DE19541181A1 - 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester - Google Patents

3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester

Info

Publication number
DE19541181A1
DE19541181A1 DE19541181A DE19541181A DE19541181A1 DE 19541181 A1 DE19541181 A1 DE 19541181A1 DE 19541181 A DE19541181 A DE 19541181A DE 19541181 A DE19541181 A DE 19541181A DE 19541181 A1 DE19541181 A1 DE 19541181A1
Authority
DE
Germany
Prior art keywords
compounds
formula
alkenyl
trifluorophenyl
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19541181A
Other languages
English (en)
Inventor
Matthias Dr Bremer
Volker Reiffenrath
Detlef Dr Pauluth
Kazuaki Dr Tarumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7776652&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE19541181(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Priority to DE19541181A priority Critical patent/DE19541181A1/de
Priority to GB9622283A priority patent/GB2306959B/en
Priority to US08/742,321 priority patent/US5725799A/en
Priority to JP8292817A priority patent/JPH09169702A/ja
Publication of DE19541181A1 publication Critical patent/DE19541181A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups

Description

Die vorliegende Erfindung betrifft 3,4,5-Trifluorphenyl 4-Cyclohexyl­ benzoesäureester sowie ein flüssigkristallines Medium, dessen Ver­ wendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen.
Flüssige Kristalle werden vor allem als Dielektrika in Anzeigevorrichtungen verwendet, da die optischen Eigenschaften solcher Substanzen durch eine angelegte Spannung beeinflußt werden können. Elektrooptische Vorrich­ tungen auf der Basis von Flüssigkristallen sind dem Fachmann bestens bekannt und können auf verschiedenen Effekten beruhen. Derartige Vor­ richtungen sind beispielsweise Zellen mit dynamischer Streuung, DAP- Zellen (Deformation aufgerichteter Phasen), Gast/Wirt-Zellen, TN-Zellen mit verdrillt nematischer ("twisted nematic") Struktur, STN-Zellen ("super­ twisted nematic"), SBE-Zellen ("superbirefringence effect") und OMI-Zellen ("optical mode interference"). Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-Helfrich-Effekt und besitzen eine verdrillt nema­ tische Struktur.
Die Flüssigkristallmaterialien müssen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristall­ materialien niedere Viskosität aufweisen und in den Zellen kurze An­ sprechzeiten, tiefe Schwellenspannungen und einen hohen Kontrast ergeben.
Weiterhin sollten sie bei üblichen Betriebstemperaturen, d. h. in einem möglichst breiten Bereich unterhalb und oberhalb Raumtemperatur eine geeignete Mesophase besitzen, beispielsweise für die oben genannten Zellen eine nematische oder cholesterische Mesophase. Da Flüssig­ kristalle in der Regel als Mischungen mehrerer Komponenten zur Anwen­ dung gelangen, ist es wichtig, daß die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die elektrische Leitfähigkeit, die dielektrische Anisotropie und die optische Anisotropie, müssen je nach Zellentyp und Anwendungsgebiet unterschiedlichen Anforderungen genü­ gen. Beispielsweise sollten Materialien für Zellen mit verdrillt nematischer Struktur eine positive dielektrische Anisotropie und eine geringe elek­ trische Leitfähigkeit aufweisen.
Beispielsweise sind für Matrix-Flüssigkristallanzeigen mit integrierten nicht-linearen Elementen zur Schaltung einzelner Bildpunkte (MFK-Anzei­ gen) Medien mit großer positiver dielektrischer Anisotropie, breiten nema­ tischen Phasen, relativ niedriger Doppelbrechung, sehr hohem spezifi­ schen Widerstand, guter UV- und Temperaturstabilität und geringem Dampfdruck erwünscht.
Derartige Matrix-Flüssigkristallanzeigen sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d. h. Transistoren) verwendet werden. Man spricht dann von einer "aktiven Matrix", wobei man zwei Typen unterscheiden kann:
  • 1. MOS (Metal Oxide Semiconductor) oder andere Dioden auf Silizium- Wafer als Substrat.
  • 2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.
Die Verwendung von einkristallinem Silizium als Substratmaterial be­ schränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.
Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektro­ optischer Effekt üblicherweise der TN-Effekt verwendet. Man unter­ scheidet zwei Technologien: TFT′s aus Verbindungshalbleitern wie z. B. CdSe oder TFT′s auf der Basis von polykristallinem oder amorphem Silizium. An letzterer Technologie wird weltweit mit großer Intensität gearbeitet.
Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die trans­ parente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt- Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, daß je ein Filterelement einem schaltbaren Bildelement gegenüber liegt.
Die TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten Polarisatoren in Transmission und sind von hinten beleuchtet.
Der Begriff MFK-Anzeigen umfaßt hier jedes Matrix-Display mit integrier­ ten nichtlinearen Elementen, d. h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isola­ tor-Metall).
Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z. B. Taschenfernseher) oder für hochinformative Displays für Rechner­ anwendungen (Laptop) und im Automobil- oder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch nicht ausreichend hohen spezifischen Widerstand der Flüssigkristall­ mischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Tele­ vision Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Wider­ stand verschlechtert sich der Kontrast einer MFK-Anzeige und es kann das Problem der "after image elimination" auftreten. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr wichtig, um akzeptable Standzeiten zu erhalten. Insbesondere bei low- volt-Mischungen war es bisher nicht möglich, sehr hohe spezifische Widerstände zu realisieren. Weiterhin ist es wichtig, daß der spezifische Widerstand eine möglichst geringe Zunahme bei steigender Temperatur sowie nach Temperatur- und/oder UV-Belastung zeigt. Besonders nach­ teilig sind auch die Tieftemperatureigenschaften der Mischungen aus dem Stand der Technik. Gefordert wird, daß auch bei tiefen Temperaturen keine Kristallisation und/oder smektische Phasen auftreten und die Tem­ peraturabhängigkeit der Viskosität möglichst gering ist. Die MFK-Anzeigen aus dem Stand der Technik genügen somit nicht den heutigen Anforde­ rungen.
Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeits­ temperaturbereich, kurzen Schaltzeiten auch bei tiefen Temperaturen und niedriger Schwellenspannung, die diese Nachteile nicht oder nur in geringerem Maße zeigen.
Bei TN-(Schadt-Helfrich)-Zellen sind Medien erwünscht, die folgende Vorteile in den Zellen ermöglichen:
  • - erweiterter nematischer Phasenbereich (insbesondere zu tiefen Temperaturen)
  • - Schaltbarkeit bei extrem tiefen Temperaturen (out-door-use, Automobil, Avionik)
  • - erhöhte Beständigkeit gegenüber UV-Strahlung (längere Lebens­ dauer).
Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es nicht möglich, diese Vorteile unter gleichzeitigem Erhalt der übrigen Parameter zu realisieren.
Bei höher verdrillten Zellen (STN) sind Medien erwünscht, die eine höhere Multiplexierbarkeit und/oder kleinere Schwellenspannungen und/oder brei­ tere nematische Phasenbereiche (insbesondere bei tiefen Temperaturen) ermöglichen. Hierzu ist eine weitere Ausdehnung des zur Verfügung stehenden Parameterraumes (Klärpunkt, Übergang smektisch-nematisch bzw. Schmelzpunkt, Viskosität, dielektrische Größen, elastische Größen) dringend erwünscht.
Der Erfindung liegt die Aufgabe zugrunde, Medien insbesondere für der­ artige MFK-, TN- oder STN-Anzeigen bereitzustellen, die die oben ange­ gebenen Nachteile nicht oder nur in geringerem Maße, und vorzugsweise gleichzeitig sehr hohe spezifische Widerstände und niedrige Schwellen­ spannungen aufweisen.
Aus der WO 92/05230 sind Verbindungen der Formel
bekannt, diese weisen jedoch vergleichsweise niedrige dielektrische Anisotropie auf.
Es wurde nun gefunden, daß diese Aufgabe gelöst werden kann, wenn man in Anzeigen erfindungsgemäße Medien verwendet.
Gegenstand der Erfindung sind somit 3,4,5-Trifluorphenyl 4-Cyclohexyl­ benzoesäureester der Formel I,
worin
R¹ für einen unsubstituierten, einen einfach durch CN oder CF₃ oder mindestens einfach durch Halogen substituierten Alkyl- oder Alkenyl­ rest mit bis zu 18 C-Atomen steht, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen durch -O-, -S-, -C≡C-, -OC-O- oder -O-CO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, und
L¹ H oder F bedeutet.
Die Verbindungen der Formel I besitzen einen breiten Anwendungs­ bereich. In Abhängigkeit von der Auswahl der Substituenten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der Formel I flüssigkristallinen Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren.
Die Verbindungen der Formel I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Chemisch, thermisch und gegen Licht sind sie stabil.
Gegenstand der Erfindung sind insbesondere die Verbindungen der Formel I, worin R¹ für Alkyl mit 1 bis 10 C-Atomen steht.
Insbesondere bevorzugt sind Verbindungen der Formel I, worin L¹ F bedeutet.
Falls R einen Alkylrest und/oder einen Alkoxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Ethoxy, Propoxy, Butoxy, Pentoxy, Hexoxy oder Heptoxy, ferner Methyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Methoxy, Octoxy, Nonoxy, Decoxy, Undecoxy, Dodecoxy, Tridecoxy oder Tetradecoxy.
Oxaalkyl bedeutet vorzugsweise geradkettiges 2-Oxapropyl (= Methoxy­ methyl), 2- (= Ethoxymethyl) oder 3-Oxabutyl (= 2-Methoxyethyl), 2-, 3- oder 4-Oxapentyl, 2-, 3-, 4- oder 5-Oxahexyl, 2-, 3-, 4-, 5- oder 6-Oxa­ heptyl, 2-, 3-, 4-, 5-, 6- oder 7-Oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Oxa­ nonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadecyl.
Falls R einen Alkenylrest bedeutet, so kann dieser geradkettig oder ver­ zweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl, Prop-1-, oder Prop-2-enyl, But-1-, 2- oder But-3-enyl, Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1-, 2-, 3-, 4- oder Hex-5-enyl, Hept-1-, 2-, 3-, 4-, 5- oder Hept-6-enyl, Oct-1-, 2-, 3-, 4-, 5-, 6- oder Oct-7-enyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-enyl.
Falls R einen Alkylrest bedeutet, in dem eine CH₂-Gruppe durch -O- und eine durch -CO- ersetzt ist, so sind diese bevorzugt benachbart. Somit beinhalten diese eine Acyloxygruppe -CO-O- oder eine Oxycarbonyl­ gruppe -O-CO-. Vorzugsweise sind diese geradkettig und haben 2 bis 6 C-Atome.
Sie bedeuten demnach besonders Acetyloxy, Propionyloxy, Butyryloxy, Pentanoyloxy, Hexanoyloxy, Acetyloxymethyl, Propionyloxymethyl, Butyryl­ oxymethyl, Pentanoyloxymethyl. 2-Acetyloxyethyl, 2-Propionyloxyethyl, 2-Butyryloxyethyl, 3-Acetyloxypropyl, 3-Propionyloxypropyl, 4-Acetyloxy­ butyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Butoxycarbo­ nyl, Pentoxycarbonyl, Methoxycarbonylmethyl, Ethoxycarbonylmethyl, Propoxycarbonylmethyl, Butoxycarbonylmethyl, 2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(Propoxycarbonyl)ethyl, 3-(Methoxycarbonyl)­ propyl, 3-(Ethoxycarbonyl)propyl, 4-(Methoxycarbonyl)-butyl.
Falls R einen einfach durch CN oder CF₃ substituierten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig. Die Substitution durch CN oder CF₃ ist in beliebiger Position.
Falls R einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig und Halogen ist vorzugsweise F oder Cl. Bei Mehrfachsubstitution ist Halogen vorzugsweise F. Die resultierenden Reste schließen auch perfluorierte Reste ein. Bei Einfachsubstitution kann der Fluor- oder Chlorsubstituent in beliebiger Position sein, vorzugsweise jedoch in ω-Position.
Verbindungen der Formel I mit verzweigten Flügelgruppen R können ge­ legentlich wegen einer besseren Löslichkeit in den üblichen flüssigkristal­ linen Basismaterialien von Bedeutung sein, insbesondere aber als chirale Dotierstoffe, wenn sie optisch aktiv sind. Smektische Verbindungen dieser Art eignen sich als Komponenten für ferroelektrische Materialien.
Verbindungen der Formel I mit SA-Phasen eignen sich beispielsweise für thermisch adressierte Displays.
Verzweigte Gruppen dieser Art enthalten in der Regel nicht mehr als eine Kettenverzweigung. Bevorzugte verzweigte Reste R sind Isopropyl, 2-Butyl (= 1-Methylpropyl), Isobutyl (= 2-Methylpropyl), 2-Methylbutyl, Isopentyl (= 3-Methylbutyl), 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propylpentyl, Isopropoxy, 2-Methylpropoxy, 2-Methylbutoxy, 3-Methyl­ butoxy, 2-Methylpentoxy, 3-Methylpentoxy, 2-Ethylhexoxy, 1-Methyl­ hexoxy, 1-Methylheptoxy.
Bevorzugt kleinere Gruppen von Verbindungen der Formel I sind diejenigen der Teilformeln I1 und I2 [L¹: H oder F]:
Die Verbindungen der Formel I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z. B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Ge­ brauch machen.
Die erfindungsgemäßen Verbindungen können z. B. gemäß dem folgendem Schema hergestellt werden:
Gegenstand der Erfindung sind auch elektrooptische Anzeigen (insbeson­ dere STN- oder MFK-Anzeigen mit zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden, integrierten nicht-linearen Elemen­ ten zur Schaltung einzelner Bildpunkte auf den Trägerplatten und einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und hohem spezifischem Widerstand), die der­ artige Medien enthalten sowie die Verwendung dieser Medien für elektro­ optische Zwecke.
Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine be­ deutende Erweiterung des zur Verfügung stehenden Parameterraumes.
Die erzielbaren Kombinationen aus Klärpunkt, Viskosität bei tiefer Tempe­ ratur, thermischer und UV-Stabilität und dielektrischer Anisotropie über­ treffen bei weitem bisherige Materialien aus dem Stand der Technik.
Die Forderung nach hohem Klärpunkt, nematischer Phase bei tiefer Temperatur sowie einem hohen Δε konnte bislang nur unzureichend erfüllt werden. Systeme wie z. B. ZLI-31 19 weisen zwar vergleichbaren Klärpunkt und vergleichbar günstige Viskositäten auf, besitzen jedoch ein Δε von nur +3.
Andere Mischungs-Systeme besitzen vergleichbare Viskositäten und Werte von Δε, weisen jedoch nur Klärpunkte in der Gegend von 60°C auf.
Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es bei Beibehaltung der nematischen Phase bis -20°C und bevorzugt bis -30°C, besonders bevorzugt bis -40°C, Klärpunkte oberhalb 80°, vorzugsweise oberhalb 90°, besonders bevorzugt oberhalb 100°C, gleichzeitig dielek­ trische Anisotropiewerte Δε 6, vorzugsweise 8 und einen hohen Wert für den spezifischen Widerstand zu erreichen, wodurch hervorragende STN- und MKF-Anzeigen erzielt werden können. Insbesondere sind die Mischungen durch kleine Operationsspannungen gekennzeichnet. Die TN-Schwellen liegen unterhalb 2,0 V, vorzugsweise unterhalb 1,5 V, besonders bevorzugt < 1,3 V.
Es versteht sich, daß durch geeignete Wahl der Komponenten der erfin­ dungsgemäßen Mischungen auch höhere Klärpunkte (z. B. oberhalb 110°) bei höheren Schwellenspannung oder niedrigere Klärpunkte bei niedrige­ ren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigen­ schaften realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringeren Schwellen erhalten werden. Die erfindungsgemäßen MFK- Anzeigen arbeiten vorzugsweise im ersten Transmissionsminimum nach Gooch und Tarry [C.H. Gooch und H.A. Tarry, Electron. Lett. 10, 2-4, 1974; C.H. Gooch und H.A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], wobei hier neben besonders günstigen elektrooptischen Eigenschaften wie z. B. hohe Steilheit der Kennlinie und geringe Winkelabhängigkeit des Kontrastes (DE-PS 30 22 818) bei gleicher Schwellenspannung wie in einer analogen Anzeige im zweiten Minimum eine kleinere dielektrische Anisotropie ausreichend ist. Hierdurch lassen sich unter Verwendung der erfindungsgemäßen Mischungen im ersten Minimum deutlich höhere spezifische Widerstände verwirklichen als bei Mischungen mit Cyanver­ bindungen. Der Fachmann kann durch geeignete Wahl der einzelnen Komponenten und deren Gewichtsanteilen mit einfachen Routinemetho­ den die für eine vorgegebene Schichtdicke der MFK-Anzeige erforderliche Doppelbrechung einstellen.
Die Viskosität bei 20°C ist vorzugsweise < 60 mPa·s, besonders bevor­ zugt < 50 mPa·s. Der nematische Phasenbereich ist vorzugsweise min­ destens 90°, insbesondere mindestens 100°. Vorzugsweise erstreckt sich dieser Bereich mindestens von -20° bis +80°.
Messungen des "Capacity Holding-ratio" (HR) [S. Matsumoto et al., Liquid Crystals 5, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals 5, 1381 (1989)] haben ergeben, daß erfindungsgemäße Mischungen enthal­ tend Verbindungen der Formel I eine deutlich kleinere Abnahme des HR mit steigender Temperatur aufweisen als analoge Mischungen enthaltend anstelle den Verbindungen der Formel Cyanophenylcyclohexane der Formel
oder Ester der Formel
Auch die UV-Stabilität der erfindungsgemäßen Mischungen ist erheblich besser, d. h. sie zeigen eine deutlich kleinere Abnahme des HR unter UV-Belastung.
Vorzugsweise basieren die erfindungsgemäßen Medien auf mehreren (vorzugsweise zwei oder mehr) Verbindungen der Formel I, d. h. der Anteil dieser Verbindungen ist 5-95%, vorzugsweise 10-60% und besonders bevorzugt im Bereich von 20-50%.
Die einzelnen Verbindungen der Formeln I bis XIII und deren Unterfor­ meln, die in den erfindungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.
Bevorzugte Ausführungsformen sind im folgenden angegeben:
  • - Medium enthält Verbindungen der Formel I, worin R vorzugsweise Ethyl, ferner Propyl, Butyl und Pentyl bedeutet. Verbindungen der Formel I mit kurzen Seitenketten R beeinflussen positiv die ela­ stischen Konstanten, insbesondere K₁, und führen zu Mischungen mit besonders niedrigen Schwellenspannungen
  • - Medium enthält zusätzlich eine oder mehrere Verbindungen ausge­ wählt aus der Gruppe bestehend aus den allgemeinen Formeln II bis VI: worin die einzelnen Reste die folgenden Bedeutungen haben:
    R⁰: n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 9 C-Atomen
    X⁰: F, Cl, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1 bis 6 C-Atomen,
    Y¹ und Y²: jeweils unabhängig voneinander H oder F
    r: 0 oder 1.
    Die Verbindung der Formel IV ist vorzugsweise
  • - Medium enthält zusätzlich eine oder mehrere Verbindungen der Formel und/oder
  • - Medium enthält zusätzlich eine oder mehrere Verbindungen ausge­ wählt aus der Gruppe bestehend aus den allgemeinen Formeln VIII bis XIII: worin R⁰, X⁰, Y¹ und Y² jeweils unabhängig voneinander eine der in Anspruch 2 angegebene Bedeutung haben, vorzugsweise F, Cl, CF₃, OCF₃, OCHF₂, Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 6 C-Atomen bedeutet.
  • - Der Anteil an Verbindungen der Formeln I bis VI zusammen beträgt im Gesamtgemisch mindestens 50 Gew.-%;
  • - der Anteil an Verbindungen der Formel I beträgt im Gesamtgemisch 10 bis 50 Gew.-%;
  • - der Anteil an Verbindungen der Formeln II bis VI im Gesamtgemisch beträgt 30 bis 70 Gew.-%
  • - das Medium enthält Verbindungen der Formeln II, III, IV, V oder VI
  • - R⁰ ist geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen
  • - das Medium besteht im wesentlichen aus Verbindungen der Formeln I bis VI
  • - das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den allgemeinen Formeln XIII bis XVI: worin R⁰ und X⁰ die oben angegebene Bedeutung haben und die 1,4-Phe­ nylenringe durch CN, Chlor oder Fluor substituiert sein können. Vorzugs­ weise sind die 1,4-Phenylenringe ein- oder mehrfach durch Fluoratome substituiert.
  • - Das Gewichtsverhältnis I: (II + III + IV + V + VI) ist vorzugsweise 1 : 10 bis 10 : 1.
  • - Medium besteht im wesentlichen aus Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln I bis XII.
Es wurde gefunden, daß bereits ein relativ geringer Anteil an Verbindun­ gen der Formel I im Gemisch mit üblichen Flüssigkristallmaterialien, insbe­ sondere jedoch mit einer oder mehreren Verbindungen der Formel II, III, IV, V und/oder VI zu einer beträchtlichen Erniedrigung der Schwellen­ spannung und zu niedrigen Werten für die Doppelbrechung führt, wobei gleichzeitig breite nematische Phasen mit tiefen Übergangstemperaturen smektisch-nematisch beobachtet werden, wodurch die Lagerstabilität verbessert wird. Die Verbindungen der Formeln I bis VI sind farblos, stabil und untereinander und mit anderen Flüssigkristallmaterialien gut mischbar.
Der Ausdruck "Alkyl" umfaßt geradkettige und verzweigte Alkylgruppen mit 1-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 2-5 Kohlen­ stoffatomen sind im allgemeinen bevorzugt.
Der Ausdruck "Alkenyl" umfaßt geradkettige und verzweigte Alkenylgrup­ pen mit 2-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Besonders Alkenylgruppen sind C₂-C₇-1E-Alkenyl, C₄-C₇-3E-Alkenyl, C₅-C₇-4-Alkenyl, C₆-C₇-5-Alkenyl und C₇-6-Alkenyl, insbesondere C₂-C₇-1E-Alkenyl, C₄-C₇-3E-Alkenyl und C₅-C₇-4-Alkenyl. Beispiele bevorzugter Alkenylgruppen sind Vinyl, 1E-Propenyl, 1E-Butenyl, 1E-Pentenyl, 1E-Hexenyl, 1E-Heptenyl, 3-Butenyl, 3E-Pentenyl, 3E-Hexenyl, 3E-Heptenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl, 4Z-Heptenyl, 5-Hexenyl, 6-Heptenyl und dergleichen. Gruppen mit bis zu 5 Kohlenstoffatomen sind im allgemeinen bevorzugt.
Der Ausdruck "Fluoralkyl" umfaßt vorzugsweise geradkettige Gruppen mit endständigen Fluor, d. h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluor­ butyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.
Der Ausdruck "Oxaalkyl" umfaßt vorzugsweise geradkettige Reste der Formel CnH2n+1-O-(CH₂)m, worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten. Vorzugsweise ist n = 1 und m 1 bis 6.
Durch geeignete Wahl der Bedeutungen von R⁰ und X⁰ können die An­ sprechzeiten, die Schwellenspannung, die Steilheit der Transmissions­ kennlinien etc. in gewünschter Weise modifiziert werden. Beispielsweise führen 1E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und der­ gleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nemati­ schen Tendenzen und einem höheren Verhältnis der elastischen Konstan­ ten k₃₃ (bend) und k₁₁ (splay) im Vergleich zu Alkyl- bzw. Alkoxyresten. 4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von k₃₃/k₁₁ im Vergleich zu Alkyl- und Alkoxyresten.
Eine Gruppe -CH₂CH₂- in Z² führt im allgemeinen zu höheren Werten von k₃₃/k₁₁ im Vergleich zu einer einfachen Kovalenzbindung. Höhere Werte von k₃₃/k₁₁ ermöglichen z. B. flachere Transmissionskennlinien in TN-Zel­ len mit 90° Verdrillung (zur Erzielung von Grautönen) und steilere Trans­ missionskennlinien in STN-, SBE- und OMI-Zellen (höhere Multiplexier­ barkeit) und umgekehrt.
Das optimale Mengenverhältnis der Verbindungen der Formeln I und II + III + IV + V + VI + VII hängt weitgehend von den gewünschten Eigenschaf­ ten, von der Wahl der Komponenten der Formeln I, II, III, IV, V, VI und/ oder VII und von der Wahl weiterer gegebenenfalls vorhandener Kompo­ nenten ab. Geeignete Mengenverhältnisse innerhalb des oben angege­ benen Bereichs können von Fall zu Fall leicht ermittelt werden.
Die Gesamtmenge an Verbindungen der Formeln I bis XII in den erfin­ dungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die Ansprech­ zeiten und die Schwellenspannung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der Formeln I bis XIII ist.
In einer besonders bevorzugten Ausführungsform enthalten die erfin­ dungsgemäßen Medien Verbindungen der Formel II bis VII (vorzugsweise II und/oder III), worin X⁰ OCF₃, OCHF₂, F, OCH=CF₂₁ OCF=CF₂, oder OCF₂-CF₂H bedeutet. Eine günstige synergistische Wirkung mit den Verbindungen der Formel I führt zu besonders vorteilhaften Eigen­ schaften.
Der Aufbau der erfindungsgemäßen MFK-Anzeige aus Polarisatoren, Elektrodengrundplatten und Elektroden mit Oberflächenbehandlung entspricht der für derartige Anzeigen üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefaßt und umfaßt auch alle Abwandlungen und Modifikationen der MFK-Anzeige, insbesondere auch Matrix-Anzeigeelemente auf Basis poly-Si TFT oder MIM.
Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.
Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristall­ mischungen erfolgt in an sich üblicher Weise. In der Regel wird die ge­ wünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweck­ mäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der Komponenten in einem organischen Lösungsmittel, z. B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation.
Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze enthalten. Beispielsweise können 0-15% pleochroitische Farbstoffe oder chirale Dotierstoffe zugesetzt werden.
C bedeutet eine kristalline, S eine smektische, SC eine smektisch C, N eine nematische und I die isotrope Phase.
V₁₀ bezeichnet die Spannung für 10% Transmission (Blickrichtung senk­ recht zur Plattenoberfläche). ton bezeichnet die Einschaltzeit und toff die Ausschaltzeit bei einer Betriebsspannung entsprechend dem 2,5-fachen Wert von V₁₀. Δn bezeichnet die optische Anisotropie und n₀ den Bre­ chungsindex. Δε bezeichnet die dielektrische Anisotropie (Δε = ε||, wobei ε|| die Dielektrizitätskonstante parallel zu den Moleküllängsachsen und ε die Dielektrizitätskonstante senkrecht dazu bedeutet). Die elektro­ optischen Daten wurden in einer TN-Zelle im 1. Minimum (d. h. bei einem d·Δn-Wert von 0,5) bei 20°C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. Die optischen Daten wurden bei 20°C gemes­ sen, sofern nicht ausdrücklich etwas anderes angegeben wird.
In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste CnH2n+1 und CmH2m+1 sind gerad­ kettige Alkylreste mit n bzw. m C-Atomen. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grund­ körper angegeben. Im Einzelfall folgt getrennt vom Acronym für den Grundkörper mit einem Strich ein Code für die Substituenten R¹, R², L¹ und L²:
Bevorzugte Mischungskomponenten finden sich in den Tabellen A und B.
Tabelle A
Tabelle B
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozentangaben Gewichts­ prozent. Alle Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet Schmelzpunkt Kp. Klärpunkt. Ferner bedeuten K = kristalliner Zustand, N = nematische Phase, S = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen dar. Δn bedeutet optische Anisotropie (589 nm, 20°C) und die Viskosität (mm²/sec) wurde bei 20°C bestimmt.
"Übliche Aufarbeitung" bedeutet: man gibt gegebenenfalls Wasser hinzu, extrahiert mit Dichlormethan, Diethylether, Methyl-tert.Butylether oder Toluol, trennt ab, trocknet die organische Phase, dampft ein und reinigt das Produkt durch Destillation unter reduziertem Druck oder Kristallisation und/oder Chromatographie. Folgende Abkürzungen werden verwendet:
n-BuLi
1,6 molare Lösung von n-Butyllithium in n-Hexan
DMAP 4-(Dimethylamino)-pyridin
THF Tetrahydrofuran
DCC N,N′-Dicyclohexylcarbodiimid
Beispiel 1 Schritt 1.1
Zu 1,2 mol 4-(trans-4-Pentylcyclohexyl)-2,6-difluorbenzol, 3 l THF werden bei -70°C in einer Stickstoffatmosphäre innerhalb von 1 h 1,32 mol n-Butyllithium (15% in n-Hexan) zugetropft. Man rührt 1 h nach und gibt bei -70°C zerschlagenes Trockeneis hinzu und rührt weitere 1,5 h. Nach Zugabe von 3 l Wasser wird die organische Phase abgetrennt und die wäßrige Phase mit Toluol extrahiert. Die vereinigten organischen Extrakte werden anschließend wie üblich aufgearbeitet.
Schritt 1.2
0,13 mol 4-(trans-4-Pentylcyclohexyl)-2,6-difluorbenzoesäure, 0,13 mol 2,3,4-Trifluorphenol, 0,13 mol DMAP und 0,15 mol DCC werden 2 Stunden bei Raumtemperatur gerührt. Nach Abtrennen der festen Bestandteile wird wie üblich aufgearbeitet. K 73 N (62,6) I; Δn = +0,090; Δε = +20,9.
Analog werden die folgenden Verbindungen der Formel I
hergestellt:
Mischungsbeispiele
Es werden jeweils 10 Gew.-% einer erfindungsgemäßen Verbindung der Formel
zu einer Basismischung (BM) bestehend aus
PCH-5F|10,0%
PCH-6F 8,0%
PCH-7F 6,0%
CCP-2OCF₃ 8,0%
CCP-3OCF₃ 12,0%
CCP-4OCF₃ 9,0%
CCP-5OCF₃ 9,0%
BCH-3F.F 12,0%
BCH-5F.F 10,0%
ECCP-3OCF₃ 5,0%
ECCP-5OCF₃ 5,0%
CBC-33F 2,0%
CBC-53F 2,0%
CBC-55F 2,0%
gegeben.
Die physikalischen Eigenschaften der so hergestellten Medien können der folgenden Tabelle entnommen werden.
Vergleichsbeispiel
Es werden 10 Gew.-% der aus der WO 12/05 230 bekannten Verbindung der Formel
zu der Basismischung hinzugefügt.
Die resultierende Mischung zeigt folgende Eigenschaften:
Klärpunkt: 91°C
Δn: 0,0990
Δε: 7,4.
Die erfindungsgemäßen Verbindungen führen zu deutlich höherer dielektrischer Anisotropie.

Claims (4)

1. 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester der Formel I, worin
R¹ für einen unsubstituierten, einen einfach durch CN oder CF₃ oder mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit bis zu 18 C-Atomen steht, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen durch -O-, -S-, -C≡C-, -OC-O- oder -O-CO- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, und
L¹ H oder F bedeutet.
2. 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester nach Anspruch 1, worin R¹ für geradkettiges Alkyl mit 1 bis 10 C-Atomen steht.
3. Flüssigkristallines Medium enthaltend mindestens zwei mesogene Verbindungen, dadurch gekennzeichnet, daß es mindestens einen 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester gemäß Anspruch 1 oder 2 enthält.
4. Elektrooptische Anzeige enthaltend ein flüssigkristallines Medium nach Anspruch 3.
DE19541181A 1995-11-04 1995-11-04 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester Withdrawn DE19541181A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19541181A DE19541181A1 (de) 1995-11-04 1995-11-04 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester
GB9622283A GB2306959B (en) 1995-11-04 1996-10-25 Liquid crystalline media containing 3,4,5-trifluorophenyl 4-cyclohexylbenzoates
US08/742,321 US5725799A (en) 1995-11-04 1996-11-01 3,4,5-trifluoropheny 4-cyclohexylbenzoates
JP8292817A JPH09169702A (ja) 1995-11-04 1996-11-05 4−シクロヘキシル安息香酸3,4,5−トリフルオロフェニル類

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19541181A DE19541181A1 (de) 1995-11-04 1995-11-04 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester

Publications (1)

Publication Number Publication Date
DE19541181A1 true DE19541181A1 (de) 1997-05-15

Family

ID=7776652

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19541181A Withdrawn DE19541181A1 (de) 1995-11-04 1995-11-04 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester

Country Status (4)

Country Link
US (1) US5725799A (de)
JP (1) JPH09169702A (de)
DE (1) DE19541181A1 (de)
GB (1) GB2306959B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152831B4 (de) * 2000-11-24 2011-03-03 Merck Patent Gmbh Flüssigkristallines Medium und seine Verwendung

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0184869B1 (ko) * 1989-12-06 1999-05-15 위르겐 호이만 1,4-이치환된 2,6-디플루오로벤젠 화합물 및 액정 매질
US5993691A (en) * 1995-02-03 1999-11-30 Merck Patent Gesellschaft Mit Electro-optical liquid crystal display
DE19528106A1 (de) * 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
TW297047B (de) 1995-02-09 1997-02-01 Chisso Corp
DE19803112A1 (de) 1997-03-14 1998-09-17 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
DE19947954A1 (de) * 1999-10-06 2001-04-12 Merck Patent Gmbh Flüssigkristalline Phenolester
DE10116400A1 (de) * 2000-04-28 2001-12-06 Merck Patent Gmbh Elektrooptische Anzeige und darin enthaltenes Flüssigkristallmedium
DE10204790A1 (de) * 2002-02-06 2003-08-14 Merck Patent Gmbh Flüssigkristallines Medium
DE10253325A1 (de) * 2002-11-14 2004-05-27 Merck Patent Gmbh Elektrooptisches Lichtsteuerelement, elektrooptische Anzeige und Steuermedium

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613461B2 (ja) * 1985-09-17 1994-02-23 チッソ株式会社 フルオロフエニルシクロヘキサン誘導体
JP2696557B2 (ja) * 1989-03-07 1998-01-14 チッソ株式会社 トリフルオロベンゼン誘導体
ATE119871T1 (de) * 1989-09-06 1995-04-15 Merck Patent Gmbh Fluorbenzolderivate und flüssigkristallines medium.
WO1992005230A2 (en) * 1990-09-26 1992-04-02 MERCK Patent Gesellschaft mit beschränkter Haftung Fluorobenzene derivatives
GB9211731D0 (en) * 1992-06-03 1992-07-15 Merck Patent Gmbh Electrooptical liquid crystal system
DE69310442T2 (de) * 1992-06-10 1997-11-06 Merck Patent Gmbh Flüssigkristallverbundschicht vom Dispersions-typ, deren Herstellungsverfahren sowie in ihr zu verwendendes Flüssigkristallmaterial
TW352392B (en) * 1994-05-06 1999-02-11 Chisso Corp A liquid crystal composition
JP3579698B2 (ja) * 1994-09-06 2004-10-20 チッソ株式会社 液晶組成物およびこれを用いた液晶表示素子
TW297047B (de) * 1995-02-09 1997-02-01 Chisso Corp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152831B4 (de) * 2000-11-24 2011-03-03 Merck Patent Gmbh Flüssigkristallines Medium und seine Verwendung

Also Published As

Publication number Publication date
GB2306959A (en) 1997-05-14
JPH09169702A (ja) 1997-06-30
US5725799A (en) 1998-03-10
GB9622283D0 (en) 1996-12-18
GB2306959B (en) 1999-11-17

Similar Documents

Publication Publication Date Title
DE10243776B4 (de) Flüssigkristalline Verbindungen
DE19919348B4 (de) Flüssigkristallines Medium
DE10247986A9 (de) Photostabiles flüssigkristallines Medium
DE10229476B4 (de) Flüssigkristalline Verbindungen, sie enthaltende flüssigkristalline Medien und ihre Verwendung für elektrooptische Zwecke
EP0775101A1 (de) Benzolderivate und flüssigkristallines medium
DE19859421A1 (de) Flüssigkristallines Medium
EP0847433B1 (de) Flüssigkristallines medium
DE10225048B4 (de) Fluorierte (Dihydro)phenanthrenderivate und deren Verwendung in flüssigkristallinen Medien
DE10061790A1 (de) Flüssigkristalline Verbindungen
DE10223061A1 (de) Flüssigkristallines Medium
DE19707941B4 (de) Flüssigkristallines Medium
DE19629812B4 (de) Flüssigkristallines Medium und seine Verwendung
DE4428766A1 (de) Benzolderivate und flüssigkristallines Medium
DE10111572A1 (de) Flüssigkristallines Medium
DE19528665A1 (de) Flüssigkristallines Medium
DE19541181A1 (de) 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester
DE10158803A1 (de) Flüssigkristalline Verbindungen
DE19529106B4 (de) Flüssigkristallines Medium und seine Verwendung
EP1255799B1 (de) Flüssigkristalline phenolester
DE10002462B4 (de) Flüssigkristallines Medium und seine Verwendung
DE19961015A1 (de) Flüssigkristallines Medium
DE10058661A1 (de) Flüssigkristallines Medium
DE10136751A1 (de) Vierkern-und Fünfkernverbindungen und deren Verwendung in flüssigkristallinen Medien
DE10338111A1 (de) Flüssigkristallines Medium
DE19650635B4 (de) Flüssigkristallines Medium und seine Verwendung

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20120601