WO2008037346A1 - Laser scanning microscope with element for pupil manipulation - Google Patents

Laser scanning microscope with element for pupil manipulation Download PDF

Info

Publication number
WO2008037346A1
WO2008037346A1 PCT/EP2007/007881 EP2007007881W WO2008037346A1 WO 2008037346 A1 WO2008037346 A1 WO 2008037346A1 EP 2007007881 W EP2007007881 W EP 2007007881W WO 2008037346 A1 WO2008037346 A1 WO 2008037346A1
Authority
WO
WIPO (PCT)
Prior art keywords
pupil
scanning
manipulation
scanning element
objective
Prior art date
Application number
PCT/EP2007/007881
Other languages
German (de)
French (fr)
Inventor
Matthias Wald
Original Assignee
Carl Zeiss Microlmaging Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Microlmaging Gmbh filed Critical Carl Zeiss Microlmaging Gmbh
Publication of WO2008037346A1 publication Critical patent/WO2008037346A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0036Scanning details, e.g. scanning stages
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/0095Relay lenses or rod lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers

Definitions

  • the invention relates to a light-scanning microscope with a lens for sample imaging, wherein the lens has an objective pupil, a scanning device for biaxial beam deflection downstream of the objective in the imaging direction, wherein the scanning device has a first and a second, each uniaxially deflecting beam element which in Imaging direction behind each other, and a pupil manipulation element, which is arranged in a position associated with the objective pupil.
  • Laser scanning microscopes are known in the art. Reference is made, for example, to DE 197 02753 A1 or DE 10257237 A1, both of which describe a light scanning microscope designed as a laser scanning microscope. In this context, it should be noted that the term "light” here is understood to mean the entire region of the electromagnetic radiation which obeys the laws of optics.
  • Scanning microscopes or laser scanning microscopes usually acquire an object image by scanning the object with a spot or multispot arrangement.
  • the radiation recorded in the spot or multi-spot areas is detected with the highest possible depth resolution so that no structure of the spot or the multi-spot is resolved, for example by a so-called confocal detection.
  • Moving the spot or multispot area over the object then delivers the picture.
  • Confocal detection is a common way to achieve a very high depth resolution.
  • the signal evaluation is then restricted substantially to the focal plane, since areas lying outside the focal plane do not provide any significant signal information in the case of confocal detection; they are imaged in front of or behind the confocal aperture.
  • a scanning device that deflects the beam biaxially.
  • Commonly used are scanning devices that have two scanning elements, which deflect the beam uniaxially adjustable. Examples of scanning elements used in scanning microscopes are galvanometer mirrors or acoustically optical modulators. The deflection with the two scanning elements is conveniently carried out around mutually orthogonal axes. Based on the recorded image, it is therefore assumed that one scan element causes the deflection in the line direction, the other element in the image direction perpendicular thereto (the term "column direction" would also be conceivable).
  • the deflection of the light beam or light beam should ideally take place from one point, but this actually requires a single, then biaxial scan element.
  • the use of two scanning elements is much less expensive and also allows a faster adjustment of the deflection. It is therefore common in the art to arrange two scan elements as close to the pupil plane of the microscope objective. This has the further advantage that the two scanning elements can be kept small without fear of shading effects. Further, the problem otherwise encountered with adjustable mirrors is avoided, depending on the deflection angle, i. the mirror position, the light path by the stroke of the mirror deflection is different lengths, which can lead to defocusing effects.
  • the invention is based on the object, a light-scanning microscope of the type mentioned in such a way that the possibilities for pupil manipulation are extended and at the same time a pupil manipulation can be performed easily.
  • the invention solves this problem by a light-scanning microscope of the type mentioned, in which the first scanning element in the objective pupil or a pupil conjugate thereto, the first scanning element downstream of a relay optics for imaging the pupil contained in the first scan element in a second pupil is, the element for pupil manipulation in the second pupil generated by the relay optics and is formed reflective, so that the relay optics is traversed again in the imaging direction and these images the second pupil again into a third pupil, wherein the relay optics a beam deflector, so that the third pupil is spatially separated from the pupil plane containing the first scanning element, and the second scanning element is arranged in the third pupil.
  • a relay optic for pupil imaging is used, which is integrated in the beam path after the objective pupil or a conjugated pupil produced therefrom by intermediate imaging, so that three mutually associated pupils are formed.
  • the scanning elements are positioned so that the third pupil is automatically fixed relative to the scanning elements.
  • the pupil manipulation element is placed. It is further ensured that one of the three pupils coincides with the objective pupil or a pupil conjugated thereto.
  • the first scanning element is located in the objective pupil (or a pupil conjugated thereto), the pupil manipulation element is in a second pupil obtained by imaging the pupil with the first scanning element, and this is again imaged into a third pupil in which the pupil second scanning element is arranged.
  • the pupil manipulation element is in a second pupil obtained by imaging the pupil with the first scanning element, and this is again imaged into a third pupil in which the pupil second scanning element is arranged.
  • the relay optics is provided with a beam deflector and designed so that it is traversed twice in the imaging direction. From the first scanning element, the relay optics effects an image of the pupil with this scanning element on the second pupil. Since, according to the invention, a reflective element for pupil manipulation is arranged there, the relay optics, after reflection at the pupil manipulation element, produce a further pupil image on the third pupil which, due to the effect of the beam deflector, does not coincide with that of the pupil, in which the first scan element stands. The relay optics thus causes a double pupil image: once in the direction of the element for pupil manipulation and the other time away from it in the direction of the second scanning element.
  • This design of the relay optics allows a very compact design. Forming the beam deflector as a beam splitter or prism, resulting in a total of a T-shaped beam path between the scanning elements. Such a construction is particularly space-saving and easy to adjust.
  • the element for pupil manipulation can now be chosen almost arbitrarily according to the desired microscopy method. It is particularly preferred to use an element which is adjustable by an electrical control signal. If one does not want to manipulate the pupil, the element is switched to a mode in which it reflects the beam path without any further manipulation.
  • an element which is adjustable by an electrical control signal. If one does not want to manipulate the pupil, the element is switched to a mode in which it reflects the beam path without any further manipulation.
  • One possible construction for such an element is a spatial light modulator or adaptive mirror. Also, a DMD array can be used.
  • the relay optics By means of the relay optics according to the invention, three pupils are created, which are in fixedly assigned positions. A pupil picks up the first scan element. The second pupil contains the element for pupil manipulation. The third pupil is provided for the second scanning element. The three pupils are conjugate to each other, so that an optimal effect of the element for pupil manipulation is achieved and there is no longer any restriction to certain elements.
  • the arrangement according to the invention makes it possible to arrange the first scanning element in a pupil conjugate to the objective pupil or in the objective pupil itself. As a result of the fixed assignment of the two other pupils mentioned, a fixed position of the objective pupil to the pupil with the pupil manipulation element is secured overall. A lateral Displacement of the beam path during scanning does not take place on the pupil manipulation element.
  • the two scanning elements are always exactly in the objective pupil or a pupil conjugated thereto.
  • negative effects that may occur in scan elements that are outside the pupil plane, avoided even without pupil manipulation operation in the microscope according to the invention.
  • the light path is not extended as a function of the deflection by impinging the light beam outside the deflection axis of the respective uniaxially deflecting scanning element.
  • the illumination and the imaging beam always strike the scanning element exactly on the deflection axis, regardless of the position of the other scanning element.
  • FIG. 1 shows a schematic representation of a light-scanning microscope
  • Figure 2 is an enlarged view of a scanning device of the light scanning microscope
  • FIGS 3 to 5 the beam path of the scanning device of Figure 2 with the corresponding optical elements in three different views.
  • FIG. 1 shows schematically a light scanning microscope designed as a laser scanning microscope (LSM) 1.
  • LSM laser scanning microscope
  • the LSM 1 is essentially subdivided into a microscope module 3, a detection module 4 and a lighting or excitation module 5.
  • the excitation module provides excitation radiation and feeds it into the microscope module 3, so that it is directed to the object 2 as spot-shaped illumination.
  • the spot-shaped illumination is guided by the microscope module 3 raster over the object 2.
  • the spot area illuminated with illumination radiation from the illumination module 5 on the object is transmitted via the microscope module 3 from the Detection module 4 detected confocally. If the illumination is designed as excitation radiation, an image of the fluorescence properties of the object 2 can be obtained.
  • the illumination or excitation module 5 has for illumination light sources 6 and 7, which may be formed for example as a laser.
  • the radiation from the light sources 6 and 7 is conducted via a deflecting mirror 8 or a beam splitter 9 and an illumination optical unit 10 to a beam splitter 11, referred to as a main color splitter, where it is coupled into the microscope module 3.
  • the specific embodiment of the coupling of the radiation, realized in the present embodiment by deflecting mirror 8, beam splitter 9 and illumination optics 10 is for the following invention without further meaning.
  • Other constructions are also possible, for example by means of fiber optics and suitable fiber optic couplers.
  • deviating from the two light sources shown in Figure 1 of course, only a single light source or a larger number of light sources can be used. Essential to the invention here is only that at the main color divider 11, an illumination beam 17 is coupled.
  • the main color splitter 11 may be constructed, for example, as in the already mentioned DE 197 02 753 A1. Instead of the dichroic main color splitter described therein, a color-neutral splitter can also be used, as it is e.g. is described in DE 10257237 A1.
  • the radiation arriving from the illumination or excitation module 5 on the main color splitter 11 in the form of the illumination beam 17 is then focused onto or into the object 2 by means of a scanning device 12 and a scanning optics 13 through a tube lens 15 and an objective 16.
  • the focusing is carried out in the embodiment in a diffraction-limited focus whose position in the object 2 along the optical axis by an adjustable sample table 18 can be adjusted.
  • the scanning device 12 deflects the coming of the main color splitter 11 illumination beam 17 biaxially, so that this falls differently deflected beam 19 through the tube lens 15 and the lens 16 on or in the object 2, thus in the object 2 at different locations transverse to the optical axis is focused.
  • a deflecting mirror 14 designed as a beam splitter is optionally provided between the scanning optics 13 and the tube lens 15, which optionally permits a visual inspection.
  • the scanning device 12 which, like the sample table 18, is also controlled by a control unit 26 via lines not designated or not shown, the focus of the deflected illumination beam 19 is placed at different locations in the object by the objective 16. Overall, there is a three-dimensional positioning.
  • the deflection by the scanning device 12 causes the recording of a two-dimensional image whose Depth position in the object 2 as a third dimension by the setting of the sample table 18, that is, the position of the focal plane in the object 2 is determined.
  • a focus adjustment by adjusting the lens 16 is possible.
  • the radiation generated in object 2 e.g. Fluorescence radiation is detected by imaging the focus in the object 2 by means of the objective 16 and the tube lens 15 as well as the scanning optics 13 into the detection module 4 for each point of the image to be recorded.
  • the main color splitter 11 guides the beam 21, which, after passing through the scanning device 12, is again stationary in the imaging direction to the detection module 4, which has confocal detector elements.
  • Confocal filtering of the radiation from the focus in the object 2 takes place via an output coupler 22 and a pinhole optics 23 at a pinhole 24.
  • the plane of the confocal diaphragm 24 is conjugate to the focal plane in the object 2.
  • a detector 25 picks up the confocal filtered radiation. He is also connected to the controller 26.
  • the control unit 26 thus generates for each position of the focus in the object 2 a corresponding pixel, which is characterized by the intensity information from the detector 25 and its position in the image by the position of the scanning device 12.
  • the detection module 4 can have a plurality of spectral channels. There are then the corresponding elements 22 to 25 multiple times. In Figure 1, this is symbolized schematically by a second detection channel, the reference numerals are provided with an apostrophe. A dot-dash line indicates that even more detection channels are possible.
  • the output couplers 22 and 22 'thus act as so-called secondary color splitter. Its spectral characteristic determines which spectral range has the radiation detected by the associated detector.
  • the construction of the detection module 4 is of no further interest for the invention described here, in particular it does not determine whether or how confocal filtering takes place. It is only essential for the invention here that after the scanning device 12, a stationary beam 21 is present, which is referred to in the literature as a de-scanned beam.
  • the scanning device 12 ensures that the beam is deflected biaxially to the deflected beam 19, whereby the focus of the illumination radiation in the object 2 is perpendicular to the
  • dot-shaped illumination is of no further concern to this illustration, and therefore of no further importance to the present invention, which is primarily dedicated to scanning device 12 is (it also comes as a wide-field lighting in question), the scanning device 12 is considered below in the imaging direction.
  • the scanning device 12 is shown schematically in more detail in FIG. It consists of two scanning mirrors 40 and 41, which in this embodiment are examples of uniaxially deflecting scanning elements. Each scanning mirror deflects about a deflection axis, wherein the deflection axes of the scanning mirrors 40 and 41 are preferably orthogonal to one another. In principle, however, any inclination is sufficient to be able to cover a two-dimensional field with the focus.
  • a first scanning mirror 40 and this following a second scanning mirror 41 so that after the second scanning mirror 41 of the stationary beam 21 is given.
  • a pupil manipulation unit 42 which is shown only schematically in FIG.
  • FIGS. 3-5 show the scanning device 12 with the pupil manipulation unit 42 in detail with its beam path.
  • FIG. 4 shows the structure of FIG. 3 in this case from the direction designated A.
  • FIG. 5 shows the same beam path from the direction designated B. The description follows the de-scanning of the biaxially deflected beam 19 to the stationary beam 21.
  • the biaxially deflected beam 19 first falls on the first scanning mirror 40, whose uniaxial motion thus uniaxially de-scans.
  • the first scanning mirror 40 is located in a pupil 48 of the objective 16, which is shown schematically in FIG. 3 by a dashed line.
  • the originally biaxially deflected i. a two-dimensional field sweeping deflected beam 19 is after the scanning mirror 40 only in one spatial direction, ie line-shaped, deflected. It then falls on a prism 47, which is part of the pupil manipulation unit 42. From the prism 47, the beam passes through a first optical group 44 and a second optical group 45, which together form the pupil 48, in which the first scanning mirror 40 is located, in a second pupil 49. In this second pupil 49, a reflective element for pupil manipulation is arranged. In the exemplary embodiment, this is an adaptive mirror 43, which is controlled by the control unit 26.
  • the second pupil 49 becomes the prism 47 again through the second optical group 45 and the first optical group 44 and from there into a third one Pupil 50 shown.
  • the second scanning mirror 41 In this is the second scanning mirror 41.
  • the objective pupil 48, the second pupil 49 and the third pupil 50 are thus conjugate to each other, so that the first scanning mirror 40, the adaptive mirror 43 and the second scanning mirror 41 are in mutually conjugate layers.
  • the second scanning mirror 41 then causes a de-scanning about the remaining axis, so that thereafter the stationary beam 21 is present.
  • the stationary beam 21, which is generated by the illumination beam 17 in this approach, is first uniaxially deflected by the second scanning mirror 41, guided by the prism 47 through the first and second optical groups 44, 45 toward the adaptive mirror 43 depending on the setting pupil manipulating reflected so that it passes through the second optical group and the first optical group 45, 44 and the prism 47 to the first scanning mirror 40, which makes a biaxial deflection from the hitherto existing uniaxial deflection and the deflected beam 19 provides.
  • the pupil manipulation unit 42 comprises the prism 47, the first optical group 44 and the second optical group 45, between which an intermediate image 46 is formed.
  • the prism 47 guides (in the imaging direction) the radiation into the first optical group 44 and the second optical group 45 so at an offset to the optical axis of the optical groups 44 and 45, that after reflection on the adaptive mirror 43 of the received beam from the prism 47 is not in the direction the objective pupil 48 is reflected, but reaches the third pupil 50.
  • the prism 47 is designed here as a roof prism. In principle, however, a single mirror surface is sufficient so that only one deflection by the prism 47 has to be carried out. The beam path would then continue without deflection so that the position of the third pupil 50 would be to the left of the pupil manipulation unit (as viewed in the direction of the adaptive mirror).
  • the construction shown in Figure 3 and in Figures 4 and 5 has the advantage that the first and second scanning mirrors 41, 41 lie on a common optical axis, i. the optical axis of the deflected beam 19 and the stationary beam 21 can coincide. This facilitates the adjustment of the arrangement.

Abstract

Disclosed is a light raster microscope with a lens (16) for test imaging, the lens (16) having a pupillary lens (48),and with a scanning device (12) downstream of the lens (16) in the imaging direction for biaxial beam deflection, wherein the scanning device (12) has a first and a second scanning element, each of which is a uniaxial beam deflection scanner, which are placed one behind the other in the imaging direction, and with an element (43) for pupil manipulation (40, 41) arranged in a position relative to the pupillary lens (48), wherein the first scanning element (40) is positioned in the pupillary lens (48) or a pupil conjugated thereto. A relay optics system (42) is arranged downstream of the first scanning element (40) for imaging the pupil (48) containing the first scanning element (40) onto a second pupil (49). The element (43) for pupil manipulation is positioned in the second pupil (49), generated by the relay optics system (42), and is reflective such that the relay optics system (42) is traversed again in the imaging direction and again images the second pupil (49) onto a third pupil (50). The relay optics system (42) comprises a beam deflector (47) which separates the third pupil (50) from the pupil containing the first scanning element (40), and the second scanning element (41) is arranged in the third pupil (50).

Description

Carl Zeiss Microlmaging GmbH 10. September 2007 Carl Zeiss Microlmaging GmbH September 10, 2007
Anwaltsakte: PAT 4024/009-PCT K/22/dwLawyer's file: PAT 4024/009-PCT K / 22 / dw
Laserscanninαmikroskop mit Element zur PupillenmanipulationLaser scannin microscope with element for pupil manipulation
Die Erfindung bezieht sich auf ein Lichtraster-Mikroskop mit einem Objektiv zur Probenabbildung, wobei das Objektiv eine Objektivpupille aufweist, einer dem Objektiv in Abbildungsrichtung nachgeordneten Scaneinrichtung zur zweiachsigen Strahlablenkung, wobei die Scaneinrichtung ein erstes und ein zweites, jeweils einachsig ablenkendes Strahlelement aufweist, die in Abbildungsrichtung hintereinander liegen, und einem Element zur Pupillenmanipulation, das in einer der Objektivpupille zugeordneten Lage angeordnet ist.The invention relates to a light-scanning microscope with a lens for sample imaging, wherein the lens has an objective pupil, a scanning device for biaxial beam deflection downstream of the objective in the imaging direction, wherein the scanning device has a first and a second, each uniaxially deflecting beam element which in Imaging direction behind each other, and a pupil manipulation element, which is arranged in a position associated with the objective pupil.
Laserscanningmikroskope sind im Stand der Technik bekannt. Hierzu wird beispielsweise auf die DE 19702753 A1 oder die DE 10257237 A1 verwiesen, die beide ein als Laserscanningmikroskop ausgebildetes Lichtrastermikroskop beschreiben. In diesem Zusammenhang sei angemerkt, daß hier unter dem Begriff „Licht" der gesamte, den optischen Gesetzen gehorchende Bereich der elektromagnetischen Strahlung verstanden wird.Laser scanning microscopes are known in the art. Reference is made, for example, to DE 197 02753 A1 or DE 10257237 A1, both of which describe a light scanning microscope designed as a laser scanning microscope. In this context, it should be noted that the term "light" here is understood to mean the entire region of the electromagnetic radiation which obeys the laws of optics.
Lichtrastermikroskope bzw. Laserscanningmikroskope gewinnen ein Objektbild üblicherweise durch Abrastern des Objektes mit einer Spot- oder Multispotanordnung. Die in den Spot- oder Multispotbereichen aufgenommene Strahlung wird mit möglichst hoher Tiefenauflösung so detektiert, daß keine Struktur des Spots oder des Multispots aufgelöst wird, beispielsweise durch eine sogenannte konfokale Detektion. Ein Verschieben des Spot- oder Multispotbereiches über das Objekt liefert dann das Bild. Am Detektor liegt somit immer nur Strahlungsinformation zum jeweiligen Spot- bzw. Multispotbereich vor, und ein elektronisches Zusammenfügen dieser Bildinformation zu den einzelnen Punkten des Bildes (entsprechend den Spot/Multispotbereichen) unter Berücksichtigung der Verschiebung der Spot- oder Multispotbereiche führt zum gewünschten Bild. Konfokale Detektion ist dabei eine übliche Möglichkeit, eine sehr hohe Tiefenauflösung zu erreichen. Die Signalauswertung ist dann im wesentlichen auf die Fokalebene eingeschränkt, da außerhalb der Fokalebene liegende Bereiche keine wesentliche Signalinformation bei der konfokalen Detektion liefern; sie werden vor oder hinter die konfokale Blende abgebildet. Zur Aufnahme des Bildes ist es bei einem Laserscanningmikroskop also bedeutsam, den auf einen Punkt (Spot) oder Punktgruppe (Multispot) fokussierten Lichtstrahl über das Objekt abzulenken. Es ist bekannt, dazu eine Scaneinrichtung zu verwenden, die den Strahl zweiachsig ablenkt. Gebräuchlich sind Scaneinrichtungen, die zwei Scanelemente haben, welche den Strahl jeweils einachsig einstellbar ablenken. Beispiele für Scanelemente, die bei Lichtrastermikroskopen verwendet werden, sind Galvanometerspiegel oder akustisch optische Modulatoren. Die Ablenkung mit den beiden Scanelementen erfolgt günstigerweise um orthogonal zueinander liegende Achsen. Bezogen auf das aufgenommene Bild spricht man deshalb davon, daß ein Scanelement die Ablenkung in Zeilenrichtung, das andere Element in der senkrecht dazu liegenden Bild-Richtung (denkbar wäre auch die Bezeichnung „Spaltenrichtung") bewirkt.Scanning microscopes or laser scanning microscopes usually acquire an object image by scanning the object with a spot or multispot arrangement. The radiation recorded in the spot or multi-spot areas is detected with the highest possible depth resolution so that no structure of the spot or the multi-spot is resolved, for example by a so-called confocal detection. Moving the spot or multispot area over the object then delivers the picture. Thus, only radiation information for the respective spot or multi-spot area is always present at the detector, and electronic joining of this image information to the individual points of the image (corresponding to the spot / multi-spot areas) taking into account the shift of the spot or multi-spot areas results in the desired image. Confocal detection is a common way to achieve a very high depth resolution. The signal evaluation is then restricted substantially to the focal plane, since areas lying outside the focal plane do not provide any significant signal information in the case of confocal detection; they are imaged in front of or behind the confocal aperture. To capture the image, it is therefore important in a laser scanning microscope to deflect the light beam focused on a spot or point group (multispot) over the object. It is known to use a scanning device that deflects the beam biaxially. Commonly used are scanning devices that have two scanning elements, which deflect the beam uniaxially adjustable. Examples of scanning elements used in scanning microscopes are galvanometer mirrors or acoustically optical modulators. The deflection with the two scanning elements is conveniently carried out around mutually orthogonal axes. Based on the recorded image, it is therefore assumed that one scan element causes the deflection in the line direction, the other element in the image direction perpendicular thereto (the term "column direction" would also be conceivable).
Die Ablenkung des Lichtstrahls oder Lichtstrahlbündels sollte idealerweise aus einem Punkt heraus erfolgen, was aber eigentlich ein einziges, dann zweiachsig wirkendes Scanelement erfordert. Die Verwendung von zwei Scanelementen ist aber sehr viel kostengünstiger und erlaubt zudem eine schnellere Verstellung der Ablenkung. Es ist deshalb im Stand der Technik üblich, zwei Scanelemente möglichst nahe der Pupillenebene des Mikroskopobjektives anzuordnen. Dies hat den weiteren Vorteil, daß die beiden Scanelemente klein gehalten werden können, ohne daß Abschattungseffekte zu befürchten sind. Weiter ist die ansonsten bei verstellbaren Spiegeln auftretende Problematik vermieden, daß abhängig vom Ablenkwinkel, d.h. der Spiegelstellung, der Lichtweg durch den Hub der Spiegelauslenkung unterschiedlich lang ist, was zu Defokussierungseffekten führen kann. Bei üblichen Laserscanningmikroskopen, wie sie beispielsweise von der Carl Zeiss Microlmaging GmbH, Deutschland, unter der Marke ZEISS vertrieben werden, sind deshalb zwei Galvanometerspiegel in möglichst geringem Abstand zueinander vor bzw. nach der Pupille des Mikroskopobjektives bzw. einer dazu konjugierten Pupille angeordnet. Die Bezeichnung „vor" bzw. „nach" bezieht sich dabei hier wie auch im weiteren Text auf den Mikroskopstrahlengang in Abbildungsrichtung, d.h. entgegen der Beleuchtungsrichtung.The deflection of the light beam or light beam should ideally take place from one point, but this actually requires a single, then biaxial scan element. However, the use of two scanning elements is much less expensive and also allows a faster adjustment of the deflection. It is therefore common in the art to arrange two scan elements as close to the pupil plane of the microscope objective. This has the further advantage that the two scanning elements can be kept small without fear of shading effects. Further, the problem otherwise encountered with adjustable mirrors is avoided, depending on the deflection angle, i. the mirror position, the light path by the stroke of the mirror deflection is different lengths, which can lead to defocusing effects. In conventional laser scanning microscopes, as marketed for example by Carl Zeiss Microlmaging GmbH, Germany, under the trademark ZEISS, therefore, two galvanometer mirrors are arranged as close as possible to each other before or after the pupil of the microscope objective or a pupil conjugated thereto. The term "before" or "after" here and in the following text refers to the microscope beam path in the imaging direction, i. against the direction of illumination.
In der Mikroskopie sind weiter verschiedene Mikroskopieverfahren bekannt, bei denen eine Pupillenmanipulation erfolgt. Die bekannteste Methode ist wohl das Dunkelfeldverfahren, bei dem das Hauptmaximum der Fourier-Transformierten in der Pupillenebene ausgeblendet wird. Weitere bekannte Verfahren, bei denen eine Manipulation der durch eine Pupille laufenden Strahlung des Mikroskops erfolgt, sind VAREL-Verfahren, Verfahren zur erweiterten Schärfentiefe (Toraldo-Prinzip, logarithmische Phasenmasken, kubische Phasenmasken), Verfahren zur Aberrationsmessung (Ronchi-Test), Phasenmasken zur Korrektur von Restaberrationen oder zur schnellen Fokussierung. Bei der Laserscanningmikroskopie ist die Pupillenmanipulation dagegen schwierig. In der gebräuchlichen Realisierung von Laserscanningmikroskopen stehen die beiden Scanelemente beide nicht exakt in der Objektivpupille. Deshalb wandert jede Pupille, die eine Abbildung der Scannerpupille darstellt, beim Scannen gegenüber der Objektivpupille lateral. Man ist deshalb bei Elementen zur Pupillenmanipulation auf Bauformen bzw. Manipulationseingriffe beschränkt, die auf diese Verschiebung unempfindlich sind. Theoretisch wäre es auch denkbar, ein ansteuerbares Element zu verwenden, das im Takt zur Ansteuerung der Scanelemente verändert wird, um der Verschiebung Rechnung zu tragen.In microscopy, various microscopy methods are known in which a pupil manipulation occurs. The best known method is probably the dark field method, in which the main maximum of the Fourier transforms is hidden in the pupil plane. Other known methods in which manipulation of the microscope's current radiation are VAREL methods, methods for extended depth of field (Toraldo principle, logarithmic phase masks, cubic phase masks), methods for aberration measurement (Ronchi test), phase masks for Correction of residual aberrations or for fast focusing. In laser scanning microscopy, however, pupil manipulation is difficult. In the conventional realization of laser scanning microscopes, the two scanning elements are both not exactly in the objective pupil. Therefore, each pupil that represents an image of the scanner pupil travels laterally when scanning against the objective pupil. It is therefore limited in elements for pupil manipulation on designs or manipulation operations that are insensitive to this shift. Theoretically, it would also be conceivable to use a controllable element which is changed in time with the control of the scanning elements in order to take account of the displacement.
Der Erfindung liegt nun die Aufgabe zugrunde, ein Lichtraster-Mikroskop der eingangs genannten Art so weiterzubilden, daß die Möglichkeiten zur Pupillenmanipulation erweitert sind und zugleich eine Pupillenmanipulation einfacher ausgeführt werden kann.The invention is based on the object, a light-scanning microscope of the type mentioned in such a way that the possibilities for pupil manipulation are extended and at the same time a pupil manipulation can be performed easily.
Die Erfindung löst diese Aufgabe durch ein Lichtraster-Mikroskop der eingangs genannten Art, bei dem das erste Scanelement in der Objektivpupille oder einer dazu konjugierten Pupille liegt, dem ersten Scanelement eine Relay-Optik zur Abbildung der das erste Scanelement enthaltene Pupille in eine zweite Pupille nachgeordnet ist, das Element zur Pupillenmanipulation in der von der Relay-Optik erzeugten zweiten Pupille liegt und reflektiv ausgebildet ist, so daß die Relay- Optik in Abbildungsrichtung nochmals durchlaufen wird und diese die zweite Pupille nochmals in eine dritte Pupille abbildet, wobei die Relay-Optik einen Strahlumlenker aufweist, so daß die dritte Pupille räumlich getrennt von der das erste Scanelement enthaltenden Pupillenebene ist, und das zweite Scanelement in der dritten Pupille angeordnet ist.The invention solves this problem by a light-scanning microscope of the type mentioned, in which the first scanning element in the objective pupil or a pupil conjugate thereto, the first scanning element downstream of a relay optics for imaging the pupil contained in the first scan element in a second pupil is, the element for pupil manipulation in the second pupil generated by the relay optics and is formed reflective, so that the relay optics is traversed again in the imaging direction and these images the second pupil again into a third pupil, wherein the relay optics a beam deflector, so that the third pupil is spatially separated from the pupil plane containing the first scanning element, and the second scanning element is arranged in the third pupil.
Es wird also erfindungsgemäß eine Relay-Optik zur Pupillenabbildung verwendet, die so in den Strahlengang nach der Objektivpupille oder einer durch Zwischenabbildung daraus erzeugten konjugierten Pupille integriert ist, daß drei zueinander zugeordnete Pupillen entstehen. Dies ist nur aufgrund der speziellen optischen Wirkung der Scanelemente möglich, da jedes Scanelement aufgrund der einachsigen Ablenkung für sich ein Feld nur in einer Dimension erzeugt. In zwei der Pupillen werden die Scanelemente positioniert, so daß die dritte Pupille automatisch gegenüber den Scanelementen ortsfest ist. In dieser dritten Pupille wird das Element zur Pupillenmanipulation angeordnet. Weiter ist dafür gesorgt, daß eine der drei Pupillen mit der Objektivpupille bzw. einer dazu konjugierten Pupille zusammenfällt. Es steht also das erste Scanelement in der Objektivpupille (bzw. einer dazu konjugierten Pupille), das Element zur Pupillenmanipulation steht in einer durch Abbildung der Pupille mit dem ersten Scanelement gewonnenen zweiten Pupille, und diese wird wiederum in eine dritte Pupille abgebildet, in der das zweite Scanelement angeordnet ist. - A -Thus, according to the invention, a relay optic for pupil imaging is used, which is integrated in the beam path after the objective pupil or a conjugated pupil produced therefrom by intermediate imaging, so that three mutually associated pupils are formed. This is possible only because of the special optical effect of the scanning elements, since each scanning element generates a field in only one dimension due to the uniaxial deflection. In two of the pupils, the scanning elements are positioned so that the third pupil is automatically fixed relative to the scanning elements. In this third pupil, the pupil manipulation element is placed. It is further ensured that one of the three pupils coincides with the objective pupil or a pupil conjugated thereto. Thus, the first scanning element is located in the objective pupil (or a pupil conjugated thereto), the pupil manipulation element is in a second pupil obtained by imaging the pupil with the first scanning element, and this is again imaged into a third pupil in which the pupil second scanning element is arranged. - A -
Um den optischen Aufbau möglichst einfach zu halten, ist die Relay-Optik mit einem Strahlumlenker versehen und so ausgebildet, daß sie in Abbildungsrichtung zweimal durchlaufen wird. Vom ersten Scanelement bewirkt die Relay-Optik eine Abbildung der Pupille mit diesem Scanelement auf die zweite Pupille. Da erfindungsgemäß dort ein reflektiv wirkendes Element zur Pupillenmanipulation angeordnet ist, bewirkt die Relay-Optik nach der Reflexion am Element zur Pupillenmanipulation eine weitere Pupillenabbildung auf die dritte Pupille, die aufgrund der Wirkung des Strahlumlenkers nicht mit der der Pupille zusammenfällt, in der das erste Scanelement steht. Die Relay-Optik bewirkt also eine zweifache Pupillenabbildung: einmal in Richtung auf das Element zur Pupillenmanipulation hin und das andere Mal von diesem weg in Richtung des zweiten Scanelementes.In order to keep the optical structure as simple as possible, the relay optics is provided with a beam deflector and designed so that it is traversed twice in the imaging direction. From the first scanning element, the relay optics effects an image of the pupil with this scanning element on the second pupil. Since, according to the invention, a reflective element for pupil manipulation is arranged there, the relay optics, after reflection at the pupil manipulation element, produce a further pupil image on the third pupil which, due to the effect of the beam deflector, does not coincide with that of the pupil, in which the first scan element stands. The relay optics thus causes a double pupil image: once in the direction of the element for pupil manipulation and the other time away from it in the direction of the second scanning element.
Diese Ausbildung der Relay-Optik ermöglicht einen sehr kompakten Aufbau. Bildet man den Strahlumlenker als Strahlteiler oder Prisma aus, ergibt sich insgesamt ein T-förmiger Strahlengang zwischen den Scanelementen. Ein solcher Aufbau ist besonders platzsparend und leicht zu justieren.This design of the relay optics allows a very compact design. Forming the beam deflector as a beam splitter or prism, resulting in a total of a T-shaped beam path between the scanning elements. Such a construction is particularly space-saving and easy to adjust.
Das Element zur Pupillenmanipulation kann nun nahezu beliebig entsprechend dem gewünschten Mikroskopieverfahren gewählt werden. Besonders bevorzugt ist es, ein Element zu verwenden, das durch ein elektrisches Stellsignal verstellbar ist. Möchte man keine Pupillenmanipulation vornehmen, ist das Element in einen Modus geschaltet, in dem es ohne weitere Manipulation den Strahlengang reflektiert. Eine mögliche Bauweise für ein solches Element ist ein räumlicher Lichtmodulator oder ein adaptiver Spiegel. Auch kann ein DMD-Array verwendet werden.The element for pupil manipulation can now be chosen almost arbitrarily according to the desired microscopy method. It is particularly preferred to use an element which is adjustable by an electrical control signal. If one does not want to manipulate the pupil, the element is switched to a mode in which it reflects the beam path without any further manipulation. One possible construction for such an element is a spatial light modulator or adaptive mirror. Also, a DMD array can be used.
Der erfindungsgemäße Aufbau hat folgende Vorteile:The structure according to the invention has the following advantages:
1. Durch die erfindungsgemäße Relay-Optik werden drei Pupillen geschaffen, die in fest zueinander zugeordneten Lagen sind. Eine Pupille nimmt das erste Scanelement auf. In der zweiten Pupille liegt das Element zur Pupillenmanipulation. Die dritte Pupille ist für das zweite Scanelement vorgesehen. Die drei Pupillen sind zueinander konjugiert, so daß eine optimale Wirkung des Elementes zur Pupillenmanipulation erreicht ist und keine Beschränkung auf bestimmte Elemente mehr besteht.1. By means of the relay optics according to the invention, three pupils are created, which are in fixedly assigned positions. A pupil picks up the first scan element. The second pupil contains the element for pupil manipulation. The third pupil is provided for the second scanning element. The three pupils are conjugate to each other, so that an optimal effect of the element for pupil manipulation is achieved and there is no longer any restriction to certain elements.
2. Die erfindungsgemäße Anordnung ermöglicht es, das erste Scanelement in einer zur Objektivpupille konjugierten Pupille oder in der Objektivpupille selbst anzuordnen. Durch die feste Zuordnung der erwähnten zwei weiteren Pupillen ist insgesamt damit eine feste Lage der Objektivpupille zur Pupille mit dem Element zur Pupillenmanipulation gesichert. Eine laterale Verschiebung des Strahlengangs während dem Scannen findet auf dem Element zur Pupillenmanipulation dadurch nicht statt.2. The arrangement according to the invention makes it possible to arrange the first scanning element in a pupil conjugate to the objective pupil or in the objective pupil itself. As a result of the fixed assignment of the two other pupils mentioned, a fixed position of the objective pupil to the pupil with the pupil manipulation element is secured overall. A lateral Displacement of the beam path during scanning does not take place on the pupil manipulation element.
3. Die Ausbildung der Relay-Optik mit einem Strahlumlenker und die Verwendung eines reflektiv wirkenden Elementes zur Pupillenmanipulation bewirkt, daß die Relay-Optik sowohl in3. The design of the relay optics with a beam deflector and the use of a reflective element for pupil manipulation causes the relay optics in both
Richtung auf das Element zur Pupillenmanipulation als auch von diesem weg eine Pupillenabbildung vornimmt. Sie wird also zweimal durchlaufen. D.h. für zwei Pupillenabbildungen wird nur ein Satz optischer Bauteile benötigt. Dies führt zu einem kompakten und im übrigen auch kostengünstigen Aufbau.Direction of the element for pupil manipulation as well as from this away makes a pupil image. It will therefore pass twice. That for two pupil images, only one set of optical components is needed. This leads to a compact and otherwise cost-effective design.
4. Unabhängig von der Wirkung des Elementes zur Pupillenmanipulation befinden sich die zwei Scanelemente immer exakt in der Objektivpupille bzw. einer dazu konjugierten Pupille. Somit sind negative Einwirkungen, die bei Scanelementen, welche außerhalb der Pupillenebene liegen, auftreten können, auch ohne Pupillenmanipulationsbetrieb beim erfindungsgemäßen Mikroskop vermieden. Insbesondere wird der Lichtweg nicht abhängig von der Ablenkung durch Auftreffen des Lichtstrahls außerhalb der Ablenkachse des jeweiligen einachsig ablenkenden Scanelementes verlängert. Es ist im Gegenteil nunmehr sichergestellt, daß der Beleuchtungs- wie der Abbildungsstrahl immer exakt auf der Ablenkachse auf das Scanelement trifft, unabhängig von der Stellung des anderen Scanelementes.4. Regardless of the effect of the element for pupil manipulation, the two scanning elements are always exactly in the objective pupil or a pupil conjugated thereto. Thus, negative effects that may occur in scan elements that are outside the pupil plane, avoided even without pupil manipulation operation in the microscope according to the invention. In particular, the light path is not extended as a function of the deflection by impinging the light beam outside the deflection axis of the respective uniaxially deflecting scanning element. On the contrary, it is now ensured that the illumination and the imaging beam always strike the scanning element exactly on the deflection axis, regardless of the position of the other scanning element.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnungen beispielshalber näher erläutert. In den Zeichnungen zeigt:The invention will be explained in more detail by way of example with reference to the drawings. In the drawings shows:
Figur 1 eine schematische Darstellung eines Lichtraster-Mikroskops,FIG. 1 shows a schematic representation of a light-scanning microscope,
Figur 2 eine vergrößerte Darstellung einer Scaneinrichtung des Lichtraster-Mikroskops undFigure 2 is an enlarged view of a scanning device of the light scanning microscope and
Figuren 3 bis 5 den Strahlengang der Scaneinrichtung der Figur 2 mit den entsprechenden optischen Elementen in drei unterschiedlichen Ansichten.Figures 3 to 5 the beam path of the scanning device of Figure 2 with the corresponding optical elements in three different views.
Figur 1 zeigt schematisch ein als Laserscanningmikroskop (LSM) 1 ausgebildetes Lichtraster- Mikroskop. Mit dem LSM 1 wird ein Objekt 2 auf noch zu erläuternde Art vermessen. Das LSM 1 ist im wesentlichen in ein Mikroskopmodul 3, ein Detektionsmodul 4 sowie ein Beleuchtungsoder Anregungsmodul 5 unterteilt. Das Anregungsmodul stellt Anregungsstrahlung bereit und speist diese in das Mikroskopmodul 3 ein, so daß sie als spotförmige Beleuchtung auf das Objekt 2 gerichtet wird. Die spotförmige Beleuchtung wird vom Mikroskopmodul 3 rasternd über das Objekt 2 geführt. Der am Objekt dabei mit Beleuchtungsstrahlung aus dem Beleuchtungsmodul 5 beleuchtete Spotbereich wird über das Mikroskopmodul 3 vom Detektionsmodul 4 konfokal detektiert. Gestaltet man die Beleuchtung als Anregungsstrahlung aus, kann dabei ein Bild der Fluoreszenzeigenschaften des Objektes 2 gewonnen werden.FIG. 1 shows schematically a light scanning microscope designed as a laser scanning microscope (LSM) 1. With the LSM 1, an object 2 is measured in a manner yet to be explained. The LSM 1 is essentially subdivided into a microscope module 3, a detection module 4 and a lighting or excitation module 5. The excitation module provides excitation radiation and feeds it into the microscope module 3, so that it is directed to the object 2 as spot-shaped illumination. The spot-shaped illumination is guided by the microscope module 3 raster over the object 2. The spot area illuminated with illumination radiation from the illumination module 5 on the object is transmitted via the microscope module 3 from the Detection module 4 detected confocally. If the illumination is designed as excitation radiation, an image of the fluorescence properties of the object 2 can be obtained.
Das Beleuchtungs- oder Anregungsmodul 5 weist zur Beleuchtung Lichtquellen 6 und 7 auf, die beispielsweise als Laser ausgebildet sein können. Die Strahlung aus den Lichtquellen 6 und 7 wird über einen Umlenkspiegel 8 bzw. einen Strahlteiler 9 sowie eine Beleuchtungsoptik 10 zu einem als Hauptfarbteiler bezeichneten Strahlteiler 11 geleitet, wo sie in das Mikroskopmodul 3 eingekoppelt ist. Die konkrete Ausgestaltung der Einkopplung der Strahlung, im vorliegenden Ausführungsbeispiel durch Umlenkspiegel 8, Strahlteiler 9 und Beleuchtungsoptik 10 realisiert, ist für die nachfolgende Erfindung ohne weitere Bedeutung. Es sind auch andere Bauweisen möglich, beispielsweise mittels Faseroptiken und geeigneten Faseroptikkopplern. Auch kann abweichend von den in Figur 1 gezeigten zwei Lichtquellen natürlich nur eine einzige Lichtquelle oder eine größere Anzahl an Lichtquellen zum Einsatz kommen. Wesentlich für die Erfindung ist hier nur, daß am Hauptfarbteiler 11 ein Beleuchtungsstrahl 17 eingekoppelt wird.The illumination or excitation module 5 has for illumination light sources 6 and 7, which may be formed for example as a laser. The radiation from the light sources 6 and 7 is conducted via a deflecting mirror 8 or a beam splitter 9 and an illumination optical unit 10 to a beam splitter 11, referred to as a main color splitter, where it is coupled into the microscope module 3. The specific embodiment of the coupling of the radiation, realized in the present embodiment by deflecting mirror 8, beam splitter 9 and illumination optics 10 is for the following invention without further meaning. Other constructions are also possible, for example by means of fiber optics and suitable fiber optic couplers. Also, deviating from the two light sources shown in Figure 1, of course, only a single light source or a larger number of light sources can be used. Essential to the invention here is only that at the main color divider 11, an illumination beam 17 is coupled.
Der Hauptfarbteiler 11 kann beispielsweise wie in der bereits genannten DE 19702753 A1 aufgebaut sein. Anstelle des dort beschriebenen dichroitischen Hauptfarbteilers kann auch ein farbneutraler Teiler verwendet werden, wie er z.B. in der DE 10257237 A1 geschildert ist.The main color splitter 11 may be constructed, for example, as in the already mentioned DE 197 02 753 A1. Instead of the dichroic main color splitter described therein, a color-neutral splitter can also be used, as it is e.g. is described in DE 10257237 A1.
Die vom Beleuchtungs- oder Anregungsmodul 5 am Hauptfarbteiler 11 ankommende Strahlung in Form des Beleuchtungsstrahles 17 wird dann mittels einer Scaneinrichtung 12 sowie einer Scanoptik 13 durch eine Tubuslinse 15 und ein Objektiv 16 auf oder in das Objekt 2 fokussiert. Die Fokussierung erfolgt dabei im Ausführungsbeispiel in einen beugungsbegrenzten Fokus, dessen Lage im Objekt 2 längs der optischen Achse durch einen verstellbaren Probentisch 18 eingestellt werden kann. Die Scaneinrichtung 12 lenkt den vom Hauptfarbteiler 11 kommenden Beleuchtungsstrahl 17 zweiachsig ab, so daß dieser als unterschiedlich ausgelenkter Strahl 19 durch die Tubuslinse 15 und das Objektiv 16 auf bzw. in das Objekt 2 fällt, mithin im Objekt 2 an unterschiedliche Stellen quer zur optischen Achse fokussiert ist.The radiation arriving from the illumination or excitation module 5 on the main color splitter 11 in the form of the illumination beam 17 is then focused onto or into the object 2 by means of a scanning device 12 and a scanning optics 13 through a tube lens 15 and an objective 16. The focusing is carried out in the embodiment in a diffraction-limited focus whose position in the object 2 along the optical axis by an adjustable sample table 18 can be adjusted. The scanning device 12 deflects the coming of the main color splitter 11 illumination beam 17 biaxially, so that this falls differently deflected beam 19 through the tube lens 15 and the lens 16 on or in the object 2, thus in the object 2 at different locations transverse to the optical axis is focused.
Zur Beobachtung des Objektes 2 für einen Mikroskopbenutzer ist zwischen der Scanoptik 13 sowie der Tubuslinse 15 noch optional ein als Strahlteiler ausgebildeter Umlenkspiegel 14 vorgesehen, der eine visuelle Inspektion ermöglicht.For observation of the object 2 for a microscope user, a deflecting mirror 14 designed as a beam splitter is optionally provided between the scanning optics 13 and the tube lens 15, which optionally permits a visual inspection.
Mittels der Scaneinrichtung 12, die wie der Probentisch 18 auch von einem Steuergerät 26 über nicht näher bezeichnete bzw. nicht dargestellte Leitungen angesteuert wird, wird der Fokus des abgelenkten Beleuchtungsstrahls 19 durch das Objektiv 16 an unterschiedliche Stellen im Objekt plaziert. Insgesamt erfolgt eine dreidimensionale Positionierung. Die Ablenkung durch die Scaneinrichtung 12 bewirkt dabei die Aufnahme eines zweidimensionalen Bildes, dessen Tiefenlage im Objekt 2 als dritte Dimension durch die Einstellung des Probentisches 18, d.h. die Lage der Fokalebene im Objekt 2 bestimmt ist. Alternativ ist auch eine Fokusverstellung durch Einstellung des Objektives 16 möglich.By means of the scanning device 12, which, like the sample table 18, is also controlled by a control unit 26 via lines not designated or not shown, the focus of the deflected illumination beam 19 is placed at different locations in the object by the objective 16. Overall, there is a three-dimensional positioning. The deflection by the scanning device 12 causes the recording of a two-dimensional image whose Depth position in the object 2 as a third dimension by the setting of the sample table 18, that is, the position of the focal plane in the object 2 is determined. Alternatively, a focus adjustment by adjusting the lens 16 is possible.
Die im Objekt 2 erzeugte Strahlung, z.B. Fluoreszenzstrahlung, wird durch Abbildung des Fokusses im Objekt 2 mittels des Objektivs 16 und der Tubuslinse 15 sowie der Scanoptik 13 in das Detektionsmodul 4 für jeden Punkt des aufzunehmenden Bildes detektiert. Der Hauptfarbteiler 11 leitet dazu den nach Durchlauf durch die Scaneinrichtung 12 in Abbildungsrichtung wieder ruhenden Strahl 21 zum Detektionsmodul 4, das konfokale Detektorelemente aufweist. Über einen Auskoppler 22 und eine Pinholeoptik 23 erfolgt an einem Pinhole 24 eine konfokale Filterung der Strahlung aus dem Fokus im Objekt 2. Die Ebene der konfokalen Blende 24 ist konjugiert zur Fokusebene im Objekt 2. Ein Detektor 25 nimmt die konfokal gefilterte Strahlung auf. Auch er ist mit dem Steuergerät 26 verbunden. Das Steuergerät 26 erzeugt so zu jeder Lage des Fokus im Objekt 2 einen entsprechenden Bildpunkt, der durch die Intensitätsinformation vom Detektor 25 sowie seine Lage im Bild durch die Stellung der Scaneinrichtung 12 charakterisiert ist. Das Detektionsmodul 4 kann dabei je nach Ausführungsform mehrere spektrale Kanäle aufweisen. Es sind dann die entsprechenden Elemente 22 bis 25 mehrfach vorhanden. In Figur 1 ist dies schematisch durch einen zweiten Detektionskanal symbolisiert, dessen Bezugszeichen mit einem Apostroph versehen sind. Eine strichpunktierte Linie deutet an, daß noch weitere Detektionskanäle möglich sind. Die Auskoppler 22 bzw. 22' fungieren somit als sogenannte Nebenfarbteiler. Ihre spektrale Charakteristik bestimmt, welcher Spektralbereich die vom zugeordneten Detektor nachgewiesene Strahlung hat. Der Aufbau des Detektionsmoduls 4 ist für die hier beschriebene Erfindung nicht weiter von Interesse, insbesondere ist es nicht ausschlaggebend, ob bzw. wie eine konfokale Filterung erfolgt. Wesentlich für die Erfindung ist hier lediglich, daß nach der Scaneinrichtung 12 ein ruhender Strahl 21 vorliegt, der in der Literatur auch als de-scannter Strahl bezeichnet wird.The radiation generated in object 2, e.g. Fluorescence radiation is detected by imaging the focus in the object 2 by means of the objective 16 and the tube lens 15 as well as the scanning optics 13 into the detection module 4 for each point of the image to be recorded. For this purpose, the main color splitter 11 guides the beam 21, which, after passing through the scanning device 12, is again stationary in the imaging direction to the detection module 4, which has confocal detector elements. Confocal filtering of the radiation from the focus in the object 2 takes place via an output coupler 22 and a pinhole optics 23 at a pinhole 24. The plane of the confocal diaphragm 24 is conjugate to the focal plane in the object 2. A detector 25 picks up the confocal filtered radiation. He is also connected to the controller 26. The control unit 26 thus generates for each position of the focus in the object 2 a corresponding pixel, which is characterized by the intensity information from the detector 25 and its position in the image by the position of the scanning device 12. Depending on the embodiment, the detection module 4 can have a plurality of spectral channels. There are then the corresponding elements 22 to 25 multiple times. In Figure 1, this is symbolized schematically by a second detection channel, the reference numerals are provided with an apostrophe. A dot-dash line indicates that even more detection channels are possible. The output couplers 22 and 22 'thus act as so-called secondary color splitter. Its spectral characteristic determines which spectral range has the radiation detected by the associated detector. The construction of the detection module 4 is of no further interest for the invention described here, in particular it does not determine whether or how confocal filtering takes place. It is only essential for the invention here that after the scanning device 12, a stationary beam 21 is present, which is referred to in the literature as a de-scanned beam.
Die Scaneinrichtung 12 sorgt dafür, daß der Strahl zweiachsig zum ausgelenkten Strahl 19 abgelenkt wird, wodurch der Fokus der Beleuchtungsstrahlung im Objekt 2 ein senkrecht zurThe scanning device 12 ensures that the beam is deflected biaxially to the deflected beam 19, whereby the focus of the illumination radiation in the object 2 is perpendicular to the
Einfallsrichtung der Beleuchtungsstrahlung bzw. zur Abbildungsrichtung liegendes Feld überstreicht. Dies wird als Scannen bezeichnet. In umgekehrter (Abbildungs-)Richtung sorgt dieDirection of incidence of the illumination radiation or to the imaging direction lying field sweeps. This is called scanning. In reverse (imaging) direction provides the
Scaneinrichtung dafür, daß zweidimensional verteilte Bildpunkte auf einen nicht- ortsauflösenden Detektor zeitsequentiell abgebildet werden. Dies wird als de-scannen bezeichnet.Scanning device for the fact that two-dimensionally distributed pixels are time-sequentially imaged onto a non-spatially resolving detector. This is called de-scanning.
Da die punktförmige Beleuchtung für diese Abbildung ohne weiteren Belang ist und deshalb für die vorliegende Erfindung, die sich primär der Scaneinrichtung 12 widmet, nicht weiter wichtig ist (es kommt z.B. auch eine Weitfeldbeleuchtung in Frage), wird die Scaneinrichtung 12 nachfolgend in Abbildungsrichtung betrachtet.Since dot-shaped illumination is of no further concern to this illustration, and therefore of no further importance to the present invention, which is primarily dedicated to scanning device 12 is (it also comes as a wide-field lighting in question), the scanning device 12 is considered below in the imaging direction.
Die Scaneinrichtung 12 ist in Figur 2 schematisch näher gezeigt. Sie besteht aus zwei Scanspiegeln 40 bzw. 41 , die in dieser Ausführungsform Beispiele für einachsig ablenkende Scanelemente sind. Jeder Scanspiegel lenkt um eine Ablenkachse ab, wobei die Ablenkachsen der Scanspiegel 40 und 41 vorzugsweise orthogonal zueinander stehen. Prinzipiell genügt aber jede Schrägstellung, um ein zweidimensionales Feld mit dem Fokus überstreichen zu können.The scanning device 12 is shown schematically in more detail in FIG. It consists of two scanning mirrors 40 and 41, which in this embodiment are examples of uniaxially deflecting scanning elements. Each scanning mirror deflects about a deflection axis, wherein the deflection axes of the scanning mirrors 40 and 41 are preferably orthogonal to one another. In principle, however, any inclination is sufficient to be able to cover a two-dimensional field with the focus.
In Abbildungsrichtung, d.h. in der Darstellungsform der Figur 2 am ausgelenkten Strahl 19 von links kommend, wirkt in der Scaneinrichtung 12 ein erster Scanspiegel 40 und diesem folgend ein zweiter Scanspiegel 41 , so daß nach dem zweiten Scanspiegel 41 der ruhende Strahl 21 gegeben ist. Zwischen den Scanspiegeln 40 und 41 befindet sich eine Pupillenmanipulationseinheit 42, die in Figur 2 nur schematisch eingezeichnet ist.In the imaging direction, i. 2 comes on the deflected beam 19 from the left, acts in the scanning device 12, a first scanning mirror 40 and this following a second scanning mirror 41 so that after the second scanning mirror 41 of the stationary beam 21 is given. Between the scan mirrors 40 and 41 there is a pupil manipulation unit 42, which is shown only schematically in FIG.
Die Figuren 3-5 zeigen die Scaneinrichtung 12 mit der Pupillenmanipulationseinheit 42 detailliert mit ihrem Strahlengang. Figur 4 zeigt den Aufbau der Figur 3 dabei aus der mit A bezeichneten Richtung. Figur 5 schließlich zeigt denselben Strahlengang aus der mit B bezeichneten Richtung. Die Beschreibung folgt dem de-scannen des zweiachsig abgelenkten Strahles 19 zum ruhenden Strahl 21.FIGS. 3-5 show the scanning device 12 with the pupil manipulation unit 42 in detail with its beam path. FIG. 4 shows the structure of FIG. 3 in this case from the direction designated A. Finally, FIG. 5 shows the same beam path from the direction designated B. The description follows the de-scanning of the biaxially deflected beam 19 to the stationary beam 21.
Der zweiachsig abgelenkte Strahl 19 fällt zuerst auf den ersten Scanspiegel 40, dessen einachsige Bewegung somit einachsig de-scannt. Der erste Scanspiegel 40 befindet sich in einer Pupille 48 des Objektives 16, die in Figur 3 schematisch durch eine gestrichelte Linie gezeigt ist.The biaxially deflected beam 19 first falls on the first scanning mirror 40, whose uniaxial motion thus uniaxially de-scans. The first scanning mirror 40 is located in a pupil 48 of the objective 16, which is shown schematically in FIG. 3 by a dashed line.
Der ursprünglich zweiachsig abgelenkte, d.h. ein zweidimensionales Feld überstreichende ausgelenkte Strahl 19 ist nach dem Scanspiegel 40 nur noch in einer Raumrichtung, also zeilenförmig, ausgelenkt. Er fällt dann auf ein Prisma 47, das Bestandteil der Pupillenmanipulationseinheit 42 ist. Vom Prisma 47 gelangt der Strahl durch eine erste Optikgruppe 44 sowie eine zweite Optikgruppe 45, die zusammen die Pupille 48, in der sich der erste Scanspiegel 40 befindet, in eine zweite Pupille 49 abbilden. In dieser zweiten Pupille 49 ist ein reflektiv wirkendes Element zur Pupillenmanipulation angeordnet. Im Ausführungsbeispiel handelt es sich dabei um einen adaptiven Spiegel 43, der vom Steuergerät 26 angesteuert wird.The originally biaxially deflected, i. a two-dimensional field sweeping deflected beam 19 is after the scanning mirror 40 only in one spatial direction, ie line-shaped, deflected. It then falls on a prism 47, which is part of the pupil manipulation unit 42. From the prism 47, the beam passes through a first optical group 44 and a second optical group 45, which together form the pupil 48, in which the first scanning mirror 40 is located, in a second pupil 49. In this second pupil 49, a reflective element for pupil manipulation is arranged. In the exemplary embodiment, this is an adaptive mirror 43, which is controlled by the control unit 26.
Aufgrund der Reflexion am adaptiven Spiegel 43 wird die zweite Pupille 49 durch die zweite Optikgruppe 45 und die erste Optikgruppe 44 wieder zum Prisma 47 und von dort in eine dritte Pupille 50 abgebildet. In dieser befindet sich der zweite Scanspiegel 41. Die Objektivpupille 48, die zweite Pupille 49 sowie die dritte Pupille 50 sind also zueinander konjugiert, so daß auch der erste Scanspiegel 40, der adaptive Spiegel 43 sowie der zweite Scanspiegel 41 in zueinander konjugierten Lagen sind. Der zweite Scanspiegel 41 bewirkt dann ein de-scannen um die verbleibende Achse, so daß danach der ruhende Strahl 21 vorliegt.Due to the reflection at the adaptive mirror 43, the second pupil 49 becomes the prism 47 again through the second optical group 45 and the first optical group 44 and from there into a third one Pupil 50 shown. In this is the second scanning mirror 41. The objective pupil 48, the second pupil 49 and the third pupil 50 are thus conjugate to each other, so that the first scanning mirror 40, the adaptive mirror 43 and the second scanning mirror 41 are in mutually conjugate layers. The second scanning mirror 41 then causes a de-scanning about the remaining axis, so that thereafter the stationary beam 21 is present.
In Beleuchtungsrichtung betrachtet wird hingegen der ruhende Strahl 21 , der in dieser Betrachtungsweise durch den Beleuchtungsstrahl 17 erzeugt ist, zuerst vom zweiten Scanspiegel 41 einachsig abgelenkt, vom Prisma 47 durch die erste und zweite Optikgruppe 44, 45 hin zum adaptiven Spiegel 43 geleitet, von diesem je nach Einstellung pupillenmanipulierend reflektiert, so daß er über die zweite Optikgruppe und die erste Optikgruppe 45, 44 und das Prisma 47 zum ersten Scanspiegel 40 gelangt, der aus der bis dahin vorliegenden einachsigen Ablenkung eine zweiachsige Ablenkung macht und den ausgelenkten Strahl 19 bereitstellt.In the illumination direction, on the other hand, the stationary beam 21, which is generated by the illumination beam 17 in this approach, is first uniaxially deflected by the second scanning mirror 41, guided by the prism 47 through the first and second optical groups 44, 45 toward the adaptive mirror 43 depending on the setting pupil manipulating reflected so that it passes through the second optical group and the first optical group 45, 44 and the prism 47 to the first scanning mirror 40, which makes a biaxial deflection from the hitherto existing uniaxial deflection and the deflected beam 19 provides.
Die Pupillenmanipulationseinheit 42 umfaßt das Prisma 47, die erste Optikgruppe 44 und die zweite Optikgruppe 45, zwischen denen ein Zwischenbild 46 entsteht. Das Prisma 47 leitet dabei (in Abbildungsrichtung) die Strahlung in die erste Optikgruppe 44 und die zweite Optikgruppe 45 so unter einem Versatz zur optischen Achse der Optikgruppen 44 und 45, daß nach Reflexion am adaptiven Spiegel 43 der erhaltene Strahl vom Prisma 47 nicht in Richtung der Objektivpupille 48 reflektiert wird, sondern zur dritten Pupille 50 gelangt. Das Prisma 47 ist hier als Dachflächenprisma ausgebildet. Prinzipiell genügt jedoch eine einzige Spiegelfläche, so daß nur eine Umlenkung durch das Prisma 47 ausgeführt werden muß. Der Strahlengang liefe dann ohne Umlenkung weiter, so daß die Lage der dritten Pupille 50 links von der Pupillenmanipulationseinheit (gesehen in Richtung auf den adaptiven Spiegel) läge.The pupil manipulation unit 42 comprises the prism 47, the first optical group 44 and the second optical group 45, between which an intermediate image 46 is formed. The prism 47 guides (in the imaging direction) the radiation into the first optical group 44 and the second optical group 45 so at an offset to the optical axis of the optical groups 44 and 45, that after reflection on the adaptive mirror 43 of the received beam from the prism 47 is not in the direction the objective pupil 48 is reflected, but reaches the third pupil 50. The prism 47 is designed here as a roof prism. In principle, however, a single mirror surface is sufficient so that only one deflection by the prism 47 has to be carried out. The beam path would then continue without deflection so that the position of the third pupil 50 would be to the left of the pupil manipulation unit (as viewed in the direction of the adaptive mirror).
Die in Figur 3 sowie in den Figuren 4 und 5 gezeigte Bauweise hat den Vorteil, daß erster und zweiter Scanspiegel 41 , 41 auf einer gemeinsamen optischen Achse liegen, d.h. die optische Achse des ausgelenkten Strahles 19 und des ruhenden Strahles 21 zusammenfallen können. Dies erleichtert die Justierung der Anordnung. The construction shown in Figure 3 and in Figures 4 and 5 has the advantage that the first and second scanning mirrors 41, 41 lie on a common optical axis, i. the optical axis of the deflected beam 19 and the stationary beam 21 can coincide. This facilitates the adjustment of the arrangement.

Claims

Carl Zeiss Microlmaging GmbH 10. September 2007Anwaltsakte: PAT 4024/009-PCT K/22/dwAnsprüche Carl Zeiss Microlmaging GmbH September 10, 2007Personal Law: PAT 4024/009-PCT K / 22 / dwAnsprüche
1. Lichtraster-Mikroskop mit - einem Objektiv (16) zur Probenabbildung, wobei das Objektiv (16) eine Objektivpupille (48) aufweist,1. Scanning microscope with a lens (16) for sample imaging, the lens (16) having an objective pupil (48),
- einer dem Objektiv (16) in Abbildungsrichtung nachgeordneten Scaneinrichtung (12) zur zweiachsigen Strahlablenkung, wobei die Scaneinrichtung (12) ein erstes und ein zweites, jeweils einachsig ablenkendes Scanelement aufweist, die in Abbildungsrichtung hintereinander liegen,a scanning device (12) arranged downstream of the objective (16) in the imaging direction for biaxial beam deflection, wherein the scanning device (12) has a first and a second, respectively uniaxially deflecting scanning element, which lie one behind the other in the imaging direction,
- einem Element (43) zur Pupillenmanipulation (40, 41), das in einer der Objektivpupille (48) zugeordneten Lage angeordnet ist, dadurch gekennzeichnet, daß- an element (43) for pupil manipulation (40, 41) arranged in a position associated with the objective pupil (48), characterized in that
- das erste Scanelement (40) in der Objektivpupille (48) oder einer dazu konjugierten Pupille liegt,the first scanning element (40) lies in the objective pupil (48) or a pupil conjugated thereto,
- dem ersten Scanelement (40) eine Relay-Optik (42) zur Abbildung der das erste Scanelement (40) enthaltenden Pupille (48) in eine zweite Pupille (49) nachgeordnet ist,a relay optics (42) for imaging the pupil (48) containing the first scanning element (40) is arranged downstream of the first scanning element (40) in a second pupil (49),
- das Element (43) zur Pupillenmanipulation in der von der Relay-Optik (42) erzeugten zweiten Pupille (49) liegt und reflektiv ausgebildet ist, so daß die Relay-Optik (42) in Abbildungsrichtung nochmals durchlaufen wird und diese die zweite Pupille (49) nochmals in eine dritte Pupille (50) abbildet, wobei die Relay-Optik (42) einen Strahlumlenker (47) aufweist, der die dritte Pupille (50) von der das erste Scanelement (40) enthaltenden Pupille trennt, undthe pupil manipulation element (43) lies in the second pupil (49) produced by the relay optic (42) and is designed to be reflective, so that the relay optics (42) are traversed again in the imaging direction and the second pupil () 49) again into a third pupil (50), the relay optic (42) having a beam deflector (47) which separates the third pupil (50) from the pupil containing the first scanning element (40), and
- das zweite Scanelement (41 ) in der dritten Pupille (50) angeordnet ist.- The second scanning element (41) in the third pupil (50) is arranged.
2. Laser-Mikroskop nach Anspruch 1 , dadurch gekennzeichnet, daß der Strahlumlenker als Strahlteiler oder Prisma (47) ausgebildet ist, zwischen erstem und zweiten Scanelement (40, 41 ) liegt und den Strahlengang im wesentlichen rechtwinklig umlenkt, so daß insgesamt ein T- förmiger Strahlengang zwischen den Scanelementen (40, 41) gebildet ist. 2. Laser microscope according to claim 1, characterized in that the beam deflector is designed as a beam splitter or prism (47), between the first and second scanning element (40, 41) and deflects the beam path substantially at right angles, so that a total of T shaped beam path between the scanning elements (40, 41) is formed.
3. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß das Element (43) zur Pupillenmanipulation durch ein elektrisches Stellsignal verstellbar ist.3. Microscope according to one of the above claims, characterized in that the element (43) is adjustable for pupil manipulation by an electrical control signal.
4. Mikroskop nach Anspruch 3, dadurch gekennzeichnet, daß das Element (43) zur Pupillenmanipulation ein räumlicher Lichtmodulator oder ein adaptiver Spiegel ist. 4. A microscope according to claim 3, characterized in that the element (43) for pupil manipulation is a spatial light modulator or an adaptive mirror.
PCT/EP2007/007881 2006-09-27 2007-09-10 Laser scanning microscope with element for pupil manipulation WO2008037346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006045839.7 2006-09-27
DE102006045839.7A DE102006045839B4 (en) 2006-09-27 2006-09-27 Laserscanningmikroskop with element for pupil manipulation

Publications (1)

Publication Number Publication Date
WO2008037346A1 true WO2008037346A1 (en) 2008-04-03

Family

ID=38657723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007881 WO2008037346A1 (en) 2006-09-27 2007-09-10 Laser scanning microscope with element for pupil manipulation

Country Status (2)

Country Link
DE (1) DE102006045839B4 (en)
WO (1) WO2008037346A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014005880A1 (en) 2014-04-17 2015-11-05 Carl Zeiss Ag Scanning microscope with simplified optics, in particular with variable pupil position
DE102014017001A1 (en) 2014-11-12 2016-05-12 Carl Zeiss Ag Microscope with low distortion error
US9989754B2 (en) 2012-03-09 2018-06-05 Carl Zeiss Microscopy Gmbh Light scanning microscope with spectral detection
US11317798B2 (en) * 2016-09-06 2022-05-03 Nikon Corporation Catadioptric unit-magnification afocal pupil relay and optical imaging system employing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012046257A1 (en) * 2010-10-05 2012-04-12 Fabio Mammano Adaptively corrected grin objective for microscopy
DE102014017003A1 (en) 2014-11-12 2016-05-12 Carl Zeiss Ag Scanning device for the 3D positioning of laser spots
DE102016119727A1 (en) * 2016-10-17 2018-04-19 Carl Zeiss Microscopy Gmbh Device for beam manipulation for a scanning microscope and microscope

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020121A1 (en) * 2001-08-30 2003-03-13 University Of Rochester Adaptive optics in a scanning lase ophtalmoscope
EP1372011A2 (en) * 2002-06-15 2003-12-17 CARL ZEISS JENA GmbH Microscope, especially laser scanning microscope with adaptive optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6888148B2 (en) * 2001-12-10 2005-05-03 Carl Zeiss Jena Gmbh Arrangement for the optical capture of excited and /or back scattered light beam in a sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003020121A1 (en) * 2001-08-30 2003-03-13 University Of Rochester Adaptive optics in a scanning lase ophtalmoscope
EP1372011A2 (en) * 2002-06-15 2003-12-17 CARL ZEISS JENA GmbH Microscope, especially laser scanning microscope with adaptive optical device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989754B2 (en) 2012-03-09 2018-06-05 Carl Zeiss Microscopy Gmbh Light scanning microscope with spectral detection
DE102014005880A1 (en) 2014-04-17 2015-11-05 Carl Zeiss Ag Scanning microscope with simplified optics, in particular with variable pupil position
US10551606B2 (en) 2014-04-17 2020-02-04 Carl Zeiss Microscopy Gmbh Light-scanning microscope with simplified optical system, more particularly with variable pupil position
US11086114B2 (en) 2014-04-17 2021-08-10 Carl Zeiss Microscopy Gmbh Light-scanning microscope with simplified optical system, more particularly with variable pupil position
DE102014017001A1 (en) 2014-11-12 2016-05-12 Carl Zeiss Ag Microscope with low distortion error
WO2016075195A1 (en) 2014-11-12 2016-05-19 Carl Zeiss Microscopy Gmbh Microscope having low distortion error
CN107003506A (en) * 2014-11-12 2017-08-01 卡尔蔡司显微镜有限责任公司 Microscope with low distortion aberration
US10254524B2 (en) 2014-11-12 2019-04-09 Carl Zeiss Microscopy Gmbh Microscope having low distortion aberration
CN107003506B (en) * 2014-11-12 2020-05-05 卡尔蔡司显微镜有限责任公司 Microscope with low distortion aberration
US11317798B2 (en) * 2016-09-06 2022-05-03 Nikon Corporation Catadioptric unit-magnification afocal pupil relay and optical imaging system employing the same

Also Published As

Publication number Publication date
DE102006045839A1 (en) 2008-04-03
DE102006045839B4 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
DE10227120A1 (en) Microscope, in particular laser scanning microscope with adaptive optical device
DE10063276C2 (en) scanning microscope
DE102013022538B3 (en) Method for creating a microscope image and microscopy device
EP1421427B1 (en) Optical arrangement and scan microscope
DE19702753A1 (en) System for coupling radiation, preferably laser beam, in scanning head
EP1606665A1 (en) Scanning microscope comprising a confocal slit scanner for reproducing an object
DE102011082756A1 (en) Autofocusing method and device for a microscope
DE102006045839B4 (en) Laserscanningmikroskop with element for pupil manipulation
DE102015112960B3 (en) Device for the confocal illumination of a sample
WO2014040799A1 (en) Optical arrangement and light microscope
DE10133017C2 (en) Confocal microscope
WO2001088590A1 (en) Arrangement for confocal autofocussing
DE10233074B4 (en) Optical device for combining light beams and scanning microscope
DE10029680B4 (en) The microscope assemblage
LU93022B1 (en) Method and microscope for examining a sample
EP1617263B1 (en) Scanning optical microscope and method of using it
DE102004011770B4 (en) Scanning microscope for investigating and manipulating a sample comprises a first beam deflection device deflecting a first illuminating light beam and a second illuminating light beam
EP3992687B1 (en) Microscope and method for light field microscopy with light sheet excitation and confocal microscopy
WO2012069443A1 (en) Confocal laser scanning microscope and a method for examining a sample
DE10135321B4 (en) Microscope and method for examining a sample with a microscope
EP3987335B1 (en) Methods and apparatuses for checking the confocality of a scanning and descanning microscope assembly
EP3832370A1 (en) Method of microscopy and microscope for imaging of samples using manipulated excitation beams
DE102006044214B4 (en) Microscope, in particular a polarization and / or a fluorescence microscope
DE10102033A1 (en) Spectral region of light beam detection arrangement for microscope splits spectrally light beam, which is imaged onto multichannel photo multiplier using focusing element
DE10061603B4 (en) Optical arrangement for scanning an illumination and detection light beam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07802251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07802251

Country of ref document: EP

Kind code of ref document: A1