2 is an illustration of the beam path in the scan head S

Fig. 3 die optische Wirkung der verschieblichen Kollimationsoptik 16 Fig. 3, the optical effect of the displaceable collimating optics 16

Fig. 4 die optische Wirkung der in Richtung der optischen Achse verschieblichen Pinholes Fig. 4 shows the optical effect of the pinholes displaceable in the direction of the optical axis

Fig. 5 die optische Wirkung der senkrecht t zur optischen Achse verschieblichen Pinholes bei verschiedenen reflektierenden Strahlteilern Fig. 5 shows the optical effect of the perpendicular to the optical axis t displaceable pinholes in various reflective beamsplitters

Fig. 6 Scankopf S, Mikroskop M sowie eine Faser hinter dem Pinhole im Detektionsstrahlengang
Fig. 6 scan head S, microscope M and a fiber behind the pinhole in the detection beam path

  • 1. In Fig. 1 sind schematisch eine Mikroskopeinheit M und ein Scankopf S dargestellt, die eine gemeinsame optische Schnittstelle über eine Zwischenabbildung Z gemäß Fig. 2 ausweisen.
    Der Scankopf S kann sowohl an den Phototubus eines aufrechten Mikroskopes sowie auch vorteilhaft an einen seitlichen Ausgang eines inversen Mikroskopes.
    In Fig. 1 ist ein zwischen Auflichtscan und Durchlichtscan mitttels eines schwenkbaren Spiegels 14 umschaltbarer mikroskopischer Strahlengang dargestellt, mit Lichtquelle 1, Beleuchtungsoptik 2, Strahlteiler 3, Objektiv 4, Probe 5, Kondensor 5, Lichtquelle 7, Empfängeranordnung 8, einer ersten Tubuslinse 9, einem Beobachtungsttrahlengang mit einer zweiten Tubuslinse 10 und einem Okular 11 sowie einem Strahlteiler zur Einkopplung des Scanstrahls dargestellt.
    Ein Lasermodul 13.1, 13.2 nimmt die Laser auf und ist über Lichtleitfasern 14.1, 14.2 mit der Lasereinkoppeleinheit des Scankopfes S verbunden.
    Die Einkopplung der Lichtleitfasern 14.1,14.2 erfolgt mittels einer verschieblichen Kollimationsoptik 16, auf die noch näher eingegangen wird, sowie Strahlumlenkelementen 17.1, 17.2.
    Mittels eines teildurchlässigen Spiegels 18 wird ein Überwachungsstrahlengang in Richtung einer Monitordiode 19, der, vorteilhaft auf einem nicht dargestellten drehbaren Filterrad Linienfilter 21 sowie Neutralfilter 20 vorgeordnet sind, ausgeblendet.
    Die eigentliche Scaneinheit besteht aus Scanningobjektiv 22, Scanner 23, Hauptstrahlteiler 24 und einer gemeinsamen Abbildungsoptik 25 für Detektionskanäle 26.1-26.4.
    Ein Umlenkprisma 27 hinter der Abbildungsoptik 25 spiegelt die vom Objekt 5 kommende Strahlung in Richtung dichroitischer Strahleiler 28 im konvergenten Strahlengang der Abbildungsoptik 25, denen in Richtung und senkrecht zur optischen Achse verstellbare und in ihrem Durchmesser veränderbare Pinholes 29, individuell für jeden Detektionskanal sowie Emissionsfilter 30 und geeignete Empfängerelemente 31 (PMT) nachgeordnet sind.
    Die Strahlteiler 27, 28 können vorteilhaft, wie in Fig. 5 schematisch dargestellt, als Teilerrad mit mehreren Positionen, motorisch durch Schrittmotoren umschaltbar, ausgebildet sein.
    1. A microscope unit M and a scan head S are shown schematically in FIG. 1, which have a common optical interface via an intermediate image Z according to FIG. 2.
    The scan head S can be connected to the phototube of an upright microscope as well as advantageously to a lateral exit of an inverted microscope.
    In Fig. 1 a switchable between Auflichtscan and transmitted light scanning mitttels a pivotable mirror 14 microscopic beam path is shown, with the light source 1, the illumination optics 2, beam splitter 3, lens 4, sample 5, the condenser 5, the light source 7, receiver arrangement 8, a first tube lens 9, an observation beam path with a second tube lens 10 and an eyepiece 11 and a beam splitter for coupling the scan beam.
    A laser module 13.1 , 13.2 receives the lasers and is connected to the laser coupling unit of the scan head S via optical fibers 14.1 , 14.2 .
    The optical fibers 14.1 , 14.2 are coupled in by means of displaceable collimation optics 16 , which will be discussed in more detail below, and beam deflection elements 17.1 , 17.2 .
    By means of a partially transparent mirror 18 , a monitoring beam path in the direction of a monitor diode 19 , which is advantageously arranged upstream of a line filter 21 and a neutral filter 20 , which is advantageously arranged on a rotatable filter wheel, not shown.
    The actual scanning unit consists of scanning objective 22 , scanner 23 , main beam splitter 24 and a common imaging optics 25 for detection channels 26.1-26.4 .
    A deflecting prism 27 behind the imaging optics 25 reflects the radiation coming from the object 5 in the direction of the dichroic beam guide 28 in the convergent beam path of the imaging optics 25 , the pinholes 29 which can be adjusted in the direction and perpendicular to the optical axis and whose diameter can be changed, individually for each detection channel and emission filter 30 and suitable receiver elements 31 (PMT) are arranged downstream.
    The beam splitters 27 , 28 can advantageously, as shown schematically in FIG. 5, be designed as a dividing wheel with a plurality of positions, which can be switched over by stepper motors.
  • 2. Vorteilhaft erfolgt eine Einkopplung von UV-Strahlung in Glasfaser 14.1, vorzugsweise einer Single-Mode-Glasfaser mittels eines AOTF, als Strahlablenker, d. h. wenn Strahl nicht auf Fasereingang fallen soll, wird er mittels des AOTF vom Fasereingang, beispielsweise in Richtung einer nicht dargestellten Lichtfalle, abgelenkt.
    Die Einkoppeloptik 33 zur Einkopplung der Laserstrahlung weist zur Einkopplung nicht dargestellte Linsensysteme auf, deren Brennweite durch den Strahlquerschnitt der Laser und die für die optimale Einkopplung erforderliche numerische Apertur festgelegt ist
    Im Lasermodul 13.2, sind Einzel- und Multiwellenlängenlaser vorgesehen, die einzeln oder gemeinsam über einen AOTF in eine oder mehrere Fasern eingekoppelt werden.
    Weiterhin kann die Einkoplung auch über mehrere Fasern gleichzeitig erfolgen, deren Strahlung mikroskopseitig nach Durchlaufen einer Anpaßoptik durch Farbvereiniger gemischt wird.
    Auch die Mischung der Strahlung verschiedener Laser am Fasereingang ist möglich
    und kann anhand der schematisch dargestellten, auswechselbar und schaltbar ausgebildeten Teilerspiegel 39 erfolgen.
    2. Advantageously, UV radiation is coupled into glass fiber 14.1 , preferably a single-mode glass fiber by means of an AOTF, as a beam deflector, ie if the beam is not supposed to fall on the fiber input, it is by means of the AOTF from the fiber input, for example in the direction of one light trap shown, deflected.
    The coupling optics 33 for coupling the laser radiation have lens systems, not shown, for coupling, the focal length of which is determined by the beam cross section of the laser and the numerical aperture required for the optimal coupling
    In the laser module 13.2 , single and multi-wavelength lasers are provided, which are coupled individually or together via an AOTF into one or more fibers.
    Furthermore, the coupling can also take place simultaneously via several fibers, the radiation of which is mixed on the microscope side after passing through a matching lens by color combiners.
    It is also possible to mix the radiation from different lasers at the fiber entrance
    and can take place on the basis of the schematically illustrated, replaceable and switchable divider mirror 39 .
  • 3. Die in Fig. 2 und 3 divergent aus dem Faserende der Fasern 14.1, 2 an der Scaneinheit S austretende Laserstrahlung wird mittels der Kollimationsoptik 16 auf einen Unendlichstrahl kollimiert.
    Des erfolgt vorteilhaft mit einer einzelnen Linse, die durch Verschiebung entlang der optischen Achse mittels einer über eine zentrale Ansteuereinheit 34 ansteuerbare Steuereinheit 37 eine Fokussierungsfunktion hat, indem ihr Abstand zum Ende der Lichtleitfaser 14.1, 2 an der Scaneinheit erfindungsgemäß veränderbar ist.
    Die Wirkung Verschiebung der Kollimationsoptik 16 ist schematisch in Fig. 3a und 3b dargestellt.
    In Fig. 3a ist der Strahlverlauf für zwei unterschiedlixche Wellenlängen λ1, λ2
    dargestellt. Da für eine polychromatische Lichtquelle mittels einer feststehenden Abbildungsoptik in eine Bildebene nur für eine mittlere Wellenlänge des Spektralbereiches abgebildet wird, wird mittels der Ansteuereinheit 37 der Abstand von Faserende und Kollimationsoptik verändert. Für die beiden dargestellten Wellenlängen ergeben sich die Linsenstellungen S1, S2, um für beide Wellenlängen die gleiche Fokuslage zu gewährleisten.
    Dadurch wird vorteilhaft bewirkt, daß im Falle der Fluoreszenzmikroskopie die Fluoreszenzstrahlung im Fokus des auf unendlich eingestellten Objektives 4 entsteht und die Anregungsstrahlung in dieselbe Ebene fokussiert wird.
    Es können auch mehrere Fasern und Faserkollimatoren zur Einstellung unterschiedlicher chromatischer Kompensationen für unterschiedliche Anregungswellenklängen Verwendung finden.
    Weiterhin kann eine hierdurch eine chromatische Korrektion der eingesetzten Optik, insbesondere der Mikroskopobjektive erfolgen.
    Durch mehrere Einkoppelfasern und Kollimationsoptiken für unterschiedliche Wellenlängen können unabhängig verschiedene chromatische Kompensationen eingestellt werden.
    Die variable Kollimation durch Verschiebung der Linse 16 kann auch zur Realisierung eines z-scans verwendet werden, indem mittels der verschieblichen Kollimatorlinse 16 der Fokus im Präparat in z-Richtung verschoben wird und ein optischer Schnitt nach dem anderen detektiert wird. Dies ist in Fig. 3b für eine Wellenlänge λ dargestellt, wobei den Stellungen S1, S2 die Fokuslagen F1, F2 entsprechen.
    3. The laser radiation emerging from the fiber end of the fibers 14.1 , 2 at the scanning unit S in FIGS . 2 and 3 is collimated to an infinity beam by means of the collimation optics 16 .
    This is advantageously done with a single lens, which has a focusing function by displacement along the optical axis by means of a control unit 37 which can be controlled via a central control unit 34 , in that its distance from the end of the optical fiber 14.1 , 2 on the scanning unit can be changed according to the invention.
    The effect of shifting the collimation optics 16 is shown schematically in FIGS . 3a and 3b.
    In FIG. 3a the beam path is for two different wavelengths λ1, λ2
    shown. Since for a polychromatic light source by means of a fixed imaging optics in an image plane is only imaged for a medium wavelength of the spectral range, the distance between the fiber end and the collimation optics is changed by means of the control unit 37 . The lens positions S1, S2 result for the two illustrated wavelengths in order to ensure the same focus position for both wavelengths.
    This advantageously has the effect that, in the case of fluorescence microscopy, the fluorescence radiation arises in the focus of the objective 4 set to infinity and the excitation radiation is focused in the same plane.
    Several fibers and fiber collimators can also be used to set different chromatic compensations for different excitation wave sounds.
    Furthermore, the optics used, in particular the microscope objectives, can be corrected chromatically as a result.
    Different chromatic compensations can be set independently using several coupling fibers and collimation optics for different wavelengths.
    The variable collimation by displacement of the lens 16 can also be used for realizing a z-scans by the z-direction is displaced by means of the displaceable collimator lens 16, the focus in the specimen in an optical section and after the other is detected. This is shown in FIG. 3b for a wavelength λ, the positions S1, S2 corresponding to the focus positions F1, F2.
  • 4. In Fig. 2 dient eine Monitordiode 19, die auch, hier nicht dargestellt, eine vorgesetzte Fokussierlinse aufweisen kann wirkt in Verbindung mit einem linien- oder bereichsselektiven Filterrad oder Filterschieber 21, angesteuert von einer Steuereinheit 36, zur permanenten Überwachung der in das Scanmodul eingekoppelten Laserstrahlung, insbesondere um die Leistung in einer bestimmten Laserlinie isoliert zu kontrollieren und gegebenenfalls mittels eines Regelsignales der Ansteuereinheit 34 zu stabilisieren.
    Die Detektion mittels der Monitordiode 19 erfaßt das Laserrauschen und Variationen aufgrund des mechanisch- optischen Übertragungssystems.
    Aus der detektierten momentanan Laserleistung kann dabei ein Fehlersignal abgeleitet werden, das on-line direkt auf den Laser oder einen dem Laser nachgeschalteten Intensitätsmodulator (ASOM, AOTF, EOM, Shutter) zwecks der Stabilisierung der in das Scanmodul eingestrahlten Laserleistung zurückwirkt.
    Durch die Ansteuerung der Filtereinheit 21 kann somit eine wellenlängenweise Stabilisierung der Intensität und Laserleistungskontrolle erfolgen.
    Durch eine Verbindung zur Detektion 31 (PMT) und jeweils zur zentralen Ansteuereinheit kann durch Bildung von Signalquotienen/oder Signalsubtraktion des Detektionssignales und des Monitiorsignales der Diode 19 eine Rauschverminderung bewirkt werden, indem das entsprechende Sensorsignal eines Detektionskanels pixelweise als Pixel-Bildinformation auf das Signal der Monitordiode normiert wird (z. B. Division), um auf diese Weise Intensitätsfluktuationen im Bild zu verringern.
    4. In FIG. 2, a monitor diode 19 is used , which may also have a front focusing lens, not shown here, and works in conjunction with a line- or area-selective filter wheel or filter slide 21 , controlled by a control unit 36 , for the permanent monitoring of the scan module coupled laser radiation, in particular to control the power in a certain laser line in an isolated manner and, if necessary, to stabilize it by means of a control signal from the control unit 34 .
    The detection by means of the monitor diode 19 detects the laser noise and variations due to the mechanical-optical transmission system.
    An error signal can be derived from the currently detected laser power, which has an on-line effect directly on the laser or an intensity modulator (ASOM, AOTF, EOM, shutter) connected downstream of the laser for the purpose of stabilizing the laser power radiated into the scan module.
    By activating the filter unit 21 , wavelength stabilization of the intensity and laser power control can thus take place.
    A connection to the detection 31 (PMT) and in each case to the central control unit can be used to reduce the noise by forming signal quotients / or signal subtraction of the detection signal and the monitor signal of the diode 19 , in that the corresponding sensor signal of a detection channel pixel by pixel as pixel image information on the signal of the Monitor diode is normalized (e.g. division), in order to reduce intensity fluctuations in the image.
  • 5. In Fig. 1 sind schematisch in verschiedener Weise verstellbare Pinholes 29 in den Detektionskanälen 26.1-26.4 dargestellt. Sie können insbesondere senkrecht zur optischen Achse oder in Richtung der optischen Achse verschiebbar angeordnet sowie in bekannter Weise in ihrem Durchmesser, beispielsweise mittels Scherenmechanismus oder Katzenauge veränderbar sein.
    Die Verstellung der Pinholedurchmesser gestattet ihre Anpassung an die Durchmesser der Airyscheibchen bei unterschiedlichen Beobachtungswellenlängen.
    In Fig. 4 und 5 sind schematisch Ansteuermittel 38 für die Verstellung oder Verschiebung der einzelnen Pinholes dargestellt, die Datenleitungen zur zentralen Ansteuereinheit 34 aufweisen.
    Die ansteuerbare Verschiebbarkeit der Pinholes in Richtung der optischen Achse ist in Fig. 4 schematisch dargestellt. Sie ist für den Ausgleich von optischen Fehlern, insbesondere chromatischen Längsabberationen, vorteilhaft. Diese Fehler können beim Scanobjektiv 22, aber auch beispielsweise bei der für die Detektionskanäle gemeinsamen Abbildungsoptik 25 auftreten.
    Für unterschiedliche Wellenlängen λ1, λ2 ergeben sich durch chromatische Längsabweichungen unterschiedliche Fokuslagen, die unterschiedlichen Pinholelagen P1, P2 entsprechen.
    Bei Auswechslung abbildender Optik, beispielsweise des Mikroskopobjektives,
    kann bei bekannten chromatischen Längsfehler der eingesetzten Optik über die Ansteuereinheit 34 und Steuer- und Verschiebemittel 38 eine automatische Verschiebung der Pinholes entlang der optischen Achse erfolgen.
    Es kann eine genaue Einstellung auf die verwendete Anregungswellenlänge erfolgen.
    Durch eine gemeinsame Abbildungsoptik 25 für alle Detektionskanäle, die vorteilhaft nur aus einem optischen Glied besteht, wird das vom Scannobjektiv 22 erzeugte, im Unendlichen liegende Bild in die Pinholeebene abgebildet. Die gemeinsame Abbildungsoptik 25 bewirkt eine verbesserte Transmissionseffizienz gegenüber bekannten Lösungen.
    Im Zusammenwirken der Abbildungsoptik mit individuell verstellbaren Pinholes in den einzelnen Detektionskanälen kann dennoch eine genaue Justierung erfolgen.
    5. In FIG. 1, pinholes 29 in the detection channels 26.1-26.4 are shown schematically in various ways. In particular, they can be arranged to be displaceable perpendicular to the optical axis or in the direction of the optical axis, and their diameter can be changed in a known manner, for example by means of a scissor mechanism or a cat's eye.
    The adjustment of the pinhole diameter allows them to be adapted to the diameter of the Airy discs at different observation wavelengths.
    In Figs. 4 and 5 drive means 38 are shown schematically for the adjustment or shifting of the individual pinholes, the data lines have to the central control unit 34th
    The controllable displaceability of the pinholes in the direction of the optical axis is shown schematically in FIG. 4. It is advantageous for the compensation of optical errors, in particular chromatic longitudinal aberrations. These errors can occur with the scan lens 22 , but also, for example, with the imaging optics 25 common to the detection channels.
    For different wavelengths λ1, λ2, chromatic longitudinal deviations result in different focus positions, which correspond to different pinhole positions P1, P2.
    When replacing imaging optics, for example the microscope objective,
    With known chromatic longitudinal errors of the optics used, the pinholes can be automatically shifted along the optical axis via the control unit 34 and control and displacement means 38 .
    An exact setting can be made to the excitation wavelength used.
    By means of a common imaging optics 25 for all detection channels, which advantageously consists of only one optical element, the image generated by the scanning objective 22 and lying in infinity is imaged in the pinhole plane. The common imaging optics 25 bring about an improved transmission efficiency compared to known solutions.
    In cooperation with the imaging optics with individually adjustable pinholes in the individual detection channels, an exact adjustment can nevertheless be carried out.
  • 6. Im Strahlengang können unterschiedliche dichroitische Strahlteiler 28 eingesetzt werden, je nach verwendeter Wellenlänge, um nur diese zu sperren und einem Detektionsstrahlengang zuzuführen.
    Es sind daher (nicht dargestellte) Teilerrevolver oder Teierräder in verschiedenen Strahlengängen zur Einschwenkung unterschiedlicher möglichst kleiner Teiler vorgesehen, insbesondere Teilerräder, derene Radachse in 45 Grad gegen die optische Achse geneigt ist, so daß die Teiler immer nur in der Reflexionsebene verschoben werden.
    Da die auf den Teilerrädern angebrachten Teiler 28 nicht genau gleich justiert sein können oder Schwankungen innerhalb ihrer Justierung oder Standard - Keiltoleranzen unterschiedliche Strahlablenkwinkel verursachen können, erfolgt gemäß der Darstellung in Fig. 5 eine Verschiebung des jeweiligen Pinholes über Steuereinheit 38 senkrecht zur optischen Achse entsprechend der Strahlablenkung.
    Hier sind schematisch zwei durch unterschiedliche Stellungen von Teilern 28.1, 28.2 auf einem nicht dargestellten durch eine Steuereinheit 36 angetriebenen Teilerrad dargestellt, die senkrecht zur optischen Achse verschobene Fokuslagen in der Ebene der Pinholes 29 bewirken.
    Hierbei kann mittels der Ansteuereinheit 34 über die Steuereinheiten 36,38 eine Kopplung der Stellung des Pinhole 29 mit der Teilerradstellung für die Teiler 28 erfolgen, d. h. für alle Teilerkonfigurationen verschiedener Teilerrevolver ist eine optimale Pinholeposiition abgespeichert und abrufbar.
    Dies betrifft nicht nur die Stellung eines bestimmten Teilerrades, sonden auch die Stellung mehrerer Teilerräder, so daß immer die jeweils optimale Pinholepositon automatisch eingestellt wird.
    6. Different dichroic beam splitters 28 can be used in the beam path, depending on the wavelength used, in order to block only these and feed them to a detection beam path.
    There are therefore divider revolvers (not shown) or Teier wheels in different beam paths for swiveling in as small as possible dividers, in particular divider wheels, the wheel axis of which is inclined at 45 degrees to the optical axis, so that the dividers are only ever shifted in the reflection plane.
    Since the dividers 28 attached to the dividing wheels cannot be adjusted exactly the same or fluctuations within their adjustment or standard wedge tolerances can cause different beam deflection angles, the respective pinhole is shifted via the control unit 38 perpendicular to the optical axis in accordance with FIG beam deflection.
    Here, two different positions of dividers 28.1 , 28.2 are shown schematically on a divider wheel, not shown, driven by a control unit 36 , which cause focus positions in the plane of the pinholes 29 that are displaced perpendicular to the optical axis.
    Here, by means of the control unit 34 via the control units 36, 38 coupling the position of the pinhole 29 be made with the Teilerradstellung for the divider 28, that is for all different configurations divider divider turret is stored optimum Pinholeposiition and retrievable.
    This affects not only the position of a certain divider wheel, but also the position of several divider wheels, so that the optimal pinhole position is always set automatically.
  • 7. In Fig. 6 ist schematisch dargestellt, wie am Pinhole 29, am Ausgang zum PMT hinter dem Pinhole, eine Lichtleitfaser 40 angesetzt werden kann, um durch das Pinhole des Detektionskanals die Strahlung zu einem externen Sensor 31 zu leiten.
    Dies erfolgt vorteilhaft ohne zusätzliche Koppeloptik dicht hinter dem Pinhole mit Hilfe der Lichtleitfaser 38.
    Da die Pinholeöffnung verstellbar ist, wird das Austauschen von Fasern mit unterschiedlichen Kerndurchmessern stark vereinfacht, indem die Pinholegröße an den Kerndurchmesser angepaßt wird.
    7. FIG. 6 schematically shows how an optical fiber 40 can be attached to the pinhole 29 , at the exit to the PMT behind the pinhole, in order to guide the radiation through the pinhole of the detection channel to an external sensor 31 .
    This is advantageously done without additional coupling optics close behind the pinhole with the aid of the optical fiber 38 .
    Since the pinhole opening is adjustable, the exchange of fibers with different core diameters is greatly simplified by adapting the pinhole size to the core diameter.
Aufstellung der verwendeten BezugszeichenList of the reference numerals used

M Mikroskop
S Scankopf
M microscope
S scan head

11

Lichtquelle
light source

22

Beleuchtungsoptik
illumination optics

33

Strahlteiler
beamsplitter

44

Objektiv
lens

55

Probe
sample

66

Kondensor
condenser

77

Lichtquelle
light source

88th

Empfänger
receiver

99

Tubuslinse
tube lens

1010

Tubuslinse
tube lens

1111

Okular
eyepiece

1212

Strahlteiler
beamsplitter

13.113.1

, .

13.213.2

Laser
laser

1414

Lichtleitfasern
optical fibers

1515

schwenkbarar Spiegel
swiveling mirror

1616

Kollimationsoptik
collimating optics

1717

Strahlumlenkelement
beam deflection

1818

teildurchlässiger Spiegel
semi-transparent mirror

1919

Monitordiode
monitor diode

2020

Neutralfilter
neutral density filters

2121

Linienfilter
line filter

2222

Scanobjektiv
scanning objective

2323

Scanner
scanner

2424

Hauptstrahlteiler
Main beam splitter

2525

Abbildungsoptik
imaging optics

26.1-26.426.1-26.4

Detektionskanäle
detection channels

2727

Umlenkprisma
deflecting prism

2828

, .

28.128.1

, .

28.228.2

dichroitische Strahlteiler
dichroic beam splitter

2929

verstellbare Pinholes (Lochblenden)
adjustable pinholes

3030

Emissionsfilter
emission filter

3131

PMT
PMT

3232

AOTF
AOTF

3333

Einkoppeloptik
coupling optics

3434

zentrale Ansteuereinheit
central control unit

3535

, .

3636

, .

3737

, .

3838

lokale Ansteuereinheiten für Diode local control units for diode

1919

, Filterwechsler . filter changer

2121

, Kollimatoroptik . collimator optics

1616

, verstellbare Pinholes , adjustable pinholes

2929

3939

Srahlteiler
Srahlteiler

4040

Lichtleitfaser
S1, S2, F1, F2 Fokusstellungen
P1, P2 Pinholestellungen
optical fiber
S1, S2, F1, F2 focus positions
P1, P2 pinhole positions

Claims (3)

1. Laserscanmikrokop,
mit einer Laseranordnung zur Beleuchtung einer zu untersuchenden Probe
und einer die Laserleistung überwachenden Monitordiode
sowie einer das Probenlicht detektierenden Detektorvorrichtung,
dadurch gekennzeichnet,
daß der Laseranordnung (13.1, 13.2) ein Strahlteiler (18) nachgeordnet ist, der einen Teil des Laserlichts zu der Monitordiode (19) auskoppelt
daß zwischen dem Strahlteiler (18) und der Monitordiode (19) eine wellenlängenselektiv ansteuerbare Filtereinheit (21) vorgesehen ist, die auf einzelne Wellenlängen der Laseranordnung (13.1, 13.2) einstellbar ist
und daß vermittels der Monitordiode (19) die von der Filtereinheit (21) durchgelassenen Intensitäten einzelner Wellenlängen der Laseranordnung (13.1, 13.2) meßbar sind.
1. laser scanning microscope,
with a laser arrangement for illuminating a sample to be examined
and a monitor diode monitoring the laser power
and a detector device that detects the sample light,
characterized by
that the laser arrangement ( 13.1 , 13.2 ) is followed by a beam splitter ( 18 ) which couples out part of the laser light to the monitor diode ( 19 )
that between the beam splitter ( 18 ) and the monitor diode ( 19 ) a wavelength-selectively controllable filter unit ( 21 ) is provided, which is adjustable to individual wavelengths of the laser arrangement ( 13.1 , 13.2 )
and that the intensities of individual wavelengths of the laser arrangement ( 13.1 , 13.2 ) let through by the filter unit ( 21 ) can be measured by means of the monitor diode ( 19 ).
2. Laserscanmikroskop nach Anspruch 1, dadurch gekennzeichnet, daß die Detektorvorrichtung (26.126.4) das Probenlicht wellenlängenselektiv in mehreren Detektionskanälen detektiert und daß für zumindest einen Detektionskanal das Detektorsignal anhand des von der Monitordiode (19) registrierten Signals normiert wird.2. Laser scanning microscope according to claim 1, characterized in that the detector device (26.1 - 26.4), the sample light in a wavelength detected in several detection channels, and that the detector signal is normalized on the basis of the monitor diode (19), registered signal for at least one detection channel. 3. Laserscanmikroskop nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Signal der Monitordiode (19) als Regelsignal zur Ansteuerung der Laserleistung dient.3. Laser scanning microscope according to claim 1 or 2, characterized in that the signal of the monitor diode ( 19 ) serves as a control signal for controlling the laser power.
DE19758744A 1997-01-27 1997-01-27 Laser Scanning Microscope Expired - Fee Related DE19758744C2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1997102753 DE19702753C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope

Publications (1)

Publication Number Publication Date
DE19758744C2 true DE19758744C2 (en) 2003-08-07

Family

ID=7818405

Family Applications (5)

Application Number Title Priority Date Filing Date
DE19758744A Expired - Fee Related DE19758744C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope
DE19758748A Revoked DE19758748C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope
DE19758745A Expired - Fee Related DE19758745C5 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope
DE19758746A Expired - Fee Related DE19758746C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope
DE1997102753 Expired - Fee Related DE19702753C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope

Family Applications After (4)

Application Number Title Priority Date Filing Date
DE19758748A Revoked DE19758748C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope
DE19758745A Expired - Fee Related DE19758745C5 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope
DE19758746A Expired - Fee Related DE19758746C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope
DE1997102753 Expired - Fee Related DE19702753C2 (en) 1997-01-27 1997-01-27 Laser Scanning Microscope

Country Status (1)

Country Link
DE (5) DE19758744C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047187A1 (en) 2007-10-02 2009-04-09 Carl Zeiss Sms Gmbh Imaging and mask-inspection system for e.g. determining amount of energy delivered by illumination source, has control unit generating signals to control illumination source and/or correction value for image evaluation of imaging beam

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19835070B4 (en) * 1998-08-04 2006-03-16 Carl Zeiss Jena Gmbh Arrangement for adjustable wavelength-dependent detection in a fluorescence microscope
DE19936573A1 (en) * 1998-12-22 2001-02-08 Zeiss Carl Jena Gmbh Arrangement for the separation of excitation and emission light in a microscope
DE19919091C2 (en) 1999-04-27 2002-01-17 Zeiss Carl Jena Gmbh Arrangement for setting the laser power and / or the pulse length of a short-pulse laser in a microscope
DE19949272C2 (en) * 1999-10-12 2003-09-11 Leica Microsystems scanning microscope
DE19951482C2 (en) 1999-10-26 2003-01-09 Zeiss Carl Jena Gmbh fluorescence microscope
DE19951480A1 (en) * 1999-10-26 2001-05-03 Zeiss Carl Jena Gmbh Divider changer in a laser scanning microscope and method for correcting tolerance errors
US6423960B1 (en) * 1999-12-31 2002-07-23 Leica Microsystems Heidelberg Gmbh Method and system for processing scan-data from a confocal microscope
DE10115509A1 (en) 2000-06-17 2001-12-20 Leica Microsystems Arrangement for examining microscopic specimens with a scanning microscope and illumination device for a scanning microscope
US6898367B2 (en) 2000-06-17 2005-05-24 Leica Microsystems Heidelberg Gmbh Method and instrument for microscopy
DE20122783U1 (en) * 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh Arrangement for examining microscopic specimens with a scanning microscope and illumination device for a scanning microscope
EP1164402B1 (en) * 2000-06-17 2010-04-28 Leica Microsystems CMS GmbH Scanning microscope with multiband illumination and optical element for a scanning microsscope with multiband illumination
DE20122782U1 (en) * 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh lighting device
DE20122791U1 (en) * 2000-06-17 2007-11-29 Leica Microsystems Cms Gmbh scanning microscope
ATE313096T1 (en) * 2000-06-17 2005-12-15 Leica Microsystems ARRANGEMENT FOR EXAMINING MICROSCOPIC PREPARATIONS USING A SCANNING MICROSCOPE
DE10029680B4 (en) * 2000-06-23 2016-06-16 Leica Microsystems Cms Gmbh The microscope assemblage
DE10033269B4 (en) * 2000-07-10 2010-07-01 Leica Microsystems Cms Gmbh Device for coupling light of at least one wavelength of a laser light source into a confocal scanning microscope
DE10038526B4 (en) * 2000-08-08 2004-09-02 Carl Zeiss Jena Gmbh Method and arrangement for recording the wavelength-dependent behavior of an illuminated sample
DE10125469B4 (en) 2001-05-25 2008-01-10 Leica Microsystems Cms Gmbh Device for determining a light output, microscope and method for microscopy
DE10142945B4 (en) * 2001-09-01 2004-07-29 Leica Microsystems Heidelberg Gmbh Device for determining a light output and microscope
DE10151217B4 (en) * 2001-10-16 2012-05-16 Carl Zeiss Microlmaging Gmbh Method for operating a laser scanning microscope
DE10156506C1 (en) * 2001-11-16 2003-05-22 Leica Microsystems Multi-color image forming method and microscope
US6947127B2 (en) 2001-12-10 2005-09-20 Carl Zeiss Jena Gmbh Arrangement for the optical capture of excited and/or back scattered light beam in a sample
US6888148B2 (en) * 2001-12-10 2005-05-03 Carl Zeiss Jena Gmbh Arrangement for the optical capture of excited and /or back scattered light beam in a sample
DE10217545A1 (en) * 2002-04-17 2003-11-06 Zeiss Carl Jena Gmbh Microscope with position detection of changers of optical elements
DE10217544A1 (en) * 2002-04-17 2003-11-06 Zeiss Carl Jena Gmbh Laser scanning microscope with collimator and / or pinhole optics
DE10222779A1 (en) 2002-05-16 2004-03-04 Carl Zeiss Jena Gmbh Method and arrangement for examining samples
DE10231667A1 (en) * 2002-07-12 2004-01-22 Olympus Biosystems Gmbh Lighting device and optical object inspection device
DE10241472B4 (en) 2002-09-04 2019-04-11 Carl Zeiss Microscopy Gmbh Method and arrangement for the adjustable change of illumination light and / or sample light with respect to its spectral composition and / or intensity
DE10302259B3 (en) 2003-01-22 2004-06-03 Leica Microsystems Heidelberg Gmbh Confocal scanning microscope has acousto-optical component for directing partial beam obtained from illumination beam onto monitoring detector for illumination intensity regulation
DE10323921A1 (en) * 2003-05-22 2004-12-16 Carl Zeiss Jena Gmbh Adjustable pinhole, especially for a laser scanning microscope
DE10324478B3 (en) * 2003-05-30 2004-12-09 Leica Microsystems Heidelberg Gmbh Device for determining the light output of a light beam and scanning microscope
DE10332073A1 (en) 2003-07-11 2005-02-10 Carl Zeiss Jena Gmbh Arrangement for the optical detection of light radiation with double objective arrangement excited and / or backscattered in a sample
DE10332063A1 (en) * 2003-07-11 2005-01-27 Carl Zeiss Jena Gmbh Laser Scanning Microscope
DE10332062A1 (en) 2003-07-11 2005-01-27 Carl Zeiss Jena Gmbh Arrangement in the illumination beam path of a laser scanning microscope
DE10332064A1 (en) * 2003-07-11 2005-01-27 Carl Zeiss Jena Gmbh Arrangement for detecting the illumination radiation in a laser scanning microscope
DE10331906B4 (en) * 2003-07-15 2005-06-16 Leica Microsystems Heidelberg Gmbh Light source with a microstructured optical element and microscope with light source
DE10357584B4 (en) * 2003-12-08 2006-06-14 Leica Microsystems Cms Gmbh Method for separating different emission wavelengths in a scanning microscope
DE10359734A1 (en) 2003-12-19 2005-08-11 Carl Zeiss Jena Gmbh Method for scanner control in at least one scan axis in a laser scanning microscope
DE102004034951A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Method for the image capture of objects by means of a light scanning microscope with line-shaped scanning
DE102004034987A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Scanning microscope and use
DE102004034990A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Zoom optics for a light scanning microscope with linear scanning and use
DE102004034962A1 (en) 2004-07-16 2006-02-16 Carl Zeiss Jena Gmbh Microscope with increased resolution
DE102004034954A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Method for detecting at least one sample area with a light scanning microscope
DE102004034977A1 (en) * 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Scanning microscope and use
DE102004034975A1 (en) 2004-07-16 2006-02-16 Carl Zeiss Jena Gmbh Method for acquiring images of a sample with a microscope
DE102004034956A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Method for detecting at least one sample area with a light scanning microscope with linear scanning
DE102004034970A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Scanning microscope and use
DE102004034996A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Scanning microscope with linear scan
DE102004034959A1 (en) 2004-07-16 2006-02-16 Carl Zeiss Jena Gmbh Scanning microscope with point-shaped light source distribution and use
DE102004034971A1 (en) * 2004-07-16 2006-02-09 Carl Zeiss Jena Gmbh Scanning microscope with linear scanning and use
DE102004034991A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Zoom optics for a light scanning microscope
DE102004034979A1 (en) 2004-07-16 2006-02-16 Carl Zeiss Jena Gmbh Method for detecting at least one sample area using a light-scanning microscope with punctiform light source distribution
DE102004034988A1 (en) 2004-07-16 2006-02-02 Carl Zeiss Jena Gmbh Scanning microscope and use
DE102004034976A1 (en) 2004-07-16 2006-02-16 Carl Zeiss Jena Gmbh Scanning microscope and use
JP4800655B2 (en) 2005-04-01 2011-10-26 オリンパス株式会社 Light measuring device
DE102005020541A1 (en) * 2005-05-03 2006-11-09 Carl Zeiss Jena Gmbh Laser Scanning Microscope
DE102005020543A1 (en) 2005-05-03 2006-11-09 Carl Zeiss Jena Gmbh Method and device for adjustable change of light
DE502006004676D1 (en) 2005-07-22 2009-10-08 Zeiss Carl Microimaging Gmbh RESOLUTION-INCREASED LUMINESCENCE MICROSCOPY
US7485875B2 (en) 2005-07-22 2009-02-03 Carl Zeiss Microimaging Gmbh Resolution-enhanced luminescence microscopy
DE102005046510B4 (en) 2005-09-29 2022-02-17 Leica Microsystems Cms Gmbh Microscope system for FCS measurements
DE102005047261A1 (en) 2005-10-01 2007-04-05 Carl Zeiss Jena Gmbh Display image production method, involves producing display image of display image sequence from subsequence of two recorded exposure images of exposure image sequence, where number of display images is less than number of exposure images
DE102006017705B4 (en) 2006-04-15 2010-01-07 Carl Zeiss Microimaging Gmbh Spectral analysis unit with a diffraction grating and laser scanning microscope
DE102006027836B4 (en) 2006-06-16 2020-02-20 Carl Zeiss Microscopy Gmbh Microscope with auto focus device
DE102006034908B4 (en) 2006-07-28 2023-01-26 Carl Zeiss Microscopy Gmbh Laser Scanning Microscope
DE102006034907A1 (en) * 2006-07-28 2008-01-31 Carl Zeiss Microimaging Gmbh Laser Scanning Microscope
DE102006034906A1 (en) 2006-07-28 2008-01-31 Carl Zeiss Microimaging Gmbh Laser scanning microscope operating method, involves bringing scanning field produced by light distributions on sample into cover, where sample is detected by using one of light distributions, and detecting reference sample
DE102006034912A1 (en) * 2006-07-28 2008-01-31 Carl Zeiss Microimaging Gmbh Laser scanning microscope for fluorescence examination
DE102006040169A1 (en) * 2006-08-25 2008-02-28 Carl Zeiss Microimaging Gmbh Confocal scanning microscope with optical output and pinhole assembly for spatial filtering of a light beam
DE102006045130B4 (en) 2006-09-25 2023-06-22 Carl Zeiss Microscopy Gmbh Laser scanning microscopy method for analyzing the bleaching behavior of a sample and laser scanning microscope designed therefor and computer program product therefor
DE102006047911A1 (en) * 2006-10-06 2008-04-10 Carl Zeiss Microimaging Gmbh Arrangement for splitting detection light
EP1935498A1 (en) 2006-12-22 2008-06-25 Universität Leipzig Device and method for contactless manipulation and alignment of sample particles in a measurement volume with the aid of an inhomogeneous electrical alternating field
DE102007003134A1 (en) 2007-01-18 2008-07-24 Carl Zeiss Microimaging Gmbh Laser scanning microscope and beam-blending optical assembly
DE102007009659B4 (en) 2007-02-21 2024-05-16 Carl Zeiss Microscopy Gmbh Use of a diode-pumped solid-state laser and laser scanning microscope with a UV illumination beam path
DE102007009660A1 (en) 2007-02-21 2008-08-28 Carl Zeiss Microimaging Gmbh Confocal laser microscope
DE102007025821A1 (en) 2007-06-02 2008-12-04 Carl Zeiss Microimaging Gmbh Arrangement and method for timing the pulses of a short pulse laser
DE102007040238A1 (en) 2007-08-25 2009-03-05 Carl Zeiss Microimaging Gmbh Method for laser scanning microscopy and beam distributor
DE102007047467A1 (en) 2007-09-28 2009-04-02 Carl Zeiss Microimaging Gmbh Arrangement for the optical detection of light radiation excited and / or backscattered in a sample
DE102007047183A1 (en) 2007-10-02 2009-04-09 Carl Zeiss Microimaging Gmbh Mirror staircase to unite multiple light sources and laser scanning microscope
WO2009057301A1 (en) 2007-10-31 2009-05-07 Nikon Corporation Laser-exciting fluorescence microscope
DE102008007452A1 (en) 2008-01-31 2009-08-06 Carl Zeiss Microimaging Gmbh Laser scanning microscope and assembly for non-descanned detection
DE102008028707A1 (en) 2008-06-17 2009-12-24 Carl Zeiss Microimaging Gmbh Laser scanning microscope with a laser diode
DE102008038467A1 (en) 2008-08-21 2010-02-25 Carl Zeiss Microlmaging Gmbh Image evaluation and/or sample i.e. cells, manipulation method for use in e.g. laser scanning microscope, involves changing image object planes as supreme image object planes till minimum or maximum or fixed value is obtained
DE102008055655B4 (en) 2008-10-29 2021-04-08 Carl Zeiss Microscopy Gmbh Method for setting a dark signal from a laser source in a laser scanning microscope
DE102009006729B4 (en) 2009-01-29 2021-12-23 Carl Zeiss Microscopy Gmbh Laser scanning microscope
DE102009021993B4 (en) 2009-05-19 2023-11-09 Leica Microsystems Cms Gmbh Scanning microscope and associated procedures
DE202009007789U1 (en) 2009-06-03 2009-08-20 Carl Zeiss Microimaging Gmbh Broadband light source and microscope
DE102009034347A1 (en) 2009-07-23 2011-01-27 Carl Zeiss Microlmaging Gmbh Laser scanning microscope, has mirror supported in lens frame that is brought into lens revolver of microscope, and lens superordinate to mirror for focusing illumination light on to mirror in illumination direction
DE102009043747A1 (en) 2009-09-30 2011-03-31 Carl Zeiss Microlmaging Gmbh Method for generating a microscope image and microscope
DE102009048710B4 (en) * 2009-10-08 2020-04-02 Leica Microsystems Cms Gmbh Laser system for a microscope and method for operating a laser system for a microscope
DE102009049050B4 (en) * 2009-10-12 2011-07-21 Leica Microsystems CMS GmbH, 35578 Method and device for stabilizing a light output of an illumination light beam and microscope
DE102009050021B4 (en) 2009-10-16 2019-05-02 Carl Zeiss Microscopy Gmbh Microscope, in particular laser scanning microscope and operating method
EP3667391A1 (en) 2009-10-28 2020-06-17 Carl Zeiss Microscopy GmbH Microscopic method and microscope with improved resolution
DE102010018967B4 (en) 2010-04-29 2021-11-04 Carl Zeiss Microscopy Gmbh Arrangements and methods for nonlinear microscopy
DE102010033722A1 (en) 2010-08-07 2012-02-09 Carl Zeiss Microimaging Gmbh Method for eliminating unwanted radiation portions from light detected from illuminated sample by laser scanning microscope, involves passing acousto optical tunable filter through two pole components
DE102010055882A1 (en) 2010-12-22 2012-06-28 Carl Zeiss Microlmaging Gmbh Pinhole for a confocal laser scanning microscope
DE102011013614A1 (en) 2011-03-08 2012-09-13 Carl Zeiss Microimaging Gmbh Laser scanning microscope and method of its operation
JP5616824B2 (en) 2011-03-10 2014-10-29 オリンパス株式会社 Microscope equipment
DE102011104379B4 (en) 2011-06-18 2021-11-25 Carl Zeiss Microscopy Gmbh Scanning confocal microscope and use, control method and programmable control unit for such a microscope
DE102011109653B4 (en) 2011-08-06 2021-11-25 Carl Zeiss Microscopy Gmbh Laser scanning microscope with an illumination array
DE102012010208A1 (en) 2012-05-15 2013-11-21 Carl Zeiss Microscopy Gmbh Microscope e.g. laser scanning microscope for modern cell biological research field, has main color divider and deflecting mirror that are arranged on common optical carrier or substrate for mechanical rigid connection
DE102012016346B4 (en) 2012-08-16 2023-01-05 Carl Zeiss Microscopy Gmbh Laser Scanning Microscope
DE102014003560B4 (en) 2013-03-13 2024-08-01 Carl Zeiss Microscopy Gmbh Method for manufacturing a photomultiplier
DE102014000473A1 (en) 2014-01-16 2015-07-16 Carl Zeiss Microscopy Gmbh Laser scanning microscope and amplifier module
DE102014002328B4 (en) 2014-02-12 2021-08-05 Carl Zeiss Microscopy Gmbh Scanning multifocal fluorescence microscope
DE102014009142A1 (en) 2014-06-20 2015-12-24 Carl Zeiss Microscopy Gmbh Method and device for controlling an acousto-optic component
DE102014010185A1 (en) 2014-07-09 2016-01-14 Carl Zeiss Microscopy Gmbh Method for operating a laser scanning microscope
DE102014110575B4 (en) 2014-07-25 2017-10-12 Leica Microsystems Cms Gmbh Microscope and method for optically examining and / or manipulating a microscopic sample
DE102015107367A1 (en) 2015-05-11 2016-11-17 Carl Zeiss Ag Evaluation of Fluorescence Scanning Microscopy Signals Using a Confocal Laser Scanning Microscope
US9645376B1 (en) 2015-10-14 2017-05-09 Abberior Instruments Gmbh Scanner head and device with scanner head
DE102016116309A1 (en) * 2016-05-02 2017-11-02 Carl Zeiss Microscopy Gmbh Lighting module for angle-selective lighting
DE102019116626B4 (en) 2019-06-19 2021-03-18 Abberior Instruments Gmbh Methods and devices for checking the confocality of a scanning and descanning microscope assembly
DE102022102763A1 (en) 2022-02-07 2023-08-10 Carl Zeiss Meditec Ag Microscope and imaging method for a microscope

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283256A2 (en) * 1987-03-18 1988-09-21 Tektronix Inc. Scanning optical microscope
WO1990000754A1 (en) * 1988-07-13 1990-01-25 Martin Russell Harris Scanning confocal microscope
US5081350A (en) * 1989-09-22 1992-01-14 Fuji Photo Film Co., Ltd. Scanning microscope and scanning mechanism for the same
DE4128506A1 (en) * 1991-08-28 1993-03-04 Zeiss Carl Fa Operating spectrometer beyond optics correction range - by adjusting optics spacings to maintain optimal sensitivity
US5216484A (en) * 1991-12-09 1993-06-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Real-time imaging spectrometer
US5283433A (en) * 1992-10-05 1994-02-01 The Regents Of The University Of California Scanning confocal microscope providing a continuous display
DE4323129A1 (en) * 1992-07-24 1994-02-03 Zeiss Carl Fa Microscope with laser illumination - has laser beam input via conventional light inlet and slider with mirror for deflecting light to objective
US5317379A (en) * 1992-02-11 1994-05-31 Rosemount Analytical Inc. Chemical species optical analyzer with multiple fiber channels
US5377003A (en) * 1992-03-06 1994-12-27 The United States Of America As Represented By The Department Of Health And Human Services Spectroscopic imaging device employing imaging quality spectral filters
US5444528A (en) * 1994-07-27 1995-08-22 The Titan Corporation Tunable spectrometer with acousto-optical tunable filter
DE19517670A1 (en) * 1994-06-15 1995-12-21 Zeiss Carl Fa Surgical microscope mounted laser adaptor appts.
DE4446185A1 (en) * 1994-08-25 1996-02-29 Leica Lasertechnik Device for coupling the light beam from a UV laser into a laser scanning microscope

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8700612A (en) * 1987-03-13 1988-10-03 Tno CONFOCAL LASER SCANNING MICROSCOPE.
JP2625330B2 (en) * 1992-09-30 1997-07-02 浜松ホトニクス株式会社 Pinhole position control method for confocal optical system and its control device
DE19533092A1 (en) * 1995-09-07 1997-03-13 Basf Ag Device for parallelized two-photon fluorescence correlation spectroscopy (TPA-FCS) and its use for drug screening

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283256A2 (en) * 1987-03-18 1988-09-21 Tektronix Inc. Scanning optical microscope
WO1990000754A1 (en) * 1988-07-13 1990-01-25 Martin Russell Harris Scanning confocal microscope
US5081350A (en) * 1989-09-22 1992-01-14 Fuji Photo Film Co., Ltd. Scanning microscope and scanning mechanism for the same
DE4128506A1 (en) * 1991-08-28 1993-03-04 Zeiss Carl Fa Operating spectrometer beyond optics correction range - by adjusting optics spacings to maintain optimal sensitivity
US5216484A (en) * 1991-12-09 1993-06-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Real-time imaging spectrometer
US5317379A (en) * 1992-02-11 1994-05-31 Rosemount Analytical Inc. Chemical species optical analyzer with multiple fiber channels
US5377003A (en) * 1992-03-06 1994-12-27 The United States Of America As Represented By The Department Of Health And Human Services Spectroscopic imaging device employing imaging quality spectral filters
DE4323129A1 (en) * 1992-07-24 1994-02-03 Zeiss Carl Fa Microscope with laser illumination - has laser beam input via conventional light inlet and slider with mirror for deflecting light to objective
US5283433A (en) * 1992-10-05 1994-02-01 The Regents Of The University Of California Scanning confocal microscope providing a continuous display
DE19517670A1 (en) * 1994-06-15 1995-12-21 Zeiss Carl Fa Surgical microscope mounted laser adaptor appts.
US5444528A (en) * 1994-07-27 1995-08-22 The Titan Corporation Tunable spectrometer with acousto-optical tunable filter
DE4446185A1 (en) * 1994-08-25 1996-02-29 Leica Lasertechnik Device for coupling the light beam from a UV laser into a laser scanning microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007047187A1 (en) 2007-10-02 2009-04-09 Carl Zeiss Sms Gmbh Imaging and mask-inspection system for e.g. determining amount of energy delivered by illumination source, has control unit generating signals to control illumination source and/or correction value for image evaluation of imaging beam

Also Published As

Publication number Publication date
DE19702753C2 (en) 2003-04-10
DE19702753A1 (en) 1998-07-30
DE19758745C5 (en) 2008-09-25
DE19758748C2 (en) 2003-07-31
DE19758746C2 (en) 2003-07-31
DE19758745C2 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
DE19758744C2 (en) Laser Scanning Microscope
US6167173A (en) Laser scanning microscope
EP0961945B1 (en) Light sensing device
DE102011106916B4 (en) Scanning confocal incident light microscope, method and program for operating such a microscope
DE19861383B4 (en) Laser scanning microscope
DE19835072A1 (en) Arrangement for illumination and/or detection in laser scanning microscope has selectively switchable micro-mirror arrangement in illumination and/or detection beam paths for wavelength selection
EP1664888A1 (en) Scanning microscope with evanescent wave illumination
EP1591825B1 (en) Device for coupling light into the light path of a micropscope
US6631226B1 (en) Laser scanning microscope
EP1122574B1 (en) Microscope arrangement
DE10356826A1 (en) scanning microscope
DE10233074B4 (en) Optical device for combining light beams and scanning microscope
EP2225549B1 (en) Device and method for the evanescent illumination of a sample
DE10120424A1 (en) Scanning microscope and decoupling element
WO2008037346A1 (en) Laser scanning microscope with element for pupil manipulation
EP3987335B1 (en) Methods and apparatuses for checking the confocality of a scanning and descanning microscope assembly
EP1372012B1 (en) Optical arrangement for observing a sample or an object
DE10021379A1 (en) Optical measuring arrangement, in particular for measuring the layer thickness
DE19829953B4 (en) Laser Scanning Microscope
EP1697781A1 (en) Objective for evanescent illumination and microscope
DE102006011277A1 (en) Laser scanning microscope for detecting fluorescent radiation, has detection module with detection unit that detects linear sections in such a manner that linear probe radiation bundle is produced for each section
DE10045837A1 (en) microscope
DE102004029733A1 (en) Scanning microscope and scanning microscopy method
DE102004011770A1 (en) Scanning microscope for investigating and manipulating a sample comprises a first beam deflection device deflecting a first illuminating light beam and a second illuminating light beam
DE102013021182B4 (en) Device and method for scanning microscopy

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8170 Reinstatement of the former position
8304 Grant after examination procedure
AC Divided out of

Ref document number: 19702753

Country of ref document: DE

Kind code of ref document: P

8364 No opposition during term of opposition
R081 Change of applicant/patentee

Owner name: CARL ZEISS MICROSCOPY GMBH, DE

Free format text: FORMER OWNER: CARL ZEISS JENA GMBH, 07745 JENA, DE

Effective date: 20130206

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20140801