DE10350931A1 - Verpackungsverfahren - Google Patents

Verpackungsverfahren Download PDF

Info

Publication number
DE10350931A1
DE10350931A1 DE2003150931 DE10350931A DE10350931A1 DE 10350931 A1 DE10350931 A1 DE 10350931A1 DE 2003150931 DE2003150931 DE 2003150931 DE 10350931 A DE10350931 A DE 10350931A DE 10350931 A1 DE10350931 A1 DE 10350931A1
Authority
DE
Germany
Prior art keywords
container
acid
water
preferred
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE2003150931
Other languages
English (en)
Other versions
DE10350931B4 (de
Inventor
Wolfgang Dr. Barthel
Birgit Dr. Burg
Salvatore Fileccia
Arno Dr. Düffels
Maren Dr. Jekel
Ulf Arno Timmann
Christian Dr. Nitsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE2003150931 priority Critical patent/DE10350931B4/de
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to EP04765560A priority patent/EP1678037B1/de
Priority to AT04765560T priority patent/ATE446906T1/de
Priority to PL04765560T priority patent/PL1678037T3/pl
Priority to DE502004010306T priority patent/DE502004010306D1/de
Priority to JP2006537089A priority patent/JP2007533559A/ja
Priority to PCT/EP2004/010708 priority patent/WO2005051770A1/de
Publication of DE10350931A1 publication Critical patent/DE10350931A1/de
Priority to US11/413,298 priority patent/US7469519B2/en
Application granted granted Critical
Publication of DE10350931B4 publication Critical patent/DE10350931B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • B65B31/02Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas
    • B65B31/025Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas specially adapted for rigid or semi-rigid containers
    • B65B31/028Filling, closing, or filling and closing, containers or wrappers in chambers maintained under vacuum or superatmospheric pressure or containing a special atmosphere, e.g. of inert gas specially adapted for rigid or semi-rigid containers closed by a lid sealed to the upper rim of the container, e.g. tray-like container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B9/00Enclosing successive articles, or quantities of material, e.g. liquids or semiliquids, in flat, folded, or tubular webs of flexible sheet material; Subdividing filled flexible tubes to form packages
    • B65B9/02Enclosing successive articles, or quantities of material between opposed webs
    • B65B9/04Enclosing successive articles, or quantities of material between opposed webs one or both webs being formed with pockets for the reception of the articles, or of the quantities of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

Verfahren zur Herstellung eines Mittels mit wasserlöslicher Verpackung, umfassend die Schritte: DOLLAR A a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters; DOLLAR A b) Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika; DOLLAR A c) Aufbringen einer wasserlöslichen Folienbahn auf den befüllten Behälter; DOLLAR A d) Versiegeln des befüllten Behälters; DOLLAR A e) Konfektionierung des versiegelten und befüllten Behälters, DOLLAR A dadurch gekennzeichnet, daß im Verlauf des Verfahrens in dem befüllten Behälter ein Unterdruck erzeugt wird, wobei zur Erzeugung dieses Unterdrucks die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) aufgebrachten wasserlöslichen Folienbahn entweicht, ermöglichen die Herstellung kompakter Dosiereinheiten mit verringertem Volumen und verbesserter Optik und Haptik.

Description

  • Gegenstand der vorliegenden Anmeldung ist ein Verpackungsverfahren für Wasch- oder Reinigungsmitteln. Insbesondere offenbart diese Anmeldung Verfahren zur Verpackung von Wasch- oder Reinigungsmitteln mit wasserlöslichen Verpackungsmaterialien. Außer zur Verpackung von Wasch- und Reinigungsmittel eignet sich das beschriebene Verfahren beispielsweise auch für die Verpackung weiterer Konsumgüter wie sowie Kosmetika, Oberflächenbehandlungsmitteln oder Klebstoffen.
  • Wasch- oder Reinigungsmittel sind heute für den Verbraucher in vielfältigen Angebotsformen erhältlich. Neben Waschpulvern und -granulaten umfaßt dieses Angebot beispielsweise auch Reinigungsmittelkonzentrate in Form extrudierter oder tablettierter Zusammensetzungen. Diese festen, konzentrierten bzw. verdichteten Angebotsformen zeichnen sich durch ein verringertes Volumen pro Dosiereinheit aus und senken damit die Kosten für Verpackung und Transport. Insbesondere die Wasch- oder Reinigungsmitteltabletten erfüllen dabei zusätzlich den Wunsch des Verbrauchers nach einfacher Dosierung.
  • Als Alternative zu den zuvor beschriebenen partikulären oder kompaktierten Wasch- oder Reinigungsmitteln werden in den letzten Jahren zunehmend feste oder flüssige Wasch- oder Reinigungsmittel beschrieben, welche eine wasserlösliche oder wasserdispergierbare Umhüllung aufweisen. Diese Mittel zeichnen sich wie die Tabletten durch eine vereinfachte Dosierung aus, da sie zusammen mit der wasserlöslichen Umhüllung in die Waschmaschine oder die Geschirrspülmaschine dosiert werden können, andererseits ermöglichen sie aber gleichzeitig auch die Konfektionierung flüssiger oder pulverförmiger Wasch- oder Reinigungsmittel, welche sich gegenüber den Kompaktaten durch eine bessere Auflösung und schnellere Wirksamkeit auszeichnen.
  • Zur Herstellung und räumlichen Ausgestaltung dieser wasserlöslichen Verpackungen stehen dem Fachmann eine Reihe unterschiedlicher Verfahren zur Verfügung. Zu diesen Verfahren zählen u.a. das Flaschenblasen, der Spritzguß sowie unterschiedliche Tiefziehverfahren. Gegenüber den Tabletten zeichnen sich die nach diesen Verfahren hergestellten Mittel zwar in der Regel durch verbesserte Auflösungseigenschaften aus, gleichzeitig ist das Volumen dieser Mittel pro Dosiereinheit auf Grund der fehlenden Kompaktierung jedoch größer als das Volumen in ihrer Leistung vergleichbarer Tabletten. Durch dieses vergrößerte Volumen ergeben sich jedoch Probleme bei der Dosierung dieser Mittel, insbesondere bei der Dosierung von Wasch- oder Reinigungsmittel über das Dosierfach von Waschmaschinen oder Geschirrspülmaschinen. Einhergehend mit diesem vergrößerten Volumen zeichnen sich insbesondere die mittels Tiefziehverfahren hergestellten verpackten Mittel durch eine unattraktive Optik und Haptik aus.
  • Die Beutel sind schlaff und nicht formstabil; das Verpackungsmaterial zeigt für das bloße Auge sichtbare Falten und Verwerfungen. Zur Lösung dieses Problems offenbart die WO 02/16206 (Reckitt Benckiser) ein Verfahren zur Herstellung aufgeblasener, wasserlöslicher Behälter, bei welchem die verpackten Inhaltsstoffe wenigstens eine Substanz umfassen, welche nach dem Verschließen des Beutels ein Gas freisetzt und so den Innendruck des Beutels erhöht. Ein solches Verfahren hat den Nachteil, daß die verpackten Mittel mindestens eine derartige Gas freisetzende Substanz enthalten müssen und bei einer Beschädigung des Behälters ihre vorteilhafte Optik und Haptik innerhalb kurzer Zeit verlieren. Schließlich wird bei diesen Mitteln ein nicht unerheblicher Teil des Volumens einer Dosiereinheit von einem Gas oder Gasgemisch eingenommen.
  • Aufgabe der vorliegenden Anmeldung war daher die Bereitstellung eines Verfahrens zur Verpackung von Konsumgütern aus dem Bereich der Wasch- oder Reinigungsmitteln oder Kosmetika mit wasserlöslichen Verpackungsmaterialien, welches die Herstellung verpackter Mittel mit minimiertem Volumen ermöglicht. Die resultierenden Mittel sollten weiterhin ein für den Verbraucher attraktives Erscheinungsbild bieten und sollten insbesondere prall gefüllt und formstabil sein.
  • Es wurde nun festgestellt, daß sich diese Aufgaben durch ein Verfahren zur Herstellung wasserlöslicher Behältnisse gelöst werden können, bei welchem in den wasserlöslichen Behältnisse im Verlaufe des Herstellverfahrens ein Unterdruck erzeugt wird.
  • Verfahren zur Herstellung eines Mittels mit wasserlöslicher Verpackung, umfassend die Schritte:
    • a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters;
    • b) Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • c) Aufbringen einer wasserlöslichen Folienbahn auf den befüllten Behälter;
    • d) Versiegeln des befüllten Behälters;
    • e) Konfektionierung des versiegelten und befüllten Behälters,
    dadurch gekennzeichnet, daß im Verlauf des Verfahrens in dem befüllten Behälter ein Unterdruck erzeugt wird, wobei zur Erzeugung dieses Unterdrucks die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) aufgebrachten wasserlöslichen Folienbahn entweicht.
  • Als „Konfektionierung" werden im Rahmen der vorliegenden Anmeldung beispielsweise die Versiegelung Aufnahmekammern und/oder die Vereinzelung der Aufnahmekammern bezeichnet.
  • Zur Erzeugung des benötigten Unterdrucks in dem erfindungsgemäßen Verfahren eignen sich alle dem Fachmann für diese Zwecke bekannten Pumpen, insbesondere bevorzugt werden die für ein Grobvakuum einsetzbaren Wasserstrahl-, Flüssigkeitsdampfstrahl-, Wasserring- u. Kolben-Pumpen. Bevorzugt eingesetzt werden können aber beispielsweise auch Drehschieber-, Sperrschieber-, Trochoiden- und Sorptions-Pumpen sowie sogenannte Rootsgebläse und Kryopumpen. Zur Einstellung eines Feinvakuums sind Drehschieber-Pumpen, Diffusionspumpen, Rootsgebläse, Verdränger-, Turbomolekular-, Sorptions-, lonengetter-Pumpen (Getter) bevorzugt.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beträgt der erzeugte Unterdruck in dieser bevorzugten Verfahrensvariante zwischen –100 und –1013 mbar, vorzugsweise zwischen –200 und –1013 mbar, besonders bevorzugt zwischen –400 und –1013 mbar und insbesondere zwischen –800 und –1013 mbar.
  • In einer ersten bevorzugten Verfahrensvariante wird der Unterdruck in dem befüllten Behälter nach dem Aufbringen der wasserlöslichen Folienbahn auf den befüllten Behälter in Schritt c) und vor dem Versiegeln in Schritt d) erzeugt.
  • In einer weiteren bevorzugten Verfahrensvariante wird der Unterdruck in dem befüllten Behälter nach dem Versiegeln in Schritt d) und vor dem Konfektionieren in Schritt e) erzeugt.
  • Besonders bevorzugt sind erfindungsgemäße Verfahren, bei denen der Unterdruck sowohl in dem befüllten Behältern, also unterhalb der in Schritt c) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) aufgebrachten Folienbahn erzeugt wird. Eine solche besonders vorteilhafte Verfahrensführung ist beispielsweise dadurch zu realisieren, daß das unter Ausbildung eines Behälters verformte wasserlösliche Material mit einem Mittel befüllt und diese Füllung anschließend durch Aufbringen einer wasserlöslichen Folienbahn abgedeckt wird. Der befüllte und abgedeckte Behälter wird anschließend in eine Unterdruckkammer verbracht. Aufgrund der in der in der aufgebrachten wasserlöslichen Folienbahn befindlichen Öffnungen, wird bei Anlegen eines Vakuums an die Unterdruckkammer sowohl in dem befüllten Behältern, also unterhalb der in Schritt c) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) aufgebrachten Folienbahn erzeugt, da die unterhalb der in Schritt c) aufgebrachten Folienbahn befindliche Luft durch diese Öffnungen in den Raum oberhalb der in Schritt c) aufgebrachten Folienbahn gelangt und von dort durch das angelegte Vakuum aus der Unterdruckkammer entfernt wird. In einem nachfolgenden Verfahrensschritt wird die in Schritt c) aufgebrachte Folienbahn mit dem befüllten Behälter derart versiegelt, daß der Behälter allseits verschlossen wird und insbesondere keine Luft mehr durch die Öffnungen der in Schritt c) aufgebrachten Folienbahn in den Behälter gelangen kann. Wird dann der versiegelte Behälter aus der Unterdruckkammer entfernt, bewirkt der von außen auf den Behälter einwirkende Atmosphärendruck, daß sich die Außenwände des Behälters, insbesondere die in Schritt c) aufgebrachte Folienbahn eng an das Füllgut anlegt.
  • Ein weiterer bevorzugter Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren umfassend die Schritte:
    • a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters;
    • b) Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • c) Aufbringen einer wasserlöslichen Folienbahn auf den befüllten Behälter;
    • d) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • e) Versiegeln des befüllten Behälters;
    • f) Entlasten des Unterdrucks in der Unterdruckkammer ;
    • g) Konfektionierung des versiegelten und befüllten Behälters.
    dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in Schritt d) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) aufgebrachten wasserlöslichen Folienbahn entweicht.
  • Diese besonders bevorzugte Verfahrensvariante ermöglicht die Herstellung kompakter und formstabiler Portionspackungen mit geringem Volumen. Bei der Versiegelung des Behälters in Schritt e) wird der Behälter vorzugsweise allseits vollständig verschlossen. Die Versiegelung kann dabei auf verschiedene Weise erfolgen. Besonders bevorzugt werden Heißsiegelverfahren. Bei der Versiegelung ist es insbesondere bevorzugt, daß die Öffnungen der in Schritt c) aufgebrachten wasserlöslichen Folienbahn durch den Siegelprozeß verschlossen, das heißt verschweißt werden, oder durch die Siegelnaht vom Innenraum des Behälters abgetrennt werden. Im letzteren Fall befinden sich die Öffnungen nach der Versiegelung außerhalb der Siegelnaht und können zusammen mit dem umgebenden Folienmaterial beispielsweise im Rahmen der Konfektionierung bei der Vereinzelung abgetrennt werden.
  • In einer bevorzugten Ausführungsform der zuvor beschriebenen Verfahrensvariante wird der Behälter in Schritt b) nur teilweise befüllt. Bevorzugt werden hierbei Verfahren, bei denen der Füllgrad des Behälters nach der Befüllung zwischen 10 und 95 Vol.-%, vorzugsweise zwischen 20 und 90 Vol.-% und insbesondere zwischen 40 und 80 Vol.-% beträgt. Nach dem Entlasten des Unterdrucks in Schritt wird die wasserlösliche Folienbahn aufgrund des einwirkenden Atmosphärendrucks in den Behälter gedrückt und legt sich dort eng an das Füllgut an. Auf diese Weise entsteht in dem Behälter eine erste abgetrennte Aufnahmekammer im Bodenbereich des Behälters, über der sich das in Schritt b) unbefüllte Restvolumen des wasserlöslichen Behälters aus Schritt a) befindet und auf die in einem weiteren Füllvorgang ein zweites Füllgut eingefüllt werden kann. Dieses zweite Füllgut kann dann erneut mit einer Siegelfolien abgedeckt und versiegelt werden. Die resultierenden Produkte zeichnen sich durch eine 2-Phasen Optik aus, wobei die beiden gebildeten Kammern durch die in Schritt c) aufgebrachte wasserlösliche Folienbahn voneinander getrennt werden. Wird durch die zweite Befüllung der in Schritt a) gebildete wasserlösliche Behälter erneut nur teilweise befüllt und erfolgt die zweite Versiegelung erneut in einer Unterdruckkammer nach dem vorbeschriebenen Verfahren, so lassen sich durch das erfindungsgemäße Verfahren kompakte Wasch- oder Reinigungsmittel mit 3-Phasen Optik und drei voneinander getrennten Aufnahmekammern herstellen. Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren, umfassend die Schritte:
    • a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters;
    • b) Teilweises Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • c) Aufbringen einer wasserlöslichen Folienbahn auf den teilweise befüllten Behälter;
    • d) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • e) Versiegeln des teilweise befüllten Behälters;
    • f) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen zweiten unbefüllten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
    • g) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • h) Optionales Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
    • i) Konfektionierung des versiegelten und befüllten Behälters,
    dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in Schritt d) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) aufgebrachten wasserlöslichen Folienbahn entweicht.
  • Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Wasch- oder Reinigungsmittelportionen mit einer getrennten Aufnahmekammern, sowie einer befüllten Mulde, welche nicht nach allen Seiten von wasserlöslichem Material umgeben ist. Wird in Schritt h) eine wasserlösliche Folienbahn aufgebracht, so handelt es sich bei dem Verfahrensprodukt um eine kompakte, portionierte Wasch- oder Reinigungsmittelportion mit zwei voneinander getrennten Aufnahmekammern.
  • In einer bevorzugten Ausführungsform dieses Verfahrens werden im Anschluß an Schritt h) und vor der Konfektionierung die Schritte d) bis f), vorzugsweise jedoch die Schritte d) bis g) und insbesondere die Schritt d) bis h) wiederholt. Mit anderen Worten werden in der vorliegenden Anmeldung Verfahren, umfassend die Schritte:
    • a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters;
    • b) Teilweises Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • c) Aufbringen einer wasserlöslichen Folienbahn auf den teilweise befüllten Behälter;
    • d) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • e) Versiegeln des teilweise befüllten Behälters;
    • f) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen zweiten unbefüllten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
    • g) Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • h) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
    • i) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • j) Versiegeln des teilweise befüllten Behälters;
    • k) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen abgetrennten, befüllten zweiten Aufnahmekammer;
    • l) Konfektionierung des versiegelten und befüllten Behälters,
    dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in den Schritten d) und i) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c) bzw. Schritt h) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) bzw. in Schritt h) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) bzw. in Schritt h) aufgebrachten wasserlöslichen Folienbahn entweicht, besonders bevorzugt.
  • Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Wasch- oder Reinigungsmittelportionen mit zwei voneinander getrennten Aufnahmekammern.
  • Bevorzugter Gegenstand der vorliegenden Anmeldung ist damit weiterhin ein Verfahren, umfassend die Schritte:
    • a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters;
    • b) Teilweises Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • c) Aufbringen einer wasserlöslichen Folienbahn auf den teilweise befüllten Behälter;
    • d) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • e) Versiegeln des teilweise befüllten Behälters;
    • f) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen befüllten zweiten Aufnahmekammer, welche im wesentlichen des nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
    • g) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • h) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
    • i) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • j) Versiegeln des teilweise befüllten Behälters;
    • k) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer
    • befindlichen abgetrennten, befüllten zweiten Aufnahmekammer, und einer oberhalb dieser befüllten zweiten Aufnahmekammer befindlichen unbefüllten dritten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
    • l) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • m) Konfektionierung des versiegelten und befüllten Behälters,
    dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in den Schritten d) und i) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c) bzw. Schritt h) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) bzw. in Schritt h) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) bzw. in Schritt h) aufgebrachten wasserlöslichen Folienbahn entweicht.
  • Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Wasch- oder Reinigungsmittelportionen mit zwei voneinander getrennten Aufnahmekammern sowie einer befüllten Mulde, wobei die Muldenfüllung nicht zu allen Seiten von einem wasserlöslichen Material umgeben ist.
  • Ein weiterer bevorzugter Gegenstand der vorliegenden Anmeldung ist schließlich ein Verfahren, umfassend die Schritte:
    • a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters;
    • b) Teilweises Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • c) Aufbringen einer wasserlöslichen Folienbahn auf den teilweise befüllten Behälter;
    • d) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • e) Versiegeln des teilweise befüllten Behälters;
    • f) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen befüllten zweiten Aufnahmekammer, welche im wesentlichen des nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
    • g) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • h) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
    • i) Verbringen des mit der Folienbahn abgedeckten Behälters in eine Unterdruckkammer und Ausbildung eines Unterdrucks in dieser Kammer;
    • j) Versiegeln des teilweise befüllten Behälters;
    • k) Entlasten des Unterdrucks in der Unterdruckkammer unter Ausbildung einer ersten befüllten abgetrennten Aufnahmekammer sowie einer oberhalb dieser Aufnahmekammer befindlichen abgetrennten, befüllten zweiten Aufnahmekammer, und einer oberhalb dieser befüllten zweiten Aufnahmekammer befindlichen unbefüllten dritten Aufnahmekammer, welche im wesentlichen dem nicht befüllten Restvolumen des in Schritt a) gebildeten Behälters entspricht;
    • l) Wenigstens anteilsweises Befüllen dieses Restvolumens mit einem Füllgut ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika;
    • m) Aufbringen einer wasserlöslichen Folienbahn auf den wenigstens anteilsweise befüllten Behälter;
    • n) Konfektionierung des versiegelten und befüllten Behälters,
    dadurch gekennzeichnet, daß durch die Ausbildung eines Unterdrucks in den Schritten d) und i) sowohl in dem befüllten Behälter, also unterhalb der in Schritt c) bzw. Schritt h) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) bzw. in Schritt h) aufgebrachten Folienbahn ein Unterdruck erzeugt wird, wobei die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) bzw. in Schritt h) aufgebrachten wasserlöslichen Folienbahn entweicht.
  • Bei den Produkten dieses Verfahrens handelt es sich um kompakte, portionierte Wasch- oder Reinigungsmittelportionen mit drei voneinander getrennten Aufnahmekammern.
  • Bei den zuvor beschriebenen erfindungsgemäßen Verfahren und seinen vorteilhaften Variationen ist es besonders bevorzugt, wenn die gesamte zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft durch Öffnungen in der in Schritt c) aufgebrachten wasserlöslichen Folienbahn entweicht.
  • Bei den zuvor beschriebenen Verfahren ist es weiterhin besonders bevorzugt, die in Schritt a) gebildeten Behälter nach dem Verbringen in die Unterdruckkammer in ihrer räumlichen Form zu stabilisieren um eine Kollaps des Behälters durch den zwischen Füllgut und wasserlöslicher Folienbahn erzeugten Unterdruck zu vermeiden. Dies gilt insbesondere für Verfahren, bei denen die im Schritt a) hergestellten Behälter eine Wanddicke unterhalb 800 μm, bevorzugt unterhalb 600 μm, besonders bevorzugt unterhalb 400 μm und insbesondere unterhalb 200 μm aufweisen. Diese Vorraussetzungen treffen beispielsweise für solche erfindungsgemäßen Verfahren zu, bei denen die Verformung des wasserlöslichen Materials in Schritt a) durch Tiefziehen einer wasserlöslichen Folienbahn erfolgt. In diesen Verfahren ist es insbesondere bevorzugt, die Behälter während der Einwirkung des in der Unterdruckkammer erzeugten Unterdrucks durch eine Unterstützungsform von unten zu halten. Besonders bevorzugt ist es, als Unterstützungsform die beim Tiefziehen der Behälter eingesetzten Tiefziehmatrizen oder mit diesen Matrizen vergleichbare oder mit diesen Matrizen identische Matrizen einzusetzen. Insbesondere ist es bevorzugt, zwischen der Unterstützungsform und dem Behälter zur Stabilisierung des Behälters in der Unterdruckkammer einen zweiten Unterdruck zu erzeugen. Dieser zweite Unterdruck beträgt vorzugsweise zwischen –100 und –1013 mbar, vorzugsweise zwischen –200 und –1013 mbar, besonders bevorzugt zwischen –400 und –1013 mbar und insbesondere zwischen –800 und –1013 mbar. Es ist insbesondere bevorzugt, daß dieser zwischen der Unterstützungsform und dem Behälter ausgebildete zweite Unterdruck in seinem Betrag höher ist als der in der Unterdruckkammer ausgebildete Unterdruck.
  • Das Verformen des wasserlöslichen Materials in Schritt a) des erfindungsgemäßen Verfahrens erfolgt vorzugsweise durch Spritzgießen oder Gießen oder Tiefziehen
  • „Spritzgießen" bezeichnet das Umformen einer Formmasse derart, daß die in einem Massezylinder für mehr als einen Spritzgießvorgang enthaltene Masse unter Wärmeeinwirkung plastisch erweicht und unter Druck durch eine Düse in den Hohlraum eines vorher geschlossenen Werkzeuges einfließt. Das Verfahren wird hauptsächlich bei nicht härtbaren Formmassen angewendet, die im Werkzeug durch Abkühlen erstarren. Der Spritzguß ist ein sehr wirtschaftliches modernes Verfahren zur Herstellung spanlos geformter Gegenstände und eignet sich besonders für die automatisierte Massenfertigung. Im praktischen Betrieb erwärmt man die thermoplastische Formmassen (Pulver, Körner, Würfel, Pasten u. a.) bis zur Verflüssigung (bis 180 °C) und spritzt sie dann unter hohem Druck (bis 140 MPa) in geschlossene, zweiteilige, das heißt aus Gesenk (früher Matrize) und Kern (früher Patrize) bestehende, vorzugsweise wassergekühlte Hohlformen, wo sie abkühlen und erstarren. Einsetzbar sind Kolben- und Schneckenspritzgußmaschinen.
  • Als „Tiefziehen" werden dabei Verfahren bezeichnet, bei denen ein Folienmaterial durch Druckeinwirkung unter Ausbildung einer Mulde oder Aufnahmekammer verformt wird. Die Druckeinwirkung kann dabei beispielsweise durch Einwirkung eines Stempels, durch Einwirkung von Druckluft und/oder durch Einwirkung eines Unterdrucks erfolgen. Die Druckeinwirkung kann durch zwei Teile eines Werkzeugs erfolgen, welche sich wie Positiv und Negativ zueinander verhalten und einen zwischen diese Werkzeuge verbrachten Film beim Zusammendrücken verformen. Als Druckkraft eignet sich jedoch auch das Eigengewicht einer auf die Oberseite der Folie verbrachten Aktivsubstanz. Bevorzugt erfolgt die Verformung in eine Matrizenform, welche die endgültige Raumform der resultierenden Mulde oder Aufnahmekammer vorgibt und die reproduzierbare, Herstellung definierter Raumformen ermöglicht. Besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung Verfahren, bei denen das Folienmaterial durch Einwirkung eines Unterdrucks in die Mulde einer Tiefziehmatrize eingeformt wird. Das tiefgezogene Folienmaterial wird nach dem Tiefziehen vorzugsweise durch Einsatz eines Unterdrucks in ihrer durch den Tiefziehvorgang erzielten Raumform fixiert. Zur Erzeugung des benötigten Unterdrucks eignen sich alle dem Fachmann für diese Zwecke bekannten Pumpen, insbesondere die für ein Grobvakuum einsetzbaren Wasserstrahl-, Flüssigkeitsdampfstrahl-, Wasserring- u. Kolben-Pumpen. Eingesetzt werden können aber beispielsweise auch Drehschieber-, Sperrschieber-, Trochoiden- und Sorptions-Pumpen. sowie sogenannte Rootsgebläse und Kryopumpen. Zur Einstellung eines Feinvakuums sind insbesondere Drehschieber-Pumpen, Diffusionspumpen, Rootsgebläse, Verdränger-, Turbomolekular-, Sorptions-, lonengetter-Pumpen (Getter) geeignet.
  • Das eingesetzte Folienmaterial kann vor oder während des Tiefziehens vorbehandelt werden. Eine solche Vorbehandlung umfaßt beispielsweise die Einwirkung von Wärme und/oder Lösungsmittel und/oder die Konditionierung des Folienmaterials durch gegenüber Umgebungsbedingungen veränderte relative Luftfeuchte. Wird das Folienmaterial durch die Einwirkung von Wärme vorbehandelt, so wird dieses Material vorzugsweise für bis zu 5 Sekunden, bevorzugt für 0.001 bis 4 Sekunden, besonders bevorzugt für 0,01 bis 3 Sekunden und insbesondere für 0,02 bis 2 Sekunden auf Temperaturen oberhalb 60°C, vorzugsweise oberhalb 80°C, besonders bevorzugt zwischen 100 und 120°C und insbesondere auf Temperaturen zwischen 105 und 115°C erwärmt. Zur Abführung dieser Wärme, ist es bevorzugt die eingesetzten Matrizen und die in diesen Matrizen befindlichen Aufnahmemulden zu kühlen. Die Kühlung erfolgt dabei vorzugsweise auf Temperaturen unterhalb 20°C, bevorzugt unterhalb 15°C, besonders bevorzugt auf Temperaturen zwischen 2 und 14°C und insbesondere auf Temperaturen zwischen 4 und 12°C. Zur Kühlung eignen sich insbesondere Kühlflüssigkeiten, vorzugsweise Wasser, welche in speziellen Kühlleitungen innerhalb der Matrize zirkuliert werden.
  • Das in den Schritten a) und/oder c) des erfindungsgemäßen Verfahrens eingesetzte wasserlösliche Material umfaßt vorzugsweise ein wasserlösliches Polymer. Besonders bevorzugt werden dabei insbesondere Folienmaterialien, welche ganz oder teilweise aus Polyvinylalkohol oder einem Celluloseether wie Hydroxypropylmethylcellulose (HPMC) bestehen. „Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur [-CH2-CH(OH)-]n die in geringen Anteilen auch Struktureinheiten des Typs [-CH2-CH(OH)-CH(OH)-CHn] enthalten.
  • Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.
  • Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Die Beschichtungen aus Polyvinylalkohol sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.
  • Im Rahmen der vorliegenden Erfindung werden Verpackungs- bzw. Hüllmaterialien bevorzugt, welche wenigstens anteilsweise einen Polyvinylalkohol umfassen, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt. In einer bevorzugten Ausführungsform besteht das eingesetzte Folienmaterial zu mindestens 20 Gew.-%, besonders bevorzugt zu mindestens 40 Gew.-%, ganz besonders bevorzugt zu mindestens 60 Gew.-% und insbesondere zu mindestens 80 Gew.-% aus einem Polyvinylalkohol, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt. Vorzugsweise besteht das gesamte eingesetzte Folienmaterial zu mindestens 20 Gew.%, besonders bevorzugt zu mindestens 40 Gew.-%, ganz besonders bevorzugt zu mindestens 60 Gew.-% und insbesondere zu mindestens 80 Gew.-% aus einem Polyvinylalkohol, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
  • Vorzugsweise werden als Folienmaterialien Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, daß das Folienmaterial einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol–1, vorzugsweise von 11.000 bis 90.000 gmol–1, besonders bevorzugt von 12.000 bis 80.000 gmol–1 und insbesondere von 13.000 bis 70.000 gmol–1 liegt.
  • Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500. Erfindungsgemäß bevorzugt werden Folienmaterialien eingesetzt, die Polyvinylalkohole und/oder PVAL-Copolymere umfaßen, deren durchschnittlicher Polymerisationsgrad zwischen 80 und 700, vorzugsweise zwischen 150 und 400, besonders bevorzugt zwischen 180 bis 300 liegt und/oder deren Molekulargewichtsverhältnis MG(50%) zu MG(90%) zwischen 0,3 und 1, vorzugsweise zwischen 0,4 und 0,8 und insbesondere zwischen 0,45 und 0,6 liegt.
  • Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88, Mowiol® 8-88 sowie L648, L734, Mowiflex LPTC 221 ex KSE sowie die Compounds der Firma Texas Polymers wie beispielsweise Vinex 2034.
  • Weitere als Folienmaterial besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:
    Figure 00130001
  • Weitere als Material für die wasserlösliche oder wasserdispergierbaren Folien geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K.). Auch geeignet sind ERKOL-Typen von Wacker.
  • Der Wassergehalt bevorzugter PVAL-Verpackungsmaterialien beträgt vorzugsweise weniger als 10 Gew.-%, bevorzugt weniger als 8 Gew.-%, besonders bevorzugt weniger als 6 Gew.% und insbesondere weniger als 4 Gew.-%.
  • Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung) oder Ketonen (Ketalisierung) verändert werden. Als besonders bevorzugt und aufgrund ihrer ausgesprochen guten Kaltwasserlöslichkeit besonders vorteilhaft haben sich hierbei Polyvinylalkohole herausgestellt, die mit den Aldehyd bzw. Ketogruppen von Sacchariden oder Polysacchariden oder Mischungen hiervon acetalisierf bzw. ketalisiert werden. Als äußerst vorteilhaft einzusetzen sind die Reaktionsprodukte aus PVAL und Stärke.
  • Weiterhin läßt sich die Wasserlöslichkeit durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verändern und so gezielt auf gewünschte Werte einstellen. Folien aus PVAL sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.
  • Beispiele geeigneter wasserlöslicher PVAL-Folien sind die unter Bezeichnung "SOLUBLON®" von der Firma Syntana Handelsgesellschaft E. Harke GmbH & Co. erhältlichen PVAL-Folien. Deren Löslichkeit in Wasser läßt sich Grad-genau einstellen, und es sind Folien dieser Produktreihe erhältlich, die in allen für die Anwendung relevanten Temperaturbereichen in wäßriger Phase löslich sind.
  • Weitere bevorzugte Folienmaterialien sind dadurch gekennzeichnet, daß sie Hydroxypropylmethylcellulose (HPMC) umfaßen, welche einen Substitutionsgrad (durchschnittliche Anzahl von Methoxygruppen pro Anhydroglucose-Einheit der Cellulose) von 1,0 bis 2,0, vorzugsweise von 1,4 bis 1,9, und eine molare Substitution (durchschnittliche Anzahl von Hydroxypropoxylgruppen pro Anhydroglucose-Einheit der Cellulose) von 0,1 bis 0,3, vorzugsweise von 0,15 bis 0,25, aufweist.
  • Die Dicke von bevorzugt eingesetztem wasserlöslichem Folienmaterial beträgt vorzugsweise zwischen 15 und 120 μm, bevorzugt zwischen 20 und 100 μm und insbesondere zwischen 25 und 80μm.
  • Anstelle der wasserlöslichen Folienbahn können in Schritt c) des erfindungsgemäßen Verfahrens sowie der beschriebenen bevorzugten Verfahrensvarianten selbstverständlich auch Platten oder vorgefertigte Verschlußteile aus wasserlöslichem Material aufgebracht werden.
  • Das tiefgezogene, wasserlösliche Folienmaterial wird in Schritt b) des erfindungsgemäßen Verfahrens befüllt. Die Befüllung kann dabei mit allen dem Fachmann für diesen Zweck bekannten statischen oder bewegten Füllvorrichtungen erfolgen. Zur Erhöhung des Durchsatzes und um eine exakte Befüllung der Aufnahmekammern zu gewährleisten, ist es im Rahmen der vorliegenden Anmeldung jedoch bevorzugt, daß die Befüllung mittels einer beweglichen Füllstation erfolgt, welche sich während eines Füllvorgangs in Transportrichtung der Aufnahmekammern bewegt, und nach Beendigung dieses Füllvorgangs und vor Beginn des nächsten Füllvorgangs an ihre ursprüngliche Position zurückkehrt.
  • Das Füllgut aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika, kann in dem erfindungsgemäßen Verfahren und seinen bevorzugten Varianten in flüssiger oder fester Form eingefüllt werden. Als Flüssigkeiten können neben flüssigen Reinsubstanzen auch Lösungen oder Dispersionen eingesetzt werden. Mit besonderem Vorzug werden Flüssigkeiten verfüllt, deren Viskosität sich nach dem Befüllen auf Grund chemischer oder physikalischer Prozesse verändert. Ganz besonders bevorzugt werden Flüssigkeiten verfüllt, die sich nach dem Befüllen auf Grund chemischer oder physikalischer Prozesse verfestigen. Die eingefüllten Feststoffe können in jeder dem Fachmann bekannten und für derartige Verfahren gebräuchlichen Konfektionsform vorliegen. Bevorzugt werden insbesondere Pulver, Granulate, Extrudate oder Kompaktate. Selbstverständlich können Flüssigkeiten und Feststoffe auch gleichzeitig oder zeitlich versetzt in die Aufnahmekammer verfüllt werden. Besonders bevorzugt werden dabei Verfahren, bei denen in einem ersten Schritt eine erstarrende Flüssigkeit, vorzugsweise eine Schmelze, und in einem nachfolgenden Schritt ein Feststoff, vorzugsweise ein Pulver, ein Granulat oder ein Extrudat, in die Aufnahmekammer gefüllt wird. Hierbei ist es bevorzugt, die Verfüllung des Feststoffes erst nach dem wenigstens anteilsweisen erstarren der Flüssigkeit vorzunehmen.
  • Wie aus den Ausführung weiter oben in der Beschreibung ersichtlich, lassen sich durch das erfindungsgemäße Verfahren neben kompakten Behältern mit einer Kammer auch Behälter mit zwei, drei, vier oder mehr Kammern herstellen. Wie aus den Ausführungen weiterhin ersichtlich ist es für eine erfolgreiche Verfahrensführung dabei gleichgültig ob diese Kammern mit Feststoffen oder Flüssigkeiten befüllt werden. Diese verfahrenstechnische Freiheit zeichnet die erfindungsgemäßen Verfahren vor den Verfahren des Standes der Technik aus. Zur Illustration möglicher Ausgestaltungsformen der nach dem erfindungsgemäßen Verfahren hergestellten Einkammer-, Zweikammer und Dreikammerprodukte sind in der folgenden Tabelle einige besonders bevorzugte Ausführungsformen aufgelistet. Der Begriff „Phase 1" bezeichnet dabei die erste in dem erfindungsgemäßen Verfahren oder einer seiner bevorzugten Verfahrensvarianten gebildete Aufnahmekammer (Bodenphase)
    Figure 00160001
  • Die befüllten Aufnahmekammern werden im Anschluß an das Befüllen und Versiegeln konfektioniert. Diese Konfektionierung umfaßt in besonders bevorzugten Verfahrensvarianten beispielsweise die Versiegelung Aufnahmekammern und/oder die Vereinzelung der Aufnahmekammern.
  • Zur Versiegelung wird vorzugsweise eine weitere Verpackungsfolie, vorzugsweise eine wasserlösliche oder wasserdispergierbare Folie, eingesetzt. Diese weitere Verpackungsfolie kann mit der in Schritt a) eingesetzten Folie identisch sein, kann sich von ihr jedoch beispielsweise auch in Zusammensetzung und/oder Dicke unterscheiden. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei der in Schritt c) eingesetzten Folien um eine Folie, welche in ihrer Zusammensetzung der Folie aus Schritt a) gleicht, jedoch eine im Vergleich geringere Dicke aufweist. Zur Versiegelung werden vorzugsweise Folienbahnen eingesetzt. Besonders bevorzugt ist jedoch eine Verfahrensvariante, bei der die Siegelfolie bereits vor dem Versiegeln in Form vorgefertigter Etiketten vorliegt, welche in ihrer Größe auf die Größe der Mulden der Formkörper abgestimmt sind und mittels eines Etikettenauflegers aus einem Vorrat entnommen und auf die Mulden aufgelegt werden. Die Versiegelung erfolgt bevorzugt durch Heißsiegelung (beispielsweise mittels beheizter Werkzeuge oder Lasterstrahl), durch Einwirkung von Lösungsmittel und/oder Klebstoffen oder durch Druck- bzw. Quetschkräfte. Zur Versiegelung kann die Aufnahmekammer in Schritt c) jedoch auch einfach mit einer weiteren Folie bedeckt werden, ohne diese Folie mit der die Aufnahmekammer bildenden Verpackungsfolie dauerhaft zu verbinden.
  • Außer durch ein weiteres Folienmaterial kann die Versiegelung in Schritt c) erfindungemäß besonders bevorzugter Verfahren beispielsweise auch mittels vorgefertigter Pouches, das heißt befüllter und verschlossener Portionsbeutel, erfolgen. Derartige Portionsbeutel können dabei beispielsweise durch Tiefziehverfahren, Spritzgußverfahren oder Blasformen hergestellt werden.
  • Die Vereinzelung der erfindungsgemäß hergestellten verpackten Mittel kann durch alle dem Fachmann bekannten Verfahren erfolgen. Bevorzugt wird die Vereinzelung durch Schneiden oder Stanzen. Für die Vereinzelung durch Schneiden eignen sich beispielsweise statische oder bewegliche Messer. Bevorzugt werden dabei Messer mit beheizter Klinge eingesetzt. Die Vereinzelung durch Laserstrahlen ist eine weitere bevorzugte Verfahrensvariante.
  • Bei der „Vereinzelung" der befüllten Aufnahmekammern können sowohl einzelne befüllte und versiegelte Kammern, als auch Konfektionseinheiten von zwei, drei, vier, fünf, sechs, sieben, acht, neun, zehn, elf, zwölf oder mehr Aufnahmekammern erhalten werden. Im Falle von Konfektionseinheiten mit zwei oder mehr Aufnahmekammern, werden diese Konfektionseinheiten vorzugsweise mit Sollbruchstellen zur manuellen Trennung in Einzelkammern versehen.
  • Zur Versiegelung und Vereinzelung können ebenso wie bei der Befüllung statische oder bewegliche Stationen eingesetzt werden. Bevorzugt sind auch die Konfektionierungsstationen beweglich und bewegen sich in Transportrichtung der Aufnahmekammern mit, um nach Beendigung des Arbeitsschrittes an ihre ursprüngliche Position zurückzukehren.
  • Das erfindungsgemäße Verfahren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Eine kontinuierliche Verfahrensführung ist jedoch bevorzugt. Eine kontinuierliche Verfahrensführung wird jedoch insbesondere dann bevorzugt, wenn die Verformung des wasserlöslichen Materials in Schritt a) des erfindungsgemäßen Verfahrens durch Tiefziehen eines wasserlöslichen Folienmaterials erfolgt. Das eingespeiste Folienmaterial wird dann ebenso wie die in Schritt a) gebildeten Behälter kontinuierlich, vorzugsweise mit einer konstanten Geschwindigkeit transportiert. Die Transportgeschwindigkeit beträgt vorzugsweise zwischen 1 und 80 Meter pro Minute, bevorzugt zwischen 10 und 60 Meter pro Minute und insbesondere zwischen 20 und 50 Meter pro Minute. Der Transport erfolgt vorzugsweise horizontal.
  • Das erfindungsgemäße Verfahren dient der Verpackung von Aktivsubstanzen oder Aktivsubstanzgemischen aus der Gruppe der Wasch- oder Reinigungsmittel, Kosmetika, Oberflächenbehandlungsmittel und Klebstoffe. Mit besonderem Vorzug werden durch das erfindungsgemäße Verfahren Aktivsubstanzen aus der Gruppe der Wasch- oder Reinigungsmittel, insbesondere um Waschmittel, Geschirrspülmittel oder Oberflächenreinigungsmittel. Zur Gruppe der Waschmittel zählen dabei insbesondere die Universalwaschmittel, Color-Waschmittel, Feinwaschmittel, Textilweichspüler, Textilpflegemittel oder Bügelhilfsmittel. Die Gruppe der Geschirrspülmittel umfaßt die maschinellen Geschirrspülmittel und maschinelle Klarspüler ebenso wie manuelle Geschirrreinigungsmittel. Zu den Oberflächenreinigungsmittel zählen u.a. Entkalkter, Mittel zur Desinfektion oder Sterilisation von Oberflächen oder Gegenständen und Mittel zur Reinigung von Metall- oder Glasoberflächen. Diese Mittel enthalten vorzugsweise einen oder mehrere weitere übliche Bestandteile von Wasch- und Reinigungsmitteln, bevorzugt aus der Gruppe der Gerüststoffe, Tenside, Polymere, Bleichmittel, Bleichaktivatoren, Enzyme, Farbstoffe, Duftstoffe, Elektrolyte, pH-Stellmittel, Parfümträger, Fluoreszenzmittel, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungs-inhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Korrosionsinhibitoren, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel und/oder UV-Absorber enthalten. Diese Substanzen sollen in der Folge genauer beschrieben werden.
  • Gerüststoffe
  • Zu den Gerüststoffe zählen im Rahmen der vorliegenden Anmeldung insbesondere die Zeolithe, Silikate, Carbonate, organische Cobuilder und – wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen – auch die Phosphate.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSiXO2x+1·H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5·yH2O bevorzugt.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharten Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharte Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß diese Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Wasch- oder Reinigungsmitteln in Mengen von 10 bis 60 Gew.-%, vorzugsweise von 15 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels, enthalten sind.
  • Werden die Silikate als Bestandteil maschineller Geschirrspülmittel eingesetzt, so enthalten diese Mittel vorzugsweise mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel NaMSixO2x+1·yH2O, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1,9 bis 22, vorzugsweise von 1,9 bis 4, ist und y für eine Zahl von 0 bis 33 steht. Die kristallinen schichtförmigen Silikate der Formel NaMSixO2x+1·yH2O werden beispielsweise von der Fa. Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben, z.B. Na-SKS-1 (Na2Si22O45·xH2O, Kenyait), Na-SKS-2 (Na2Si14O29·xH2O, Magadiit), Na-SKS-3 (Na2Si8O18·xH2O) oder Na-SKS-4 (Na2Si4O9·xH2O, Makatit).
  • Für die Zwecke der vorliegenden Erfindung besonders geeignet sind kristalline Schichtsilikate der Formel (I), in denen x für 2 steht. Von diesen eignen sich vor allem Na-SKS-5 (α-Na2Si2O5), Na- SKS-7 (β-Na2Si2O5, Natrosilit), Na-SKS-9 (NaHSi2O5·H2O), Na-SKS-10 (NaHSi2O5·3H2O, Kanemit), Na-SKS-11 (t-Na2Si2O5) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (δ-Na2Si2O5).
  • Werden die Silikate als Bestandteil maschineller Geschirrspülmittel eingesetzt, so enthalten diese Mittel im Rahmen der vorliegenden Anmeldung einen Gewichtsanteil des kristallinen schichtförmigen Silikats der Formel NaMSixO2x+1·yH2O von 0,1 bis 20 Gew.-%, vorzugsweise von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel. Besonders bevorzugt ist es insbesondere, wenn solche maschinellen Geschirrspülmittel einen Gesamtsilikatgehalt unterhalb 7 Gew.-%, vorzugsweise unterhalb 6 Gew.-%, bevorzugt unterhalb 5 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-%, ganz besonders bevorzugt unterhalb 3 Gew.-% und insbesondere unterhalb 2,5 Gew.-% aufweisen, wobei es sich bei diesem Silikat, bezogen auf das Gesamtgewicht des enthaltenen Silikats, vorzugsweise zu mindestens 70 Gew.-%, bevorzugt zu mindestens 80 Gew.-% und insbesondere zu mindestens 90 Gew.-% um Silikat der allgemeinen Formel NaMSixO2x+1·yH2O handelt.
  • Der eingesetzte feinkristalline, synthetische und gebundenes Wasser enthaltende Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O·(1 – n)K2O·Al2O3·(2 – 2,5)SiO2·(3,5 – 5,5)H2O beschrieben werden kann. Der Zeolith kann dabei sowohl als Gerüststoff in einem granularen Compound eingesetzt, als auch zu einer Art "Abpuderung" der gesamten zu verpressenden Mischung verwendet werden, wobei üblicherweise beide Wege zur Inkorporation des Zeoliths in das Vorgemisch genutzt werden. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Dies gilt insbesondere für den Einsatz erfindungsgemäßer Mittel als maschinelle Geschirrspülmittel, welcher im Rahmen der vorliegenden Anmeldung besonders bevorzugt ist. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
  • Geeignete Phosphate sind beispielsweise das Natriumdihydrogenphosphat, NaH2PO4, in Form des Dihydrats (Dichte 1,91 gcm–3, Schmelzpunkt 60°) oder in Form des Monohydrats (Dichte 2,04 gcm–3), das Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, welches wasserfrei oder mit 2 Mol. (Dichte 2,066 gcm–3, Wasserverlust bei 95°), 7 Mol. (Dichte 1,68 gcm–3, Schmelzpunkt 48° unter Verlust von 5 H2O) und 12 Mol. Wasser (Dichte 1,52 gcm–3, Schmelzpunkt 35° unter Verlust von 5 H2O) eingesetzt werden kann, insbesondere jedoch das Trinatriumphosphat (tertiäres Natriumphosphat) Na3PO4, welches als Dodecahydrat, als Decahydrat (entsprechend 19-20% P2O5) und in wasserfreier Form (entsprechend 39-40% P2O5) eingesetzt werden kann.
  • Ein weiteres bevorzugtes Phosphat ist das Trikaliumphosphat (tertiäres oder dreibasiges Kaliumphosphat), K3PO4. Weiterhin bevorzugt werden das Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, welches in wasserfreier Form (Dichte 2,534 gcm–3, Schmelzpunkt 988°, auch 880° angegeben) und als Decahydrat (Dichte 1,815-1,836 gcm–3, Schmelzpunkt 94° unter Wasserverlust) existiert, sowie das entsprechende Kaliumsalz Kaliumdiphosphat (Kaliumpyrophosphat), K4P2O7.
  • Durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermol. Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann. Insbesondere für letztere sind eine Vielzahl von Bezeichnungen in Gebrauch: Schmelz- oder Glühphosphate, Grahamsches Salz, Kurrolsches und Maddrellsches Salz. Alle höheren Natrium- und Kaliumphosphate werden gemeinsam als kondensierte Phosphate bezeichnet.
  • Das technisch wichtige Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat), ist ein wasserfrei oder mit 6 H2O kristallisierendes, nicht hygroskopisches, weißes, wasserlösliches Salz der allgemeinen Formel NaO-[P(O)(ONa)-O]n-Na mit n=3. Das entsprechende Kaliumsalz Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat), kommt beispielsweise in Form einer 50 Gew.-%-igen Lösung (> 23% P2O5, 25% K2O) in den Handel. Die Kaliumpolyphosphate finden in der Wasch- und Reinigungsmittel-Industrie breite Verwendung. Weiter existieren auch Natriumkaliumtripolyphosphate, welche ebenfalls im Rahmen der vorliegenden Erfindung einsetzbar sind. Diese entstehen beispielsweise, wenn man Natriumtrimetaphosphat mit KOH hydrolysiert: (NaPO3)3 + 2 KOH → Na3K2P3O10 + H2O
  • Diese sind erfindungsgemäß genau wie Natriumtripolyphosphat, Kaliumtripolyphosphat oder Mischungen aus diesen beiden einsetzbar; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
  • Werden im Rahmen der vorliegenden Anmeldung Phosphate als wasch- oder reinigungsaktive Substanzen in Wasch- oder Reinigungsmitteln eingesetzt, so enthalten bevorzugte Mittel diese Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% uns insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels.
  • Bevorzugt ist es insbesondere Kaliumtripolyphosphat und Natriumtripolyphosphat in einem Gewichtsverhältnis von mehr als 1:1, vorzugsweise mehr als 2:1, bevorzugt mehr als 5:1, besonders bevorzugt mehr als 10:1 und insbesondere mehr als 20:1 einzusetzen. Besonders bevorzugt ist es, ausschließlich Kaliumtripolyphosphat ohne Beimischungen anderer Phosphate einzusetzen.
  • Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetallsesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat. Aufgrund ihrer im Vergleich mit anderen Buildersubstanzen geringen chemischen Kompatibilität mit den übrigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, werden die Alkalimetallhydroxide bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-% und insbesondere unterhalb 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, eingesetzt. Besonders bevorzugt werden Mittel, welche bezogen auf ihr Gesamtgewicht weniger als 0,5 Gew.-% und insbesondere keine Alkalimetallhydroxide enthalten.
  • Besonders bevorzugt ist der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7.5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels. Besonders bevorzugt werden Mittel, welche bezogen auf das Gewicht des Wasch- oder Reinigungsmittels (also das Gesamtgewicht des Kombinationsprodukts ohne Verpackung) weniger als 20 Gew.-%, vorzugsweise weniger als 17 Gew.-%, bevorzugt weniger als 13 Gew.-% und insbesondere weniger als 9 Gew.% Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonate, besonders bevorzugt Natriumcarbonat enthalten.
  • Als organische Cobuilder sind insbesondere Polycarboxylate/Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate zu nennen. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Gerüststoffe sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrlsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrlate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrlsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrlsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrlsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt von Wasch- oder Reinigungsmitteln an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Gerüststoffe eingesetzt werden.
  • Tenside
  • Zur Gruppe der Tenside werden neben den nichtionischen Tensiden weiterhin die anionischen, kationischen und amphotern Tenside gezählt.
  • Als nichtionische Tenside werden dabei vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C15-13-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Außerdem können als weitere nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I),
    Figure 00270001
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
    Figure 00270002
    R-CO-N-[Z] in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten Reinigungsmittel für das maschinellen Geschirrspülen nichtionische Tenside, insbesondere nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Insbesondere bevorzugt sind nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen, wobei nichtionische Tenside mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, besonders bevorzugt sind.
  • Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperaturhochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
  • Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüberhinaus durch gute Schaumkontrolle aus.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
  • Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow range ethoxylates" (siehe oben) besonders bevorzugt.
  • Demnach ethoxylierte Niotenside besonders bevorzugt, die aus C6-20-Monohydroxyalkanolen oder C6-20-Alkylphenolen oder C16-20-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurden.
  • Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Geschirrspülmittel sind dadurch gekennzeichnet, daß sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthalten.
  • Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
  • Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
  • In Wasch- oder Reinigungsmittel, vorzugsweise in Geschirrspülmitteln, wird das nichtionische Tenside der Formel (II) R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2], (II)in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht, eingesetzt.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonders von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
  • Faßt man die letztgenannten Aussagen zusammen, werden, die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, bevorzugt, wobei Tenside des Typs R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2 in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.
  • Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Anmeldung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind maschinelle Geschirrspülmittel bevorzugt, die als nichionische(s) Tenside) Tenside der allgemeinen Formel III enthalten
    Figure 00320001
    in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3; -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
  • Die bevorzugten Niotenside der Formel III lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel III kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzeigt, wobei die linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind maschinelle Geschirrspülmittel bevorzugt, bei denen R1 in Formel III für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
  • Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus -CH2CH2-CH3 bzw. CH(CH3)2 sind geeignet. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
  • Zusammenfassend sind insbesondere nichtionische Tenside bevorzugt, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten aufweisen. Diese Tenside weisen in wäßriger Lösung die erforderliche niedrige Viskosität auf und sind mit besonderem Vorzug einsetzbar.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel (IV) R1O[CH2CH(R3)O]xR2 (IV)in der R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und vorzugsweise weiterhin mit einer Ethergruppe funktionalisiert sind, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 40.
  • Bei besonders bevorzugten Niotenside der vorstehenden Formel (IV) steht R3 für H. Bei den resultierenden endgruppenverschlossenen Poly(oxyalkylierten) Niotensiden der Formel (V) R1O[CH2CH2O]xR2 (V)sind insbesondere solche Niotenside bevorzugt, bei denen R1 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen steht, welche vorzugsweise zwischen 1 und 5 Hydroxygruppen aufweisen und x für Werte zwischen 1 und 40 steht.
  • Insbesondere werden solche endgruppenverschlossenen Poly(oxyalkylierten) Niotenside bevorzugt, die gemäß der Formel (VI) R1O[CH2CH2O]xCH2CH(OH)R2 (VI) neben einem Rest R1, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 20 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest mit 1 bis 30 Kohlenstoffatomen R2 aufweisen, welcher einer monohydroxylierten Zwischengruppe -CH2CH(OH)- benachbart ist. x steht in dieser Formel für Werte zwischen 1 und 40. Derartige endgruppenverschlossenen Poly(oxyalkylierten) Niotenside lassen sich beispielsweise durch Umsetzung eines endständigen Epoxids der Formel R2CH(O)CH2 mit einem ethoxylierten Alkohol der Formel R1O(CH2CH2O]x-1CH2CH2OH erhalten.
  • Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade der vorgenannten Niotenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierund oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Sind die Aniontenside Bestandteil maschineller Geschirrspülmittel, so beträgt ihr Gehalt, bezogen auf das Gesamtgewicht der Mittel vorzugsweise weniger als 4 Gew.-%, bevorzugt weniger als 2 Gew.-% und ganz besonders bevorzugt weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine Aniontenside enthalten, werden insbesondere bevorzugt.
  • An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden.
  • Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der Formeln VII, VIII oder IX eingesetzt werden:
    Figure 00360001

    worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus C1-6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen; jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8-28-Alkyl- oder -Alkenylgruppen; R3 = R1 oder (CH2)n-T-R2; R4 = R1 oder R2 oder (CH2)n-T-R2; T = -CH2-, -O-CO- oder -CO-O- und n eine ganze Zahl von 0 bis 5 ist.
  • In maschinellen Geschirrspülmittel, beträgt der Gehalt an kationischen und/oder amphoteren Tensiden vorzugsweise weniger als 6 Gew.-%, bevorzugt weniger als 4 Gew.-%, ganz besonders bevorzugt weniger als 2 Gew.-% und insbesondere weniger als 1 Gew.-%. Maschinelle Geschirrspülmittel, welche keine kationischen oder amphoteren Tenside enthalten, werden besonders bevorzugt.
  • Polymere
  • Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktive Poylmere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in Wasch- oder Reinigungsmitteln neben nichtionischen Polymeren auch kationische, anionische und amphoter Polymere einsetzbar.
  • Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.
  • Besonders bevorzugt als Suldonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel X als Monomer bevorzugt, R1(R2)C=C(R3)COOH (X),in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Unter den ungesättigten Carbonsäuren, die sich durch die Formel X beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
  • Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel XI bevorzugt, R5(R6)C=C(R7)-X-SO3H (XI),in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Unter diesen Monomeren bevorzugt sind solche der Formeln XIa, XIb und/oder XIc, H2C=CH-X-SO3H (XIa), H2C=C(CH3)-X-SO3H (XIb), HO3S-X-(R6)C=C(R7)-X-SO3H (XIc),in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansulfonsäure (X = -C(O)NH-CH(CH2CH3) in Formel XIa), 2-Acrylamido-2-propansulfonsäure (X = -C(O)NH-C(CH3)2 in Formel XIa), 2-Acrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH-CH(CH3)CH2- in Formel XIa), 2-Methacrylamido-2-methyl-1-propansulfonsäure (X = -C(O)NH-CH(CH3)CH2- in Formel XIb), 3-Methacrylamido-2-hydroxy-propansulfonsäure (X = -C(O)NH-CH2CH(OH)CH2- in Formel XIb), Allylsulfonsäure (X = CH2 in Formel XIIa), Methallylsulfonsäure (X = CH2 in Formel XIb), Allyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel XIa), Methallyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel XIb), 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure (X = CH2 in Formel XIb), Styrolsulfonsäure (X = C6H4 in Formel XIa), Vinylsulfonsäure (X nicht vorhanden in Formel XIa), 3-Sulfopropylacrylat (X = -C(O)NH-CH2CH2CH2- in Formel XIa), 3-Sulfopropylmethacrylat (X = -C(O)NH-CH2CH2CH2- in Formel XIb), Sulfomethacrylamid (X = -C(O)NH- in Formel XIb), Sulfomethylmethacrylamid (X = -C(O)NH-CH2- in Formel XIb) sowie wasserlösliche Salze der genannten Säuren.
  • Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an Monomeren der Gruppe iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
  • Zusammenfassend sind Copolymere aus
    • i) ungesättigten Carbonsäuren der Formel X. R1(R2)C=C(R3)COOH (X),in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
    • ii) Sulfonsäuregruppen-haltigen Monomeren der Formel XI R5(R6)C=C(R7)-X-SO3H (XI),in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)
    • iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    besonders bevorzugt.
  • Weitere besonders bevorzugte Copolymere bestehen aus
    • i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
    • ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln XIa, XIb und/oder XIc: H2C=CH-X-SO3H (XIa), H2C=C(CH3)-X-SO3H (XIb), HO3S-X-(R6)C=C(R7)-X-SO3H (XIc),in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2H2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)
    • iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
  • So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel XII -[CH2-CHCOOH]m [CH2-CHC(O)-Y-SO3H]p- (XII),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppenhaltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel XIII -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (XIII),in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppenhaltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel XIV -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (XIV),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, ebenso bevorzugt wie Copolymere, der Struktureinheiten der Formel XV -[CH2-C(CH3)COOH]m [CH2-C(CH3)C(O)-Y-SO3H]p- (XV),in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2oder -NH-CH(CH2CH3)- steht.
  • Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu bevorzugten Copolymeren, die Struktureinheiten der Formel XVI -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XVI),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind und zu bevorzugten Copolymeren, die Struktureinheiten der Formel XVII -[HOOCCH-CHCOOH]m [CH2-C(CH3)C(O)O-Y-SO3H]p- (XVII),enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht.
  • Zusammenfassend sind solche Copolymere bevorzugt, die Struktureinheiten der Formeln XII und/oder XIII und/oder XIV und/oder XV und/oder XVI und/oder XVII -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XII), -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p- (XIII), -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (XIV), -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p- (XV), -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p- (XVI), -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p- (XVII),enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht.
  • In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist bevorzugt.
  • Die Monomerenverteilung der bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
  • Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
  • Die Molmasse der bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittelzusammensetzungen sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol–1, vorzugsweise von 4000 bis 25.000 gmol–1 und insbesondere von 5000 bis 15.000 gmol–1 aufweisen.
  • Mit besonderem Vorzug werden weiterhin amphotere oder kationische Polymere eingesetzt. Diese besonders bevorzugten Polymere sind dadurch gekennzeichnet, daß sie mindestens eine positive Ladung aufweisen. Derartige Polymere sind vorzugsweise wasserlöslich oder wasserdispergierbar, das heißt, sie weisen in Wasser bei 25°C eine Löslichkeit oberhalb 10 mg/ml auf.
  • Besonders bevorzugt kationische oder amphotere Polymere enthalten mindestens eine ethylenisch ungesättigte Monomereinheit der allgemeinen Formel R1(R2)C=C(R3)R4 in der R1 bis R4 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert, eine heteroatomare Gruppe mit mindestens einer positiv gelandenen Gruppe, einem quaternisierten Stickstoffatom oder zumindest einer Amingruppe mit einer postiven Ladung im pH-Bereich zwischen 2 und 11 oder für -COOH oder -COOR5 steht, wobei R5 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Beispiele für die vorgenannten (unpolmyerisierten) Monomereinheiten sind Diallylamin, Methyldiallylamin, Dimethyldimethylammoniumsalze, Acrylamidopropyl(trimethyl)ammoniumsalze (R1, R2, und R3, = H, R4 = C(O)NH(CH2)2N+(CH3)3 X), Methacrylamidopropyl(trimethyl)ammoniumsalze (R1 und R2 = H, R3 = CH3 H, R1 = C(O)NH(CH2)2N+(CH3)3 X).
  • Besonders bevorzugt als Bestandteil der amphoteren Polymere werden ungesättigte Carbonsäuren der allgemeinen Formel R1(R2)C=C(R3)COOH eingesetzt, in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Besonders bevorzugte amphotere Polymere enthalten als Monomereinheiten Derivate des Diallylamins, insbesondere Dimethyldiallylammoniumsalz und/oder Methacrylamidopropyl(trimethyl)-ammoniumsalz, vorzugsweise in Form des Chlorids, Bromids, lodids, Hydroxids, Phosphats, Sulfats, Hydrosulfats, Ethylsulfasts, Methylsulfats, Mesylats, Tosylats, Formiats oder Acetats in Kombination mit Monomereinheiten aus der Gruppe der ethylenisch ungesättigten Carbonsäuren.
  • Bleichmittel
  • Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen hat das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise das Natriumperborattetrahydrat und das Natriumperboratmonohydrat, Peroxypyrophosphate, Citratperhydrate sowie N2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Es können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε- Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • Als Bleichmittel können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
  • Bleichaktivatoren
  • Bleichaktivatoren werden beispielsweise in Wasch- oder Reinigungsmitteln eingesetzt, um beim Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrile, insbesondere kationische Nitrile der Formel
    Figure 00450001
    in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist.
  • Besonders bevorzugt ist ein kationisches Nitril der Formel
    Figure 00460001
    in der R4, R5 und R6 unabhängig voneinander ausgewählt sind aus -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, wobei R4 zusätzlich auch -H sein kann und X ein Anion ist, wobei vorzugsweise R5 = R6 = -CH3 und insbesondere R4 = R5 = R6 = -CH3 gilt und Verbindungen der Formeln (CH3)3N(+)CH2-CN X, (CH3CH2)3N(+)CH2-CN X, (CH3CH2CH2)3N(+)CH2-CN X, (CH3CH(CH3))3N(+)CH2-CN X, oder (HO-CH2-CH2)3N(+)CH2-CN X besonders bevorzugt sind, wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X, in welcher X für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
  • Als Bleichaktivatoren können weiterhin Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA) sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingesetzt werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru- Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Sofern neben den Nitrilquats weitere Bleichaktivatoren eingesetzt werden sollen, werden bevorzugt Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt.
  • Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden.
  • Glaskorrosionsinhibitoren
  • Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glaskorrosionsinhibitoren stammen aus der Gruppe der Magnesium- und/oder Zinksalze und/oder Magnesium- und/oder Zinkkomplexe.
  • Eine bevorzugte Klasse von Verbindungen, die zur Verhinderung der Glaskorrosion eingesetzt werden können, sind unlösliche Zinksalze.
  • Unlösliche Zinksalze im Sinne dieser bevorzugten Ausführungsform sind Zinksalze, die eine Löslichkeit von maximal 10 Gramm Zinksalz pro Liter Wasser bei 20°C besitzen. Beispiele für besonders bevorzugte unlösliche Zinksalze sind Zinksilikat, Zinkcarbonat, Zinkoxid, basisches Zinkcarbonat (Zn2(OH)2CO3), Zinkhydroxid, Zinkoxalat, Zinkmonophosphat (Zn3(PO4)2), und Zinkpyrophosphat (Zn2(P2O7)).
  • Die genannten Zinkverbindungen werden vorzugsweise in Mengen eingesetzt, die einen Gehalt der Mittel an Zinkionen zwischen 0,02 und 10 Gew.-%, vorzugsweise zwischen 0,1 und 5,0 Gew.-% und insbesondere zwischen 0,2 und 1,0 Gew.-%, jeweils bezogen auf das gesamte glaskorrosionsinhibitorhaltige Mittel, bewirken. Der exakte Gehalt der Mittel am Zinksalz bzw. den Zinksalzen ist naturgemäß abhängig von der Art der Zinksalze –je weniger löslich das eingesetzte Zinksalz ist, umso höher sollte dessen Konzentration in den Mitteln sein.
  • Da die unlöslichen Zinksalze während des Geschirreinigungsvorgangs größtenteils unverändert bleiben, ist die Partikelgröße der Salze ein zu beachtendes Kriterium, damit die Salze nicht auf Glaswaren oder Maschinenteilen anhaften. Hier sind Mittel bevorzugt, bei denen die unlöslichen Zinksalze eine Partikelgröße unterhalb 1,7 Millimeter aufweisen.
  • Wenn die maximale Partikelgröße der unlöslichen Zinksalze unterhalb 1,7 mm liegt, sind unlösliche Rückstände in der Geschirrspülmaschine nicht zu befürchten. Vorzugsweise hat das unlösliche Zinksalz eine mittlere Partikelgröße, die deutlich unterhalb dieses Wertes liegt, um die Gefahr unlöslicher Rückstände weiter zu minimieren, beispielsweise eine mittlere Partikelgröße kleiner 250 μm. Dies gilt wiederum umso mehr, je weniger das Zinksalz löslich ist. Zudem steigt die glaskorrosionsinhibierende Effektivität mit sinkender Partikelgröße. Bei sehr schlecht löslichen Zinksalzen liegt die mittlere Partikelgröße vorzugsweise unterhalb von 100 μm. Für noch schlechter lösliche Salze kann sie noch niedriger liegen; beispielsweise sind für das sehr schlecht lösliche Zinkoxid mittlere Partikelgrößen unterhalb von 100 μm bevorzugt.
  • Eine weitere bevorzugte Klasse von Verbindungen sind Magnesium- und/oder Zinksalze) mindestens einer monomeren und/oder polymeren organischen Säure. Diese bewirken, daß auch bei wiederholter Benutzung die Oberflächen gläsernen Spülguts nicht korrosiv verändert, insbesondere keine Trübungen, Schlieren oder Kratzer aber auch kein Irisieren der Glasoberflächen verursacht werden.
  • Obwohl alle Magnesium- und/oder Zinksalze) monomerer und/oder polymerer organischer Säuren eingesetzt werden können, werden doch, wie vorstehend beschrieben, die Magnesium- und/oder Zinksalze monomerer und/oder polymerer organischer Säuren aus den Gruppen der unverzweigten gesättigten oder ungesättigten Monocarbonsäuren, der verzweigten gesättigten oder ungesättigten Monocarbonsäuren, der gesättigten und ungesättigten Dicarbonsäuren, der aromatischen Mono-, Di- und Tricarbonsäuren, der Zuckersäuren, der Hydroxysäuren, der Oxosäuren, der Aminosäuren und/oder der polymeren Carbonsäuren bevorzugt.
  • Das Spektrum der bevorzugten Zinksalze organischer Säuren, vorzugsweise organischer Carbonsäuren, reicht von Salzen, die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/L, vorzugsweise unterhalb 10 mg/L, insbesondere keine Löslichkeit aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/L, vorzugsweise oberhalb 500 mg/L, besonders bevorzugt oberhalb 1 g/L und insbesondere oberhalb 5 g/L aufweisen (alle Löslichkeiten bei 20°C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkcitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.
  • Mit besonderem Vorzug wird als Glaskorrosionsinhibitor mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkcitrat eingesetzt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.
  • Im Rahmen der vorliegenden Erfindung beträgt der Gehalt von Reinigungsmitteln an Zinksalz vorzugsweise zwischen 0,1 bis 5 Gew.-%, bevorzugt zwischen 0,2 bis 4 Gew.-% und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn2+) zwischen 0,01 bis 1 Gew.-%, vorzugsweise zwischen 0,02 bis 0,5 Gew.-% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des glaskorrosionsinhibitorhaltigen Mittels.
  • Korrosionsinhibitoren
  • Korrosionsinhibitoren dienen dem Schutze des Spülgutes oder der Maschine, wobei im Bereich des maschinellen Geschirrspülens besonders Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder – komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Als Beispiele der bevorzugt einzusetzenden 3-Amino-5-alkyl-1,2,4-triazole können genannt werden: 5,- -Propyl-, -Butyl-, -Pentyl-, -Heptyl-, -Octyl-, -Nonyl-, -Decyl-, -Undecyl-, -Dodecyl-, -Isononyl-, -Versatic-10-säurealkyl-, -Phenyl-, -p-Tolyl-, -(4-terf. Butylphenyl), -(4-Methoxyphenyl)-, -(2-, -3-, -4-Pyridyl)-, -(2-Thienyl)-, -(5-Methyl-2-furyl)-, -(5-Oxo-2-pyrrolidinyl)-, -3-amino-1,2,4-triazol. In Geschirrspülmitteln werden die Alkyl-amino-1,2,4-triazole bzw. ihre physiologisch verträglichen Salze in einer Konzentration von 0,001 bis 10 Gew.-%, vorzugsweise 0,0025 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5-Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5-Isononyl-, 5-Versatic-10-säurealkyl-3-amino-1,2,4-triazole sowie Mischungen dieser Substanzen.
  • Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe enthält, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.
  • Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z. B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z. B. Stearat.
  • Metallkomplexe im Sinne der Erfindung sind Verbindungen, die aus einem Zentralatom und einem oder mehreren Liganden sowie gegebenenfalls zusätzlich einem oder mehreren der o.g. Anionen bestehen. Das Zentralatom ist eines der o.g. Metalle in einer der o.g. Oxidationsstufen. Die Liganden sind neutrale Moleküle oder Anionen, die ein- oder mehrzähnig sind; der Begriff "Liganden" im Sinne der Erfindung ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1990, Seite 2507" näher erläutert. Ergänzen sich in einem Metallkomplex die Ladung des Zentralatoms und die Ladung des/der Liganden nicht auf Null, so sorgt, je nachdem, ob ein kationischer oder ein anionischer Ladungsüberschuß vorliegt, entweder eines oder mehrere der o.g. Anionen oder ein oder mehrere Kationen, z. B. Natrium-, Kalium-, Ammoniumionen, für den Ladungsausgleich. Geeignete Komplexbildner sind z.B. Citrat, Acetylacetonat oder 1-Hydroxyethan-1,1-diphosphonat.
  • Die in der Chemie geläufige Definition für "Oxidationsstufe" ist z.B. in "Römpp Chemie Lexikon, Georg Thieme Verlag Stuttgart/New York, 9. Auflage, 1991, Seite 3168" wiedergegeben.
  • Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnSO4, Mn(II)-citrat, Mn(II)-stearat, Mn(II)-acetylacetonat, Mn(II)-[1-Hydroxyethan-1,1-diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3)3 sowie deren Gemische., so daß bevorzugte maschinelle Geschirrspülmittel dadurch gekennzeichnet sind, daß die Metallsalze und/oder Metallkomplexe ausgewählt sind aus der Gruppe MnSO4, Mn(II)-citrat, Mn(II)-stearat, Mn(II)-acetylacetonat, Mn(II)-[1-Hydroxyethan-1,1-diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3)3.
  • Bei diesen Metallsalzen bzw. Metallkomplexen handelt es sich im allgemeinen um handelsübliche Substanzen, die zum Zwecke des Silberkorrosions-Schutzes ohne vorherige Reinigung in den Wasch- oder Reinigungsmitteln eingesetzt werden können. So ist z.B. das aus der SO3-Herstellung (Kontaktverfahren) bekannte Gemisch aus fünf- und vierwertigem Vanadium (V2O5, VO2, V2O4) geeignet, ebenso wie das durch Verdünnen einer Ti(SO4)2-Lösung entstehende Titanylsulfat, TiOSO4.
  • Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise gecoatet, d.h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindustrie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Carnaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren. Dabei wird das bei Raumtemperatur feste Coatingmaterial in geschmolzenem Zustand auf das zu coatende Material aufgebracht, z.B. indem feinteiliges zu coatendes Material in kontinuierlichem Strom durch eine ebenfalls kontinuierlich erzeugte Sprühnebelzone des geschmolzenen Coatingmaterials geschleudert wird. Der Schmelzpunkt muß so gewählt sein, daß sich das Coatingmaterial während der Silberbehandlung leicht löst bzw. schnell aufschmilzt. Der Schmelzpunkt sollte Idealerweise im Bereich zwischen 45°C und 65°C und bevorzugt im Bereich 50°C bis 60°C liegen.
  • Die genannten Metallsalze und/oder Metallkomplexe sind in Reinigungsmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.-%, vorzugsweise 0,2 bis 2,5 Gew.-%, jeweils bezogen auf das gesamte korrosionsinhibitorhaltige Mittel enthalten.
  • Enzyme
  • Zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung von Wasch- oder Reinigungsmitteln sind Enzyme einsetzbar. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Wasch- oder Reinigungsmittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 × 10–6 bis 5 Gewichts-Prozent bezogen auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
  • Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsvaerd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Varianten ab.
  • Weitere brauchbare Proteasen sind beispielsweise die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym, Natalase®, Kannase® und Ovozymes® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect® OxP und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme.
  • Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens oder aus B. stearothermophilus sowie deren für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus B. licheniformis ist von der Firma Novozymes unter dem Namen Termamyl® und von der Firma Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α-Amylase sind von der Firma Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von der Firma Genencor unter dem Namen Purastar®OxAm und von der Firma Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von B. amyloliquefaciens wird von der Firma Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α-Amylase aus B. stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von der Firma Novozymes.
  • Desweiteren sind für diesen Zweck die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben.
  • Darüber hinaus sind die unter den Handelsnamen Fungamyl® von der Firma Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. onrae geeignet. Ein weiteres Handelsprodukt ist beispielsweise die Amylase-LT®.
  • Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Ebenso brauchbare Lipasen sind von der Firma Amano unter den Bezeichnungen Lipase CE®, Lipase P®, Lipase B®, beziehungsweise Lipase CES®, Lipase AKG®, Bacills sp. Lipase®, Lipase AP®, Lipase M-AP® und Lipase AML® erhältlich. Von der Firma Genencor sind beispielsweise die Lipasen, beziehungsweise Cutinasen einsetzbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Genencor.
  • Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und β-Glucanasen. Geeignete Mannanasen sind beispielsweise unter den Namen Gamanase® und Pektinex AR® von der Firma Novozymes, unter dem Namen Rohapec® B1L von der Firma AB Enzymes und unter dem Namen Pyrolase® von der Firma Diversa Corp., San Diego, CA, USA erhältlich. Die aus B. subtilis gewonnene β-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich.
  • Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Als geeignete Handelsprodukte sind Denilite® 1 und 2 der Firma Novozymes zu nennen. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluß zu gewährleisten (Mediatoren).
  • Die Enzyme stammen beispielsweise entweder ursprünglich aus Mikroorganismen, etwa der Gattungen Bacillus, Streptomyces, Humicola, oder Pseudomonas, und/oder werden nach an sich bekannten biotechnologischen Verfahren durch geeignete Mikroorganismen produziert, etwa durch transgene Expressionswirte der Gattungen Bacillus oder filamentöse Fungi.
  • Die Aufreinigung der betreffenden Enzyme erfolgt vorzugsweise über an sich etablierte Verfahren, beispielsweise über Ausfällung, Sedimentation, Konzentrierung, Filtration der flüssigen Phasen, Mikrofiltration, Ultrafiltration, Einwirken von Chemikalien, Desodorierung oder geeignete Kombinationen dieser Schritte.
  • Die Enzyme können in jeder nach dem Stand der Technik etablierten Form eingesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
  • Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem, vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kern-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
  • Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so daß ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
  • Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten.
  • Eine Gruppe von Stabilisatoren sind reversible Proteaseinhibitoren. Häufig werden Benzamidin-Hydrochlorid, Borax, Borsäuren, Boronsäuren oder deren Salze oder Ester verwendet, darunter vor allem Derivate mit aromatischen Gruppen, etwa ortho-substituierte, meta-substituierte und para-substituierte Phenylboronsäuren, beziehungsweise deren Salze oder Ester. Als peptidische Proteaseinhibitoren sind unter anderem Ovomucoid und Leupeptin zu erwähnen; eine zusätzliche Option ist die Bildung von Fusionsproteinen aus Proteasen und Peptid-Inhibitoren.
  • Weitere Enzymstabilisatoren sind Aminoalkohole wie Mono-, Di-, Triethanol- und -Propanolamin und deren Mischungen, aliphatische Carbonsäuren bis zu C12, wie Bernsteinsäure, andere Dicarbonsäuren oder Salze der genannten Säuren. Auch endgruppenverschlossene Fettsäureamidalkoxylate sind geeignet. Bestimmte als Builder eingesetzte organische Säuren vermögen zusätzlich ein enthaltenes Enzym zu stabilisieren.
  • Niedere aliphatische Alkohole, vor allem aber Polyole, wie beispielsweise Glycerin, Ethylenglykol, Propylenglykol oder Sorbit sind weitere häufig eingesetzte Enzymstabilisatoren. Ebenso werden Calciumsalze verwendet, wie beispielsweise Calciumacetat oder Calcium-Formiat, und Magnesiumsalze.
  • Polyamid-Oligomere oder polymere Verbindungen wie Lignin, wasserlösliche Vinyl-Copolymere oder Cellulose-Ether, Acryl-Polymere und/oder Polyamide stabilisieren die Enzym-Präparation unter anderem gegenüber physikalischen Einflüssen oder pH-Wert-Schwankungen. Polyamin-N-Oxid-enthaltende Polymere wirken als Enzymstabilisatoren. Andere polymere Stabilisatoren sind die linearen C8-C18 Polyoxyalkylene. Alkylpolyglycoside können die enzymatischen Komponenten stabilisieren und sogar in ihrer Leistung steigern. Vernetzte N-haltige Verbindungen wirken ebenfalls als Enzym-Stabilisatoren.
  • Reduktionsmittel und Antioxidantien erhöhen die Stabilität der Enzyme gegenüber oxidativem Zerfall. Ein schwefelhaltiges Reduktionsmittel ist beispielsweise Natrium-Sulfit.
  • Bevorzugt werden Kombinatonen von Stabilisatoren verwendet, beispielsweise aus Polyolen, Borsäure und/oder Borax, die Kombination von Borsäure oder Borat, reduzierenden Salzen und Bernsteinsäure oder anderen Dicarbonsäuren oder die Kombination von Borsäure oder Borat mit Polyolen oder Polyaminoverbindungen und mit reduzierenden Salzen. Die Wirkung von Peptid-Aldehyd-Stabilisatoren wird durch die Kombination mit Borsäure und/oder Borsäurederivaten und Polyolen gesteigert und durch die zusätzliche Verwendung von zweiwertigen Kationen, wie zum Beispiel Calcium-Ionen weiter verstärkt.
  • Bevorzugt werden ein oder mehrere Enzyme und/oder Enzymzubereitungen, vorzugsweise feste Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4,5 und insbesondere von 0,4 bis 4 Gew.-%, jeweils bezogen auf das gesamte enzymhaltige Mittel, eingesetzt.
  • Desintegrationshilfsmittel
  • Um den Zerfall vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden gemäß Römpp (9. Auflage, Bd. 6, S. 4440) und Voigt "Lehrbuch der pharmazeutischen Technologie" (6. Auflage, 1987, S. 182-184) Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
  • Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittel bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
  • Bevorzugt werden Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt.
  • Als bevorzugte Desintegrationsmittel werden im Rahmen der vorliegenden Erfindung Desintegrationsmittel auf Cellulosebasis eingesetzt, so daß bevorzugte Wasch- und Reinigungsmittelzusammensetzungen ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten. Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew.-%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
  • Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm. Die vorstehend genannten und in den zitierten Schriften näher beschriebenen gröberen Desintegrationshilfsmittel auf Cellulosebasis sind im Rahmen der vorliegenden Erfindung bevorzugt als Desintegrationshilfsmittel einzusetzen und im Handel beispielsweise unter der Bezeichnung Arbocel® TF-30-HG von der Firma Rettenmaier erhältlich.
  • Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose eingesetzt werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.
  • Im Rahmen der vorliegenden Erfindung bevorzugte Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granularer, cogranulierter oder kompaktierter Form, sind in den desintegrationsmittelhaltigen Mitteln in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationsmittelhaltigen Mittels, enthalten.
  • Erfindungsgemäß bevorzugt können darüber hinaus weiterhin gasentwickelnde Brausesysteme als Tablettendesintegrationshilfsmittel eingesetzt werden. Das gasentwickelnde Brausesystem kann aus einer einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den Wasch- und Reinigungsmittelzusammensetzungen eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
  • Bei den Alkalimetallcarbonaten bzw. -hydrogencarbonaten sind die Natrium- und Kaliumsalze aus Kostengründen gegenüber den anderen Salzen deutlich bevorzugt. Selbstverständlich müssen nicht die betreffenden reinen Alkalimetallcarbonate bzw. -hydrogencarbonate eingesetzt werden; vielmehr können Gemische unterschiedlicher Carbonate und Hydrogencarbonate bevorzugt sein.
  • Bevorzugt werden als Brausesystem 2 bis 20 Gew.-%, vorzugsweise 3 bis 15 Gew.-% und insbesondere 5 bis 10 Gew.-% eines Alkalimetallcarbonats oder -hydrogencarbonats sowie 1 bis 15, vorzugsweise 2 bis 12 und insbesondere 3 bis 10 Gew.-% eines Acidifizierungsmittels, jeweils bezogen das Gesamtgewicht des Mittels, eingesetzt.
  • Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate, Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Einsetzbar sind aber auch insbesondere die anderen festen Mono-, Oligo- und Polycarbonsäuren. Aus dieser Gruppe wiederum bevorzugt sind Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
  • Bevorzugt sind im Rahmen der vorliegenden Erfindung Acidifizierungsmittel im Brausesystem aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische.
  • Duftstoffe
  • Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe eingesetzt werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe venrwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
  • Die Duftstoffe können direkt verarbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
  • Farbstoffe
  • Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den farbstoffhaltigen Mitteln zu behandelnden Substraten wie beispielsweise Glas, Keramik, Kunststoffgeschirr oder Textilien, um diese nicht anzufärben.
  • Lösungsmittel
  • Zu den Lösungsmitteln zählen insbesondere die nichtwässrigen organischen Lösungsmittel, wobei mit besonderem Vorzug nichtwäßrige Lösungsmittel aus der Gruppe der ein- oder mehrwertigen Alkohole, Alkanolamine oder Glykolether, sofern sie im angegebenen Konzentrationsbereich mit Wasser mischbar sind, eingesetzt werden. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Etheylenglykolmono-n-butylether, Diethylenglykolmethylether, Di-ethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propylether, Dipropylenglykolmethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-gykol-t-butylether sowie Mischungen dieser Lösungsmittel.
  • Schauminhibitoren
  • Als Schauminhibitoren kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
  • Optische Aufheller
  • Optische Aufheller (sogenannte „Weißtöner") können Wasch- oder Reinigungsmittel zugesetzt werden, um Vergrauungen und Vergilbungen von mit diesen Mitteln behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längenwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyrylbiphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
  • Vergrauungsinhibitoren
  • Vergrauungsinhibitoren in Textilreinigungsmitteln haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren in den partikulären Mitteln einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
  • Antimikrobielle Wirkstoffe
  • Antimikrobielle Wirkstoffe dienen der Bekämpfung von Mikroorganismen. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei auf den Einsatz dieser Mittel auch gänzlich verzichtet werden kann.

Claims (7)

  1. Verfahren zur Herstellung eines Mittels mit wasserlöslicher Verpackung, umfassend die Schritte: a) Verformen eines wasserlöslichen Materials unter Ausbildung eines Behälters; b) Befüllen des Behälters mit einem Füllgut, ausgewählt aus der Gruppe der Wasch- oder Reinigungsmittel oder der Kosmetika; c) Aufbringen einer wasserlöslichen Folienbahn auf den befüllten Behälter; d) Versiegeln des befüllten Behälters; e) Konfektionierung des versiegelten und befüllten Behälters, dadurch gekennzeichnet, daß im Verlauf des Verfahrens in dem befüllten Behälter ein Unterdruck erzeugt wird, wobei zur Erzeugung dieses Unterdrucks die zwischen dem Füllgut und der in Schritt c) aufgebrachten wasserlöslichen Folienbahn befindliche Luft wenigstens anteilsweise durch Öffnungen in der in Schritt c) aufgebrachten wasserlöslichen Folienbahn entweicht.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Unterdruck in dem befüllten Behälter nach dem Aufbringen der wasserlöslichen Folienbahn auf den befüllten Behälter in Schritt c) und vor dem Versiegeln in Schritt d) erzeugt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß der Unterdruck in dem befüllten Behälter nach dem Versiegeln in Schritt d) und vor dem Konfektionieren in Schritt e) erzeugt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Unterdruck sowohl in dem befüllten Behältern, also unterhalb der in Schritt c) aufgebrachten Folienbahn, als auch außerhalb des befüllten Behälters, oberhalb der in Schritt c) aufgebrachten Folienbahn erzeugt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Verformen in Schritt a) durch Spritzgießen oder Gießen oder Tiefziehen erfolgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das in den Schritten a) und/oder c) eingesetzte wasserlösliche Material ein wasserlösliches Polymer umfaßt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Füllgut in Schritt b) in flüssiger oder fester Form eingefüllt wird.
DE2003150931 2003-10-31 2003-10-31 Verpackungsverfahren Expired - Fee Related DE10350931B4 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE2003150931 DE10350931B4 (de) 2003-10-31 2003-10-31 Verpackungsverfahren
AT04765560T ATE446906T1 (de) 2003-10-31 2004-09-24 Verpackungsverfahren
PL04765560T PL1678037T3 (pl) 2003-10-31 2004-09-24 Sposób pakowania
DE502004010306T DE502004010306D1 (de) 2003-10-31 2004-09-24 Verpackungsverfahren
EP04765560A EP1678037B1 (de) 2003-10-31 2004-09-24 Verpackungsverfahren
JP2006537089A JP2007533559A (ja) 2003-10-31 2004-09-24 包装方法
PCT/EP2004/010708 WO2005051770A1 (de) 2003-10-31 2004-09-24 Verpackungsverfahren
US11/413,298 US7469519B2 (en) 2003-10-31 2006-04-28 Process for producing a water-soluble package containing a composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2003150931 DE10350931B4 (de) 2003-10-31 2003-10-31 Verpackungsverfahren

Publications (2)

Publication Number Publication Date
DE10350931A1 true DE10350931A1 (de) 2005-06-09
DE10350931B4 DE10350931B4 (de) 2007-06-14

Family

ID=34559270

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003150931 Expired - Fee Related DE10350931B4 (de) 2003-10-31 2003-10-31 Verpackungsverfahren

Country Status (1)

Country Link
DE (1) DE10350931B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150231A1 (de) * 2014-03-31 2015-10-08 Henkel Ag & Co. Kgaa Wasserlösliche portionspackung mit formstabilem deckel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2161465A1 (de) * 1971-12-10 1973-06-14 American Can Co Verfahren und einrichtung zur herstellung hermetisch abgedichteter pakkungen, aus denen die luft entfernt worden ist
WO2002016206A1 (en) * 2000-08-25 2002-02-28 Reckitt Benckiser (Uk) Limited Water-soluble containers
WO2003031266A1 (en) * 2001-10-08 2003-04-17 The Procter & Gamble Company Process for the production of water-soluble pouches as well the pouches thus obtained

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2161465A1 (de) * 1971-12-10 1973-06-14 American Can Co Verfahren und einrichtung zur herstellung hermetisch abgedichteter pakkungen, aus denen die luft entfernt worden ist
WO2002016206A1 (en) * 2000-08-25 2002-02-28 Reckitt Benckiser (Uk) Limited Water-soluble containers
WO2003031266A1 (en) * 2001-10-08 2003-04-17 The Procter & Gamble Company Process for the production of water-soluble pouches as well the pouches thus obtained

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015150231A1 (de) * 2014-03-31 2015-10-08 Henkel Ag & Co. Kgaa Wasserlösliche portionspackung mit formstabilem deckel

Also Published As

Publication number Publication date
DE10350931B4 (de) 2007-06-14

Similar Documents

Publication Publication Date Title
DE102004030318B4 (de) Mehrkammer-Pouch
EP1776448B1 (de) Verfahren zur herstellung portionierter wasch- oder reinigungsmittel
EP1740689A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
EP1678037A1 (de) Verpackungsverfahren
EP1794269A1 (de) Reinigungsmittelkomponente
DE102004005344A1 (de) Maschinelles Geschirrspülmittel ####
WO2006114185A1 (de) Verpackunqssystem für wasch- oder reinigungsmittel
EP1888736B1 (de) Wasch- oder reinigungsmittel dosiereinheit
DE102004062704B4 (de) Verfahren zur Herstellung eines portionierten Wasch- oder Reinigungsmittels
EP1678049A1 (de) Verpackungsverfahren mit tragplatte
DE102004040330A1 (de) Beschichteter Wasch- oder Reinigungsmittelformkörper
WO2006063724A1 (de) Schneidwerkzeug für folienbahnen
DE10350931A1 (de) Verpackungsverfahren
DE10338370A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
WO2006066721A1 (de) Dosiereinheit für wasch- oder reinigungsmittel
DE102005022786B4 (de) Wasch- oder Reinigungsmitteldosiereinheit
DE10350930A1 (de) Verpackungsverfahren mit Tragplatte
WO2007107479A1 (de) Wasch- oder reinigungsmitteldosiereinheit
DE10338368A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
WO2005021381A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
WO2005019401A1 (de) Wasch- oder reinigungsmittel
DE102004030148A1 (de) Verfahren zur Herstellung von Portionspackungen für wasch- oder reinigungsaktive Substanzen
DE10338044A1 (de) Verfahren zur Herstellung von Wasch-oder Reinigungsmitteln
WO2005019402A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
DE10338067A1 (de) Wasch- oder Reinigungsmittel

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee