DE112011103330B4 - System zur schnellen Puls-Gasabgabe und dessen Verwendung - Google Patents
System zur schnellen Puls-Gasabgabe und dessen Verwendung Download PDFInfo
- Publication number
- DE112011103330B4 DE112011103330B4 DE112011103330.3T DE112011103330T DE112011103330B4 DE 112011103330 B4 DE112011103330 B4 DE 112011103330B4 DE 112011103330 T DE112011103330 T DE 112011103330T DE 112011103330 B4 DE112011103330 B4 DE 112011103330B4
- Authority
- DE
- Germany
- Prior art keywords
- gas
- pressure
- delivery chamber
- gas delivery
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012545 processing Methods 0.000 claims abstract description 31
- 239000004065 semiconductor Substances 0.000 claims description 12
- 238000001020 plasma etching Methods 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 230000001276 controlling effect Effects 0.000 abstract description 8
- 230000001105 regulatory effect Effects 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 163
- 238000000034 method Methods 0.000 description 28
- 230000008569 process Effects 0.000 description 20
- 239000002243 precursor Substances 0.000 description 19
- 230000006870 function Effects 0.000 description 17
- 238000000231 atomic layer deposition Methods 0.000 description 15
- 239000007788 liquid Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000004044 response Effects 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 241000724291 Tobacco streak virus Species 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 238000009623 Bosch process Methods 0.000 description 4
- 101150020741 Hpgds gene Proteins 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45561—Gas plumbing upstream of the reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
- G05D7/0641—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
- G05D7/0647—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged in series
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0324—With control of flow by a condition or characteristic of a fluid
- Y10T137/0379—By fluid pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0396—Involving pressure control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2713—Siphons
- Y10T137/2836—With recorder, register, signal, indicator or inspection window
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2713—Siphons
- Y10T137/2842—With flow starting, stopping or maintaining means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/2713—Siphons
- Y10T137/2842—With flow starting, stopping or maintaining means
- Y10T137/2863—Pressure applied to liquid in supply chamber
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Abstract
System zur Abgabe von Pulsen einer gewünschten Gasmasse an eine Bearbeitungskammer oder ein Werkzeug, umfassend:eine Gasabgabekammer (12);ein erstes Ventil (14), das so angeordnet ist, dass es den Gasdurchfluss in die Gasabgabekammer regelt;ein zweites Ventil (16), das so angeordnet ist, dass es den Durchfluss von Gas regelt, das die Gasabgabekammer verlässt, sodass das Gas die Gasabgabekammer (12) in Pulsen verlassen kann, jeder mit einer als Funktion des Anfangsdrucks des Gases in der Gasabgabekammer (12) gewählten Masse; undeine Druckregelanordnung (24, 46, 48), die so eingerichtet und angeordnet ist, dass sie den Druck des in die Gasabgabekammer (12) fließenden Gases so regelt, dass das Gas in der Gasabgabekammer (12) auf einen im Wesentlichen konstanten Start-Anfangsdruck-Sollwert vorgeladen wird, bevor jeder der Gaspulse abgegeben wird, sodass eine Schwankung in dem Anfangsdruck des Gases in der Gasabgabekammer (12) geregelt ist, bevor jeder der Gaspulse abgegeben wird, so dass die Reproduzierbarkeit der Massenabgabe als Funktion der Dauer jedes der Pulse verbessert ist,wobei die Druckregelanordnung eine Vorkammer (40) enthält, ausgelegt und angeordnet das Gas aufzunehmen und wahlweise gekoppelt, um die im Wesentlichen konstante Gasdruckversorgung durch das erste Ventil (14) in die Gasabgabekammer (12) vorzusehen, um die Schwankung des Anfangsdrucks des Gases in der Gasabgabekammer (12) vor Abgabe jedes der Gaspulse zu regeln, wobei das System weiter einen ersten Druckmessumformer (18) enthält, so angeordnet, dass er ein erstes Drucksignal als Funktion des Drucks in der Gasabgabekammer (12) vorsieht, und einen zweiten Druckmessumformer (44), so angeordnet, dass er ein zweites Drucksignal als Funktion des Drucks in der Vorkammer (40) vorsieht, wobei die Druckregelanordnung einen Regler (24, 46, 48) zum Regeln des Gasdurchflusses in das Gasabgabesystem als Funktion des ersten und des zweiten Drucksignals enthält.
Description
- In Zusammenhang stehende Anmeldungen
- Diese Anmeldung beansprucht Anmeldungs-Vorrang vor der
US 2012/0073672 A1 - Hintergrund
- Gebiet
- Diese Offenbarung bezieht sich allgemein auf Gasabgabevorrichtungen und genauer auf ein Verfahren und ein System zur schnellen Puls-Gasabgabe. Wie er hier benutzt ist, schließt der Begriff „Gas“ den Begriff „Dämpfe“ ein, sollten die beiden Begriffe als unterschiedlich angesehen sein.
- Übersicht
- Die Herstellung oder Fertigung von Halbleiterbauelementen erfordert oft die sorgfältige Synchronisierung und genau abgemessene Abgabe von bis zu einem Dutzend Gasen an ein Verfahrenswerkzeug, wie etwa eine Vakuum-Bearbeitungskammer. Verschiedene Rezepturen werden im Verarbeitungsprozess verwendet, und viele diskrete Verarbeitungsschritte, in denen ein Halbleiterbauelement gereinigt, poliert, oxidiert, geätzt, dotiert, metallisiert usw. wird, können erforderlich sein. Die benutzten Schritte, ihre spezielle Abfolge und die zugehörigen Materialien tragen alle zur Herstellung spezieller Bauelemente bei.
- Da immer mehr Bauelementegrößen unter 90 nm geschrumpft sind, ist Atomlagenabscheidung (ALD-Prozesse) weiter für eine Vielzahl von Anwendungen erforderlich, wie etwa die Abscheidung von Sperren für Kupfer-Zwischenverbindungen, die Schaffung von Wolfram-Keimbildungsschichten und die Herstellung höchst leitfähiger Dielektrika. Im ALD-Prozess werden zwei oder mehr Vorläufergase in Pulsen abgegeben und strömen über eine Wafer-Oberfläche in einer unter Vakuum gehaltenen Bearbeitungskammer. Die beiden oder mehr Vorläufergase strömen in alternierender oder sequentieller Weise, sodass die Gase mit den Stellen oder Funktionsgruppen auf der Wafer-Oberfläche reagieren können. Wenn alle verfügbaren Stellen mit einem der Vorläufergase gesättigt sind (z.B. Gas A), stoppt die Reaktion, und ein Spülgas wird verwendet, um die überschüssigen Vorläufermoleküle aus der Bearbeitungskammer auszuspülen. Der Vorgang wird wiederholt, während das nächste Vorläufergas (d.h. Gas B) über die Wafer-Oberfläche strömt. Bei einem Prozess, an dem zwei Vorläufergase beteiligt sind, kann ein Zyklus definiert sein als: ein Puls des Vorläufers A, Spülung, ein Puls des Vorläufers B und Spülung. Ein Zyklus kann die Pulse zusätzlicher Vorläufergase sowie Wiederholungen eines Vorläufergases enthalten, mit der Verwendung eines Spülgases zwischen aufeinanderfolgenden Pulsen von Vorläufergasen. Diese Sequenz wird wiederholt, bis die endgültige Dicke erreicht ist. Diese sequentiellen, selbst begrenzenden Oberflächenreaktionen führen zu einer Einzelschicht der abgeschiedenen Schicht pro Zyklus.
- Die Pulse von Vorläufergasen in die Bearbeitungskammer werden normalerweise unter Verwendung von Ventilen des Ein-/Aus-Typs geregelt, die einfach über einen vorgegebenen Zeitraum geöffnet werden, um mit jedem Puls eine gewünschte Menge (Masse) an Vorläufergas in die Bearbeitungskammer abzugeben. Alternativ wird ein Massendurchflussregler, eine eigenständige Vorrichtung, umfassend einen Messumformer, ein Regelventil und Regel- und Signalverarbeitungselektronik, verwendet, um eine Menge an Gas (Masse) in vorgegebenen und reproduzierbaren Durchflussraten in kurzen Zeitabständen abzugeben. In beiden Fällen wird die Materialmenge (Masse), die in die Bearbeitungskammer strömt, nicht tatsächlich gemessen, sondern aus Messparametern der Zustandsgleichung der idealen Gase abgeleitet.
- Es wurden Systeme, die als Puls-Gasabgabevorrichtungen (PGD-Vorrichtungen) bekannt sind, entwickelt, die einen gepulsten Massendurchfluss an Vorläufergasen in Halbleiter-Bearbeitungskammern und andere Bearbeitungswerkzeuge messen und abgeben können. Solche Vorrichtungen sind ausgelegt, reproduzierbare und genaue Mengen (Masse) an Gasen zur Verwendung in Halbleiter-Fertigungsprozessen vorzusehen, wie etwa Atomlagenabscheidungsprozessen (ALD-Prozessen).
- PGDs enthalten gewöhnlich ein Abgabereservoir oder eine Abgabekammer, die das während des ALD-Prozesses abzugebende Gas enthält und der Bearbeitungskammer oder dem Werkzeug vorgelagert ist. Durch Messen des Drucks und der Temperatur des Gases in der Abgabekammer und Regeln des Gasdurchflusses aus der Abgabekammer als Funktion des Druckabfalls des Gases in der Kammer während der Abgabe kann die Masse eines während der ALD abgegebenen Gaspulses genau geregelt werden. Der Durchfluss des Gaspulses aus der Kammer wird mit einem Auslassventil des Ein-/Aus-Typs zwischen der Abgabekammer der PGD und dem Prozesswerkzeug geregelt, das das Gas empfängt. Die Zeitdauer, während der das Ventil offen sein muss, um einen Gaspuls einer gegebenen Masse abzugeben, ist eine weitere Funktion des Anfangsdrucks des Gases in der Kammer und des der Bearbeitungskammer oder dem Werkzeug nachgelagerten Drucks. Zum Beispiel erfordert bei einer gegebenen abzugebenden Gasmenge der Anfangsdruck in der Abgabekammer bei einem höheren Anfangsdruck eine kürzere Zeit, während der das Ventil offen sein muss, als bei einem niedrigeren Anfangsdruck, da der Massendurchfluss bei dem höheren Anfangsdruck schneller geschieht. Der Ladezeitraum und der Abgabezeitraum von PGDs sollte bei Anwendungen zur schnellen Puls-Gasabgabe streng geregelt werden, um genaue Abgabe vorgeschriebener Mengen an Gas(en) sicherzustellen. Folglich sollten der vorgelagerte Druck der PGDs sowie der geladene Druck in den PGDs streng geregelt sein, um die Reproduzierbarkeits- und Genauigkeitsanforderungen des ALD-Verfahrens zu erfüllen.
- Weiter weisen die Einlass- und Auslassventile in der PGD eine endliche Ansprechzeit auf, um von einem Zustand (Ein/Aus) zu einem anderen Zustand (Aus/Ein) überzugehen, wenn die Ventile entweder zum Laden der Kammer oder Abgeben des Gaspulses angesteuert werden. Zum Beispiel beträgt eine typische Ansprechzeit von pneumatischen Absperrventilen in ALD-Anwendungen zwischen ungefähr 5 und 35 Millisekunden. Die Ansprechzeit der Ventile kann einem Ansprechen auf die durch die PGD-Regelung gesendete Ventilansteuerung eine Verzögerung hinzufügen, die entweder ein Überladen der PGD-Kammer oder eine Über-Abgabe des Gaspulses an die Bearbeitungskammern oder Werkzeuge verursacht, wie in
2 dargestellt. Zum Beispiel ist im Lademodus der PGD das Auslassventil geschlossen, das Einlassventil ist offen, damit Gas in die Abgabekammer der PGD eintreten kann, und die PGD-Regelung überwacht die Druckänderung. Die PGD-Regelung muss durch Berücksichtigen der Ansprechzeit (oder Verzögerung) des Einlassventils frühzeitig einen Absperrbefehl an das Einlassventil senden, bevor die Abgabekammer den Drucksollwert erreicht; sonst kann die Abgabekammer überladen werden, oder der Abgabekammerdruck liegt oberhalb des Sollwerts. - In jüngster Zeit wurden bestimmte Verfahren entwickelt, die eine gepulste Bearbeitung mit hoher Geschwindigkeit oder im Zeitmultiplex erfordern. Zum Beispiel entwickelt die Halbleiterindustrie fortschrittliche Silizium-Durchkontaktierungen (TSVs) für dreidimensionale integrierte Schaltungen, um Zwischenverbindungsfähigkeit für das Stapeln von Chip auf Chip oder Wafer auf Wafer vorzusehen. Die Hersteller ziehen zur Zeit eine breite Vielfalt von dreidimensionalen Integrationsmodellen in Betracht, die einen ebenso breiten Bereich an TSV-Ätzanforderungen darstellen. Plasma-Ätztechnik, wie etwa das Bosch-Verfahren, das weitgehend für tiefes Siliziumätzen bei Speicherbauelementen und der MEMS-Fertigung verwendet wurde, ist gut für die TSV-Erzeugung geeignet. Das Bosch-Verfahren, auch als gepulstes Hochgeschwindigkeits- oder Zeitmultiplexätzen bekannt, wechselt wiederholt zwischen zwei Modi, um fast vertikale Strukturen unter Verwendung von SF6 und die Abscheidung einer chemisch trägen Passivierungsschicht unter Verwendung von C4F8 zu erreichen. Für großtechnischen Erfolg erforderliche Vorgaben für TSV sind: angemessene Funktionalität, niedrige Kosten und erwiesene Zuverlässigkeit.
- Zur Zeit gibt es zwei Ansätze nach dem Stand der Technik für Hochgeschwindigkeits-Puls-Gasabgabe in einem Bosch-Verfahren. Der erste Ansatz nach dem Stand der Technik ist es, Massendurchflussregler (MFCs) mit kurzer Ansprechzeit zu verwenden, um Gasströme der Abgabepulsgase ein- und auszuschalten. Dieses Verfahren leidet unter niedriger Abgabegeschwindigkeit und schlechter Reproduzierbarkeit und Genauigkeit. Der zweite Ansatz nach dem Stand der Technik umfasst die Verwendung von MFCs, die mit nachgeschalteten Dreiwegeventilen gekoppelt sind. Die MFCs halten konstanten Durchfluss aufrecht, und die nachgeschalteten Dreiwegeventile schalten häufig zwischen der Prozessleitung und der Ableitungsleitung um, um Pulsgase zur Bearbeitungskammer abzugeben. Ganz klar wird eine Menge der Gase vergeudet, was die Verfahrenskosten erhöht. Das zweite Verfahren leidet auch bei der Reproduzierbarkeit und Genauigkeit der Abgabe. Somit ist es wünschenswert, eine Lösung für Hochgeschwindigkeits-Pulsabgabeanwendungen zu schaffen, wie etwa das zur TSV-Erzeugung verwendete Bosch-Verfahren, die diese Probleme reduziert oder überwindet.
- Beschreibung des Standes der Technik
- Beispiele von Pulsmassendurchfluss-Abgabesystemen sind zu finden in den US-Patenten Nr.
US 7,615,120 B2 ;US 7,628,860 ,US 7,662,233 B2 undUS 7,735,452 B2 sowie den US-Patentveröffentlichungen Nr.US 2006/0060139 A1 US 2006/0130755 A1 -
US 2006/0207503 A1 -
EP 2 006 414 A2 beschreibt eine Atomarschicht-Aufwachsvorrichtung mit einer filmformenden Kammer in der das Dampfphasenaufwachsen eines Films durchgeführt wird, einer Substrattafel mit einem Heizmechanismus, die in der filmformenden Kammer angeordnet ist, und einem Abgasmechanismus. Die Atomarschicht-Aufwachsvorrichtung umfasst ferner eine Materialversorgungseinheit mit einem Materialverdampfer, zwei Puffertanks, das heißt, einem Puffertank A, und einem Puffertank B, einem Füllventil A und einem Versorgungsventil A des Puffertanks A, ein Füllventil B und ein Versorgungsventil B des Puffertanks B, einem Einspritzsteuerungsventil, und einer Steuereinheit, die ein Öffnen/Schließen von jedem Ventil steuert. -
US 2005/0081787 A1 -
US 2005/0103264 A1 -
JP 2006-222141 A -
JP 2000-200780 A - Zusammenfassung
- Wie oben beschrieben, ist der anfängliche Kammerdruck der Abgabekammer ausschlaggebend für die Reproduzierbarkeit der Puls-Gasabgabe. Daher kann man durch strenge Regelung der Schwankung des anfänglichen Kammerdrucks vor der Puls-Gasabgabe die Reproduzierbarkeit der Puls-Gasabgabe verbessern.
- Demgemäß umfasst gemäß einem Aspekt der hier beschriebenen Lehren ein System zur Abgabe von Pulsen einer gewünschten Gasmasse an eine Bearbeitungskammer oder ein Werkzeug: eine Gasabgabekammer; ein erstes Ventil, das so angeordnet ist, dass es den Gasdurchfluss in die Gasabgabekammer regelt; ein zweites Ventil, das so angeordnet ist, dass es den Durchfluss von Gas regelt, das die Gasabgabekammer verlässt, sodass das Gas die Gasabgabekammer in Pulsen verlassen kann, jeder mit einer als Funktion des Anfangsdrucks des Gases in der Gasabgabekammer und der Dauer des jeweiligen Pulses gewählten Masse; und eine Druckregelanordnung, die so eingerichtet und angeordnet ist, dass sie den Gasdurchfluss in die Gasabgabekammer so regelt, dass das Gas in der Gasabgabekammer auf einen Anfangsdruck-Sollwert vorgeladen wird, bevor die Gaspulse abgegeben werden, sodass die Schwankung des Anfangsdrucks des Gases in der Gasabgabekammer geregelt ist, bevor die Gaspulse abgegeben werden, und die Reproduzierbarkeit der Massenabgabe als Funktion der Dauer jedes der Pulse verbessert ist. Die Druckregelanordnung enthält eine Vorkammer, ausgelegt und angeordnet das Gas aufzunehmen und wahlweise gekoppelt, um die im Wesentlichen konstante Gasdruckversorgung durch das erste Ventil in die Gasabgabekammer vorzusehen, um die Schwankung des Anfangsdrucks des Gases in der Gasabgabekammer vor Abgabe der Gaspulse zu regeln, wobei das System weiter einen ersten Druckmessumformer enthält, so angeordnet, dass er ein erstes Drucksignal als Funktion des Drucks in der Gasabgabekammer vorsieht, und einen zweiten Druckmessumformer, so angeordnet, dass er ein zweites Drucksignal als Funktion des Drucks in der Vorkammer vorsieht, wobei die Druckregelanordnung einen ersten Regler zum Regeln des Gasdurchflusses in das Gasabgabesystem als Funktion des ersten und des zweiten Drucksignals enthält. Gemäß einem weiteren Aspekt der hier beschriebenen Lehren umfasst ein Verfahren zur Abgabe von Pulsen einer gewünschten Gasmasse an ein Werkzeug:
- Regeln des Gasdurchflusses in die Gasabgabekammer, und Regeln des Durchflusses von Gas, das die Gasabgabekammer verlässt, sodass das Gas die Gasabgabekammer in Pulsen verlassen kann, von denen jeder eine als Funktion des Anfangsdrucks des Gases in der Gasabgabekammer und der Dauer des jeweiligen Pulses gewählte Masse aufweist; und Vorladen des Gases in der Gasabgabekammer auf einen Anfangsdruck-Sollwert, um die Gaspulse so abzugeben, dass die Schwankung des Anfangsdrucks des Gases in der Gasabgabekammer geregelt ist, bevor die Gaspulse abgegeben werden, und die Reproduzierbarkeit der Massenabgabe als Funktion der Dauer jedes der Pulse verbessert ist.
- Diese sowie andere Bestandteile, Schritte, Merkmale, Ziele, Nutzen und Vorteile werden jetzt aus einer Durchsicht der folgenden genauen Beschreibung erläuternder Ausführungsformen, der begleitenden Zeichnung und der Ansprüche deutlich.
- Figurenliste
- Die Zeichnung offenbart erläuternde Ausführungsformen. Sie legt nicht alle Ausführungsformen dar. Andere Ausführungsformen können zusätzlich oder stattdessen verwendet werden. Einzelheiten, die offensichtlich oder unnötig sein können, können zur Platzersparnis oder zu effektiverer Darstellung weggelassen sein. Dagegen können einige Ausführungsformen ohne alle der Einzelheiten umgesetzt werden, die offenbart sind. Wenn dieselbe Bezugsnummer in verschiedenen Figuren erscheint, bezieht sie sich auf dieselben oder ähnliche Bauteile oder Schritte.
-
1 ist ein Blockschaltbild einer Ausführungsform eines Gasabgabesystems zum Vorsehen von Hochgeschwindigkeits-Pulsabgabe; -
2 ist eine grafische Darstellung des Drucks in der Kammer der in1 gezeigten PGD über der Zeit während der Abgabe eines Gaspulses aus der Abgabekammer; -
3 ist ein Blockschaltbild der Verwendung des mit einer Gasquelle und einem Bearbeitungswerkzeug gekoppelten Systems; und -
4 teilweise ein Blockschaltbild, teilweise ein Schaltbild eines ALD-Systems, das das Gasabgabesystem des in1 gezeigten Typs enthält. - Genaue Beschreibung erläuternder Ausführungsformen
- Erläuternde Ausführungsformen werden nun beschrieben. Andere Ausführungsformen können zusätzlich oder stattdessen verwendet werden. Einzelheiten, die offensichtlich oder unnötig sein können, können zur Platzersparnis oder zu einer effektiveren Darstellung weggelassen sein. Dagegen können einige Ausführungsformen ohne alle der Einzelheiten umgesetzt werden, die offenbart sind.
-
1 zeigt ein Blockschaltbild einer Ausführungsform eines Systems, das ausgelegt ist zum Vorsehen von Hochgeschwindigkeits-Pulsabgabe eines Gases. Das System 10 und das durch Verwenden des Systems ausgeführte Verfahren sind insbesondere dazu gedacht, verunreinigungsfreie, genau abgemessene Mengen an Prozessgasen an ein Halbleiterwerkzeug abzugeben, wie etwa eine Halbleiterbearbeitungskammer oder eine Plasma-Ätzmaschine. Das Gasabgabesystem 10 misst zuverlässig die Menge an Material (Masse), die in das Halbleiterwerkzeug strömt, und sieht genaue Abgabe der Masse eines Gases in Pulsen relativ kurzer Dauer in zuverlässiger und reproduzierbarer Weise vor. Weiter verwendet das System einen weiter vereinfachten Betrieb, während es Abgabe der gewünschten Anzahl an Gas-Molen über einen breiten Wertebereich vorsieht, ohne die Notwendigkeit, Gas abzuleiten, um die genauen, zuverlässigen und reproduzierbaren Ergebnisse zu erzielen. - In
1 enthält das gezeigte System 10 eine Gasabgabekammer oder ein Reservoir 12, ein Einlassventil 14, das den Massendurchfluss in die Gasabgabekammer 12 regelt, und ein Auslassventil 16, das den Massendurchfluss aus der Gasabgabekammer 12 regelt. In der dargestellten Ausführungsform sind das Einlass- und das Auslassventil Absperrventile mit relativ schnellem Absperrverhalten, d.h. Übergang von einem offenen Zustand zu einem abgesperrten Zustand in der Größenordnung von einer bis fünf Millisekunden, obwohl dies deutlich variieren kann. - Das Massendurchfluss-Abgabesystem 10 weist auch einen Drucksensor oder -messumformer 18 auf, um Signale vorzusehen, die Druckmessungen in der Kammer 12 darstellen, und einen Temperatursensor 20, um Signale vorzusehen, die Temperaturmessungen an oder in der Kammer 12 darstellen. Gemäß einer beispielhaften Ausführungsform der vorliegenden Offenbarung steht der Temperatursensor 20 in Kontakt mit einer Wand der Kammer 12 und sieht Messung der Temperatur der Wand vor.
- Ein Signal, das den gewünschten Massendurchfluss darstellt, ist am Eingang 22 der Pulsabgaberegelung 24 vorgesehen. Die Regelung 24 empfängt auch Eingänge, die den Druck und die Temperatur darstellen, die durch den Druckmessumformer 18 bzw. den Temperatursensor 20 gemessen sind. Der Eingang 22 kann auch Signale empfangen, die andere Bearbeitungsanweisungen und verschiedene Bedingungen darstellen. Das System enthält auch einen oder mehrere Ausgänge 26 und 28 zum Vorsehen von Regelsignalen, die benutzt werden, um den Betrieb der Einlass- und Auslassventile 14 bzw. 16 zu regeln. Wie nachstehend offensichtlicher wird, ist die Dauer des zum Öffnen des Einlassventils 14 benutzten Regelsignals eine Funktion des Druckpegels, der in der Abgabekammer 12 vor der Abgabe eines Gaspulses gewünscht ist, wobei die Dauer des zum Öffnen des Auslassventils 16 benutzten Regelsignals eine Funktion des Gaspulses ist (der wiederum mit der abgegebenen Gasmasse korreliert ist), der durch das Auslassventil abgegeben wird.
- Um eine umfassendere Lösung für die schnelle Abgabe im Pulsmodus vorzusehen, den Abgabezyklus zu beschleunigen und einen sehr schnellen Betrieb der Abgabe im Pulsmodus zu ermöglichen, den Bereich und die Genauigkeit der Abgabedosen im Pulsmodus zu verbessern und die Betriebskomplexität für Benutzer des Systems zu reduzieren, enthält das System weiter zusätzliche Bestandteile, die eingerichtet sind, einen geregelteren Anfangsdruck in der Abgabekammer 12 vor der Abgabe von Gas durch das Ventil 16 an ein Werkzeug vorzusehen, sodass der gemessene Durchfluss aus der Kammer 12 genauer und besser reproduzierbar ist und mit kürzeren Pulsraten betrieben werden kann.
- Wie in der in
1 dargestellten Ausführungsform gezeigt, umfasst das System 10 weiter eine Pufferkammer oder ein Reservoir 40 zum Halten des durch das Einlassventil 14 abzugebenden Gases, sodass der Druck in der Kammer 12 auf einen vorgegebenen Pegel vorgeladen werden kann, bevor eine Dosis oder eine Serie von Dosen des Gases durch das Auslassventil 16 abgegeben wird. Um das Gas von einer Gasquelle 52 in die und aus der Vorkammer oder Pufferkammer 40 zu regeln, ist ein Regelventil 42 am Eingang der Pufferkammer 40 vorgesehen, um den Gasdurchfluss aus einer Quelle des Gases in die Kammer 40 zu regeln. Das Einlassregelventil 42 kann ein proportionales Regelventil sein, das geeignet ist, so geregelt zu werden, dass es den Druck in der Kammer 40 im Wesentlichen auf einem konstanten vorgegebenen Pegel hält. Es kann während des Vorladeschritts offen bleiben, wenn Gas aus der Kammer 40 durch das Einlassventil 14 in die Kammer 12 vorgesehen ist, oder geschlossen, wenn Gas aus der Kammer 40 durch das Einlassventil 14 in die Kammer 12 strömt. Weiter kann es so geregelt sein, dass der Druck in der Kammer aufrecht erhalten wird, unabhängig davon, ob Gas zur Bearbeitungskammer abgegeben wird. Ein Drucksensor oder -messumformer 44 sieht ein Signal vor, das den Druck in der Kammer 40 darstellt. Ein Signal, das den Druck darstellt, ist für den Druckregler 46 vorgesehen und so verbunden, dass es ein Regelsignal zum Einlassventil 42 als Funktion der Druckmessung vorsieht. Schließlich ist ein Haupt-Puls-Gasabgaberegler 48 zum Regeln des gesamten Systems vorgesehen. - Der Regler 48 ist so eingerichtet, dass er Daten und Anweisungen für jeden und von jedem der Regler 24 und 46 vorsieht, sowie Daten und Anweisungen für eine und von einer Benutzerschnittstelle 50. Die Benutzerschnittstelle 50 kann jede geeignete Vorrichtung sein, wie etwa ein Computer, der eine Tastatur und einen Monitor enthält und so eingerichtet ist, dass ein Benutzer die Schnittstelle benutzen kann, um das Gasabgabesystem 10 zu bedienen. Es sollte offensichtlich sein, dass, während drei Prozessoren 24, 46 und 48 gezeigt sind, das System mit einer beliebigen Anzahl von Reglern arbeiten kann, um die Funktionen der drei dargestellten Regler auszuführen, wobei eine einzelne Vorrichtung effektiver ist. Die Pufferkammer 40 weist ein Volumen V1 zum Enthalten von Gas auf, das sie von der Pufferkammer 52 empfangen hat. Das in der Kammer 40 vorgesehene Gas wird benutzt, um den vorgelagerten Druck P1 des für die Kammer 12 vorgesehenen Gases zu regeln. Der Anfangsdruck P2 des Volumens V2 von Gas oder Dampf in der Kammer 12 kann daher geregelt werden. Somit kann die Schwankung des anfänglichen Ladedrucks P2 des Volumens V2 vor dem Abgeben jedes Pulses minimiert werden. Der Drucksollwert des Gases im Puffervolumen V1 der Pufferkammer 40 ist eine Funktion des Gastyps, des durch den Benutzer über die Benutzerschnittstelle 50 festgelegten Puls-Gasabgabemengen-Sollwerts. Genauer,
- Unter Bezugnahme auf
2 zeigt die grafische Darstellung die Änderungen des Drucks in der Abgabekammer 12, wenn die Kammer auf einen vorgegebenen Druckpegel geladen wird, bevor sie einen oder mehrere Gaspulse abgibt, und dann wird Gas während der Abgabe eines Pulses durch das Auslassventil 16 aus der Abgabekammer 12 ausgestoßen. - Genauer wird das Einlassventil 42 vor der Zeit t0 aktiv so geregelt, dass der Druck in der Pufferkammer 40, P1, auf den vorgegebenen Pegel geregelt wird, wie er in Gleichung (1) definiert ist. Zur Zeit t0 ist das Auslassventil 16 geschlossen, und das Einlassventil 14 ist offen, sodass Gas in die Kammer 12 zu dem vorgegebenen Druck P2,Sw strömt, der durch den Puls-Gasabgaberegler 48 auf Grundlage der durch die Benutzerschnittstelle 50 vorgesehenen Eingabe festgelegt ist. Genauer,
- Wenn der vorgegebene Druck P2,Sw erreicht ist, wird das Einlassventil 14 zur Zeit t1 geschlossen. Wie in
2 zu sehen, tritt während des Zeitintervalls Δt1 (der Zeit, die das Einlassventil benötigt, um vollständig zu schließen) eine Überladung (oder ein Drucküberschwingen) auf, wobei der Druck während dieser Zeit ansteigt und dann auf einen Ruhepegel abfällt. Der Druck darf einschwingen. Das System ist somit geladen und bereit, eine vorgegebene Mol-Menge an Gas abzugeben, die als Puls über das Auslassventil 16 abgegeben wird, das sich zur Zeit t2 über einen vorgegebenen Zeitraum öffnet und zur Zeit t3 schließt, wenn die programmierte Mol-Menge abgegeben wurde. Wie in2 zu sehen, wird eine endliche Zeit, Δt2, benötigt, damit sich das Auslassventil vollständig schließt, wenn es zur Zeit t3 angesteuert wird zu schließen. Folglich gibt es dort wieder ein gewisses Überschwingen (Über-Abgabe) von Gas, bevor sich das Gas in der Kammer beim endgültigen Druck Pf beruhigt, wie gezeigt. Der Zyklus kann dann unter Verwendung des Gases in der Pufferkammer 40 zum Laden der Abgabekammer 12 vor der Abgabe des nächsten Pulses wiederholt werden. - Die Menge des zwischen t2 und t4 in
2 abgegebenen Pulsgases, Δn, kann durch die folgende Gleichung analysiert werden:
wobei Q die Durchflussrate durch das Auslassventil 16 ist,
Cv oder Cv(t) die Durchflusskennzahl des Ventils ist, die eine Funktion der Zeit ist, wenn es sich öffnet oder schließt,
Cv0 die Durchflusskennzahl des vollständig offenen Ventils ist,
ICv der integrale Wert der Ventil-Durchflusskennzahl während des Ventil- Schließvorgangs von t3 bis t4 ist,
P der Druck in der Abgabekammer 12 ist, Pf der Enddruck der Abgabekammer ist und Pd der der Abgabekammer 12 nachgelagerte Druck ist. - Wie gezeigt, definiert der Term ICv·Pf - Pd) die Menge der Über-Abgabe in Mol. Zu beachten ist, dass ICv eine Zufallsvariable ist, d.h. die Schließzeit des Auslassventils ist eine Zufallsvariable. Wenn das System kein Vorladen der Kammer 12 mit Gas aus einer Pufferkammer (wie etwa 40) mit einem vorgegebenen konstanten Druck P1,Sw vorsähe, könnte der Abgabekammer-Anfangsdruck P2 variieren, sodass der Betrag dieses Fehlers variieren würde, da der Kammer-Enddruckwert Pf von Zyklus zu Zyklus variieren würde. Je höher der Anfangsdruck, desto größer die Auswirkung des Fehlers. Durch Verwenden des Puffervolumens der Kammer 40 ist der vorgelagerte, durch die Kammer 40 für die Abgabekammer 12 vorgesehene Druck so, dass die Schwankung des Ladedrucks in der Kammer 12 mit einem streng geregelten konstanten vorgelagerten Druck minimiert ist. Dies stellt sicher, dass der Fehler ICv·(Pf - Pd) auf innerhalb eines kleineren Fehlerbereichs beschränkt würde. Durch Beschränken des Fehlers auf einen kleineren Fehlerbereich ist es möglich, eine bessere Kompensation der Fehler auf reproduzierbare Weise vorzusehen, sodass die Abgabe der genauen Gasmenge akkurater ist. Durch Vorsehen eines vorgelagerten Volumens mit einem relativ konstanten Druck als Funktion von Gastyp und Puls-Gasabgabe-Sollwert ist das System in die Lage versetzt, den in der Kammer 12 geladenen Druck streng zu regeln. Daher ist die Schwankung beim geladenen Druck minimiert, was auch den Reproduzierbarkeitsfehler der Puls-Gasabgabe minimierte, der durch die Unsicherheit der Ventilzeit verursacht wird.
- Eine Anwendung des Pulsabgabesystems ist es, das allgemein bei 10A in
3 gezeigte Pulsabgabesystem zu verwenden, um die Pulse zu regeln, die für ein bei 100 gezeigtes Halbleiterwerkzeug vorgesehen sind. - Eine weitere Anwendung ist es, zwei oder mehrere Pulsabgabesysteme (in
4 sind zwei bei 10B und 10C gezeigt) eines Atomlagenabscheidungssystems 110 zu verwenden, wie etwa des im US- Patent Nr.US 7615120 B2 gezeigten Typs, der in Verfahren mit chemischer Gasphasenabscheidung (CVD) verwendet wird. Zum Beispiel wird in einem solchen System jedes System 10A und 10B benutzt, um die Pulse von Vorläufergasen zu regeln, die für den ALD-Reaktor (Atomlagenabscheidung) 110 vorgesehen sind. Genauer wird Gas von einem der beiden Systeme 10B oder 10C für das Mischsammelrohr 112 vorgesehen. Das Letztere weist zwei Einlässe für das Einführen von Gasen aus den Systemen 10B und 10C auf. Ein Trägergas wird eingeführt, und der Gasstrom wird am Mischsammelrohr aufgespalten. Das Trägergas ist typischerweise ein Inertgas, wie etwa Stickstoff. In dem gegebenen Beispiel ist die Chemikalie A ein durch das System 10C vorgesehener Vorläufer, und die Chemikalie B ist ein durch das System 10B vorgesehener Vorläufer. Der Träger und die Vorläufergase werden gemischt und für eine Plasmabildungszone 114 zum Bilden von Plasma aus den gemischten Gasen vorgesehen. - Das Plasma wird für einen Gasverteiler 116 vorgesehen, der das Gas im ALD-Reaktor 110 verteilt. Ein Wafer 118 ist auf einem Waferträger 120 angeordnet, wobei beide durch eine Heizung 122 erwärmt sind. Ein Drosselventil 124 und eine Pumpe 126 sind benutzt, um das Vakuum im Reaktor 110 zu regeln und die Gase abzuleiten, die während des Prozesses von den Systemen 10B und 10C vorgesehen sind.
- Wie beschrieben, misst das Gasabgabesystem 10 zuverlässig die Menge an Material (Masse), die in das Halbleiterwerkzeug fließt, und sieht genaue Abgabe der Masse eines Gases in Pulsen relativ kurzer Dauer in zuverlässiger und reproduzierbarer Weise vor. Weiter verwendet das System einen weiter vereinfachten Betrieb, während es Abgabe der gewünschten Anzahl von Gas-Molen über einen breiten Wertebereich vorsieht, ohne die Notwendigkeit, Gas abzuleiten, um die genauen, zuverlässigen und reproduzierbaren Ergebnisse zu erzielen.
- Die Bestandteile, Schritte, Merkmale, Ziele, Nutzen und Vorteile, die beschrieben wurden, sind nur erläuternd. Keine davon, und auch nicht die diesbezüglichen Beschreibungen, sollen den Schutzumfang in irgendeiner Weise beschränken. Zahlreiche andere Ausführungsform sind ebenfalls in Betracht gezogen. Dazu gehören Ausführungsformen, die weniger, zusätzliche und/oder andere Bestandteile, Schritte, Merkmale, Ziele, Nutzen und Vorteile aufweisen. Diese umfassen auch Ausführungsformen, in denen die Bestandteile und/oder Schritte anders angeordnet sind und/oder in anderer Reihenfolge stehen.
- Sofern nicht anders angegeben, sind alle Messungen, Werte, Bewertungen, Positionen, Größen, Maße und anderen Angaben, die in dieser Beschreibung einschließlich der folgenden Ansprüche dargelegt sind, näherungsweise, nicht exakt. Es ist beabsichtigt, dass sie einen angemessenen Bereich aufweisen, der vereinbar mit den Funktionen ist, auf die sie sich beziehen, und mit dem, was in der zugehörigen Technik üblich ist.
- Alle Artikel, Patente, Patentanmeldungen und anderen Veröffentlichungen, die in dieser Offenbarung zitiert wurden, sind hierdurch durch Verweis hier aufgenommen.
- Der Ausdruck „Einrichtung für“, wenn er in einem Anspruch verwendet ist, ist so beabsichtigt und sollte so aufgefasst werden, dass er die entsprechenden Aufbauten und Materialien einbezieht, die beschrieben wurden, sowie ihre Äquivalente. Ähnlich ist der Ausdruck „Schritt für”, wenn er in einem Anspruch verwendet ist, so beabsichtigt und sollte so aufgefasst werden, dass er die entsprechenden Vorgänge, die beschrieben wurden, sowie ihre Äquivalente einbezieht. Das Fehlen dieser Ausdrücke in einem Anspruch bedeutet, dass nicht beabsichtigt ist und nicht so aufgefasst werden sollte, dass der Anspruch auf beliebige der entsprechenden Aufbauten, Materialien oder Vorgänge oder ihre Äquivalente beschränkt sein soll.
- Nichts, was angegeben oder dargestellt wurde, ist so beabsichtigt und sollte so aufgefasst werden, dass es eine Zueignung eines beliebigen Bestandteils, Schritts, Merkmals, Ziels, Nutzens, Vorteils oder Äquivalents für die Öffentlichkeit verursacht, ungeachtet, ob es in den Ansprüchen aufgezählt ist.
- Der Schutzumfang ist einzig durch die Ansprüche begrenzt, die jetzt folgen. Dieser Umfang ist so beabsichtigt und sollte so aufgefasst werden, dass er so weit ist, wie mit der gewöhnlichen Bedeutung der Sprache vereinbar, die in den Ansprüchen verwendet ist, ausgelegt im Lichte dieser Beschreibung und des Erteilungsverfahrens, das folgt, und dass er alle Aufbau- und Funktions-Äquivalente einbezieht.
Claims (14)
- System zur Abgabe von Pulsen einer gewünschten Gasmasse an eine Bearbeitungskammer oder ein Werkzeug, umfassend: eine Gasabgabekammer (12); ein erstes Ventil (14), das so angeordnet ist, dass es den Gasdurchfluss in die Gasabgabekammer regelt; ein zweites Ventil (16), das so angeordnet ist, dass es den Durchfluss von Gas regelt, das die Gasabgabekammer verlässt, sodass das Gas die Gasabgabekammer (12) in Pulsen verlassen kann, jeder mit einer als Funktion des Anfangsdrucks des Gases in der Gasabgabekammer (12) gewählten Masse; und eine Druckregelanordnung (24, 46, 48), die so eingerichtet und angeordnet ist, dass sie den Druck des in die Gasabgabekammer (12) fließenden Gases so regelt, dass das Gas in der Gasabgabekammer (12) auf einen im Wesentlichen konstanten Start-Anfangsdruck-Sollwert vorgeladen wird, bevor jeder der Gaspulse abgegeben wird, sodass eine Schwankung in dem Anfangsdruck des Gases in der Gasabgabekammer (12) geregelt ist, bevor jeder der Gaspulse abgegeben wird, so dass die Reproduzierbarkeit der Massenabgabe als Funktion der Dauer jedes der Pulse verbessert ist, wobei die Druckregelanordnung eine Vorkammer (40) enthält, ausgelegt und angeordnet das Gas aufzunehmen und wahlweise gekoppelt, um die im Wesentlichen konstante Gasdruckversorgung durch das erste Ventil (14) in die Gasabgabekammer (12) vorzusehen, um die Schwankung des Anfangsdrucks des Gases in der Gasabgabekammer (12) vor Abgabe jedes der Gaspulse zu regeln, wobei das System weiter einen ersten Druckmessumformer (18) enthält, so angeordnet, dass er ein erstes Drucksignal als Funktion des Drucks in der Gasabgabekammer (12) vorsieht, und einen zweiten Druckmessumformer (44), so angeordnet, dass er ein zweites Drucksignal als Funktion des Drucks in der Vorkammer (40) vorsieht, wobei die Druckregelanordnung einen Regler (24, 46, 48) zum Regeln des Gasdurchflusses in das Gasabgabesystem als Funktion des ersten und des zweiten Drucksignals enthält.
- System nach
Anspruch 1 , weiter enthaltend einen Temperatursensor (20), so angeordnet, dass er ein Temperatursignal als Funktion der Gastemperatur in der Gasabgabekammer (12) vorsieht, wobei die Druckregelanordnung einen ersten Regler (24) zum Regeln des Gasdurchflusses in das Gasabgabesystem als Funktion des Temperatursignals enthält. - System nach
Anspruch 1 , wobei die Druckregelanordnung einen ersten Regler (24) enthält, der eingerichtet und angeordnet ist, den Gasdurchfluss in das und aus der Gasabgabekammer (12) als Funktion des Drucks in der Gasabgabekammer zu regeln. - System nach
Anspruch 1 , wobei die Druckregelanordnung weiter so ausgelegt und angeordnet ist, dass sie das erste Ventil (14) so regelt, dass der Gasdurchfluss aus der Vorkammer (40) in die Gasabgabekammer (12) geregelt ist, um die Schwankungen des Anfangsdruck-Sollwerts des Gases in der Gasabgabekammer vor der Puls-Gasabgabe von Gaspulsen zu regeln. - System nach
Anspruch 1 , weiter enthaltend ein drittes Ventil (42), so angeordnet, dass es den Durchfluss in die Vorkammer (40) regelt, und wobei die Druckregelanordnung so eingerichtet und angeordnet ist, dass sie das dritte Ventil (42) so regelt, dass es den Gasdurchfluss in die Vorkammer (40) als Funktion des zweiten Drucksignals regelt, dass sie das erste (14) Ventil so regelt, dass es den Durchfluss von Fluid aus der Vorkammer (40) in die Gasabgabekammer (12) als Funktion des ersten und des zweiten Drucksignals regelt, und den Durchfluss von Gas, das die Gasabgabekammer (12) verlässt, als Funktion des ersten Drucksignals regelt. - System nach
Anspruch 5 , wobei die Regleranordnung enthält: einen ersten Regler (24), so eingerichtet und angeordnet, dass er das erste und das zweite Ventil (14, 16) regelt, und einen zweiten Regler (46), so eingerichtet und angeordnet, dass er das dritte Ventil (42) regelt, und einen dritten Regler (48), so eingerichtet und angeordnet, dass er den ersten und den zweiten Regler (24, 46) regelt. - Verwendung des Systems nach
Anspruch 1 , wobei die Vorkammer (40) wahlweise mit der Gasabgabekammer (12) gekoppelt wird, um die Gasabgabekammer (12) durch das erste Ventil (14) mit dem Gas zu laden. - Verwendung des Systems nach
Anspruch 1 , wobei die Regleranordnung so eingerichtet und angeordnet ist, dass sie das erste Regelventil (14) so regelt, dass der Druck in der Vorkammer (40) auf einem gewählten Druck gehalten wird. - Verwendung des Systems nach
Anspruch 8 , wobei der Anfangsdruck in der Gasabgabekammer (12) eine Funktion des Gastyps und der gewählten Masse des abzugebenden Gaspulses ist. - Verwendung des Systems nach
Anspruch 1 , wobei das System zur Abgabe von Pulsen einer gewünschten Gasmasse an einen Wafer (118) in einer Bearbeitungskammer oder Werkzeug (110) dient. - Verwendung des Systems nach
Anspruch 1 , wobei das System zur Abgabe von Pulsen einer gewünschten Gasmasse an ein Halbleiterwerkzeug (100) dient. - Verwendung des Systems nach
Anspruch 1 , wobei das System zur Abgabe von Pulsen einer gewünschten Gasmasse an eine Halbleiterbearbeitungskammer (110) dient. - Verwendung des Systems nach
Anspruch 1 , wobei das System zur Abgabe von Pulsen einer gewünschten Gasmasse an eine Plasmaätzmaschine dient. - Verwendung des Systems nach
Anspruch 1 , wobei die Druckregelanordnung das erste Ventil (14) schließt wenn der Start-Anfangsdruck-Sollwert erreicht ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/893,554 US8997686B2 (en) | 2010-09-29 | 2010-09-29 | System for and method of fast pulse gas delivery |
US12/893,554 | 2010-09-29 | ||
PCT/US2011/053614 WO2012044658A1 (en) | 2010-09-29 | 2011-09-28 | System for and method of fast pulse gas delivery |
Publications (2)
Publication Number | Publication Date |
---|---|
DE112011103330T5 DE112011103330T5 (de) | 2013-08-29 |
DE112011103330B4 true DE112011103330B4 (de) | 2023-05-04 |
Family
ID=44863208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112011103330.3T Active DE112011103330B4 (de) | 2010-09-29 | 2011-09-28 | System zur schnellen Puls-Gasabgabe und dessen Verwendung |
Country Status (9)
Country | Link |
---|---|
US (1) | US8997686B2 (de) |
JP (1) | JP5788515B2 (de) |
KR (4) | KR102153443B1 (de) |
CN (1) | CN103221576B (de) |
DE (1) | DE112011103330B4 (de) |
GB (1) | GB2496830B (de) |
SG (1) | SG189096A1 (de) |
TW (1) | TWI487806B (de) |
WO (1) | WO2012044658A1 (de) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7822570B2 (en) * | 2006-11-17 | 2010-10-26 | Lam Research Corporation | Methods for performing actual flow verification |
US9348339B2 (en) | 2010-09-29 | 2016-05-24 | Mks Instruments, Inc. | Method and apparatus for multiple-channel pulse gas delivery system |
US8997686B2 (en) * | 2010-09-29 | 2015-04-07 | Mks Instruments, Inc. | System for and method of fast pulse gas delivery |
SG10201509808WA (en) * | 2010-11-30 | 2015-12-30 | Entegris Inc | Ion implanter system including remote dopant source, and method comprising same |
US10031531B2 (en) | 2011-02-25 | 2018-07-24 | Mks Instruments, Inc. | System for and method of multiple channel fast pulse gas delivery |
US10353408B2 (en) | 2011-02-25 | 2019-07-16 | Mks Instruments, Inc. | System for and method of fast pulse gas delivery |
US10126760B2 (en) | 2011-02-25 | 2018-11-13 | Mks Instruments, Inc. | System for and method of fast pulse gas delivery |
TWI458843B (zh) * | 2011-10-06 | 2014-11-01 | Ind Tech Res Inst | 蒸鍍裝置與有機薄膜的形成方法 |
US20130118609A1 (en) * | 2011-11-12 | 2013-05-16 | Thomas Neil Horsky | Gas flow device |
WO2013124745A1 (en) | 2012-02-22 | 2013-08-29 | Sanofi | Process for preparation of dronedarone by oxidation of a hydroxyl group |
JP6017396B2 (ja) * | 2012-12-18 | 2016-11-02 | 東京エレクトロン株式会社 | 薄膜形成方法および薄膜形成装置 |
JP6107327B2 (ja) * | 2013-03-29 | 2017-04-05 | 東京エレクトロン株式会社 | 成膜装置及びガス供給装置並びに成膜方法 |
US20140299059A1 (en) * | 2013-04-03 | 2014-10-09 | Ofs Fitel, Llc | Vapor delivery system |
JP6336719B2 (ja) * | 2013-07-16 | 2018-06-06 | 株式会社ディスコ | プラズマエッチング装置 |
CN103757610B (zh) * | 2014-01-29 | 2015-10-28 | 北京七星华创电子股份有限公司 | 一种基于物料供应系统模型的工艺环境压力调度方法 |
JP6158111B2 (ja) * | 2014-02-12 | 2017-07-05 | 東京エレクトロン株式会社 | ガス供給方法及び半導体製造装置 |
JP6366021B2 (ja) * | 2015-12-24 | 2018-08-01 | パナソニックIpマネジメント株式会社 | 流量計測装置 |
US10679880B2 (en) | 2016-09-27 | 2020-06-09 | Ichor Systems, Inc. | Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same |
US11144075B2 (en) | 2016-06-30 | 2021-10-12 | Ichor Systems, Inc. | Flow control system, method, and apparatus |
US10031004B2 (en) * | 2016-12-15 | 2018-07-24 | Mks Instruments, Inc. | Methods and apparatus for wide range mass flow verification |
US11447861B2 (en) * | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
JP6978865B2 (ja) * | 2017-07-05 | 2021-12-08 | 株式会社堀場エステック | 流体制御装置、流体制御方法、及び、流体制御装置用プログラム |
KR101821617B1 (ko) * | 2017-08-16 | 2018-01-24 | 한전원자력연료 주식회사 | 유동층 반응장치를 이용한 원자력연료용 이산화우라늄의 제조 방법 |
US11060190B2 (en) * | 2018-03-29 | 2021-07-13 | Kokusai Electric Corporation | Substrate processing apparatus and control system |
US11269362B2 (en) * | 2018-04-27 | 2022-03-08 | Fujikin Incorporated | Flow rate control method and flow rate control device |
JP7369456B2 (ja) * | 2018-06-26 | 2023-10-26 | 株式会社フジキン | 流量制御方法および流量制御装置 |
US10725484B2 (en) | 2018-09-07 | 2020-07-28 | Mks Instruments, Inc. | Method and apparatus for pulse gas delivery using an external pressure trigger |
US11788190B2 (en) * | 2019-07-05 | 2023-10-17 | Asm Ip Holding B.V. | Liquid vaporizer |
CN110597113B (zh) * | 2019-09-03 | 2021-03-02 | 国网福建省电力有限公司检修分公司 | 一种sf6尾气电子控制式集气袋及其控制方法 |
US11946136B2 (en) | 2019-09-20 | 2024-04-02 | Asm Ip Holding B.V. | Semiconductor processing device |
JP7122334B2 (ja) * | 2020-03-30 | 2022-08-19 | Ckd株式会社 | パルスショット式流量調整装置、パルスショット式流量調整方法、及び、プログラム |
JP7122335B2 (ja) * | 2020-03-30 | 2022-08-19 | Ckd株式会社 | パルスショット式流量調整装置、パルスショット式流量調整方法、及び、プログラム |
US11359286B2 (en) * | 2020-05-01 | 2022-06-14 | Applied Materials, Inc. | Quartz crystal microbalance concentration monitor |
US11791172B2 (en) * | 2020-06-18 | 2023-10-17 | Applied Materials, Inc. | Methods of controlling gas pressure in gas-pulsing-based precursor distribution systems |
WO2022065114A1 (ja) * | 2020-09-24 | 2022-03-31 | 東京エレクトロン株式会社 | ガスを供給する装置、基板を処理するシステム、及びガスを供給する方法 |
CN114657540A (zh) * | 2020-12-24 | 2022-06-24 | 中国科学院微电子研究所 | 在衬底表面形成膜的方法、设备及形成的膜 |
CN117612920B (zh) * | 2024-01-23 | 2024-04-05 | 上海邦芯半导体科技有限公司 | 反应气体切换系统及等离子体处理装置 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000200780A (ja) | 1998-06-01 | 2000-07-18 | Tadahiro Omi | 半導体又は液晶製造用装置並びに液体材料ガスの気化方法 |
US20050081787A1 (en) | 2003-10-15 | 2005-04-21 | Ki-Vin Im | Apparatus and method for supplying a source, and method of depositing an atomic layer using the same |
US20050103264A1 (en) | 2003-11-13 | 2005-05-19 | Frank Jansen | Atomic layer deposition process and apparatus |
US20060060139A1 (en) | 2004-04-12 | 2006-03-23 | Mks Instruments, Inc. | Precursor gas delivery with carrier gas mixing |
US20060130755A1 (en) | 2004-12-17 | 2006-06-22 | Clark William R | Pulsed mass flow measurement system and method |
JP2006222141A (ja) | 2005-02-08 | 2006-08-24 | Hitachi High-Technologies Corp | 真空処理装置 |
US20060207503A1 (en) | 2005-03-18 | 2006-09-21 | Paul Meneghini | Vaporizer and method of vaporizing a liquid for thin film delivery |
EP2006414A2 (de) | 2006-03-30 | 2008-12-24 | Mitsui Engineering & Shipbuilding Co., Ltd. | Vorrichtung zur herstellung von atomlagen |
US7615120B2 (en) | 2004-04-12 | 2009-11-10 | Mks Instruments, Inc. | Pulsed mass flow delivery system and method |
US7662233B2 (en) | 2003-06-27 | 2010-02-16 | Ofer Sneh | ALD apparatus and method |
US7735452B2 (en) | 2005-07-08 | 2010-06-15 | Mks Instruments, Inc. | Sensor for pulsed deposition monitoring and control |
US20120073672A1 (en) | 2010-09-29 | 2012-03-29 | Junhua Ding | System for and method of fast pulse gas delivery |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61229319A (ja) | 1985-04-03 | 1986-10-13 | Hitachi Ltd | 薄膜形成方法 |
JPS62273714A (ja) * | 1986-05-21 | 1987-11-27 | Clarion Co Ltd | 有機金属ガス供給方法および装置 |
NL8702096A (nl) | 1987-09-04 | 1989-04-03 | Stichting Katholieke Univ | Werkwijze en inrichting voor het mengen van gassen en het met behulp van een gasmengsel epitactisch vervaardigen van halfgeleiderproducten. |
US5565038A (en) * | 1991-05-16 | 1996-10-15 | Intel Corporation | Interhalogen cleaning of process equipment |
JPH0645256A (ja) | 1992-07-21 | 1994-02-18 | Rikagaku Kenkyusho | ガスパルスの供給方法およびこれを用いた成膜方法 |
US5524084A (en) | 1994-12-30 | 1996-06-04 | Hewlett-Packard Company | Method and apparatus for improved flow and pressure measurement and control |
US5865205A (en) * | 1997-04-17 | 1999-02-02 | Applied Materials, Inc. | Dynamic gas flow controller |
JP3932389B2 (ja) * | 1998-01-19 | 2007-06-20 | Smc株式会社 | マスフローコントローラの自己診断方法 |
JPH11212653A (ja) | 1998-01-21 | 1999-08-06 | Fujikin Inc | 流体供給装置 |
KR100427563B1 (ko) * | 1999-04-16 | 2004-04-27 | 가부시키가이샤 후지킨 | 병렬분류형 유체공급장치와, 이것에 사용하는 유체가변형압력식 유량제어방법 및 유체가변형 압력식 유량제어장치 |
US6119710A (en) * | 1999-05-26 | 2000-09-19 | Cyber Instrument Technologies Llc | Method for wide range gas flow system with real time flow measurement and correction |
US6089537A (en) | 1999-06-23 | 2000-07-18 | Mks Instruments, Inc. | Pendulum valve assembly |
US6389364B1 (en) | 1999-07-10 | 2002-05-14 | Mykrolis Corporation | System and method for a digital mass flow controller |
US6503330B1 (en) * | 1999-12-22 | 2003-01-07 | Genus, Inc. | Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition |
KR100444149B1 (ko) * | 2000-07-22 | 2004-08-09 | 주식회사 아이피에스 | Ald 박막증착설비용 클리닝방법 |
US6631334B2 (en) * | 2000-12-26 | 2003-10-07 | Mks Instruments, Inc. | Pressure-based mass flow controller system |
US6734020B2 (en) | 2001-03-07 | 2004-05-11 | Applied Materials, Inc. | Valve control system for atomic layer deposition chamber |
US6701066B2 (en) * | 2001-10-11 | 2004-03-02 | Micron Technology, Inc. | Delivery of solid chemical precursors |
WO2003034169A1 (fr) * | 2001-10-18 | 2003-04-24 | Ckd Corporation | Regulateur de debit par emission d'impulsions et procede de regulation de debit par emissions d'impulsions |
US6766260B2 (en) | 2002-01-04 | 2004-07-20 | Mks Instruments, Inc. | Mass flow ratio system and method |
CN1643179B (zh) * | 2002-01-17 | 2010-05-26 | 松德沃技术公司 | Ald装置和方法 |
US20040050326A1 (en) | 2002-09-12 | 2004-03-18 | Thilderkvist Karin Anna Lena | Apparatus and method for automatically controlling gas flow in a substrate processing system |
JP4285184B2 (ja) | 2003-10-14 | 2009-06-24 | 東京エレクトロン株式会社 | 成膜方法及び成膜装置 |
US7437944B2 (en) | 2003-12-04 | 2008-10-21 | Applied Materials, Inc. | Method and apparatus for pressure and mix ratio control |
DE102004015174A1 (de) | 2004-03-27 | 2005-10-13 | Aixtron Ag | Verfahren zum Abscheiden von insbesondere Metalloxiden mittels nicht kontinuierlicher Precursorinjektion |
US7628861B2 (en) * | 2004-12-17 | 2009-12-08 | Mks Instruments, Inc. | Pulsed mass flow delivery system and method |
JP2005322668A (ja) * | 2004-05-06 | 2005-11-17 | Renesas Technology Corp | 成膜装置および成膜方法 |
US20050252449A1 (en) | 2004-05-12 | 2005-11-17 | Nguyen Son T | Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system |
JP4595702B2 (ja) | 2004-07-15 | 2010-12-08 | 東京エレクトロン株式会社 | 成膜方法、成膜装置及び記憶媒体 |
US7608549B2 (en) | 2005-03-15 | 2009-10-27 | Asm America, Inc. | Method of forming non-conformal layers |
US7474968B2 (en) * | 2005-03-25 | 2009-01-06 | Mks Instruments, Inc. | Critical flow based mass flow verifier |
JP5050369B2 (ja) | 2006-03-06 | 2012-10-17 | 東京エレクトロン株式会社 | 処理装置 |
US7369920B2 (en) | 2006-03-21 | 2008-05-06 | Mks Instruments, Inc. | Pressure control system with optimized performance |
JP2008007838A (ja) | 2006-06-30 | 2008-01-17 | Horiba Ltd | 成膜装置及び成膜方法 |
JP5235293B2 (ja) | 2006-10-02 | 2013-07-10 | 東京エレクトロン株式会社 | 処理ガス供給機構および処理ガス供給方法ならびにガス処理装置 |
US7706925B2 (en) | 2007-01-10 | 2010-04-27 | Mks Instruments, Inc. | Integrated pressure and flow ratio control system |
US20090004836A1 (en) | 2007-06-29 | 2009-01-01 | Varian Semiconductor Equipment Associates, Inc. | Plasma doping with enhanced charge neutralization |
US8297223B2 (en) * | 2007-10-02 | 2012-10-30 | Msp Corporation | Method and apparatus for particle filtration and enhancing tool performance in film deposition |
CN201142458Y (zh) | 2007-12-21 | 2008-10-29 | 富士康(昆山)电脑接插件有限公司 | 电连接器 |
JP5082989B2 (ja) | 2008-03-31 | 2012-11-28 | 日立金属株式会社 | 流量制御装置、その検定方法及び流量制御方法 |
US7891228B2 (en) | 2008-11-18 | 2011-02-22 | Mks Instruments, Inc. | Dual-mode mass flow verification and mass flow delivery system and method |
US8790464B2 (en) | 2010-01-19 | 2014-07-29 | Mks Instruments, Inc. | Control for and method of pulsed gas delivery |
US9348339B2 (en) | 2010-09-29 | 2016-05-24 | Mks Instruments, Inc. | Method and apparatus for multiple-channel pulse gas delivery system |
-
2010
- 2010-09-29 US US12/893,554 patent/US8997686B2/en active Active
-
2011
- 2011-09-28 KR KR1020197000808A patent/KR102153443B1/ko active IP Right Grant
- 2011-09-28 CN CN201180056074.1A patent/CN103221576B/zh active Active
- 2011-09-28 KR KR1020197025632A patent/KR20190104638A/ko not_active Application Discontinuation
- 2011-09-28 KR KR1020137010982A patent/KR20130097215A/ko active Application Filing
- 2011-09-28 KR KR1020157020682A patent/KR101961782B1/ko active IP Right Grant
- 2011-09-28 GB GB1305601.5A patent/GB2496830B/en active Active
- 2011-09-28 DE DE112011103330.3T patent/DE112011103330B4/de active Active
- 2011-09-28 JP JP2013531756A patent/JP5788515B2/ja active Active
- 2011-09-28 SG SG2013022272A patent/SG189096A1/en unknown
- 2011-09-28 WO PCT/US2011/053614 patent/WO2012044658A1/en active Application Filing
- 2011-09-29 TW TW100135291A patent/TWI487806B/zh active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000200780A (ja) | 1998-06-01 | 2000-07-18 | Tadahiro Omi | 半導体又は液晶製造用装置並びに液体材料ガスの気化方法 |
US7662233B2 (en) | 2003-06-27 | 2010-02-16 | Ofer Sneh | ALD apparatus and method |
US20050081787A1 (en) | 2003-10-15 | 2005-04-21 | Ki-Vin Im | Apparatus and method for supplying a source, and method of depositing an atomic layer using the same |
US20050103264A1 (en) | 2003-11-13 | 2005-05-19 | Frank Jansen | Atomic layer deposition process and apparatus |
US7628860B2 (en) | 2004-04-12 | 2009-12-08 | Mks Instruments, Inc. | Pulsed mass flow delivery system and method |
US7615120B2 (en) | 2004-04-12 | 2009-11-10 | Mks Instruments, Inc. | Pulsed mass flow delivery system and method |
US20060060139A1 (en) | 2004-04-12 | 2006-03-23 | Mks Instruments, Inc. | Precursor gas delivery with carrier gas mixing |
US20060130755A1 (en) | 2004-12-17 | 2006-06-22 | Clark William R | Pulsed mass flow measurement system and method |
JP2006222141A (ja) | 2005-02-08 | 2006-08-24 | Hitachi High-Technologies Corp | 真空処理装置 |
US20060207503A1 (en) | 2005-03-18 | 2006-09-21 | Paul Meneghini | Vaporizer and method of vaporizing a liquid for thin film delivery |
US7735452B2 (en) | 2005-07-08 | 2010-06-15 | Mks Instruments, Inc. | Sensor for pulsed deposition monitoring and control |
EP2006414A2 (de) | 2006-03-30 | 2008-12-24 | Mitsui Engineering & Shipbuilding Co., Ltd. | Vorrichtung zur herstellung von atomlagen |
US20120073672A1 (en) | 2010-09-29 | 2012-03-29 | Junhua Ding | System for and method of fast pulse gas delivery |
Also Published As
Publication number | Publication date |
---|---|
US20120073672A1 (en) | 2012-03-29 |
GB2496830A (en) | 2013-05-22 |
CN103221576B (zh) | 2016-03-02 |
JP2013540201A (ja) | 2013-10-31 |
DE112011103330T5 (de) | 2013-08-29 |
US8997686B2 (en) | 2015-04-07 |
CN103221576A (zh) | 2013-07-24 |
KR20190104638A (ko) | 2019-09-10 |
KR20130097215A (ko) | 2013-09-02 |
SG189096A1 (en) | 2013-05-31 |
KR20190006096A (ko) | 2019-01-16 |
WO2012044658A1 (en) | 2012-04-05 |
KR102153443B1 (ko) | 2020-09-08 |
TWI487806B (zh) | 2015-06-11 |
KR20150092368A (ko) | 2015-08-12 |
GB201305601D0 (en) | 2013-05-15 |
JP5788515B2 (ja) | 2015-09-30 |
TW201231712A (en) | 2012-08-01 |
GB2496830B (en) | 2017-07-05 |
KR101961782B1 (ko) | 2019-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112011103330B4 (de) | System zur schnellen Puls-Gasabgabe und dessen Verwendung | |
DE112012000980B4 (de) | Verfahren und System zur Schnellpulsgaszuleitung | |
DE112009003602B4 (de) | Dualmodus-Massenflussverifizierungs- und Massenflusslieferungsvorrichtung und entsprechendes Verfahren | |
EP2390382A2 (de) | System und Verfahren zur gepulsten Massenstromzuführung | |
DE112011103337T5 (de) | Verfahren und Vorrichtung für ein mehrkanaliges Pulsgaszuführungssystem | |
DE10197206B4 (de) | System und Verfahren zur Aufteilung einer Strömung | |
EP3746861B1 (de) | Verfahren und vorrichtung zur pulsgasbereitstellung mit isolierventilen | |
DE10046052A1 (de) | Zuführung von flüssigen Vorläufern zu Halbleiterbearbeitungsreaktoren | |
US20060060139A1 (en) | Precursor gas delivery with carrier gas mixing | |
DE112011100280T5 (de) | Steuerung für und Verfahren zur gepulsten Gaszuführung | |
US20060130744A1 (en) | Pulsed mass flow delivery system and method | |
US20130025786A1 (en) | Systems for and methods of controlling time-multiplexed deep reactive-ion etching processes | |
DE112006000631T5 (de) | Verdampfer und Verfahren zum Verdampfen einer Flüssigkeit für die Dünnfilm-Zuführung | |
DE112004001142T5 (de) | System und Verfahren zur In-Situ-Strömungsüberprüfung und Kalibrierung | |
EP1390561A1 (de) | Verfahren und vorrichtung zum abscheiden von schichten | |
JP2022527553A (ja) | パルスガス供給方法および装置 | |
EP1252362A2 (de) | Verfahren und vorrichtung zum abscheiden eines in flüssiger form vorliegenden prekursors auf einem substrat | |
US20140014681A1 (en) | Calibration of a Chemical Dispense System | |
DE102013020899A1 (de) | Verfahren zum Einbringen eines Prozessgases in einen Prozessraum für eine Plasma unterstützte chemische Gasphasenabscheidung und Vorrichtung für eine Plasma unterstützte chemische Gasphasenabscheidung | |
DE60029670T2 (de) | Verfahren und Vorrichtung zur Erzeugung einer kontrollierten Mischung aus organischen Dämpfen und Inertgas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R012 | Request for examination validly filed | ||
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R016 | Response to examination communication | ||
R018 | Grant decision by examination section/examining division | ||
R020 | Patent grant now final |