WO2006114185A1 - Verpackunqssystem für wasch- oder reinigungsmittel - Google Patents

Verpackunqssystem für wasch- oder reinigungsmittel Download PDF

Info

Publication number
WO2006114185A1
WO2006114185A1 PCT/EP2006/002999 EP2006002999W WO2006114185A1 WO 2006114185 A1 WO2006114185 A1 WO 2006114185A1 EP 2006002999 W EP2006002999 W EP 2006002999W WO 2006114185 A1 WO2006114185 A1 WO 2006114185A1
Authority
WO
WIPO (PCT)
Prior art keywords
packaging system
water
insoluble
acid
washing
Prior art date
Application number
PCT/EP2006/002999
Other languages
English (en)
French (fr)
Inventor
Christian Nitsch
Wolfgang Barthel
Ulrich Pegelow
Pavel Gentschev
Ulf Arno Timmann
Salvatore Fileccia
Original Assignee
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel Kommanditgesellschaft Auf Aktien filed Critical Henkel Kommanditgesellschaft Auf Aktien
Priority to AT06723958T priority Critical patent/ATE541028T1/de
Priority to EP06723958A priority patent/EP1907294B1/de
Priority to PL06723958T priority patent/PL1907294T3/pl
Priority to ES06723958T priority patent/ES2377880T3/es
Publication of WO2006114185A1 publication Critical patent/WO2006114185A1/de
Priority to US11/877,448 priority patent/US20080261851A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • B65D77/04Articles or materials enclosed in two or more containers disposed one within another
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions

Definitions

  • the present application is a packaging system for detergents or cleaning agents, in particular a packaging system for pre-portioned dosage units of detergents or cleaners.
  • Detergents or cleaners are now available to the consumer in a variety of forms.
  • this offer also includes, for example, detergent concentrates in the form of extruded or tabletted compositions.
  • These fixed, concentrated or compressed forms of supply are characterized by a reduced volume per dosing unit and thus reduce the costs for packaging and transport.
  • the washing or cleaning agent tablets additionally meet the consumer's desire for simple dosing.
  • the corresponding means are comprehensively described in the prior art.
  • compacted detergents or cleaners also have a number of disadvantages.
  • Especially tableted supply forms are characterized by their high compression often by a delayed disintegration and thus a delayed release of their ingredients.
  • solid or liquid detergents or cleaners which have a water-soluble or water-dispersible packaging are increasingly being described in recent years. These agents are characterized as the tablets by a simplified dosage, since they can be dosed together with the outer packaging in the washing machine or dishwasher, on the other hand, but at the same time they also allow the preparation of liquid or powder detergents or cleaning agents Compared to the compact data by a better resolution and faster effectiveness.
  • EP 1 314 654 A2 (Unilever) discloses a dome-shaped pouch with a receiving chamber containing a liquid.
  • WO 01/83657 A2 Procter & Gamble
  • pouches which contain two particulate solids in a receiving chamber, each of which is present in fixed regions and does not mix with one another.
  • EP 1 256 623 A1 Subject of the European application EP 1 256 623 A1 (Procter & Gamble) is a kit of at least two bags with different composition and optics. The prey are separated from each other and not as a compact single product.
  • EP 1 516 918 A2 (Procter & Gamble) discloses a container, which is preferably provided with a viewing window and contains a group, for example, in terms of their color or shape of different dosage units.
  • the object of the present application was to provide an optimized packaging system for dosing units of detergents or cleaners.
  • This packaging system should be characterized in particular by improved storage stability with regard to the effect of chemical and physical influences on the metering units. Furthermore, the amount of packaging material used should be largely reduced while maintaining the stability of the metering units.
  • a packaging system which comprises a combination of water-insoluble packaging systems which surround each other.
  • a first subject of the present application is therefore a packaging system for washing or detergent dosing units, comprising a) a primary packaging system in the form of a number (n)> 2 water-insoluble bags, each of these bags containing a number (x)> 2 detergent dosing units; and b) a secondary packaging system in the form of a water-insoluble bag containing the water-insoluble bags of the primary packaging system.
  • the water-insoluble bags of the first packaging system and / or the second packaging system are preferably closed prior to use by the consumer.
  • the washing or cleaning agent dosing units contained in the water-insoluble bag of the primary packaging system are preferably not separated from each other by further packaging means and are preferably in contact with each other.
  • washing or cleaning agent dosing units are understood as meaning portions of washing or cleaning agents which are suitable for carrying out a cleaning process, preferably a machine dishwashing process or a mechanical textile cleaning process.
  • washing or cleaning agent dosing units are metering units for automatic dishwashing
  • these dosing units preferably have a weight above 5 g, preferably between 10 and 40 g, more preferably between 15 and 30 g and in particular between 15 and 25 g.
  • the volume of these metering units is preferably less than 50 ml, preferably between 10 and 40 ml, more preferably between 15 and 30 ml and in particular between 15 and 25 ml.
  • the washing or cleaning agent dosing units are dosing units for textile cleaning
  • these dosing units preferably have a weight above 10 g, preferably between 20 and 100 g, more preferably between 30 and 90 g and in particular between 40 and 80 g.
  • the volume of these dispensing units is preferably - A -
  • a packaging system characterized in that the water-insoluble bags of the primary packaging system each contain a number of (x)> 3, preferably (x)> ' 4, more preferably (x)> 5 detergent or detergent dosing units, is therefore a preferred article of the present application.
  • the primary packaging system consists of a number (n)> 3, preferably (n)> 4, particularly preferably (n)> 5 water-insoluble bags.
  • the water-insoluble bags of the primary packaging system can their dimensions or their filling as regards be identical, can naturally differ with respect to both up 'to its dimensions and as regards their filling.
  • a preferred embodiment of the packaging system according to the invention is characterized in that the water-insoluble bags of the primary packaging system with respect to their Grevolumiria by less than 50% by volume, preferably by less. as 30 vol .-% and in particular differ by less than 10 vol .-%.
  • a further preferred embodiment of the packaging system according to the invention is characterized in that the number (n) of the water-insoluble bags of the primary packaging system and the number (x) of washing or cleaning agent dosing units contained in each of these bags are not more than 3, preferably not more than 2 and in particular no more than 1 differ.
  • Packaging systems according to the invention characterized in that the primary and / or secondary packaging system has a moisture vapor transmission rate of 0.1 g / m 2 / day to less than 20 g / m 2 day when the packaging system is at 23 ° C and a relative humidity Stored equilibrium moisture content of 85%, are characterized by an improved storage stability of detergent or makesstoffdosierüen and are therefore preferred.
  • the packaging system according to the invention is suitable for stabilizing the washing and cleaning agent dosing units contained in a chemical and physical view.
  • the packaging system does not protect only those in the washing or Detergent dosing units contained active ingredients prior to premature chemical decomposition but it protects the detergent or detergent dosing units themselves against breakage or leakage.
  • the stabilization of the washing or cleaning agent dosing units against chemical or physical decomposition can be further improved by deliberately influencing the gas atmosphere within the primary and secondary packaging systems.
  • Packaging processes for detergents or cleaning agents are usually carried out in the ambient atmosphere.
  • the gas enclosed in the packaging material therefore corresponds in its composition to the composition of the air or differs only slightly from it.
  • At least one of the packaging systems according to the invention is filled with a gas which has a composition deviating from the ambient air.
  • a gas mixture which contains 78% by volume of nitrogen, 21% by volume of oxygen and 1% by volume of remaining gases is referred to as ambient air.
  • a derogation in the meaning of the application is when the composition of the gas in the packaging system differs from the composition of the ambient air either: (a) in terms of an additional or a missing component; or b) with regard to the volume fraction of one of its constituents, with mixtures of gases having a composition by volume its constituents by more than 1% by volume, preferably by more than 5% by volume, preferably by more than 10% by volume, very particularly preferably by more than 20% by volume and in particular by more than 50% by volume. -% differs from the ambient air are particularly preferred.
  • the primary packaging system is not filled with the secondary packaging system with a gas which has a different composition from the ambient air.
  • both the primary and the secondary packaging system are filled with a gas which differs in composition from the composition of the ambient air, but still the composition of the gas in the primary packaging system of the composition of the gas in different from the secondary packaging system.
  • Inventive Verpiereungssysteme characterized in that at least one water-insoluble. Bag of the primary packaging system and / or the water-insoluble bag of the secondary packaging system is filled with a gas having a different composition from the ambient air, are preferred.
  • packaging systems according to the invention whose primary (s) and / or secondary packaging system (s) are / is filled with a gas which has a volume fraction of nitrogen above 80% by volume, preferably above 85% by volume, particularly preferably above 90% by volume and in particular above 95% by volume.
  • the chemical and physical stability of the detergent dosing units may also be increased by the degree of filling of the primary and secondary packaging systems and / or by the gas pressure of the gas trapped in the primary and secondary packaging systems ,
  • the primary and secondary packaging systems have different fill levels.
  • the primary packaging system has a higher degree of filling than the secondary packaging system. So it is inventively preferred that the primary packaging system has a degree of filling above 80 vol .-%, preferably above 85 vol .-% and in particular above 90 vol .-%, while the degree of filling of the secondary Packaging system less than 75 vol .-%, preferably less than 70 vol .-% and in particular less than 60 vol .-%.
  • At least one of the packaging systems has a degree of filling above 95% by volume, preferably above 97% by volume and in particular above 99% by volume, very particularly preferably of 100% by volume.
  • a degree of filling can be realized, for example, by vacuum-sealing the water-insoluble bags of the primary packaging system and / or of the secondary packaging system.
  • Packaging systems characterized in that at least one water-insoluble bag of the primary packaging system and / or the water-insoluble bag of the secondary packaging system is vacuum-sealed, are inventively preferred.
  • the stability of the washing or cleaning agent dosing units contained in the packaging system according to the invention can be increased by inflating the water-insoluble bags of the primary packaging system and / or the secondary packaging system.
  • Packaging systems characterized in that at least one water-insoluble bag of the primary packaging system and / or the water-insoluble bag of the secondary packaging system is inflated, are preferred according to the invention.
  • the above filling level according to the invention relates both to the dosing units contained in the respective packaging system and to the gas contained in the respective packaging system.
  • the maximum degree of filling of a packaging system (100% by volume) is understood to be the volume of a packaging system which, if exceeded, causes the packaging material of the respective packaging system to undergo reversible or irreversible stretching.
  • the packaging system according to the invention comprises two surrounding water-insoluble bags.
  • bag while bag-like containers are referred to, which are distinguished from conventional packaging cartons, for example, by flexible, that is foldable or rollable side walls.
  • Particularly preferred packaging system are characterized in that at least one of the water-insoluble bags of the primary Packaging system and / or the water-insoluble bag of the secondary packaging system to a stand-up bag, block bottom bag, gusseted bag or a flow pack.
  • the washing or cleaning agent dosing units packaged in the packaging system according to the invention are "single-dose units, ie washing or cleaning agent portions which are suitable for carrying out a single cleaning process, preferably a machine dishwashing process or a mechanical textile cleaning process. If such a dosing unit is removed from the packaging system, the remaining dosing units remain in the packaging system until the next use.
  • the primary packaging system and / or the secondary packaging system is preferably provided with a reclosable opening.
  • Packaging systems according to the invention characterized in that at least one of the water-insoluble bags of the primary packaging system and / or the water-insoluble bags of the secondary packaging system has a reclosable opening, are therefore preferred according to the invention.
  • washing or cleaning agent dosing unit a portioned amount of detergent or cleaning agent which is suitable for carrying out a washing or cleaning operation, for example in a dishwasher or a textile washing machine, and which consumes itself in the course of this washing or cleaning cycle.
  • Dishwashing has a volume between 12 and 40 ml, preferably between 14 and 30 ml and in particular between 16 and 25 ml.
  • the preparation of the washing or cleaning agent dosing units can be carried out by the methods and methods known to the person skilled in the art.
  • the particularly preferred metering units also include the water-soluble containers, in particular deep-drawn or injection-molded containers, and the water-soluble film bags.
  • the washing or cleaning agent dosing units packaged in accordance with the invention are a compressed molding, preferably a washing or cleaning agent tablet.
  • a compressed molding preferably a washing or cleaning agent tablet.
  • particulate premixes are compacted in a so-called matrix between two punches to form a solid compressed product. This process, hereinafter referred to as tabletting, is divided into four sections: dosing, compaction, plastic deformation and ejection.
  • the premix is introduced into the die, wherein the filling amount and thus the weight and the shape of the resulting shaped body are determined by the position of the lower punch and the shape of the pressing tool.
  • the constant dosage even at high molding throughputs is preferably achieved via a volumetric metering of the premix.
  • the punch touches the premix and continues to descend towards the bottom feed.
  • the particles of the premix are pressed closer to each other, with the void volume within the filling between the punches decreasing continuously. From a certain position of the upper punch (and thus from a certain pressure on the premix) begins the plastic deformation, in which the particles flow together and it comes to the formation of the molding.
  • the premix particles are also crushed, and even higher pressures cause sintering of the premix.
  • the phase of the elastic deformation is shortened more and more, so that the resulting moldings may have more or less large cavities.
  • the finished molded body is pushed out of the die by the lower punch and carried away by subsequent transport means. At this time, only the weight of the shaped body is finally determined because the compacts due to physical processes (re-expansion, crystallographic effects, cooling, etc.) can change their shape and size.
  • the tabletting is carried out in commercial tablet presses, which can be equipped in principle with single or double punches. In the latter case, not only the upper punch is used to build up pressure, and the lower punch moves during the pressing on the upper punch, while the upper punch presses down.
  • eccentric tablet presses are preferably used in which the die or punches are attached to an eccentric disc, which in turn is mounted on an axis at a certain rotational speed. The movement of these punches is comparable to the operation of a conventional four-stroke engine.
  • the compression can be done with a respective upper and lower punch, but it can also be attached more stamp on an eccentric disc, the number of Matrizenbohritch is extended accordingly.
  • the throughputs of eccentric presses vary depending on the type of a few hundred to a maximum of 3000 tablets per hour.
  • the lower punch is usually not moved during the pressing process. A consequence of this is that the resulting tablet has a hardness gradient, ie harder in the areas closer to the upper punch than in the areas closer to the lower punch.
  • rotary tablet presses are selected in which a larger number of dies are arranged in a circle on a so-called die table.
  • the number of matrices varies between 6 and 55 depending on the model, although larger matrices are commercially available.
  • Each die on the die table is assigned an upper and lower punch, in turn, the pressing pressure can be actively built only by the upper or lower punch, but also by both stamp.
  • the die table and the punches move about a common vertical axis, the punches are brought by means of rail-like cam tracks during the circulation in the positions for filling, compression, plastic deformation and ejection.
  • these curved paths are supported by additional low-pressure pieces, Nierderzugschienen and lifting tracks.
  • the filling of the die via a rigidly arranged supply device, the so-called filling shoe, the; is connected to a reservoir for the premix.
  • the pressing pressure on the premix is individually adjustable via the compression paths for upper and lower punches, wherein the pressure build-up is done by the Vorbeirollen the stamp shank heads on adjustable pressure rollers.
  • Concentric presses can be provided with two Drik to increase the throughput, with the production of a tablet only a semicircle must be traversed.
  • several filling shoes are arranged one after the other without the slightly pressed-on first layer being ejected before further filling.
  • suitable process control coat and point tablets can be produced in this way, which have a zwiebelschalenartigen structure, wherein in the case of the point tablets, the top of the core or the core layers is not covered and thus remains visible.
  • Even rotary tablet presses can be equipped with single or multiple tools, so that, for example, an outer circle with 50 and an inner circle with 35 holes are used simultaneously for pressing.
  • the throughputs of modern rotary tablet presses amount to over one million moldings per hour.
  • stands for the diametrical fracture stress (DFS) in Pa
  • P is the.
  • Force in N which leads to the pressure exerted on the molding, which causes the breakage of the molding
  • D is the molding diameter in meters
  • t is the height of the moldings.
  • the tablets can also in the context of the present invention, multi-phase, in particular multi-layered, ausgestalten.
  • the moldings can be made in a predetermined spatial form and predetermined size.
  • the training as a blackboard the bar or bar shape, cubes, cuboids and corresponding space elements with flat side surfaces and in particular cylindrical configurations with circular or oval cross-section.
  • This last embodiment covers the presentation form of the tablet up to compact cylinder pieces with a ratio of height to diameter above 1.
  • the spatial form of another embodiment of the moldings is adapted in their dimensions of Ein Schlauerhunt of commercial household washing machines or the dosing of commercial dishwashers, so that the moldings can be metered without dosing directly into the dispenser, where they dissolve during the Ein réellevorgangs, or from where they are released during the cleaning process.
  • the detergent tablets have a cavity.
  • This cavity may be a trough or alternatively a breakthrough.
  • Breakthroughs are in this case those cavities which extend through the shaped body and consequently have at least two, preferably exactly two openings on the surface of the shaped body. In this case, such breakthroughs are preferred, whose openings connect two opposite sides of the molding together.
  • the resulting shaped bodies can also be referred to as ring shaped bodies or as ring tablets.
  • the wells or apertures described above are filled in a preferred embodiment.
  • the troughs or apertures may also be filled with one of the deep-drawn or injection-molded containers described below.
  • Particular preference is given to washing or cleaning agent tablets whose filled wells are closed with a water-soluble or water-dispersible film which is preferably adhesive with the detergent or cleaning product tablet.
  • washing or take-offsmitteldosierüen comprise a compressed molding and an adhering to this molded body water-soluble film.
  • multiphase dosing units which include not only a solid, for example, a flowable composition, preferably a liquid or a gel, and in water completely are soluble.
  • Such dosing units combine the advantages of pre-dosed detergent portions with the advantages of free-flowing, easily soluble detergents.
  • washing or cleaning agent dosing units contain more than 4% by weight, preferably more than 6% by weight and in particular more than 8% by weight, based on the total weight of the substances containing washing or cleaning substances.
  • % Sodium percarbonate wherein the washing or makesmitteldosiericaen preferably comprise a compressed molded body and a water-soluble film adhered to this molded body.
  • packaging systems characterized in that the detergent or makesmitteldosierussien based on the total weight of the washing or cleaning active substances contained 0.5 to 8 wt .-%, preferably 1 to 7 and especially 2 to 6 wt .-% nonionic Containing surfactants, wherein the washing or Cleaning agent dosing units preferably comprise a pressed molding and a water-soluble film adhesively bonded to said molding.
  • thermoformed containers or thermoformed bodies are those containers which are obtained by deep-drawing a first film-like wrapping material.
  • the deep drawing is preferably carried out by bringing the wrapping material over a receiving trough located in a die forming the deep-drawing tray and shaping the wrapping material into this receiving trough by the action of pressure and / or vacuum.
  • the shell material may be pre-treated before or during the molding by the action of heat and / or solvent and / or conditioning by relative to ambient air relative humidity and / or temperatures.
  • the pressure action can be carried out by two parts of a tool, which behave as positive and negative to each other and deform a spent between these tools film when squeezed.
  • the action of compressed air and / or the weight of the film and / or the weight of an active substance applied to the upper side of the film is also suitable as pressure forces.
  • the deep-drawn shell materials are preferably fixed after deep drawing by using a vacuum within the receiving wells and in their achieved by the deep-drawing process space shape.
  • the vacuum is preferably applied continuously from deep drawing to infilling, preferably until sealing, and in particular until separation of the receiving chambers.
  • a discontinuous vacuum for example, for deep drawing of the receiving chambers and (after an interruption) before and during the filling of the receiving chambers, possible.
  • the continuous or discontinuous vacuum can vary in its thickness and, for example, take higher values at the beginning of the process (during deep drawing of the film) than at its end (during filling or sealing or singulation).
  • the shell material can be pre-treated by the action of heat before or during the molding into the receiving troughs of the matrices.
  • the shell material preferably a water-soluble or water-dispersible polymer film, is heated to temperatures above 60 ° C. for up to 5 seconds, preferably for 0.1 to 4 seconds, particularly preferably for 0.2 to 3 seconds and in particular for 0.4 to 2 seconds. preferably above 80 0 C, more preferably between 100 and 12O 0 C and in particular heated to temperatures between 105 and 115 ° C.
  • cooling is preferably carried out at temperatures below 20 ° C, preferably below 15 0 C, more preferably at temperatures between 2 and 14 0 C and in particular at temperatures between 4 and 12 0 C.
  • the cooling is carried out continuously from the beginning of the deep drawing process to Sealing and separation of the receiving chambers. Cooling fluids, preferably water, which are circulated in special cooling lines within the matrix, are particularly suitable for cooling.
  • This cooling as well as the previously described continuous or discontinuous application of a vacuum has the advantage of preventing shrinkage of the deep-drawn containers after deep drawing, whereby not only the appearance of the process product is improved, but also at the same time the discharge of the filled into the receiving chambers means the edge of the receiving chamber, for example in the sealing areas of the chamber, is avoided. Problems with the sealing of the filled chambers are thus avoided.
  • the deep-drawing process can be between methods in which the Hüllmaterial- horizontal in a Formstati ⁇ n and from there in a horizontal manner for filling and / or sealing and / or separating is performed and methods in which the shell material via a continuously rotating Matrizenformwalze (optionally optional with a counter-guided Patrizenformwalze, which lead the forming upper punch to the cavities of Matrizenformwalze), different.
  • the first-mentioned process variant of the flat bed process is to operate both continuously and discontinuously, the process variant using a molding roll is usually continuous. All of the mentioned deep drawing methods are suitable for the production of the inventively preferred means.
  • the receiving troughs located in the matrices can be arranged "in series" or staggered.
  • the thermoforming bodies can have one, two, three or more receiving chambers. These receiving chambers can be arranged side by side and / or one above the other in the deep-drawn part.
  • the individual receiving chambers of the thermoforming bodies are filled with different agents.
  • the washing or cleaning agent dosing units packaged in accordance with the invention are filled injection-molded containers.
  • Injection molding refers to the forming of a molding material such that in a Mass cylinder for more than one injection molding mass contained plastically softened under heat and flows under pressure through a nozzle into the cavity of a previously closed tool. The method is mainly applied to non-hardenable molding compounds which solidify in the tool by cooling. Injection molding is a very economical modern process for producing non-cutting shaped articles and is particularly suitable for automated mass production.
  • thermoplastic molding compounds are heated to liquefaction (up to 180 0 C) and injected under high pressure (up to 140 MPa) in closed, two-part, ie from Gesenk (formerly Die) and core (formerly male) existing, preferably water-cooled molds, where they cool and solidify.
  • Suitable molding compositions are water-soluble polymers, for example the abovementioned cellulose ethers, pectins, polyethylene glycols, polyvinyl alcohols, polyvinylpyrrolidones, alginates, gelatin or starch.
  • Packaging systems preferred according to the invention are characterized in that the washing or cleaning agent dosing units are filled water-soluble or water-dispersible containers, preferably filled deep-drawn or injection-molded containers.
  • the agents according to the invention described above contain washing- and cleaning-active substances, preferably washing and cleaning-active substances from the group of builders, surfactants, polymers, bleaches, bleach activators, enzymes, glass corrosion inhibitors, corrosion inhibitors, disintegration aids, fragrances and perfume carriers.
  • the builders include, in particular, the zeolites, silicates, carbonates, organic cobuilders and, where there are no ecological prejudices against their use, also the phosphates.
  • crystalline layered silicates of the general formula NaMSi x O 2x + I • y H 2 O are used, wherein M represents sodium or hydrogen, x a. Number from 1, 9 to 22, preferably from 1, 9 to 4, with particularly preferred values for x being 2, 3 or 4, and y being a number from 0 to 33, preferably from 0 to 20.
  • the crystalline layered silicates of the formula NaMSi x O 2x + I • y H 2 O are sold, for example, by the company Clariant GmbH (Germany) under the trade name Na-SKS.
  • silicates Na-SKS-1 (Na 2 Si 22 O 45 • x H 2 O, kenyaite), Na-SKS-2 (Na 2 SJi 4 O 29 • x H 2 O, magadiite), Na-SKS -3 (Na 2 Si 8 O 17 • x H 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 • x H 2 O, Makatite).
  • Particularly suitable for the purposes of the present invention are crystalline phyllosilicates of the formula NaMSi x O 2x + I • y H 2 O in which x is 2.
  • Washing or cleaning compositions preferably contain a weight proportion of crystalline layered silicate of the formula NaMSi x O 2x + 1 • y H 2 O from 0.1 to 20 wt .-% of 0.2 to 15 wt .-% and in particular 0, 4 to 10 wt .-%, each based on the total weight of these agents.
  • amorphous sodium silicates with a Na 2 O: SiO 2 module of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which are preferably delayed release and have secondary wash properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous" is understood to mean that the silicates do not yield sharp X-ray reflections as they are typical for crystalline substances, but at best one or more maxima of the scattered X-radiation, which are several degrees wide of the diffraction angle exhibit.
  • X-ray amorphous silicates are used whose silicate particles produce blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of the size of ten to a few hundred nm, with values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such X-ray amorphous silicates also have a dissolution delay compared to conventional water glasses.
  • compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates are especially preferred.
  • these phosphates preferably Buiidersubstanzen is possible, unless such use should not be avoided for environmental reasons.
  • alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) ,, and orthophosphoric H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent lime deposits on machine parts or lime incrustations in fabrics and also contribute to the cleaning performance.
  • phosphates are the pentasodium triphosphate, Na 5 P 3 O 10 (sodium tripolyphosphate) and the corresponding potassium salt pentapotassium triphosphate, K 5 P 3 O 10 (potassium tripolyphosphate).
  • the sodium potassium tripolyphosphates are also preferably used according to the invention.
  • phosphates are used as detergents or cleaning agents in the context of the present application
  • preferred agents comprise these phosphate (s), preferably alkali metal phosphate (s), more preferably pentasodium or pentapotassium triphosphate (sodium or pentasodium) Potassium tripolyphosphate), in amounts of from 5 to 80% by weight, preferably from 15 to 75% by weight, in particular from 20 to 70% by weight, based in each case on the weight of the washing or cleaning agent.
  • alkali carriers are, for example, alkali metal hydroxides, alkali metal carbonates, alkali metal hydrogencarbonates, alkali metal sesquicarbonates, the alkali metal silicates, alkali metal silicates and mixtures of the abovementioned substances, preference being given to using alkali metal carbonates, in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • alkali metal carbonates in particular sodium carbonate, sodium bicarbonate or sodium sesquicarbonate for the purposes of this invention.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate.
  • a builder system comprising a mixture of tripolyphosphate and sodium carbonate and sodium disilicate. Due to their low chemical compatibility with the. In comparison with other Buiidersubstanzen.
  • the alkali metal hydroxides are preferably only in small amounts, preferably in amounts below 10 wt .-%, preferably below 6 wt .-%, more preferably below 4 wt .-% and in particular below 2 wt. %, in each case based on the total weight of the washing or Detergent used.
  • Particularly preferred are agents which, based on their total weight, contain less than 0.5% by weight and in particular no alkali metal hydroxides.
  • compositions which, based on the weight of the washing or cleaning agent, contain less than 20% by weight, preferably less than 17% by weight, preferably less than 13% by weight and in particular less than 9% by weight of carbonate ( e) and / or bicarbonate (s), preferably alkali metal carbonate (s), particularly preferably sodium carbonate.
  • organic co-builders are polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, other organic cobuilders (see below) and phosphonates. These classes of substances are described below.
  • Useful organic builders are, for example, the polycarboxylic acids which can be used in the form of the free acid and / or their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function.
  • these are Citr ⁇ nen Textre, ⁇ dipin Textre, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such an application is not objectionable for environmental reasons, as well as mixtures of these.
  • the free acids also typically have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, ⁇ dipinklare, gluconic acid and any mixtures of these are mentioned.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or of polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data from, at which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of detergents or cleaners to (co) polymeric polycarboxylates is preferably 0.5 to 20 wt .-%, in particular 3 to 10 wt .-%.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers are those which preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors. Particular preference is given to polyaspartic acids or their salts.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are made Dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from Polyolcarbon Textren such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Ethylenediamine-N, N '- disuccinate (EDDS) is preferably in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • the group of surfactants includes nonionic, anionic, cationic and amphoteric surfactants.
  • nonionic surfactants it is possible to use all nonionic surfactants known to the person skilled in the art.
  • Suitable nonionic surfactants are, for example, alkyl glycosides of the general formula RO (G) x in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G the symbol is that which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1, 2 to 1, 4.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • surfactants are polyhydroxy fatty acid amides of the formula
  • R is an aliphatic acyl radical having 6 to 22 carbon atoms
  • R 1 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms
  • [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms
  • R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms
  • Ci " 4 alkyl or phenyl radicals are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives this rest.
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • washing or cleaning agents in particular automatic dishwashing detergents, contain nonionic surfactants from the group of the alkoxylated alcohols.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical branches linearly or preferably in the 2-position methyl may be or contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 moles of EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include for example, C 2- alcohols with 3 EO or 4 EO, C9-11 alcohol containing 7 EO, C 13-15 alcohols containing 3 EO, 5 EO, 7 EO or 8 EO, Ci 2 -i_-alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of Ci 2 -i 4 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the stated degrees of ethoxylation represent statistical averages, which may correspond to a particular product of an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow rank ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples of these are tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • ethoxylated nonionic surfactants which consist of C 6-20 -monohydroxyalkanols or C 6-20 -alkylphenols or C 16-2 o-fatty alcohols and more than 12 MoI, preferably more than 15 mol and in particular more than 20 mol of ethylene oxide per Mol of alcohol were used.
  • a particularly preferred nonionic surfactant is from a straight-chain fatty alcohol having 16 to 20 carbon atoms (C 16 - 2 o-alcohol), preferably a C 18 alcohol and at least 12 mol, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide.
  • C 16 - 2 o-alcohol straight-chain fatty alcohol having 16 to 20 carbon atoms
  • C 18 alcohol preferably a C 18 alcohol and at least 12 mol, preferably at least 15 mol and in particular at least 20 moles of ethylene oxide.
  • the so-called “narrow ranks ethoxylates" are particularly preferred.
  • surfactants are further used which contain one or more Taigfettalkohole with 20 to 30 EO in combination with a silicone defoamer.
  • Nonionic surfactants which have a melting point above room temperature.
  • Suitable nonionic surfactants which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If nonionic surfactants are used which are highly viscous at room temperature, it is preferred that they have a viscosity above 20 Pa ⁇ s, preferably above 35 Pa ⁇ s and in particular above 40 Pa ⁇ s. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • Nonionic surfactants from the group of alkoxylated alcohols are also used with particular preference.
  • the nonionic surfactant solid at room temperature preferably has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • Preferred agents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule up to 25 wt .-%, preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic Make up surfactants.
  • surfactants come from the groups of alkoxylated nonionic surfactants, in particular ethoxyperten primary alcohols and mixtures of these surfactants with structurally more complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene ((PO / EO / PO) surfactants).
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • nonionic surfactants have been low-foaming nonionic surfactants which have alternating ethylene oxide-uride alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of each followed by other groups.
  • R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 and the indices w, x, y, z independently stand for integers from 1 to 6.
  • the preferred nonionic surfactants of the above formula can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually unbranched, the linear radicals being selected from alcohols of natural origin having 12 to 18 C atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred.
  • Alcohols which are accessible from synthetic sources are, for example, the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position, as they are usually present in oxo alcohol radicals.
  • nonionic surfactants in which R 1 in the the above formula is an alkyl radical having 6 to 24, preferably 8 to 20, particularly preferably 9 to 15 and in particular 9 to 11 carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from - CH 2 CH 2 -CH 3 or CH (CH 3 ) 2 are suitable.
  • nonionic surfactants having a C 9-15 alkyl group having 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units followed by 1 to 4 ethylene oxide units followed by 1 to 4 propylene oxide units.
  • These surfactants have the required low viscosity in aqueous solution and can be used according to the invention with particular preference.
  • R 1 is -CH (OH) CH 2 O- (AO) w - (AO) x - (A "O) y - (A '" O) z -R 2 in which
  • R 1 and R 2 independently of one another represent a straight-chain or branched, saturated or mono- or polyunsaturated C 2 . 40 alkyl or alkenyl; A, A ', A "and A 1 " independently represent a radical from the group -CH 2 CH 2 , -CH 2 CH 2 -CH 2 , -CH 2 -CH (CH 3 ), -CH 2 -CH 2 -CH 2 -CH 2 , -CH 2 -CH (CH 3 ) -CH 2 -, -CH 2 -CH (CH 2 -CH 3 ); and w, x, y and z are values between 0.5 and 90, where x, y and / or z can also be 0 are preferred according to the invention.
  • Nonionic surfactants which according to the formula
  • radical R 1 which is linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 2 to 30 carbon atoms, preferably having 4 to 22 carbon atoms, furthermore a linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radical R 2 with 1 to 30 carbon atoms, where x stands for values between 1 and 90, preferably for values between 40 and 80 and in particular for values between 40 and 60.
  • R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1.5 and y for one. Value of at least 15 stands.
  • R 1 and R 2 independently of one another are a linear or branched, saturated or mono- or polyunsaturated hydrocarbon radical having 2 to 26 carbon atoms
  • R 3 is independently selected from -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , CH (CH 3 ) 2 , but preferably represents -CH 3
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula
  • R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms
  • R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical
  • x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, radicals having 8 to 18 carbon atoms are particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, the range of variation increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18. Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • the stated C chain lengths and degrees of ethoxylation or degrees of alkoxylation of the abovementioned nonionic surfactants represent statistical mean values which, for a specific product, may be an integer or a fractional number. Due to the manufacturing process, commercial products of the formulas mentioned are usually not made of an individual representative, but of mixtures, which may result in mean values for the C chain lengths as well as for the degrees of ethoxylation or degrees of alkoxylation and subsequently broken numbers.
  • nonionic surfactants can be used not only as individual substances, but also as surfactant mixtures of two, three, four or more surfactants. Mixtures of surfactants are not mixtures of nonionic surfactants which fall in their entirety under one of the abovementioned general formulas, but rather mixtures which contain two, three, four or more nonionic surfactants which can be described by different general formulas , If the anionic surfactants are part of automatic dishwashing agents, their content, based on the total weight of the compositions, is preferably less than 4% by weight, preferably less than 2% by weight and very particularly preferably less than 1% by weight of automatic dishwashing agents which do not contain any anionic surfactants are particularly preferred
  • cationic active substances for example, cationic compounds of the following formulas can be used
  • each R 1 group is independently selected from Ci 6 alkyl, alkenyl or hydroxyalkyl groups
  • each group R 2 is independently selected from C 8 2 ⁇ -alkyl or alkenyl groups
  • R 3 R 1 or ( CH 2 ) n -TR 2
  • R 4 R 1 or R 2 or (CHz) n -TR 2
  • T -CH 2 -, -O-CO- or -CO-O- and n is an integer of O. to 5 is
  • the content of cationic and / or amphoteric surfactants is preferably less than 6% by weight, preferably less than 4% by weight, very preferably less than 2% by weight and in particular less than 1% by weight cationic or amphoteric surfactants are particularly preferred
  • the group of polymers includes, in particular, the washing or cleaning-active polymers, for example the rinse aid polymers and / or polymers which act as softeners.
  • cationic, anionic and amphoteric polymers can be used in detergents or cleaners in addition to nonionic polymers.
  • “Cationic polymers” in the sense of the present invention are polymers which carry a positive charge in the polymer molecule. This may for example be realized by present in the ⁇ polymer chain (Alkyi-) ammonium groups or other positively charged groups.
  • Particularly preferred cationic polymers originate from the groups the quaternized cellulose derivatives, the polysiloxanes with quaternary groups, the cationic guar derivatives, the polymeric dimethyldiallylammonium salts and their copolymers with esters and amides of acrylic acid and methacrylic acid, the copolymers of vinylpyrrolidone with quaternized derivatives of dialkylaminoacrylate and methacrylate, vinylpyrrolidone-methoimidazolinium chloride Copolymers, the quaternized polyvinyl alcohols or the polymers specified under the INCI names Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 and Polyquaternium 27.
  • amphoteric polymers further comprise, in addition to a positively charged group in the polymer chain, also negatively charged groups or monomer units. These groups may be, for example, carboxylic acids, sulfonic acids or phosphonic acids.
  • particularly preferred cationic or amphoteric polymers contain as monomer unit a compound of the general formula
  • R 1 and R 4 are each independently H or a linear or branched hydrocarbon radical having 1 to 6 carbon atoms;
  • R 2 and R 3 are independently an alkyl, hydroxyalkyl, or aminoalkyl group in which the alkyl group is linear or branched and has from 1 to 6 carbon atoms, preferably a methyl group;
  • x and y independently represent integers between 1 and 3.
  • X " represents a counterion, preferably a counterion from the group chloride, bromide, iodide, sulfate, hydrogen sulfate, methosulfate, lauryl sulfate, dodecylbenzenesulfonate, p-toluenesulfonate (tosylate), cumene sulfonate, xylenesulfonate, phosphate, citrate, formate, acetate or their mixtures.
  • Preferred radicals R 1 and R 4 in the above formula are selected from -CH 3, -CH 2 -CH 3, - CH 2 -CH 2 -CH 3, -CH (CH 3) -CH 3, -CH 2 -OH , -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 2 -CH 3 , and - (CH 2 CH 2 -O) n H.
  • cationic or amphoteric polymers contain a monomer unit of the general formula
  • R1 HC C-R2 C (O) -NH- (CH 2) ⁇ N + R3R4Rs
  • X " in the R 1 , R 2 , R 3 , R 4 and R 5 independently of one another represent a linear or branched, saturated or unsaturated alkyl or hydroxyalkyl radical having 1 to 6 carbon atoms, preferably a linear or branched alkyl radical selected from -CH 3 , -CH 2 -CH 3 , - CH 2 -CH 2 -CH 3 , -CH (CHs) -CH 3 , -CH 2 -OH, -CH 2 -CH 2 -OH, -CH (OH) -CH 3 , -CH 2 -CH 2 -CH 2 -OH, -CH 2 -CH (OH) -CH 3 , -CH (OH) -CH 3 , and - (CH 2 CH 2 -O) n H and x is an integer between 1 and 6.
  • H 2 C C (CH 3 ) -C (O) -NH- (CH 2) ⁇ -N + (CH 3 ) 3
  • X ' chloride also referred to as MAPTAC (Methyacrylamidopropyl- trimethylammonium chloride).
  • amphoteric polymers have not only cationic groups but also anionic groups or monomer units.
  • anionic monomer units are derived, for example, from the group of linear or branched, saturated or unsaturated carboxylates, linear or branched, saturated or unsaturated phosphonates, linear or branched, saturated or unsaturated sulfates or linear or branched, saturated or unsaturated sulfonates.
  • Preferred monomer units are acrylic acid, (meth) acrylic acid, (dimethyl) acrylic acid, (ethyl) acrylic acid, cyanoacrylic acid, vinylessingic acid, allylacetic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid and its derivatives, allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid or the allylphosphonic acids.
  • Preferred usable amphoteric polymers are selected from the group of the alkylacrylamide / acrylic acid copolymers, the alkylacrylamide / methacrylic acid copolymers, the alkylacrylamide / methylmethacrylic acid copolymers, the alkylacrylamide / acrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the
  • Alkylacrylamide / methacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers the Alkylacrylamide / methylmethacrylic acid / alkylaminoalkyl (meth) acrylic acid copolymers, the alkyl acrylamide / alkymethacrylate / alkylaminoethyl methacrylate / alkyl methacrylate copolymers and the copolymers of unsaturated carboxylic acids, cationically derivatized unsaturated carboxylic acids and optionally further ionic or nonionic monomers.
  • Preferred zwirietzbare zwitterionic polymers are selected from the group of Acrylamidoalkyltrialkylammoniumchiorid / acrylic acid copolymers and their alkali metal and ammonium salts, the acrylamidoalkyltrialkylammonium chloride / methacrylic acid copolymers and their alkali metal and ammonium salts and Methacroylethylbetain / methacrylate copolymers.
  • amphoteric polymers which comprise, in addition to one or more anionic monomers as cationic monomers, methacrylamidoalkyltrialkylammonium chloride and dimethyl (diallyl) ammonium chloride.
  • amphoteric polymers are selected from the group of methacrylamidoalkyl trialkyl ammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers, the '
  • Methacryl-amidoalkyltrialkylammoniumchlorid / dimethyl (diallyl) ammonium chloride / methacrylic acid copolymers and the
  • Particularly preferred 'amphoteric polymers from the group of methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / acrylic acid copolymers of methacrylamidopropyltrimethylammonium chloride / DimethyKdiallyOammonium- chloride / acrylic acid copolymers and methacrylamidopropyltrimethylammonium chloride / dimethyl (diallyl) ammonium chloride / alkyl (meth) acryiklare- Copolymers and their alkali metal and ammonium salts.
  • the polymers are present in prefabricated form.
  • Coating compositions preferably by means of water-soluble or water-dispersible natural or synthetic polymers; the encapsulation of the polymers by means of water-insoluble, fusible
  • Coating composition preferably by means of water-insoluble coating agent from the
  • Support materials from the group of washing or cleaning-active substances particularly preferably from the group of builders (builders) or cobuilders.
  • Detergents or cleaning agents contain the aforementioned cationic and / or amphoteric polymers preferably in amounts of between 0.01 and 10 wt .-%, each based on the ⁇ total weight of the detergent or cleaning agent.
  • the weight fraction of the cationic and / or amphoteric polymers is between 0.01 and 8% by weight, preferably between 0.01 and 6% by weight, preferably between 0.01 and 4 wt .-%, particularly preferably between 0.01 and 2 wt .-% and in particular between 0.01 and 1 wt .-%, each based on the total weight of the automatic dishwashing agent is.
  • Effective polymers as softeners are, for example, the sulfonic acid-containing polymers which are used with particular preference.
  • sulfonic acid-containing polymers are copolymers of unsaturated carboxylic acids, sulfonic acid-containing monomers and optionally other ionic or nonionic monomers.
  • R 1 to R 3 independently of one another are -H, -CH 3 , a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, NH 2 , -OH or -COOH substituted alkyl or alkenyl radicals or -COOH or -COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • Particularly preferred sulfonic acid group-containing monomers are 1-acrylamido-1-propanesulfonic acid, 2-acrylamido-2-propanesulfonic acid, 2-acrylamido-2-methyl-1- propansulfonsä 'acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-Methacrylamido-2-hydroxypropanesulfonic acid, allylsulfonic acid, methallylsulfonic acid, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, 2-hydroxy-3- (2-propenyloxy) propanesulfonic acid, 2-methyl-2-propenylsulfonic acid, styrenesulfonic acid, vinylsulfonic acid, 3-sulfopropyl acrylate, 3 - Sulfopropylmethacrylat, sulfomethacrylamide, sulfomethylmethacrylamide and water-soluble salts
  • Particularly suitable other ionic or nonionic monomers are ethylenically unsaturated compounds.
  • the content of the polymers used in these other ionic or nonionic monomers is preferably less than 20% by weight, based on the polymer.
  • copolymers consist of i) one or more unsaturated carboxylic acids from the group of acrylic acid,
  • Methacrylic acid and / or maleic acid ii) one or more sulfonic acid group-containing monomers of the formulas: H 2 C CH-X-SO 3 H
  • the copolymers may contain the monomers from groups i) and ii) and, if appropriate, iii) in varying amounts, it being possible for all representatives from group i) to be combined with all representatives from group ii) and all representatives from group iii).
  • Particularly preferred polymers have certain structural units, which are described below.
  • copolymers which are structural units of the formula are preferred.
  • These polymers are prepared by copolymerization of acrylic acid with a sulfonic acid-containing acrylic acid derivative.
  • acrylic acid derivative containing sulfonic acid groups is copolymerized with methacrylic acid, another polymer is obtained whose use is likewise preferred.
  • the corresponding copolymers contain the structural units of the formula
  • Acrylic acid and / or methacrylic acid can also be copolymerized completely analogously with methacrylic acid derivatives containing sulfonic acid groups, as a result of which the structural units in the molecule are changed.
  • maleic acid can also be used as a particularly preferred monomer from group i). This gives way to inventively preferred copolymers, the structural units of the formula
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. the acidic acid of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • partially or fully neutralized sulfonic acid-containing copolymers is preferred according to the invention.
  • the monomer distribution of the copolymers preferably used according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molar mass of the sulfo copolymers preferably used according to the invention can be varied in order to adapt the properties of the polymers to the desired end use.
  • Preferred washing or cleaning agents are characterized in that the copolymers have molar masses of 2000 to 200,000 gmol "1 , preferably from 4000 to 25,000 gmol '1 and in particular from 5000 to 15,000 gmol " 1 .
  • the bleaching agents are a particularly preferred washing or cleaning substance.
  • sodium percarbonate, sodium perborate tetrahydrate and sodium perborate monohydrate are of particular importance.
  • Other useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -forming peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • bleaching agents from the group of organic bleaching agents can also be used.
  • Typical organic bleaches are the diacyl peroxides such as dibenzoyl peroxide.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperdxycaproic acid [phthaliminoperoxyhexanoic acid (PAP)] , o-
  • Nonenylamidopersuccinates and (c) aliphatic and araliphatic peroxydicarboxylic acids, such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperocysebacic acid,
  • Diperoxybrassylic acid, diperoxyphthalic acids, the 2-decyldiperoxybutane-1,4-dioic acid, N 1 N terephthaloyl di (6-aminopercaproic acid) may be used.
  • Suitable chlorine- or 'bromine-releasing materials examples include heterocyclic N-bromo and N-chloroamides, for example 1 trichloroisocyanuric, tribromoisocyanuric, dibromoisocyanuric' and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • detergents or cleaners which contain from 1 to 35% by weight, preferably from 2.5 to 30% by weight, particularly preferably from 3.5 to 20% by weight and in particular from 5 to 15% by weight of bleach, preferably sodium percarbonate.
  • the active oxygen content of the washing or cleaning agents, in particular the automatic dishwashing agents in each case based on the total weight of the composition, preferably between 0.4 and 10 wt .-%, particularly preferably between 0.5 and 8 wt .-% and in particular between 0.6 and 5 wt .-%.
  • Particularly preferred compositions have an active oxygen content above 0.3 wt .-%, preferably above 0.7 wt .-%, more preferably above 0.8 wt .-% and in particular above 1.0 wt .-% to.
  • Bleach activators are used in detergents or cleaners, for example, to achieve an improved bleaching effect when cleaning at temperatures of 60 0 C and below.
  • As bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED) 1 acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulphonates, especially n- Nonanoyl or Isononanloxybenzolsulfonat (n- or iso-NOBS), carboxylic anhydrides, especially phthalic anhydride, acylated polyhydric alcohols, especially triacetin, ethylene glycol diacetate and 2,5-diacetoxy-2,5-dihydrofuran.
  • TAED tetraacetylethylenediamine
  • bleach activators preferably used in the context of the present application are compounds from the group of cationic nitrites, in particular cationic nitriles of the formula
  • R 1 is -H, -CH 3 , a C 2-24 alkyl or alkenyl radical, a substituted C 2-24 alkyl or alkenyl radical having at least one substituent from the group -Cl, -Br, - OH, -NH 2 , -CN, an alkyl or Alkenylarylrest with a Ci. 24 alkyl group, or for. is a substituted alkyl or alkenylaryl radical having a C 1-24 alkyl group and at least one further substituent on the aromatic ring, R 2 and R 3 .
  • n 1, 2, 3, 4, 5 or 6 and X an anion.vorzuglus selected from the group chloride, bromide, iodide, hydrogen sulfate, methosulfate, p-toluenesulfonate (Tosylate) or xylene sulfonate. is.
  • bleach activators are compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1, 5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n- Nonanoyl- or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetih, ethylene glycol diacetate, 2,5-diacetoxy-2,5-dihydrofuran, n-methyl-morph
  • bleach activators preference is given to bleach activators from the group of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSl), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate ( N- or iso-NOBS), n-methyl-morpholinium acetonitrile-methyl sulfate (MMA), preferably in amounts of up to 10 wt .-%, in particular 0.1 wt .-% to 8 wt .-%, especially 2 to 8 wt .-% and particularly preferably 2 to 6 wt .-%, each based on the total weight of the bleach activator-containing agents used.
  • TAED tetraacetylethylenediamine
  • NOSl N-nonanoy
  • bleach catalysts can also be used.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu 1 Mo, V, Ti and / or Ru, preferably selected from the group of manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammine) Complexes of the cobalt (acetate) complexes, the cobalt (carbonyl) complexes, the chlorides of cobalt or manganese, manganese sulfate are used in conventional amounts, preferably in an amount up to 5 wt .-%, in particular of 0.0025 wt % to 1 wt .-% and particularly preferably from 0.01 wt .-% to 0.25 wt .-%, each based on the total weight of the bleach activator-containing agents used.
  • bleach activator can be used.
  • enzymes can be used. These include in particular proteases, amylases, lipases, hemicellulases, cellulases or oxidoreductases, and preferably mixtures thereof. These enzymes are basically of natural origin; Starting from the natural molecules, improved variants are available for use in detergents and cleaners, which are preferably used accordingly. Washing or cleaning composition preferably contain enzymes in total amounts of 1 x 10 "-6 to 5 wt .-%, based .on active protein. The protein concentration can be known by using methods, for example the BCA method and the biuret method to be determined.
  • subtilisin type those of the subtilisin type are preferable.
  • these are the subtilisins BPN 'and Carlsberg and their further developed forms, the protease PB92, the subtilisins 147 and 309, the alkaline protease from Bacillus lentus, subtilisin DY and the enzymes thermitase which can no longer be assigned to the subtilisins in the narrower sense, Proteinase K and proteases TW3 and TW7.
  • amylases which can be used according to the invention are the ⁇ -amylases from Bacillus licheniformis, from B. amyloliquefaciens, from ⁇ . stearothermophilus, from Aspergillus niger and A. oryzae, as well as improved for use in detergents and cleaners further developments of the aforementioned amylases. Furthermore, for this purpose, the ⁇ -amylase from Bacillus sp. A 7-7 (DSM 12368) and the cyclodextrin glucanotransferase (CGTase) from B. agaradherens (DSM 9948).
  • lipases or cutinases are also usable according to the invention.
  • these include, for example, the lipases originally obtainable from Humicola lanuginosa (Thermomyces lanuginosus) or further developed, in particular those with the amino acid exchange D96L.
  • the cutinases can be used, which were originally isolated from Fusarium solani pisi and Humicola insolens. It is also possible to use lipases, or cutinases, whose initial enzymes were originally isolated from Pseudomonas mendocina and Fusarium solanii.
  • Oxidoreductases for example oxidases, oxygenases, catalases, peroxidases, such as halo, chloro, bromo, lignin, glucose or manganese peroxidases, dioxygenases or laccases (phenol oxidases, polyphenol oxidases) can be used according to the invention to increase the bleaching effect.
  • the enzymes can be used in any form known in the art. These include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, especially in the case of liquid or gel-form detergents, solutions of the enzymes, advantageously as concentrated as possible, sparing in water and / or added with stabilizers.
  • the enzymes may be encapsulated for both the solid and liquid dosage forms, for example by spray-drying or extruding the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • a preferably natural polymer or in the form of capsules for example those in which the enzymes are entrapped as in a solidified gel or in those of the core-shell type in which an enzyme-containing core is coated with a water, air and / or chemical impermeable protective layer.
  • further active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, may additionally be applied.
  • Such capsules are applied by methods known per se, for example by shaking or rolling granulation or in fluid-bed processes.
  • such granules for example by applying polymeric
  • a protein and / or enzyme may be particularly protected during storage against damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • damage such as inactivation, denaturation or degradation, such as by physical influences, oxidation or proteolytic cleavage.
  • inhibition of proteolysis is particularly preferred, especially if the agents also contain proteases.
  • Detergents may contain stabilizers for this purpose; the provision of such means constitutes a preferred embodiment of the present invention.
  • Glass corrosion inhibitors prevent the occurrence of haze, streaks and scratches, but also iridescence of the glass surface of machine-cleaned glasses.
  • Preferred glass corrosion inhibitors come from the group of magnesium and / or zinc salts and / or magnesium and / or zinc complexes.
  • preferred zinc salts preferably organic acids, particularly preferably organic carboxylic acids, ranging from salts which are difficult or insoluble in water, ie a solubility below 100 mg / l, preferably below 10 mg / l, in particular below 0.01 have mg / l, to those salts which have a solubility in water above 100 mg / l, preferably above 500 mg / l, more preferably above 1 g / l and in particular above 5 g / l (all solubilities at 20 0 C. water temperature).
  • the first group of zinc salts includes, for example, the zinc nitrate, the zinc oleate and the zinc stearate, and the group of soluble zinc salts includes, for example, zinc formate, zinc acetate, zinc lactate and zinc gluconate.
  • At least one zinc salt of an organic carboxylic acid more preferably a zinc salt from the group zinc stearate, zinc oleate, zinc gluconate, zinc acetate, zinc lactate and / or Zinkeitrat used.
  • Zinc ricinoleate, zinc abietate and zinc oxalate are also preferred.
  • the content of cleaning agents to zinc salt is preferably between 0.1 to 5 wt .-%, preferably between 0.2 to 4 wt .-% and in particular between 0.4 to 3 wt .-%, or the content of zinc in oxidized form (calculated as Zn 2+ ) is between 0.01 and 1% by weight, preferably between 0.02 and 0.5% by weight and in particular between 0.04 and 0.2% by weight. -%, in each case based on the total weight of the glass corrosion inhibitor-containing agent.
  • Corrosion inhibitors serve to protect the items to be washed or the machine, with particular silver protectants being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art.
  • silver protectants selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the Alkylaminotria ⁇ ole and the transition metal salts or - Complexes are particularly preferred. Benzotriazole and / or alkylaminotriazole are particularly preferred.
  • 3-amino-5-alkyl-1,2,4-triazoles or their physiologically tolerated salts preference is given to using 3-amino-5-alkyl-1,2,4-triazoles or their physiologically tolerated salts, these substances being particularly preferably used in a concentration of 0.001 to 10% by weight, preferably 0.0025 to 2 Wt .-%, particularly preferably 0.01 to 0.04 wt .-% are used.
  • Preferred acids for salt formation are hydrochloric acid, sulfuric acid, phosphoric acid, carbonic acid, sulphurous acid, organic carboxylic acids such as acetic, glycolic, citric, succinic acid.
  • cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • oxygen- and nitrogen-containing organic redox-active compounds such as di- and trihydric phenols, e.g. Hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucin, pyrogallol or derivatives of these classes of compounds used.
  • salt and complex inorganic compounds such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of the manganese and / or cobalt salts and / or complexes, particularly preferably the cobalt (ammin) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) - Complexes, the chlorides of cobalt or manganese and manganese sulfate. Also, zinc compounds can be used to prevent corrosion on the items to be washed.
  • redox-active substances can be used. These substances are preferably inorganic redox-active substances from the group of manganese, titanium, zirconium, hafnium, vanadium, cobalt and cerium salts and / or complexes, wherein the metals preferably in one of the oxidation states II, III, IV, V or VI are present.
  • the metal salts or metal complexes used should be at least partially soluble in water.
  • the counterions suitable for salt formation include all conventional mono-, di-, or tri-negatively charged inorganic anions, e.g. Oxide, sulfate, nitrate, fluoride, but also organic anions such as e.g. Stearate.
  • metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [I -hydroxyethane-1, 1 - diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO 4 , K 2 TiF 6 , K 2 ZrF 6 , CoSO 4 , Co (NO 3 ) 2 , Ce (NO 3 ) 3 , and mixtures thereof, such that the metal salts and / or metal complexes are selected from the group MnSO 4 , Mn (II) citrate, Mn (II) stearate, Mn (II) acetylacetonate, Mn (II) - [1-hydroxyethane-1, 1- diphosphonate], V 2 O 5 , V 2 O 4 , VO 2 , TiOSO
  • the inorganic redox-active substances are preferably coated, i. completely coated with a waterproof, but easily soluble in the cleaning temperatures material to prevent their premature decomposition or oxidation during storage.
  • Preferred coating materials which are applied by known methods, such as Sandwik from the food industry, are paraffins, microwaxes, waxes of natural origin such as carnauba wax, candellila wax, beeswax, higher melting alcohols such as hexadecanol, soaps or fatty acids.
  • the metal salts and / or metal complexes mentioned are contained in cleaning agents, preferably in an amount of 0.05 to 6 wt .-%, preferably 0.2 to 2.5 wt .-%, each based on the total agent.
  • disintegration aids so-called disintegrants
  • tablet disintegrants or disintegrants auxiliaries which ensure the rapid disintegration of tablets into water or gastric juice and for the release of the drugs in resorbable form.
  • Disintegration aids are preferably used in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight and in particular from 4 to 6% by weight, based in each case on the total weight of the disintegration assistant-containing agent.
  • Preferred disintegrating agents are cellulosic disintegrating agents, so that preferred detergents and cleaners include such cellulose-based disintegrants in amounts of from 0.5 to 10% by weight, preferably from 3 to 7% by weight
  • Pure cellulose has the formal gross composition (C 6 Hi 0 Os) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted. But also cellularoses, in which the hydroxy groups have been replaced by functional groups that are not bound by an oxygen atom, can be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • CMC carboxymethylcellulose
  • the cellulose derivatives mentioned are preferably not used alone as disintegrating agents based on cellulose, but used in admixture with cellulose.
  • the content of these mixtures of cellulose derivatives is preferably below 50% by weight, particularly preferably below 20% by weight, based on the cellulose-based disintegration agent. It is particularly preferred to use cellulose-based disintegrating agent which is free of cellulose derivatives.
  • the cellulose used as a disintegration aid is preferably not used in finely divided form, but converted into a coarser form, for example granulated or compacted, before it is added to the premixes to be tabletted.
  • the particle sizes of such disintegrating agents are usually above 200 .mu.m, preferably at least 90 wt .-% between 300 and 1600 .mu.m and in particular at least 90 wt .-% between 400 and 1200 microns.
  • microcrystalline cellulose As a further disintegrating agent based on cellulose or as a component of this component microcrystalline cellulose can be used.
  • This microcrystalline cellulose is obtained by partial hydrolysis of celluloses under conditions which attack and completely dissolve only the amorphous regions (about 30% of the total cellulose mass) of the celluloses, leaving the crystalline regions (about 70%) intact. Subsequent deaggregation of the microfine celluloses produced by the hydrolysis yields the microcrystalline celluloses which have primary particle sizes of about 5 ⁇ m and can be compacted, for example, into granules having an average particle size of 200 ⁇ m.
  • Preferred disintegration aids preferably a disintegration aid based on cellulose, preferably in granular, cogranulated or compacted form, are in the disintegrating agent-containing agents in amounts of from 0.5 to 10% by weight, preferably from 3 to 7 Wt .-% and in particular from 4 to 6 wt .-%, each based on the total weight of the disintegrating agent-containing agent.
  • gas-evolving effervescent systems can furthermore be used as tablet disintegration auxiliaries.
  • the gas-evolving effervescent system may consist of a " single substance which releases a gas on contact with water.”
  • these compounds is in particular magnesium peroxide, which releases oxygen on contact with water, but usually the gas-releasing effervescent system consists of at least two components.
  • the bubble system used in detergents and cleaners can be selected on the basis of both economic and ecological considerations
  • Effervescent systems consist of alkali metal carbonate and / or bicarbonate and an acidifying agent which is suitable for liberating carbon dioxide from the alkali metal salts in aqueous solution.
  • Acidifying agents that release carbon dioxide from the alkali salts in aqueous solution include, for example, boric acid and alkali metal hydrogen sulfates,
  • Alkali metal dihydrogen phosphates and other inorganic salts preference is given to using organic acidifying agents, the citric acid being a particularly preferred acidifying agent.
  • Acidifying agents in the effervescent system from the group of organic di-, tri- and oligocarboxylic acids or mixtures are preferred.
  • perfume oils or perfumes within the scope of the present invention, individual fragrance compounds, e.g. the synthetic products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type are used. Preferably, however, mixtures of different fragrances are used, which together produce an attractive fragrance.
  • perfume oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • a fragrance In order to be perceptible, a fragrance must be volatile, whereby besides the nature of the functional groups and the structure of the chemical compound, the molecular weight also plays an important role. For example, most odorants have molecular weights up to about 200 daltons, while molecular weights of 300 daltons and above are more of an exception. Due to the different volatility of fragrances, the smell of a perfume or fragrance composed of several fragrances changes during evaporation, whereby the odor impressions in "top note”, “middle note” or “middle note” body) and "base note” (end note or dry out).
  • the top note of a perfume or fragrance does not consist solely of volatile compounds, while the base note consists for the most part of less volatile, ie adherent fragrances.
  • the base note consists for the most part of less volatile, ie adherent fragrances.
  • more volatile fragrances can be bound to certain fixatives, preventing them from evaporating too quickly.
  • the subsequent classification of the fragrances in "more volatile” or “adherent” fragrances so nothing about the olfactory impression and whether the corresponding fragrance is perceived as a head or middle note, nothing said.
  • the fragrances can be processed directly, but it can also be advantageous to apply the fragrances on carriers that provide a slower fragrance release for long-lasting fragrance.
  • carrier materials for example, cyclodextrins have been proven, wherein the cyclodextrin-perfume Kompiexe can also be coated with other excipients.
  • Preferred dyes the selection of which presents no difficulty for the skilled person, have a high storage stability and insensitivity to the other ingredients of the compositions and to light and no pronounced substantivity to the substrates to be treated with the dye-containing agents, such as textiles, glass, ceramics or plastic tableware do not stain them.
  • the colorants When choosing the colorant, it must be remembered that the colorants have a high storage stability and insensitivity to light as well as not too strong affinity for glass, ceramic or plastic dishes. At the same time, it should also be taken into account when choosing suitable colorants that colorants have different stabilities to the oxidation. In general, water-insoluble colorants are more stable to oxidation than water-soluble colorants. Depending on the solubility and thus also on the sensitivity to oxidation, the concentration of the colorant in the detergents or cleaners varies.
  • colorant concentrations in the range of a few 10 -2 to 10 -3 wt.% are typically selected
  • the suitable concentration of the colorant is in washing or dyeing on the other hand cleaners typically a few 10 "3 to 10" 4 wt .-%.
  • Dyeing agents which can be oxidatively destroyed in the washing process and mixtures thereof with suitable blue dyes, so-called blue toners, are preferred. It has proven to be advantageous to use colorants which are in water or at room temperature in liquid organic substances are soluble. Suitable examples are anionic colorants, for example anionic Nitrdsofarbstoffe.
  • the detergents and cleaners can contain further ingredients which further improve the performance and / or aesthetic properties of these compositions.
  • Preferred agents comprise one or more substances from the group of the electrolyte, pH regulators, fluorescers, hydrotopes, foam inhibitors, silicone oils, antiredeposition agents, optical brighteners,
  • Graying inhibitors anti-shrinkage agents, anti-wrinkling agents, color transfer inhibitors, antimicrobial agents, germicides, fungicides, antioxidants, antistatic agents, ironing aids, repellents and impregnating agents, swelling and anti-slip agents and UV absorbers.
  • electrolytes from the group of inorganic salts a wide number of different salts can be used.
  • Preferred cations are the alkali and alkaline earth metals, preferred anions are the halides and sulfates. From a manufacturing point of view, the use of NaCl or MgCl 2 in the washing or cleaning agents is preferred.
  • pH adjusters In order to bring the pH of detergents or cleaners into the desired range, the use of pH adjusters may be indicated. Can be used here are all known acids or alkalis, unless their use is not for technical application or environmental reasons or for reasons of consumer protection prohibited. Usually, the amount of these adjusting agents does not exceed 1% by weight of the total formulation.
  • Suitable foam inhibitors are, inter alia, soaps, oils, fats, paraffins or silicone oils, which may optionally be applied to support materials.
  • Suitable carrier materials are, for example, inorganic salts such as carbonates or sulfates, cellulose derivatives or silicates and mixtures of the abovementioned materials.
  • preferred agents include paraffins, preferably unbranched paraffins (n-paraffins) and / or silicones, preferably linear-polymeric silicones, which are constructed according to the scheme (R 2 SiO) X and are also referred to as silicone oils. These silicone oils are usually clear, colorless, neutral, odorless, hydrophobic liquids having a molecular weight between 1,000 and 150,000, and viscosities between 10 and 1,000,000 mPa.s.
  • Suitable anti-redeposition agents which are also referred to as soil repellents, are, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxy groups of 15 to 30% by weight and of hydroxypropyl groups of 1 to 15% by weight, based in each case on the nonionic cellulose ether as well as from the state known polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof.
  • Especially preferred of these are the sulfonated derivatives of the phthalic and terephthalic acid polymers.
  • Optical brighteners may be added to laundry detergents or cleaners to remove graying and yellowing of the treated fabrics which will attract the fiber and cause brightening and fake bleaching effect by exposing invisible ultraviolet radiation to visible, longer wavelength light .
  • Suitable compounds originate for example from the substance classes of the 4,4 'diamino-2,2' - stilbenedisulfonic (flavonic), 4,4 '-Distyryl-biphenylene,
  • Methylumbelliferones coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalic acid imides, benzoxazole, benzisoxazole and benzimidazole systems, and heterocyclic substituted pyrene derivatives.
  • Grayness inhibitors have the task of the. To keep suspended from the fiber suspended dirt in the fleet and so prevent the re-raising of the dirt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether sulfonic acids or cellulose or salts of acid sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • soluble starch preparations and other than the above-mentioned starch products can be used, e.g. degraded starch, aldehyde levels, etc.
  • polyvinylpyrrolidone is useful.
  • Cellulosic ethers such as carboxymethylcellulose (Na salt), methylcellulose, hydroxyalkylcellulose and mixed ethers, can furthermore be used as graying inhibitors
  • Methylhydroxyethylcellulose methylhydroxypropylcellulose, methylcarboxymethylcellulose and mixtures thereof.
  • synthetic anti-crease agents can be used. These include, for example, synthetic products based on fatty acids, fatty acid esters, fatty acid amides, alkylol esters, -alkylolamides or fatty alcohols, which are usually reacted with ethylene oxide, or products based on lecithin or modified phosphoric acid ester. Phobic and impregnation processes are used to furnish textiles with substances that prevent the deposition of dirt or facilitate its washability.
  • Preferred repellents and impregnating agents are perfluorinated fatty acids, also in the form of their aluminum u. Zirconium salts, organic silicates, silicones, polyacrylic acid esters with perfluorinated alcohol component or polymerizable compounds coupled with perfluorinated acyl or sulfonyl radical. Antistatic agents may also be included. The antisoiling equipment with repellents and impregnating agents is often classified as an easy-care finish. The penetration of the impregnating agent in the form of solutions or emulsions of the active substances in question can be facilitated by adding wetting agents which reduce the surface tension.
  • a further field of application of repellents and impregnating agents is the water-repellent finish of textiles, tents, tarpaulins, leather, etc., in which, in contrast to waterproofing, the fabric pores are not closed, so the fabric remains breathable (hydrophobing).
  • the water repellents used for hydrophobizing coat textiles, leather, paper, wood, etc. with a very thin layer of hydrophobic groups, such as longer alkyl chains or siloxane groups.
  • Suitable hydrophobizing agents include paraffins, waxes, metal soaps, etc.
  • hydrophobized materials do not feel greasy; nevertheless, similar to greasy substances, water droplets emit from them without moistening.
  • silicone-impregnated textiles have a soft feel and are water and dirt repellent; Stains from ink, wine, fruit juices and the like are easier to remove.
  • Antimicrobial agents can be used to combat microorganisms. Depending on the antimicrobial spectrum and mechanism of action, a distinction is made between bacteriostats and bactericides, fungistatics and fungicides, etc. Important substances from these groups are, for example, benzalkonium chlorides, alkylarylsulfonates, halophenols and phenolmercuric acetate, although it is entirely possible to do without these compounds.
  • the compositions may contain anti-oxidants.
  • This class of compounds includes, for example, substituted phenols, hydroquinones, catechols and aromatic amines, as well as organic sulfides, polysulfides, dithiocarbamates, phosphites and phosphonates.
  • Increased comfort may result from the additional use of antistatic agents.
  • Antistatic agents increase the surface conductivity and thus allow an improved drainage of formed charges.
  • External antistatic agents are generally substances with at least one hydrophilic molecule ligand and give a more or less hygroscopic film on the surfaces.
  • L ' auryl (or stearyl) dimethylbenzylammonium chlorides are also suitable as antistatics for textiles or as an additive to detergents, with an additionalavivative effect being achieved.
  • Softeners can be used to care for the textiles and to improve the textile properties such as a softer "handle” (avivage) and reduced electrostatic charge (increased wearing comfort).
  • the active ingredients in softener formulations are "esterquats", quaternary ammonium compounds having two hydrophobic groups, such as disteryldimethylammonium chloride, which, however, due to its insufficient biodegradability, is increasingly being replaced by quaternary ammonium compounds containing in their hydrophobic groups ester groups as breaking points for biodegradation.
  • esters with improved biodegradability are obtainable, for example, by esterifying mixtures of methyldiethanolamine and / or triethanolamine with fatty acids and then quaternizing the reaction products in a manner known per se with alkylating agents. Further suitable as a finish is dimethylolethyleneurea.
  • Silicone derivatives can be used to improve the water absorbency, rewettability of the treated fabrics, and ease of ironing the treated fabrics. These additionally improve the rinsing out of detergents or cleaning agents by their foam-inhibiting properties.
  • Preferred silicone derivatives are, for example, polydialkyl or alkylaryl siloxanes in which the alkyl groups have one to five carbon atoms and are completely or partially fluorinated.
  • Preferred silicones are polydimethylsiloxanes, which may optionally be derivatized and are then amino-functional or quaternized or have Si-OH, Si-H and / or Si-Cl bonds.
  • silicones are the polyalkylene oxide-modified polysiloxanes, ie polysiloxanes which comprise, for example, polyethylene glycols and also the polyalkylene oxide-modified dimetylpolysiloxanes.
  • UV absorbers which are absorbed by the treated textiles and improve the light resistance of the fibers.
  • Compounds exhibiting these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position, Furthermore, substituted benzotriazoles, in the 3-position phenyl-substituted acrylates (cinnamic acid derivatives), optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural products such as Umbeiliferon and the body's own Urocanklad.
  • Protein hydrolyzates are due to their fiber-care effect further in the context of the present invention preferred active substances from the field of detergents and cleaners.
  • Protein hydrolysates are product mixtures obtained by acidic, basic or enzymatically catalyzed degradation of proteins (proteins).
  • protein hydrolysates of both vegetable and animal origin can be used.
  • Animal protein hydrolysates are, for example, elastin, collagen, keratin, silk and milk protein protein hydrolysates, which may also be present in the form of salts.
  • Preferred according to the invention is the use of protein hydrolysates of plant origin, e.g. Soy, almonds, rice, pea, potato and wheat protein hydrolysates.
  • protein hydrolyzates are preferred as such, other amino acid mixtures or individual amino acids obtained otherwise, such as, for example, arginine, lysine, histidine or pyrroglutamic acid, may also be used in their place. Also possible is the use of derivatives of protein hydrolysates, for example in the form of their fatty acid condensation products.

Abstract

Verpackungssysteme für Wasch- oder Reinigungsmitteldosiereinheiten, umfassend a) ein primäres Verpackungssystem in Form einer Anzahl (n) > 2 wasserunlöslicher Beutel, wobei jeder dieser Beutel eine Anzahl (x) > 2 Wasch- oder Reinigungsmitteldosiereinheiten enthält; sowie b) ein sekundäres Verpackungssystem in Form eines wasserunlöslichen Beutels, welcher die (n) wasserunlöslichen Beutel des primären Verpackungssystems enthält; sind geeignet, die Stabilität der enthaltenen Wasch- oder Reinigungsmitteldosiereinheiten zu erhöhen.

Description

Verpackunqssvstem für Wasch- oder Reinigungsmittel
Gegenstand der vorliegenden Anmeldung ist ein Verpackungssystem für Wasch- oder Reinigungsmittel, insbesondere ein Verpackungssystem für vorportionierte Dosiereinheiten von Wasch- oder Reinigungsmitteln.
Wasch- oder Reinigungsmittel sind heute für den Verbraucher in vielfältigen Angebotsformen erhältlich. Neben Waschpulvern und -granulaten umfasst dieses Angebot beispielsweise auch Reinigungsmittelkonzentrate in Form extrudierter oder tablettierter Zusammensetzungen. Diese festen, konzentrierten bzw. verdichteten Angebotsformen zeichnen sich durch ein verringertes Volumen pro Dosiereinheit aus und senken damit die Kosten für Verpackung und Transport. Insbesondere die Wasch- oder Reinigungsmitteltabletten erfüllen dabei zusätzlich den Wunsch des Verbrauchers nach einfacher Dosierung. Die entsprechenden Mittel sind im Stand der Technik umfassend beschrieben. Neben den angeführten Vorteilen weisen kompaktierte Waschoder Reinigungsmittel jedoch auch eine Reihe von Nachteilen auf. Insbesondere tablettierte Angebotsformen zeichnen sich aufgrund ihrer hohen Verdichtung häufig durch einen verzögerten Zerfall und damit eine verzögerte Freisetzung ihrer Inhaltsstoffe aus. Zur Auflösung dieses „Widerstreits" zwischen ausreichender Tablettenhärte und kurzen Zerfallszeiten wurden in der Patentliteratur zahlreiche technische Lösungen offenbart, wobei an dieser Steile beispielhaft auf die Verwendung so genannter Tablettensprengmittel verwiesen werden soll. Dieses Zerfallsbeschleuniger werden den Tabletten zusätzlich zu den wasch- oder reinigungsaktiven Substanzen zugesetzt, wobei sie selbst in der Regel keine wasch- oder reinigungsaktiven Eigenschaften aufweisen, und erhöhen auf diese Weise die Komplexität und die Kosten dieser Mittel. Ein weiterer Nachteil der Tablettierung von Aktivsubstanzgemischen, insbesondere wasch- oder reinigungsaktiv-substanzhaltigen Gemischen, ist die Inaktivierung der enthaltenen Aktivsubstanzen durch den bei der Tablettierung auftretenden Kompaktierungsdruck. Eine Inaktivierung der Aktivsubstanzen kann auch auf Grund der in Folge der Tablettierung vergrößerten Kontaktflächen der Inhaltsstoffe durch chemische Reaktion erfolgen.
Als Alternative zu den zuvor beschriebenen partikulären oder kom paktierten Wasch- oder Reinigungsmitteln werden in den letzten Jahren zunehmend feste oder flüssige Wasch- oder Reinigungsmittel beschrieben, welche eine wasserlösliche oder wasserdispergierbare Verpackung aufweisen. Diese Mittel zeichnen sich wie die Tabletten durch eine vereinfachte Dosierung aus, da sie zusammen mit der Umverpackung in die Waschmaschine oder die Geschirrspülmaschine dosiert werden können, andererseits ermöglichen sie aber gleichzeitig auch die Konfektionierung flüssiger oder pulverförmiger Wasch- oder Reinigungsmittel, welche sich gegenüber den Kompaktaten durch eine bessere Auflösung und schnellere Wirksamkeit auszeichnen.
So offenbart beispielsweise die EP 1 314 654 A2 (Unilever) einen kuppeiförmigen Pouch mit einer Aufnahmekammer, welche eine Flüssigkeit enthält.
Gegenstand der WO 01/83657 A2 (Procter&Gamble) sind hingegen Beutel, weiche in einer Aufnahmekammer zwei teilchenförmigen Feststoffe enthalten, die jeweils in fixierten Regionen vorliegen und sich nicht miteinander vermischen.
Neben den Verpackungen, welche nur eine Aufnahmekammer aufweisen wurden im Stand der Technik auch Angebotsformen offenbart, die mehr als eine Aufnahmekammer, bzw. mehr als eine Konfektionsform umfassen.
Gegenstand der europäischen Anmeldung EP 1 256 623 A1 (Procter&Gamble) ist ein Kit aus mindestens zwei Beuteln mit unterschiedlicher Zusammensetzung und unterschiedlicher Optik. Die Beutei liegen getrennt voneinander und nicht als kompaktes Einzelprodukt vor.
Ein Verfahren zur Herstellung von Mehrkammerbeuteln durch Verkleben zweiter Einzelkammern beschreibt die internationale Anmeldung WO 02/85736 A1 (Reckitt Benckiser).
Für die Verpackung der vorgenannten Dosiereinheiten werden insbesondere Kartonagen, Kästen oder Blisterverpackungen eingesetzt.
So offenbart die europäische Anmeldung EP 1 516 918 A2 (Procter&Gamble) einen Behälter, der vorzugsweise mit einem Sichtfenster versehen ist und eine Gruppe beispielsweise hinsichtlich ihrer Farbe oder ihrer Form zu unterscheidender Dosiereinheiten enthält.
Aufgabe der vorliegenden Anmeldung war die Bereitstellung eines optimierten Verpackungssystems für Dosiereinheiten von Wasch- oder Reinigungsmitteln. Dieses Verpackungssystem sollte sich insbesondere durch eine verbesserte Lagerstabilität hinsichtlich der Einwirkung chemischer wie physikalischer Einflüsse auf die Dosiereinheiten auszeichnen. Weiterhin sollte die Menge des eingesetzten Verpackungsmaterials bei gleichbleibender Stabilität der Dosiereinheiten weitestgehend reduziert werden.
Gelöst wurde diese Aufgabe durch ein Verpackungssystem, welches eine Kombination einander umgebender wasserunlöslicher Verpackungssysteme umfasst. Ein erster Gegenstand der vorliegenden Anmeldung ist daher ein Verpackungssystem für Waschoder Reinigungsmitteldosiereinheiten, umfassend a) ein primäres Verpackungssystem in Form einer Anzahl (n) > 2 wasserunlöslicher Beutel, wobei jeder dieser Beutel eine Anzahl (x) > 2 Wasch- oder Reinigungsmitteldosiereinheiten enthält; sowie b) ein sekundäres Verpackungssystem in Form eines wasserunlöslichen Beutels, welcher die (n) wasserunlöslichen Beutel des primären Verpackungssystems enthält.
Für die Anwendung der erfindungsgemäß verpackten Wasch- oder Reinigungsmitteldosiereinheiten öffnet der Verbraucher den wasserunlöslichen Beutel des sekundären Verpackungssystems, entnimmt diesem einen der (n) > 2 wasserunlöslichen Beutel des primären Verpackungssystems und kann diesem dann wiederum eine der (x) > 2 Waschoder Reinigungsmitteldosiereinheiten entnehmen
Die wasserunlöslichen Beutel des ersten Verpackungssystems und/oder des zweiten Verpackungssystems sind vor Gebrauch durch den Verbraucher vorzugsweise verschlossen. Die in dem wasserunlöslichen Beutel des primären Verpackungssystems enthaltenen Wasch- oder Reinigungsmitteldosiereinheiten stehen vorzugsweise sind vorzugsweise nicht durch weitere Verpackungsmittel voneinander getrennt und stehen vorzugsweise miteinander in Kontakt.
Als Wasch- oder Reinigungsmitteldosiereinheiten im Sinne der vorliegenden Anmeldung werden solche Wasch- oder Reinigungsmittelportionen verstanden, die zur Durchführung eines Reinigungsverfahrens, vorzugsweise eines maschinellen Geschirrspülverfahrens oder eines maschinellen Textilreinigungsverfahrens geeignet sind.
Handelt es sich bei den Wasch- oder Reinigungsmitteldosiereinheiten um Dosiereinheiten für das maschinellen Geschirrspülen, so weisen diese Dosiereinheiten vorzugsweise ein Gewicht oberhalb 5 g, bevorzugt zwischen 10 und 40 g, besonders bevorzugt zwischen 15 und 30 g und insbesondere zwischen 15 und 25 g auf. Um über die Dosierkammer der Geschirrspülmaschine dosierbar zu sein, beträgt das Volumen dieser Dosiereinheiten vorzugsweise weniger als 50 ml, vorzugsweise zwischen 10 und 40 ml, besonders bevorzugt zwischen 15 und 30 ml und insbesondere zwischen 15 und 25 ml.
Handelt es sich bei den Wasch- oder Reinigungsmitteldosiereinheiten hingegen um Dosiereinheiten für die Textilreinigung, so weisen diese Dosiereinheiten vorzugsweise ein Gewicht oberhalb 10 g, bevorzugt zwischen 20 und 100 g, besonders bevorzugt zwischen 30 und 90 g und insbesondere zwischen 40 und 80 g auf. Um über die Einspülkammer der Waschmaschine dosierbar zu sein, beträgt das Volumen dieser Dosiereinheiten vorzugsweise - A -
weniger als 120 ml, vorzugsweise zwischen 20 und 100 ml, besonders bevorzugt zwischen 30 und 90 ml und insbesondere zwischen 40 und 80 ml.
Als besonders vorteilhaft hinsichtlich der zu lösenden Aufgaben hat es sich erwiesen, die Anzahl (x) der in dem primären Verpackungssystem enthaltenen Dosiereinheiten auf eine Anzahl > 3 zu erhöhen. Ein Verpackungssystem, dadurch gekennzeichnet, dass die wasserunlöslichen Beutel des primären Verpackungssystems jeweils eine Anzahl (x) > 3, vorzugsweise (x) >'4, besonders bevorzugt (x) > 5 Wasch- oder Reinigungsmitteldosiereinheiten, enthalten, ist daher, ein bevorzugter Gegenstand der vorliegenden Anmeldung.
In einer weiteren bevorzugten Ausführungsform besteht das primäre Verpackungssystem aus einer Anzahl (n) > 3, vorzugsweise (n) > 4, besonders bevorzugt (n) > 5 wasserunlöslicher Beutel.
Die wasserunlöslichen Beutel des primären Verpackungssystem können hinsichtlich ihrer Abmessungen oder ihrer Befüllung identisch sein, können sich selbstverständlich sowohl ' hinsichtlich ihrer Abmessungen als auch hinsichtlich ihrer Befüllung unterscheiden.
Eine bevorzugte Ausführungsform des erfindungsgemäßen Verpackungssystems ist dadurch gekennzeichnet, dass sich die wasserunlöslichen Beutel des primären Verpackungssystems hinsichtlich ihrer Füllvolumiria um weniger als 50 Vol-%, vorzugsweise um weniger. als 30 Vol.-% und insbesondere um weniger als 10 Vol.-% unterscheiden.
Eine weitere bevorzugte Ausführungsform des erfindungsgemäßen Verpackungssystems ist dadurch gekennzeichnet, dass sich die Anzahl (n) der wasserunlöslichen Beutel des primären Verpackungssystems und die Anzahl (x) der in jedem dieser Beutel enthaltenen Wasch- oder Reinigungsmitteldosiereinheiten um nicht mehr als 3, vorzugsweise nicht mehr als 2 und insbesondere nicht mehr als 1 unterscheiden.
Erfindungsgemäße Verpackungssysteme, dadurch gekennzeichnet, dass das primäre und/oder das sekundäre Verpackungssystem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger als 20 g/m2 Tag aufweist/aufweisen, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird, zeichnen sich durch eine verbesserte Lagerstabilität der Wasch- oder Reinigungsmitteldosiereinheiten aus und sind daher bevorzugt.
Das erfindungsgemäße Verpackungssystem ist geeignet, die enthaltenen Wasch- und Reinigungsmitteldosiereinheiten in chemischer und physikalischer Sicht zu stabilisieren. So schützt das Verpackungssystem nicht allein die in den Wasch- oder Reinigungsmitteldosiereinheiten enthaltenen Aktivsubstanzen vor der vorzeitigen chemischen Zersetzung sondern es schützt die Wasch- oder Reinigungsmitteldosiereinheiten selbst vor Bruch oder Leckagen.
Überraschenderweise wurde festgestellt, dass allein durch die Verpackung einer Anzahl (x) > 2 der Dosiereinheiten in dem primären Verpackungssystem und die nachfolgende gemeinsame Konfektionierung einer Anzahl (n) derartiger primärer Verpackungssysteme in einem gemeinsamen sekundären Verpackungssystem die Anfälligkeit der Wasch- oder Reinigungsmitteldosiereinheiten gegen Bruch oder Leckagen im Vergleich zu einem Verpackungssystem, welches alle (x) mal (n) Wasch- oder Reinigungsmitteldosiereifiheiten in einem einzelnen Verpackungssystem enthält, verringert werden kann.
Diese überraschende Stabilisierung der Dosiereinheiten gegen physikalische Einwirkungen (Falloder Stoßtests), wie sie bei Transport und Gebrauch dieser Mittel auftreten können, ist dabei nicht allein auf den Einsatz zusätzlichen Verpackungsmaterials zurückzuführen. Vielmehr wird dieser Effekt auch bei Einsatz der gleichen Menge an Verpackungsmaterial zu beobachten, sofern dieses Verpackungsmaterial in erfindungsgemäßer Weise auf ein primäres und ein sekundäres Verpackungssystem verteilt ist.
Die Stabilisierung der Wasch- oder Reinigungsmitteldosiereinheiten gegen chemische oder physikalische Zersetzung kann durch die gezielte Beeinflussung der Gasatmosphäre innerhalb der primären und sekundären Verpackungssysteme weiter verbessert werden.
Verpackungsverfahren für Wasch- oder Reinigungsmittel werden in der Regel in der Umgebungsatmosphäre durchgeführt. Das in den Verpackungsmittel eingeschlossene Gas entspricht daher in ihrer Zusammensetzung der Zusammensetzung der Luft oder weicht nur geringfügig von ihr ab.
Im Rahmen der vorliegenden Anmeldung ist es bevorzugt, das mindestens eines der erfindungsgemäßen Verpackungssysteme mit einem Gas befüllt ist, das eine von der Umgebungsluft abweichende Zusammensetzung aufweist. Als Umgebuπgsluft wird dabei in üblicher Weise ein Gasgemisch bezeichnet, das 78 Vol.-% Stickstoff, 21 Vol.-% Sauerstoff sowie 1 Vol.-% übrige Gase enthält. Ein Abweichung im Sinne der Anmeldung liegt dann vor, wenn sich die Zusammensetzung des Gases in dem Verpackungssystem von der Zusammensetzung der Umgebungsluft entweder a) hinsichtlich eines zusätzlichen oder eines fehlenden Bestandteils unterscheidet; oder b) hinsichtlich des Volumenanteils eines seiner Bestandteile unterscheidet, wobei Gasgemische, deren Zusammensetzung sich hinsichtlich des Volumenanteils eines seiner Bestandteile um mehr als 1 Vol.-%, vorzugsweise um mehr als 5 Vol.-%, bevorzugt um mehr als 10 Vol.-%, ganz besonders bevorzugt um mehr als 20 Vol.-% und insbesondere um mehr als 50 Vol.-% von der Umgebungsluft unterscheidet besonders bevorzugt sind.
In einer bevorzugten Ausführungsform ist das primäre Verpackungssystem nicht jedoch das sekundäre Verpackungssystem mit einem Gas befüllt, welches eine von der Umgebungsluft abweichende Zusammensetzung aufweist.
In einer weiteren bevorzugten Ausführungsform sind sowohl das primäre als auch das sekundäre Verpackungssystem mit einem Gas befüllt, das sich in seiner Zusammensetzung von der Zusammensetzung der Umgebungsluft unterscheidet, wobei sich jedoch weiterhin auch die Zusammensetzung des Gases in dem primären Verpackungssystem von der Zusammensetzung des Gases in dem sekundären Verpackungssystem unterscheidet.
Erfindungsgemäße Verpäckungssysteme, dadurch gekennzeichnet, dass mindestens ein wasserunlöslicher . Beutel des primären Verpackungssystems und/oder der wasserunlöslichen Beutel des sekundären Verpackungssystems mit einem Gas befüllt ist, welches eine von der Umgebungsluft abweichende Zusammensetzung aufweist, sind bevorzugt.
Besonders bevorzugt werden erfindungsgemäße Verpackungssysteme, deren primäre(s) und/oder sekundäre(s) Verpackungssystem(e) mit einem Gas befüllt ist/sind, das einen Volumenanteil an Stickstoff oberhalb 80 Vol.-%, vorzugsweise oberhalb 85 Vol.-%, besonders bevorzugt oberhalb 90 Vol.-% und insbesondere oberhalb 95 Vol.-% aufweist.
Außer durch die Zusammensetzung des in dem primären und sekundären Verpackungssystem eingeschlossenen Gases kann die chemische und physikalische Stabilität der Wasch- oder Reinigungsmitteldosiereinheiten auch durch den Füllgrad des primären und sekundären Verpackungssystems und/oder durch den Gasdruck des in dem primären und sekundären Verpackungssystem eingeschlossenen Gases erhöht werden.
So ist es beispielsweise erfindungsgemäß bevorzugt, dass die primären und sekundären Verpackungssysteme unterschiedliche Füllgrade aufweisen. In einer bevorzugten Ausführungsform weist das primäre Verpackungssystem einen höheren Füllgrad auf, als das sekundäre Verpackungssystem. So ist es erfindungsgemäß bevorzugt, dass das primäre Verpackungssystem einen Füllgrad oberhalb 80 Vol.-%, vorzugsweise oberhalb 85 Vol.-% und insbesondere oberhalb 90 Vol.-% aufweist, während der Füllgrad des sekundären Verpackungssystems weniger als 75 Vol.-%, vorzugsweise weniger als 70 Vol.-% und insbesondere weniger als 60 Vol.-% beträgt.
In einer besonders bevorzugten Ausführungsform weist mindestens eines der Verpackungssysteme einen Füllgrad oberhalb 95 Vol.-%, vorzugsweise oberhalb 97 Vol.-% und insbesondere oberhalb 99 Vol.-%, ganz besonders bevorzugt von 100 Vol.-% auf. Ein solcher Füllgrad lässt sich beispielsweise dadurch realisieren, dass die wasserunlöslichen Beutel des primäres Verpackungssystems und/oder des sekundären Verpackungssystems vakuumversiegelt werden.
Verpackungssysteme, dadurch gekennzeichnet, dass mindestens ein wasserunlöslicher Beutel des primären Verpackungssystems und/oder der wasserunlöslichen Beutel des sekundären Verpackungssystems vakuumversiegelt ist,, sind erfindungsgemäß bevorzugt.
Umgekehrt lässt sich die Stabilität der in dem erfindungsgemäßen Verpackungssystem enthaltenen Wasch- oder Reinigungsmitteldosiereinheiten erhöhen, indem die wasserunlöslichen Beutel des primären Verpackungssystems und/oder des sekundären Verpackungssystems aufgeblasen werden.
Verpackungssysteme, dadurch gekennzeichnet, dass mindestens ein wasserunlöslicher Beutel des primären Verpackungssystems und/oder der wasserunlösliche Beutel des sekundären Verpackungssystems aufgeblasen ist, sind erfindungsgemäß bevorzugt.
Der vorstehend genannte Füllgrad bezieht sich erfindungsgemäß sowohl auf die in dem jeweiligen Verpackungssystem enthaltenen Dosiereinheiten als auch auf das in dem jeweiligen Verpackungssystem enthaltende Gas. Unter dem maximalen Füllgrad eines Verpackungssystems (100 Vol.-%) wird dabei das Volumen eines Verpackungssystems verstanden, bei dessen Überschreiten das Verpackungsmaterial des jeweiligen Verpackungssystems eine reversible oder irreversible Dehnung erleidet.
Das erfindungsgemäße Verpackungssystem umfasst zwei einander umgebende wasserunlösliche Beutel. Als „Beutel" werden dabei Sack-ähnliche Behältnisse bezeichnet, die sich gegenüber herkömmlichen Verpackungskartons beispielsweise durch flexible, das heißt falt- oder rollbare Seitenwände auszeichnen.
Besonders bevorzugte erfindungsgemäße Verpackungssystem sind dadurch gekennzeichnet, dass es sich bei mindestens einem der wasserunlöslichen Beutel des primären Verpackungssystems und/oder dem wasserunlöslichen Beutel des sekundären Verpackungssystems um einen Standbodenbeutel, Klotzbodenbeutel, Seitenfaltenbeutel oder ein Flowpack handelt.
Bei den in dem erfindungsgemäßen Verpackungssystem verpackten Wasch- oder Reinigungsmitteldosiereinheiten handelt es sich um „einmal- Dosiereinheiten, also um Waschoder Reinigungsmittelportionen, die zur Durchführung eines einzelnen Reinigungsverfahrens, vorzugsweise eines maschinellen Geschirrspülverfahrens oder eines maschinellen Textilreinigungsverfahrens geeignet sind. Wird eine solche Dosiereinheit aus dem Verpackungssystem entnommen, so verbleiben die übrigen Dosiereinheiten bis zum nächsten Gebrauchsvorgang in dem Verpackungssystem. Um die in dem Verpackungssystems verbleibenden Dosiereinheiten zu schützen, ist das primäre Verpackungssystem und/oder das sekundäre Verpackungssystem vorzugsweise mit einer wiederverschließbaren Öffnung versehen.
Erfindungsgemäße Verpackungssysteme, dadurch gekennzeichnet, dass mindestens einer der wasserunlöslichen Beutel des primären Verpackungssystems und/oder der wasserunlöslichen Beutel des sekundären Verpackungssystems eine wiederverschließbare Öffnung aufweist, sind daher erfindungsgemäß bevorzugt.
Das erfindungs'gemäße Verpackungssystem eignet sich grundsätzlich für alle dem Fachmann bekannten Wasch- oder Reinigungsmitteldosiereinheiten. Als Wasch- oder Reinigungsmitteldosiereinheit wird dabei eine portionierte Wasch- oder Reinigungsmittelmenge bezeichnet, die zur Durchführung eines Wasch- oder Reinigungsganges, beispielsweise in einer Geschirrspülmaschine oder einer Textilwaschmaschine geeignet ist und sich im Verlaufe dieses Wasch- oder Reinigungsganges verbraucht. Typische Dosiereinheiten für das maschinelle
Geschirrspülen weisen ein Volumen zwischen 12 und 40 ml, vorzugsweise zwischen 14 und 30 ml und insbesondere zwischen 16 und 25 ml auf.
Die Konfektionierung der Wasch- oder Reinigungsmitteldosiereinheiten kann durch die dem Fachmann bekannten Verfahren und Methoden erfolgen. Zu den besonders bevorzugten Dosiereinheiten zählen neben den Kompaktaten, insbesondere den Tabletten, und den Extrudaten weiterhin auch die wasserlöslichen Behälter, insbesondere tiefgezogene oder spritzgegossene Behälter und die wasserlöslichen Folienbeutel.
In einer ersten bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäß verpackten Wasch- oder Reinigungsmitteldosiereinheiten um einen verpressten Formkörper, vorzugsweise um eine Wasch- oder Reinigungsmitteltablette. Zur Herstellung von Tabletten werden partikelförmige Vorgemische in einer sogenannten Matrize zwischen zwei Stempeln zu einem festen Komprimat verdichtet. Dieser Vorgang, der im folgenden kurz als Tablettierung bezeichnet wird, gliedert sich in vier Abschnitte: Dosierung, Verdichtung, plastische Verformung und Ausstoßen.
Zunächst wird das Vorgemisch in die Matrize eingebracht, wobei die Füllmenge und damit das Gewicht und die Form des entstehenden Formkörpers durch die Stellung des unteren Stempels und die Form des Preßwerkzeugs bestimmt werden. Die gleichbleibende Dosierung auch bei hohen Formkörperdurchsätzen wird vorzugsweise über eine volumetrische Dosierung des Vorgemischs erreicht. Im weiteren Verlauf der Tablettierung berührt der Oberstempel das Vorgemisch und senkt sich weiter in Richtung des Unterstempeis ab. Bei dieser Verdichtung werden die Partikel des Vorgemisches näher aneinander gedrückt, wobei das Hohlraumvolumen innerhalb der Füllung zwischen den Stempeln kontinuierlich abnimmt. Ab einer bestimmten Position des Oberstempels (und damit ab einem bestimmten Druck auf das Vorgemisch) beginnt die plastische Verformung, bei der die Partikel zusammenfließen und es zur Ausbildung des Formkörpers kommt. Je nach den physikalischen Eigenschaften des Vorgemisches wird auch ein Teil der Vorgemischpartikel zerdrückt und es kommt bei noch höheren Drücken zu einer Sinterung des Vorgemischs. Bei steigender Preßgeschwindigkeit, also hohen Durchsatzmengen, wird die Phase der elastischen Verformung immer weiter verkürzt, so daß die entstehenden Formkörper mehr oder minder große Hohlräume aufweisen können. Im letzten Schritt der Tablettierung wird der fertige Formkörper durch den Unterstempel aus der Matrize herausgedrückt und durch nachfolgende Transporteinrichtungen wegbefördert. Zu diesem Zeitpunkt ist lediglich das Gewicht des Formkörpers endgültig festgelegt, da die Preßlinge aufgrund physikalischer Prozesse (Rückdehnung, kristallographische Effekte, Abkühlung etc.) ihre Form und Größe noch ändern können.
Die Tablettierung erfolgt in handelsüblichen Tablettenpressen, die prinzipiell mit Einfach- oder Zweifachstempeln ausgerüstet sein können. Im letzteren Fall wird nicht nur der Oberstempel zum Druckaufbau verwendet, auch der Unterstempel bewegt sich während des Preßvorgangs auf den Oberstempel zu, während der Oberstempel nach unten drückt. Für kleine Produktionsmengen werden vorzugsweise Exzentertablettenpressen verwendet, bei denen der oder die Stempel an einer Exzenterscheibe befestigt sind, die ihrerseits an einer Achse mit einer bestimmten Umlaufgeschwindigkeit montiert ist. Die Bewegung dieser Preßstempel ist mit der Arbeitsweise eines üblichen Viertaktmotors vergleichbar. Die Verpressung kann mit je einem Ober- und Unterstempel erfolgen, es können aber auch mehrere Stempel an einer Exzenterscheibe befestigt sein, wobei die Anzahl der Matrizenbohrungen entsprechend erweitert ist. Die Durchsätze von Exzenterpressen variieren ja nach Typ von einigen hundert bis maximal 3000 Tabletten pro Stunde. Bei Exzenterpressen wird der Unterstempel während des Preßvorgangs im Regelfall nicht bewegt. Eine Folge hiervon ist, daß die resultierende Tablette einen Härtegradienten aufweist, d.h. in den Bereichen, die dem Oberstempel näher lagen, härter ist als in den Bereichen, die dem Unterstempel näher lagen.
Für größere Durchsätze wählt man Rundlauftablettenpressen, bei denen auf einem sogenannten Matrizentisch eine größere Anzahl von Matrizen kreisförmig angeordnet ist. Die Zahl der Matrizen variiert je nach Modell zwischen 6 und 55, wobei auch größere Matrizen im Handel erhältlich sind. Jeder Matrize auf dem Matrizentisch ist ein Ober- und Unterstempel zugeordnet, wobei wiederum der Preßdruck aktiv nur durch den Ober- bzw. Unterstempel, aber auch durch beide Stempel aufgebaut werden kann. Der Matrizentisch und die Stempel bewegen sich um eine gemeinsame senkrecht stehende Achse, wobei die Stempel mit Hilfe schienenartiger Kurvenbahnen während des Umlaufs in die Positionen für Befüllung, Verdichtung, plastische Verformung und Ausstoß gebracht werden. An den Stellen, an dene'n eine besonders gravierende Anhebung bzw. Absenkung der Stempel erforderlich ist (Befüllen, Verdichten, Ausstoßen), werden diese Kurvenbahnen durch zusätzliche Niederdruckstücke, Nierderzugschienen und Aushebebahnen unterstützt. Die Befüllung der Matrize erfolgt über eine starr angeordnete Zufuhreinrichtung, den sogenannten Füllschuh, der; mit einem Vorratsbehälter für das Vorgemisch verbunden ist. Der Preßdruck auf das Vorgemisch ist über die Preßwege für Ober- und Unterstempel individuell einstellbar, wobei der Druckaufbau durch das Vorbeirollen der Stempelschaftköpfe an verstellbaren Druckrollen geschieht.
Rundlaufpressen können zur Erhöhung des Durchsatzes auch mit zwei Füllschuhen versehen werden, wobei zur Herstellung einer Tablette nur noch ein Halbkreis durchlaufen werden muß. Zur Herstellung zwei- und mehrschichtiger Formkörper werden mehrere Füllschuhe hintereinander angeordnet, ohne daß die leicht angepreßte erste Schicht vor der weiteren Befüllung ausgestoßen wird. Durch geeignete Prozeßführung sind auf diese Weise auch Mantel- und Punkttabletten herstellbar, die einen zwiebelschalenartigen Aufbau haben, wobei im Falle der Punkttabletten die Oberseite des Kerns bzw. der Kernschichten nicht überdeckt wird und somit sichtbar bleibt. Auch Rundlauftablettenpressen sind mit Einfach- oder Mehrfachwerkzeugen ausrüstbar, so daß beispielsweise ein äußerer Kreis mit 50 und ein innerer Kreis mit 35 Bohrungen gleichzeitig zum Verpressen benutzt werden. Die Durchsätze moderner Rundlauftablettenpressen betragen über eine Million Formkörper pro Stunde.
Nach dem Verpressen weisen die Wasch- und Reinigungsmittelformkörper eine hohe Stabilität auf. Die Bruchfestigkeit zylinderförmiger Formkörper kann über die Meßgröße der diametralen Bruchbeanspruchung erfaßt werden. Diese ist bestimmbar nach 2P σ = πDt
Hierin steht σ für die diametrale Bruchbeanspruchung (diametral fracture stress, DFS) in Pa, P ist die . Kraft in N, die zu dem auf den Formkörper ausgeübten Druck führt, der den Bruch des Formkörpers verursacht, D ist der Formkörperdurchmesser in Meter und t ist die Höhe der Formkörper.
Selbstverständlich lassen sich die Tabletten im Rahmen der vorliegenden Erfindung ebenfalls mehrphasig, insbesondere mehrschichtig, ausgestalten. Die Formkörper können dabei in vorbestimmter Raumform und vorbestimmter Größe gefertigt werden. Als Raumform kommen praktisch alle sinnvoll handhabbaren Ausgestaltungen in Betracht, beispielsweise also die Ausbildung als Tafel, die Stab- bzw. Barrenform, Würfel, Quader und entsprechende Raumelemente mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1.
Die Raumform einer anderen Ausführungsform der Formkörper ist in ihren Dimensionen der Einspülkammer von handelsüblichen Haushaltswaschmaschinen oder der Dosierkammer handelsüblicher Geschirrspülmaschinen angepaßt, so daß die Formkörper ohne Dosierhilfe direkt in die Einspülkammer eindosiert werden können, wo sie sich während des Einspülvorgangs auflösen, bzw. von wo aus sie während des Reinigungsvorgangs freigesetzt werden. Selbstverständlich ist aber auch ein Einsatz der Wasch- und Reinigungsmittelformkörper über Dosierhilfen problemlos möglich.
Mit besonderem Vorzug weisen die Wasch- oder Reinigungsmittelformkörper eine Kavität auf. Bei dieser Kavität kann es sich dabei um eine Mulde oder alternativ um einen Durchbruch handeln. Als Durchbruch werden dabei solche Kavitäten bezeichnet, die durch den Formkörper hindurchreichen und folglich mindestens zwei, vorzugsweise genau zwei Öffnungen auf der Oberfläche des Formkörpers aufweisen. Dabei werden solche Durchbrüche bevorzugt, deren Öffnungen zwei gegenüberliegende Seiten des Formkörpers miteinander verbinden. Die resultierenden Formkörper lassen sich auch als Ringformkörper bzw. als Ringtabletten bezeichnen.
Die zuvor beschriebenen Mulden oder Durchbrüche sind in einer bevorzugten Ausführungsform befüllt. Als Füllung eignen sich beispielsweise Feststoffe ebenso wie Flüssigkeiten oder erstarrende Schmelzen. Die Mulden oder Durchbrüche können auch mit einem der weiter unten beschriebenen tiefgezogenen oder spritzgegossenen Behälter befüllt sein. Besonders bevorzugt werden Wasch- oder Reinigungsmittelformkörper deren befüllte Mulden mit einer wasserlöslichen oder wasserdispergierbaren Folie verschlossen sind, welche vorzugsweise haftend mit dem Wasch- oder Reinigungsmittelformkörper ist.
Bevorzugt werden daher solche erfindungsgemäßen Verpackungssysteme, dadurch gekennzeichnet, dass die Wasch- oder Reinigungsmitteldosiereinheiten einen verpressten Formkörper und eine mit diesem Formkörper haftend verbundene wasserlösliche Folie umfassen.
Wie erwähnt, lassen sich durch die haftende Verbindung von Wasch- oder Reinigungsmittelformkörpern, vorzugsweise Wasch- oder Reinigungsmitteltabletten, in einfacher Weise mehrphasige Dosiereinheiten realisieren, die neben einem Feststoff beispielsweise auch eine fließfähige Zusammensetzung, vorzugsweise einen Flüssigkeit oder ein Gel umfassen, und in Wasser vollständig löslich sind. Derartige Dösiereinheiten kombinieren die Vorteile vordosierter Reinigungsmittelportionen mit den Vorteilen fließfähiger, leicht löslicher Reinigungsmittel.
Grundlage für die Herstellung dieser Dosiereinheiten ist jedoch die haftende Verbindung von Formkörper und wasserlöslicher Folie, wobei jedoch insbesondere die Stabilität der Siegelnaht zwischen Formkörper und wasserlöslicher Folie große Bedeutung zukommt. Es wurde festgestellt, dass insbesondere die Stabilität Natriumpercarbonat-haltiger Formkörper sowie Niotensid-haltiger Formkörper durch das erfindungsgemäße Verpackungssystem verbessert werden kann, wobei dieses Verpackungssystem insbesondere geeignet ist, die Siegelnaht zwischen Wasch- und Reinigungsmittelformkörpern und mit diesen Formkörpern haftend verbundenen wasserlöslichen Folien zu stabilisieren.
Besonders bevorzugt werden daher solche erfindungsgemäßen Verpackungssysteme, bei denen die Wasch- oder Reinigungsmitteldosiereinheiten bezogen auf das Gesamtgewicht der enthaltenen wasch- oder reinigungsaktiven Substanzen mehr als 4 Gew.-%, vorzugsweise mehr als 6 Gew.-% und insbesondere mehr als 8 Gew.-% Natriumpercarbonat enthalten, wobei die Wasch- oder Reinigungsmitteldosiereinheiten vorzugsweise einen verpressten Formkörper und eine mit diesem Formkörper haftend verbundene wasserlösliche Folie umfassen.
Weiterhin bevorzugt werden erfindungsgemäße Verpackungssysteme, dadurch gekennzeichnet, dass die Wasch- oder Reinigungsmitteldosiereinheiten bezogen auf das Gesamtgewicht der enthaltenen wasch- oder reinigungsaktiven Substanzen 0,5 bis 8 Gew.-%, vorzugsweise 1 bis 7 und insbesondere 2 bis 6 Gew.-% nichtionische Tenside enthalten, wobei die Wasch- oder Reiπigungsmitteldosiereinheiten vorzugsweise einen verpressten Formkörper und eine mit diesem Formkörper haftend verbundene wasserlösliche Folie umfassen.
In einer zweiten bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäß verpackten Wasch- oder Reinigungsmitteldosiereinheiten um befüllte tiefgezogene Behälter. Als tiefgezogene Behälter oder Tiefziehkörper werden im Rahmen der vorliegenden Anmeldung dabei solche Behälter bezeichnet, die durch Tiefziehen eines ersten folienartigen Hüllmaterials erhalten werden. Das Tiefziehen erfolgt dabei vorzugsweise durch Verbringen des Hüllmaterials über eine in einer die Tiefziehebene bildenden Matrize befindlichen Aufnahmemulde und Einformen des Hüllmaterials in diese Aufnahmemulde durch Einwirkung von Druck und/oder Vakuum verformt wird. Das Hüllmaterial kann vor dabei vor oder während des Einformens durch die Einwirkung von Wärme und/oder Lösungsmittel und/oder Konditionierung durch gegenüber Umgebungsbedingungen veränderten relativen Luftfeuehten und/oder Temperaturen vorbehandelt werden. Die Druckeinwirkung kann durch zwei Teile eines Werkzeugs erfolgen, welche sich wie Positiv und Negativ zueinander verhalten und einen zwischen diese Werkzeuge verbrachten Film beim Zusammendrücken verformen. Als Druckkräfte eignet sich jedoch auch die Einwirkung von Druckluft und/oder das Eigengewicht der Folie und/oder das Eigengewicht einer auf die Oberseite der Folie verbrachten Aktivsubstanz.
Das tiefgezogenen Hüllmaterialien werden nach dem Tiefziehen vorzugsweise durch Einsatz eines Vakuums innerhalb der Aufnahmemulden und in ihrer durch den Tiefziehvorgang erzielten Raumform fixiert. Das Vakuum wird dabei vorzugsweise kontinuierlich vom Tiefziehen bis zum Befallen bevorzugt bis zum Versiegeln und insbesondere bis zum Vereinzeln der Aufnahmekammern angelegt. Mit vergleichbarem Erfolgt ist allerdings auch der Einsatz eines diskontinuierlichen Vakuums, beispielsweise zum Tiefziehen der Aufnahmekammern und (nach einer Unterbrechung) vor und während des Befüllens der Aufnahmekammern, möglich. Auch kann das kontinuierliche oder diskontinuierliche Vakuum in seiner Stärke variieren und beispielsweise zu Beginn des Verfahrens (beim Tiefziehen der Folie) höhere Werte annehmen als zu dessen Ende (beim Befüllen oder Versiegeln oder Vereinzeln).
Wie bereits erwähnt, kann das Hüllmaterial vor oder während des Einformens in die Aufnahmemulden der Matrizen durch die Einwirkung von Wärme vorbehandelt werden. Das Hüllmaterial, vorzugsweise ein wasserlöslicher oder wasserdispergierbarer Polymerfilm, werden dabei für bis zu 5 Sekunden, vorzugsweise für 0.1 bis 4 Sekunden, besonders bevorzugt für 0,2 bis 3 Sekunden und insbesondere für 0,4 bis 2 Sekunden auf Temperaturen oberhalb 60°C, vorzugsweise oberhalb 800C, besonders bevorzugt zwischen 100 und 12O0C und insbesondere auf Temperaturen zwischen 105 und 115°C erwärmt. Zur Abführung dieser Wärme, insbesondere aber auch zur Abführung der durch die in die tiefgezogenen Aufnahmekammern gefüllten Mittel eingebrachten Wärme (z.B. Schmelzen), ist es bevorzugt die eingesetzten Matrizen und die in diesen Matrizen befindlichen Aufnahmemulden zu kühlen. Die Kühlung erfolgt dabei vorzugsweise auf Temperaturen unterhalb 20°C, bevorzugt unterhalb 150C, besonders bevorzugt auf Temperaturen zwischen 2 und 140C und insbesondere auf Temperaturen zwischen 4 und 120C. Vorzugsweise erfolgt die Kühlung kontinuierlich vom Beginn des Tiefziehvorganges bis zur Versiegelung und Vereinzelung der Aufnahmekammern. Zur Kühlung eignen sich insbesondere Kühlflüssigkeiten, vorzugsweise Wasser, welche in speziellen Kühlleitungen innerhalb der Matrize zirkuliert werden.
Diese Kühlung hat ebenso wie das zuvor beschriebene kontinuierliche oder diskontinuierliche Anlegen eines Vakuums den Vorteil, ein Zurückschrumpfen der tiefgezogenen Behältnisse nach dem Tiefziehen zu verhindern, wodurch nicht nur die Optik des Verfahrensproduktes verbessert wird, sondern gleichzeitig auch das Austreten der in die Aufnahmekammern gefüllten Mittel über den Rand der Aufnahmekammer, beispielsweise in die Siegelbereiche der Kammer, vermieden wird. Probleme bei der Versiegelung der befüllten Kammern werden so vermieden.
Bei den Tiefziehverfahren läßt sich zwischen Verfahren, bei denen das Hüllmaterial- horizontal in eine Formstatiόn und von dort in horizontaler Weise zum Befüllen und/oder Versiegeln und/oder Vereinzeln geführt wird und Verfahren, bei denen das Hüllmaterial über eine kontinuierlich umlaufende Matrizenformwalze (gegebenenfalls optional mit einer gegenläufig geführten Patrizenformwalze, welche die ausformenden Oberstempel zu den Kavitäten der Matrizenformwalze führen) geführt wird, unterscheiden. Die zuerst genannte Verfahrensvariante des Flachbettprozesses ist dabei sowohl kontinuierlich als auch diskontinuierlich zu betreiben, die Verfahrensvariante unter Einsatz einer Formwalze erfolgt in der Regel kontinuierlich. Alle genannten Tiefziehverfahren sind zur Herstellung der erfindungsgemäß bevorzugten Mittel geeignet. Die in den Matrizen befindlichen Aufnahmemulden können „in Reihe" oder versetzt angeordnet sein.
Die Tiefziehkörper können eine, zwei, drei oder mehr Aufnahmekammern aufweisen. Diese Aufnahmekammern können in dem Tiefziehteil nebeneinander und/oder übereinander angeordnet sein. Vorzugsweise werden die einzelnen Aufnahmekammern der Tiefziehkörper mit unterschiedlichen Mitteln befüllt. Bevorzugt ist es insbesondere mindestens eine Aufnahmekammer eines Tiefziehkörpers mit einer Flüssigkeit zu befüllen, während mindestens eine weitere Aufnahmekammer dieses Tiefziehkörpers mit einem Feststoff befüilt ist.
In einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäß verpackten Wasch- oder Reinigungsmitteldosiereinheiten um befüllte spritzgegossene Behälter. Spritzgießen bezeichnet dabei das Umformen einer Formmasse derart, daß die in einem Massezylinder für mehr als einen Spritzgießvorgang enthaltene Masse unter Wärmeeinwirkung plastisch erweicht und unter Druck durch eine Düse in den Hohlraum eines vorher geschlossenen Werkzeuges einfließt. Das Verfahren wird hauptsächlich bei nichthärtbaren Formmassen angewendet, die im Werkzeug durch Abkühlen erstarren. Der Spritzguß ist ein sehr wirtschaftliches modernes Verfahren zur Herstellung spanlos geformter Gegenstände und eignet sich besonders für die automatisierte Massenfertigung. Im praktischen Betrieb erwärmt man die thermoplastische Formmassen (Pulver, Körner, Würfel, Pasten u. a.) bis zur Verflüssigung (bis 180 0C) und spritzt sie dann unter hohem Druck (bis 140 MPa) in geschlossene, zweiteilige, das heißt aus Gesenk (früher Matrize) und Kern (früher Patrize) bestehende, vorzugsweise wassergekühlte Hohlformen, wo sie abkühlen und erstarren. Einsetzbar sind Kolben- und Schneckenspritzgußmaschinen. Als Formmassen (Spritzgußmassen) eignen sich wasserlösliche Polymere wie beispielsweise die oben genannten Celluloseether, Pektine, Polyethylenglycole, Polyvinylalkohole, Polyvinylpyrrolidone, Alginate, Gelatine oder Stärke.
Erfindungsgemäß bevorzugte Verpackungssysteme sind dadurch gekennzeichnet, dass es sich bei den Wasch- oder Reinigungsmitteldosiereinheiten um befüllte wasserlösliche oder wasserdispergierbare Behälter, vorzugsweise um befüllte tiefgezogene oder spritzgegossene Behälter handelt.
Die zuvor beschriebenen erfindungsgemäßen Mittel enthalten wasch- und reinigungsaktive Substanzen, vorzugsweise wasch- und reinigungsaktive Substanzen aus der Gruppe der Gerüststoffe, Tenside, Polymere, Bleichmittel, Bleichaktivatoren, Enzyme, Glaskorrosionsinhibitoren, Korrosionsinhibitoren, Desintegrationshilfsmittel, Duftstoffe und Parfümträger. Diese und weitere bevorzugte Inhaltsstoffe erfindungsemäßer Mittel werden in der Folge näher beschrieben.
Zu den Gerüststoffe zählen insbesondere die Zeolithe, Silikate, Carbonate, organische Cobuilder und -wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.
Mit besonderem Vorzug werden kristalline schichtförmige Silikate der allgemeinen Formel NaMSixO2x+I y H2O eingesetzt, worin M Natrium oder Wasserstoff darstellt, x eine. Zahl von 1 ,9 bis 22, vorzugsweise von 1 ,9 bis 4, wobei besonders bevorzugte Werte für x 2, 3 oder 4 sind, und y für eine Zahl von 0 bis 33, vorzugsweise von 0 bis 20 steht. Die kristallinen schichtförmigen Silikate der Formel NaMSixO2x+I y H2O werden beispielsweise von der Firma Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben. Beispiele für diese Silikate sind Na- SKS-1 (Na2Si22O45 x H2O, Kenyait), Na-SKS-2 (Na2SJi4O29 x H2O, Magadiit), Na-SKS-3 (Na2Si8O17 x H2O) oder Na-SKS-4 (Na2Si4O9 x H2O, Makatit). Für die Zwecke der vorliegenden Erfindung besonders geeignet sind kristalline Schichtsilikate der Formel NaMSixO2x+I y H2O, in denen x für 2 steht. Insbesondere sind sowohl ß- als auch δ- Natriumdisilikate Na2Si2O5 y H2O sowie weiterhin vor allem Na-SKS-5 (Ct-Na2Si2O5), Na-SKS-7 (B-Na2Si2O5, Natrosilit), Na-SKS-9 (NaHSi2O5 H2O), Na-SKS-10 (NaHSi2O5 3 H2O, Kanemit), Na-SKS-11 (t-Na2Si205) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (5-Na2Si2O5) bevorzugt.
Wasch- oder Reinigungsmitteln enthalten vorzugsweise einen Gewichtsanteil des kristallinen schichtförmigen Silikats der Formel NaMSixO2x+1 y H2O von 0,1 bis 20 Gew.-% von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel.
Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1 :2 bis 1 :3,3, vorzugsweise von 1:2 bis' 1 :2,8 und insbesondere von 1:2 bis 1 :2,6, welche vorzugsweise löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" verstanden, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgen reflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen.
Alternativ oder in Kombination mit den vorgenannten amorphen Natriumsilikaten röntgenamorphe Silikate eingesetzt, deren Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe zehn bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige röntgenamorphe Silikate, weisen ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern auf. Insbesondere bevorzugt sind verdichtete/kom paktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
Im Rahmen der vorliegenden Erfindung ist es bevorzugt, dass diese(s) Silikat(e), vorzugsweise Alkalisilikate, besonders bevorzugt kristalline oder amorphe Alkalidisilikate, in Wasch- oder Reinigungsmitteln in Mengen von 3 bis 60 Gew.-%, vorzugsweise von 8 bis 50 Gew.-% und insbesondere von 20 bis 40 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels, enthalten sind. Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buiidersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3),, und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkinkrustationen in Geweben und tragen überdies zur Reinigungsleistung bei.
Technisch besonders wichtige Phosphate sind das Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat) sowie das entsprechende Kaliumsalz Pentakaliumtriphosphat, K5P3O10 (Kaliumtripolyphosphat). Erfindungsgemäß bevorzugt eingesetzt werden weiterhin die Natriumkaliumtripolyphosphate.
Werden im Rahmen der vorliegenden Anmeldung Phosphate als wasch- oder reinigungsaktive Substanzen in Wasch- oder Reinigungsmitteln eingesetzt, so enthalten bevorzugte Mittel diese(s) Phosphat(e), vorzugsweise Alkalimetallphosphat(e), besonders bevorzugt Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat), in Mengen von 5 bis 80 Gew.-%, vorzugsweise von 15 bis 75 Gew.-% uns insbesondere von 20 bis 70 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels.
Weitere Gerüststoffe sind die Alkaliträger. Als Alkaliträger gelten beispielsweise Alkalimetallhydroxide, Alkalimetallcarbonate, Alkalimetallhydrogencarbonate, Alkalimetall- sesquicarbonate, die genannten Alkalisilikate, Alkalimetasilikate, und Mischungen der vorgenannten Stoffe, wobei im Sinne dieser Erfindung bevorzugt die Alkalicarbonate, insbesondere Natriumcarbonat, Natriumhydrogencarbonat oder Natriumsesquicarbonat eingesetzt werden. Besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat. Ebenfalls besonders bevorzugt ist ein Buildersystem enthaltend eine Mischung aus Tripolyphosphat und Natriumcarbonat und Natriumdisilikat. Aufgrund ihrer im Vergleich mit anderen Buiidersubstanzen geringen chemischen Kompatibilität mit den . übrigen Inhaltsstoffen von Wasch- oder Reinigungsmitteln, werden die Alkalimetallhydroxide bevorzugt nur in geringen Mengen, vorzugsweise in Mengen unterhalb 10 Gew.-%, bevorzugt unterhalb 6 Gew.-%, besonders bevorzugt unterhalb 4 Gew.-% und insbesondere unterhalb 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Wasch- oder Reinigungsmittels, eingesetzt. Besonders bevorzugt werden Mittel, welche bezogen auf ihr Gesamtgewicht weniger als 0,5 Gew.-% und insbesondere keine Alkalimetallhydroxide enthalten.
Besonders bevorzugt ist der Einsatz von Carbonat(en) und/oder Hydrogencarbonat(en), vorzugsweise Alkalicarbonat(en), besonders bevorzugt Natriumcarbonat, in Mengen von 2 bis 50 Gew.-%, vorzugsweise von 5 bis 40 Gew.-% und insbesondere von 7,5 bis 30 Gew.-%, jeweils bezogen auf das Gewicht des Wasch- oder Reinigungsmittels. Besonders bevorzugt werden Mittel, welche bezogen auf das Gewicht des Wasch- oder Reinigungsmittels weniger als 20 Gew.- %, vorzugsweise weniger als 17 Gew.-%, bevorzugt weniger als 13 Gew.-% und insbesondere weniger als 9 Gew.% Carbonat(e) und/oder Hydrogencarbonat(e), vorzugsweise Alkalicarbonat(e), besonders bevorzugt Natriumcarbonat enthalten.
Als organische Cobuilder sind insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate zu nennen. Diese Stoffklassen werden nachfolgend beschrieben.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form der freien Säure und/oder ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citrόnensäure, Ädipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Die freien Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Ädipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Gerüststoffe sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt von Wasch- oder Reinigungsmitteln an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzym katalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'- disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Gerüststoffe eingesetzt werden.
Zur Gruppe der Tenside werden die nichtionischen, die anionischen, die kationischen und die amphoteren Tenside gezählt. Als nichtionische Tenside können alle dem Fachmann bekannten nichtionischen Tenside eingesetzt werden. Als nichtionische Tenside eignen sich beispielsweise Alkylglykoside der allgemeinen Formel RO(G)x eingesetzt werden, in der R einem primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen entspricht und G das Symbol ist, das für eine Glykoseeinheit mit.5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel,
Figure imgf000022_0001
in der R für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel
Figure imgf000022_0002
in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder zyklischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei Ci„4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes.
[Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N- Alkoxy- oder N-Aryloxy-substituierten Verbindungen können durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Als bevorzugte Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten Wasch- oder Reinigungsmittel, insbesondere Reinigungsmittel für das maschinelle Geschirrspülen, nichtionische Tenside aus der Gruppe der alkoxylierten Alkohole. Als nichtionische tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methy I verzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 Mol EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise Ci2--U- Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, Ci2-i_-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C-i2-i4-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt einer ganzen oder einer gebrochenen Zahl entsprechen können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
Mit besonderem Vorzug werden daher ethoxylierte Niotenside, die aus C6-20- Monohydroxyalkanolen oder C6-20-Alkylphenolen oder C16-2o-Fettalkoholen und mehr als 12 MoI, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurden, eingesetzt. Ein besonders bevorzugtes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-2o-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten „narrow ränge ethoxylates" besonders bevorzugt.
Mit besonderem Vorzug werden weiterhin Tenside eingesetzt, welche ein oder mehrere Taigfettalkohole mit 20 bis 30 EO in Kombination mit einem Silikonentschäumer enthalten.
Insbesondere bevorzugt sind nichtionische Tenside, die einen Schmelzpunkt oberhalb Raumtemperatur aufweisen. Nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 2O0C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, ist/sind besonders bevorzugt.
Geeignete nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden Niotenside eingesetzt, die bei Raumtemperatur hochviskos sind, so ist bevorzugt, dass diese eine Viskosität oberhalb von 20 Pa-s, vorzugsweise oberhalb von 35 Pa-s und insbesondere oberhalb 40 Pa s aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
Niotenside aus der Gruppe der alkoxylierten Alkohole, besonders bevorzugt aus der Gruppe der gemischt alkoxylierten Alkohole und insbesondere aus der Gruppe der EO-AO-EO-Niotenside, werden ebenfalls mit besonderem Vorzug eingesetzt.
Das bei Raumtemperatur feste Niotensid besitzt vorzugsweise Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte Mittel sind dadurch gekennzeichnet, dass sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen.
Bevorzugt einzusetzende Tenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxyperten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen ((PO/EO/PO)-Tenside). Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen- Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Pölyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% ei,nes Block-Copolymers von Pölyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan, enthält.
Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- urid Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den Jeweils anderen Gruppen folgt. Hier sind nichionisches Tenside der allgemeinen Formel
H-O)-H
Figure imgf000025_0001
bevorzugt, in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
Die bevorzugten Niotenside der vorstehenden Formel lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzweigt, wobei die linearen Reste aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, bevorzugt sind. Aus synthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unabhängig von der Art des zur Herstellung der in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind Niotenside bevorzugt, bei denen R1 in der vorstehenden Formel für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus - CH2CH2-CH3 bzw. CH(CH3)2 sind geeignet. Bevorzugt werden Niotenside der vorstehenden Formel eingesetzt, bei denen R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
Zusammenfassend sind insbesondere nichtionische Tenside bevorzugt, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von 1 bis 4 Ethylenoxideinheiten, gefolgt von1 bis 4 Propylenoxideinheiten aufweisen. Diese Tenside weisen in wässriger Lösung die erforderliche niedrige Viskosität auf und sind erfindungsgemäß mit besonderem Vorzug einsetzbar.
Tenside der allgemeinen Formel • ' •
R1-CH(OH)CH2O-(AO)w-(AO)x-(A"O)y-(A'"O)z-R2 , in der
R1 und R2 unabhängig voneinander für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C2.40-Alkyl- oder -Alkenylrest steht; A, A', A" und A1" unabhängig voneinander für einen Rest aus der Gruppe -CH2CH2, -CH2CH2-CH2, -CH2-CH(CH3), -CH2-CH2-CH2-CH2, -CH2-CH(CH3)-CH2-, -CH2-CH(CH2-CH3) steht; und w, x, y und z für Werte zwischen 0,5 und 90 stehen, wobei x, y und/oder z auch 0 sein können sind erfindungsgemäß bevorzugt.
Bevorzugt werden insbesondere solche endgruppenverschlossene poly(oxyalkylierten)
Niotenside, die gemäß der Formel
R1O[CH2CH2O]xCH2CH(OH)R2
neben einem Rest R1, welcher für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoff reste mit 2 bis 30 Kohlenstoffatomen, vorzugsweise mit 4 bis 22 Kohlenstoffatomen steht, weiterhin einen linearen oder verzweigten, gesättigten oder ungesättigten, aliphatischen oder aromatischen Kohlenwasserstoffrest R2 mit 1 bis 30 Kohlenstoffatomen aufweisen, wobei x für Werte zwischen 1 und 90, vorzugsweise für Werte zwischen 40 und 80 und insbesondere für Werte zwischen 40 und 60 steht.
Besonders bevorzugt sind Tenside der Formel
R1O[CH2CH(CH3)O]x[CH2CH2OIyCH2CH(OH)R2 ,
in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohienstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoff rest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1 ,5 sowie y für einen. Wert von mindestens 15 steht.
Besonders bevorzugt werden weiterhin solche endgruppenverschlossene poly(oxyalkylierteh) Niotenside der Formel >
R1O[CH2CH2O]x[CH2CH(R3)O]yCH2CH(OH)R2 ,
in der R1 und R2 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen steht, R3 unabhängig voneinander ausgewählt ist aus -CH3, -CH2CH3, -CH2CH2-CH3, CH(CH3)2, vorzugsweise jedoch für -CH3 steht, und x und y unabhängig voneinander für Werte zwischen 1 und 32 stehen, wobei Niotenside mit R3 = -CH3 und Werten für x von 15 bis 32 und y von 0,5 und 1 ,5 ganz besonders bevorzugt sind.
Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen poly(oxyalkylierten) Niotenside der Formel
R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2],OR2 ,
in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methy!-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2 unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder -CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)- Gruppen einschließt, oder umgekehrt.
Besonders bevorzugte endgruppenverschlossene poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so dass sich die vorstehende Formel zu
R1O[CH2CH(R3)O]XCH2CH(OH)CH2OR2
vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
Die angegebenen C-Kettenlängen sowie Ethoxylierungsgrade bzw. Alkoxylierungsgrade der vorgenannten Niotenside stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus Gemischen, wodurch sich sowohl für die C-Kettenlängen als auch für die Ethoxylierungsgrade bzw. Alkoxylierungsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können.
Selbstverständlich können die vorgenannten nichtionischen Tenside nicht nur als Einzelsubstanzen, sondern auch als Tensidgemische aus zwei, drei, vier oder mehr Tensiden eingesetzt werden. Als Tensidgemische werden dabei nicht Mischungen nichtionischer Tenside bezeichnet, die in ihrer Gesamtheit unter eine der oben genannten allgemeinen Formeln fallen, sondern vielmehr solche Mischungen, die zwei, drei, vier oder mehr nichtionische Tenside enthalten, die durch unterschiedliche der vorgenannten allgemeinen Formeln beschrieben werden können. Sind die Aniontenside Bestandteil maschineller Geschirrspulmittel, so betragt ihr Gehalt, bezogen auf das Gesamtgewicht der Mittel vorzugsweise weniger als 4 Gew -%, bevorzugt weniger als 2 Gew -% und ganz besonders bevorzugt weniger als 1 Gew -% Maschinelle Geschirrspulmittel, welche keine Aniontenside enthalten, werden insbesondere bevorzugt
An Stelle der genannten Tenside oder in Verbindung mit ihnen können auch kationische und/oder amphotere Tenside eingesetzt werden
Als kationische Aktivsubstanzen können beispielsweise kationische Verbindungen der nachfolgenden Formeln eingesetzt werden
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
worin jede Gruppe R1 unabhängig voneinander ausgewählt ist aus Ci 6-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, jede Gruppe R2 unabhängig voneinander ausgewählt ist aus C8 2β-Alkyl- oder -Alkenylgruppen, R3 = R1 oder (CH2)n-T-R2, R4 = R1 oder R2 oder (CHz)n-T-R2, T = -CH2-, -O- CO- oder -CO-O- und n eine ganze Zahl von O bis 5 ist
In maschinellen Geschirrspulmitteln betragt der Gehalt an kationischen und/oder amphoteren Tensiden vorzugsweise weniger als 6 Gew -%, bevorzugt weniger als 4 Gew -%, ganz besonders bevorzugt weniger als 2 Gew -% und insbesondere weniger als 1 Gew -% Maschinelle Geschirrspulmittel welche keine kationischen oder amphoteren Tenside enthalten, werden besonders bevorzugt Zur Gruppe der Polymere zählen insbesondere die wasch- oder reinigungsaktiven Poylmere, beispielsweise die Klarspülpolymere und/oder als Enthärter wirksame Polymere. Generell sind in Wasch- oder Reinigungsmitteln neben nichtionischen Polymeren auch kationische, anionische und amphotere Polymere einsetzbar.
„Kationische Polymere" im Sinne der vorliegenden Erfindung sind Polymere, welche eine positive Ladung im Polymermolekül tragen. Diese kann beispielsweise durch in der Polymerkette vorliegende (Alkyi-)Ammoniumgruppierungen oder andere positiv geladene Gruppen realisiert werden. Besonders bevorzugte kationische Polymere stammen aus den Gruppen der quaternierten Cellulose-Derivate, der Polysiloxane mit quaternären Gruppen, der kationischen Guar-Derivate, der polymeren Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Amiden von Acrylsäure und Methacrylsäure, der Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoacrylats und -methacrylats, der Vinylpyrrolidon- Methoimidazoliniumchlorid-Copolymere, der quaternierter Polyvinylalkohole oder der unter den INCI-Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquatemium 18 und Polyquatemium 27 angegeben Polymere.
„Amphotere Poylmere" im Sinne der vorliegenden Erfindung weisen neben einer positiv geladenen Gruppe in der Polymerkette weiterhin auch negativ geladenen Gruppen bzw. Monomereinheiten auf. Bei diesen Gruppen kann es sich beispielsweise um Carbonsäuren, Sulfonsäuren oder Phosphonsäuren handeln.
Bevorzugte Wasch- oder Reinigungsmittel, insbesondere bevorzugte maschinelle Geschirrspülmittel, sind dadurch gekennzeichnet, dass sie ein Polymer a) enthalten, welches Monomereinheiten der Formel R1R2C=CR3R4 aufweist, in der jeder Rest R1, R2, R3, R4 unabhängig voneinander ausgewählt ist aus Wasserstoff, derivatisierter Hydroxygruppe, C1-3O linearen oder verzweigten Alkylgruppen, Aryl, Aryl substituierten C1-3O linearen oder verzweigten Alkylgruppen, polyalkoyxylierte Alkylgruppen, heteroatomaren organischen Gruppen mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N- Atom oder mindestens eine Aminogruppe mit einer positiven Ladung im Teilbereich des pH- Bereichs von 2 bis 11 , oder Salze hiervon, mit der Maßgabe, dass mindestens ein Rest R1, R2, R3, R4 eine heteroatomare organische Gruppe mit mindestens einer positiven Ladung ohne geladenen Stickstoff, mindestens ein quaterniertes N-Atom oder mindestens eine Aminogruppe mit einer positiven Ladung ist.
Im Rahmen der vorliegenden Anmeldung besonders bevorzugte kationische oder amphotere Polymere enthalten als Monomereinheit eine Verbindung der allgemeinen Formel
Figure imgf000031_0001
bei der R1 und R4 unabhängig voneinander für H oder einen linearen oder verzweigten Kohlenwasserstoffrest mit 1 bis 6 Kohlenstoffatomen steht; R2 und R3 unabhängig voneinander für eine Alkyl-, Hydroxyalkyl-, oder Aminoalkylgruppe stehen, in denen der Alkylrest linear oder verzweigt ist und zwischen 1 und 6 Kohlenstoffatomen aufweist, wobei es sich vorzugsweise um eine Methylgruppe handelt; x und y unabhängig voneinander für ganze Zahlen zwischen 1 und 3 stehen. X" repräsentiert ein Gegenion, vorzugsweise ein Gegenion aus der Gruppe Chlorid, Bromid, lodid, Sulfat, Hydrogensulfat, Methosulfat, Laurylsulfat, Dodecylbenzolsulfonat, p- Toluolsulfonat (Tosylat), Cumolsulfonat, Xylolsulfonat, Phosphat, Citrat, Formiat, Acetat od.er deren Mischungen.
Bevorzugte Reste R1 und R4 in der vorstehenden Formel sind ausgewählt aus -CH3, -CH2-CH3, - CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2- CH(OH)-CH3, -CH(OH)-CH2-CH3, und -(CH2CH2-O)nH.
Ganz besonders bevorzugt werden Polymere, welche eine kationische Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R1 und R4 für H stehen, R2 und R3 für Methyl stehen und x und y jeweils 1 sind. Die entsprechenden Monomereinheit der Formel
H2C=C H-(C Hz)-N+(C H3)2-(C H2)-C H=C H2 X'
werden im Falle von X" = Chlorid auch als DADMAC (Diallyldimethylammonium-Chlorid) bezeichnet.
Weitere besonders bevorzugte kationische oder amphotere Polymere enthalten eine Monomereinheit der allgemeinen Formel
R1 HC=C R2-C (O)-NH-(C H2)~N+R3R4Rs
X" in der R1, R2, R3, R4 und R5 unabhängig voneinander für einen linearen oder verzweigten, gesättigten oder ungesättigen Alkyl-, oder Hydroxyalkylrest mit 1 bis 6 Kohlenstoffatomen, vorzugsweise für einen linearen oder verzweigten Alkylrest ausgewählt aus -CH3, -CH2-CH3, - CH2-CH2-CH3, -CH(CHs)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2- CH(OH)-CH3, -CH(OH)-CH2-CH3, und -(CH2CH2-O)nH steht und x für eine ganze Zahl zwischen 1 und 6 steht.
Ganz besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung Polymere, welche eine kationsche Monomereinheit der vorstehenden allgemeinen Formel aufweisen, bei der R1 für H und R2, R3, R4 und R5 für Methyl stehen und x für 3 steht. Die entsprechenden Monomereinheiten der Formel
H2C=C(CH3)-C(O)-NH-(CH2)χ-N+(CH3)3
X"
werden im Falle von X' = Chlorid auch als MAPTAC (Methyacrylamidopropyl- trimethylammonium-Chlorid) bezeichnet.
Erfindungsgemäß bevorzugt werden Polymere eingesetzt, die als Monomereinheiten Diallyldimethylammoniumsalze und/oder Acrylamidopropyltrimethylammoniumsalze enthalten.
Die zuvor erwähnten amphoteren Polymere weisen nicht nur kationische Gruppen, sondern auch anionische Gruppen bzw. Monomereinheiten auf. Derartige anionischen Monomereinheiten stammen beispielsweise aus der Gruppe der linearen oder verzweigten, gesättigten oder ungesättigten Carboxylate, der linearen oder verzweigten, gesättigten oder ungesättigten Phosphonate, der linearen oder verzweigten, gesättigten oder ungesättigten Sulfate oder der linearen oder verzweigten, gesättigten oder ungesättigten Sulfonate. Bevorzugte Monomereinheiten sind die Acrylsäure, die (Meth)acrylsäure, die (Dimethyl)acrylsäure, die (Ethyl)acrylsäure, die Cyanoacrylsäure, die Vinylessingsäure, die Allylessigsäure, die Crotonsäure, die Maleinsäure, die Fumarsäure, die Zimtsäure und ihre Derivate, die Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure oder die Allylphosphonsäuren.
Bevorzugte einsetzbare amphotere Polymere stammen aus der Gruppe der Alkylacrylamid/Acrylsäure-Copolymere, der Alkylacrylamid/Methacrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure-Copolymere, der Alkylacrylamid/Acrylsäure/Alkyl- aminoalkyl(meth)acrylsäure-Copolymere, der
Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)-acrylsäure-Copolymere, der Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymere, der Alkyl- acrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymere sowie der Copolymere aus ungesättigten Carbonsäuren, kationisch derivatisierten ungesättigten Carbonsäuren und gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
Bevorzugt eirisetzbare zwitterionische Polymere stammen aus der Gruppe der Acrylamidoalkyltrialkylammoniumchiorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze, der Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze und der Methacroylethylbetain/Methacrylat-Copolymere.
Bevorzugt werden weiterhin amphotere Polymere, welche neben einem oder mehreren anionischen Monomeren als kationische Monomere Methacrylamidoalkyl-trialkylammoniumchlorid und Dimethyl(diallyl)ammoniumchlorid umfassen.
Besonders bevorzugte amphotere Polymere stammen aus der Gruppe der Methacrylamidoalkyl- trialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure-Copolymere, der '
Methacryl-amidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Methacrylsäure- Copolymere und der
Methacrylamidoalkyltrialkylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl- (meth)aGrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze.
Insbesondere ' bevorzugt werden amphotere Polymere aus der Gruppe der Methacrylamidopropyltrimethylammoniumchlorid/Dimethyl(diallyl)ammoniumchlorid/Acrylsäure- Copolymere, der Methacrylamidopropyltrimethylammoniumchlorid/DimethyKdiallyOammonium- chlorid/Acrylsäure-Copolymere und der Methacrylamidopropyltrimethylammonium- chlorid/Dimethyl(diallyl)ammoniumchlorid/Alkyl(meth)acryisäure-Copolymere sowie deren Alkali- und Ammoniumsalze.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung liegen die Polymere in vorkonfektionierter Form vor. Zur Konfektionierung der Polymere eignet sich dabei u.a. die Verkapselung der Polymere mittels wasserlöslicher oder wasserdispergierbarer
Beschichtungsmittel, vorzugsweise mittels wasserlöslicher oder wasserdispergierbarer natürlicher oder synthetischer Polymere; die Verkapselung der Polymere mittels wasserunlöslicher, schmelzbarer
Beschichtungsmittel, vorzugsweise mittels wasserunlöslicher Beschichtungsmittel aus der
Gruppe der Wachse oder Paraffine mit einem Schmelzpunkt oberhalb 3O0C; die Cogranulation der Polymere mit inerten Trägermaterialien, vorzugsweise mit
Trägermaterialien aus der Gruppe der wasch- oder reinigungsaktiven Substanzen, besonders bevorzugt aus der Gruppe der Builder (Gerüststoffe) oder Cobuilder. Wasch- oder Reinigungsmittel enthalten die vorgenannten kationischen und/oder amphoteren Polymere vorzugsweise in Mengen zwischen 0,01 und 10 Gew.-%, jeweils bezogen auf das ι Gesamtgewicht des Wasch- oder Reinigungsmittels. Bevorzugt werden im Rahmen der vorliegenden Anmeldung jedoch solche Wasch- oder Reinigungsmittel, bei denen der Gewichtsanteil der kationischen und/oder amphoteren Polymere zwischen 0,01 und 8 Gew.-%, vorzugsweise zwischen 0,01 und 6 Gew.-%, bevorzugt zwischen 0,01 und 4 Gew.-%, besonders bevorzugt zwischen 0,01 und 2 Gew.-% und insbesondere zwischen 0,01 und 1 Gew.-%, jeweils bezogen auf das Gesamtgewicht des maschinellen Geschirrspülmittels, beträgt.
Als Enthärter wirksame Polymere sind beispielsweise die Sulfonsäuregruppen-haltigen Polymere, welche mit besonderem Vorzug eingesetzt werden.
Besonders bevorzugt als Sulfonsäuregruppen-haltige Polymere einsetzbar sind Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren und gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
Im Rahmen der vorliegenden Erfindung sind als Monomer ungesättigte Carbonsäuren der Formel
R1(R2)C=C(R3)COOH ,
bevorzugt, in der R1 bis R3 unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
Unter den ungesättigten Carbonsäuren, die sich durch die vorstehende Formel beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel
R5(R6)C=C(R7)-X-SO3H
bevorzugt, in der R5 bis R' unabhängig voneinander für -H, -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit - NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoff rest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = O bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
Unter diesen Monomeren bevorzugt sind solche der Formeln
H2C=CH-X-SO3H
H2C=C(CHs)-X-SO3H
HO3S-X-(R6)C=C(R7)-X-SO3H
in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CHs)n- mit n = O bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH- ' CH(CH2CH3)-. , '
Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1- propansulfonsäure, 2-Acrylamido-2-propansulfonsäure, 2-Acrylamido-2-methyl-1- propansulfonsä'ure, 2-Methacrylamido-2-methyl-1-propansulfonsäure, 3-Methacrylamido-2- hydroxy-propansulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Allyloxybenzolsulfonsäure, Methallyloxybenzolsulfonsäure, 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2- propeni-sulfonsäure, Styrolsulfonsäure, Vinylsulfonsäure, 3-Sulfopropylacrylat, 3- Sulfopropylmethacrylat, Sulfomethacrylamid, Sulfomethylmethacrylamid sowie wasserlösliche Salze der genannten Säuren.
Als weitere ionogene oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der eingesetzten Polymere an diesen weiteren ionogene oder nichtionogenen Monomeren weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Formel R1(R2)C=C(R3)COOH und Monomeren der Formel R5(R6)C=C(R7)-X-SO3H.
Weitere besonders bevorzugte Copolymere bestehen aus i) einer oder mehreren ungesättigter Carbonsäuren aus der Gruppe Acrylsäure,
Methacrylsäure und/oder Maleinsäure ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln: H2C=CH-X-SO3H
H2C=C(CHa)-X-SO3H
HO3S-X-(R6)C=C(R7)-X-SO3H
in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = O bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH- C(CHa)2- und -C(O)-NH-CH(CH2CH3)- iii) gegebenenfalls weiteren ionogenen oder nichtionogenen Monomeren.
Die Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der Gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
So sind beispielsweise Copolymere bevorzugt, die Struktureinheiten der Formel
-[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = O bis 4, für -O- (C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen- haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz ebenfalls bevorzugt ist. Die entsprechenden Copolymere enthalten die Struktureinheiten der Formel
-[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-
in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen- haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind Copolymere, welche Struktureinheiten der Formel
-[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(GH2)π- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CH3)2- .oder -NH-CH(CH2CH3)- steht, ebenso bevorzugt wie Copolymere, die Struktureinheiten der Formel
-[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergfuppe steht,' die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)π- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CHa)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Copolymeren, die Struktureinheiten der Formel
-[HOOCCH-CHCOOH]n-[CH2-CHC(O)-Y-SO3H]P-
enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)π- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CHs)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind. Erfindungsgemäß bevorzugt sind weiterhin Copolymere, die Struktureinheiten der Formel -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-
t enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder substituierten aromatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O- (C6H4)-, für -NH-C(CHa)2- oder -NH-CH(CH2CH3)- steht.
In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. dass das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Der Einsatz von teil- oder vollneutralisierten sulfonsäuregruppenhaltigen Copolymeren ist erfindungsgemäß bevorzugt.
Die Monomerenverteilung der erfindungsgemäß bevorzugt eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
Die Molmasse der erfindungsgemäß bevorzugt eingesetzten Sulfo-Copolymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte Wasch- oder Reinigungsmittel sind dadurch gekennzeichnet, dass die Copolymere Molmassen von 2000 bis 200.000 gmol"1, vorzugsweise von 4000 bis 25.000 gmol'1 und insbesondere von 5000 bis 15.000 gmol"1 aufweisen.
Die Bleichmittel sind eine mit besonderem Vorzug eingesetzte wasch- oder reinigungsaktive Substanz. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumpercarbonat, das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
Weiterhin können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesiummonoperphthalat, (b) die aliphatischeπ oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε- Phthalimidoperdxycapronsäure [Phthaliminoperoxyhexansäure (PAP)], o-
Carboxybenzamidoperoxycapronsäure, N-Nonenylamidoperadipinsäure und N-
Nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1 ,12-Diperoxycarbonsäure, 1 ,9-Diperoxyazelainsäure, Diperocysebacinsäure,
Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N1N- Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
Als Bleichmittel können auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder 'Brom freisetzenden Materialien kommen beispielsweise heterozyklische N-Brom- und N-Chloramide, beispielsweise1 Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure ' und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1 ,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
Erfindungsgemäß werden Wasch- oder Reinigungsmittel bevorzugt, die 1 bis 35 Gew.-%, vorzugsweise 2,5 bis 30 Gew.-%, besonders bevorzugt 3,5 bis 20 Gew.-% und insbesondere 5 bis 15 Gew.-% Bleichmittel, vorzugsweise Natriumpercarbonat, enthalten.
Der Aktivsauerstoffgehalt der Wasch- oder Reinigungsmittel, insbesondere der maschinellen Geschirrspülmittel, beträgt, jeweils bezogen auf das Gesamtgewicht des Mittels, vorzugsweise zwischen 0,4 und 10 Gew.-%, besonders bevorzugt zwischen 0,5 und 8 Gew.-% und insbesondere zwischen 0,6 und 5 Gew.-%. Besonders bevorzugte Mittel weisen einen Aktivsauerstoffgehalt oberhalb 0,3 Gew.-%, bevorzugt oberhalb 0,7 Gew.-%, besonders bevorzugt oberhalb 0,8 Gew.-% und insbesondere oberhalb 1,0 Gew.-% auf.
Bleichaktivatoren werden in Wasch- oder Reinigungsmitteln beispielsweise eingesetzt, um beim Reinigen bei Temperaturen von 60 0C und darunter eine verbesserte Bleichwirkung zu erreichen. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED)1 acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
Weitere im Rahmen der vorliegenden Anmeldung bevorzugt eingesetzte Bleichaktivatoren sind Verbindungen aus der Gruppe der kationischen Nitrite, insbesondere kationische Nitrile der Formel
Figure imgf000040_0001
in der R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer Ci.24-Alkylgruppe, oder für. einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3. unabhängig voneinander ausgewählt sind aus' -CH2-CN, -CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2- CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1 , 2, 3, 4, 5 oder 6 und X ein Anion.vorzugsweise aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat. ist.
Besonders bevorzugt sind Verbindungen der, Formeln (CH3)3N(+)CH2-CN X", (CH3CH2)3N(+)CH2- CN X- , (CH3CH2CH2)3N(+)CH2-CN X", (CH3CH(CH3))3N(+)CH2-CN X", oder (HO-CH2-CH2)3N(+)CH2- CN X', wobei aus der Gruppe dieser Substanzen wiederum das kationische Nitril der Formel (CH3)3N(+)CH2-CN X', in welcher X" für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist, besonders bevorzugt wird.
Als Bleichaktivatoren können weiterhin Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylen- diamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetih, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran, n- Methyl-Morphoϊinium-Acetonitril-Methylsulfat (MMA) sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertes Glucamin und Gluconolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Auch Kombinationen konventioneller Bleichaktivatoren können eingesetzt werden.
Sofern neben den Nitrilquats weitere Bleichaktivatoren eingesetzt werden sollen, werden bevorzugt Bleichaktivatoren aus der Gruppe der mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSl), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), vorzugsweise in Mengen bis 10 Gew.-%, insbesondere 0,1 Gew.-% bis 8 Gew.-%, besonders 2 bis 8 Gew.-% und besonders bevorzugt 2 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingesetzt werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru- Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu1 Mo, V, Ti und/oder Ru, bevorzugt ausgewählt aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans, des Mangansulfats werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 5 Gew.-%, insbesondere von 0,0025 Gew.-% bis 1 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,25 Gew.-%, jeweils bezogen auf das Gesamtgewicht der bleichaktivatorhaltigen Mittel, eingesetzt. Aber in spezielle Fällen kann auch mehr Bleichaktivator eingesetzt werden. Zur Steigerung der Wasch-, beziehungsweise Reinigungsleistung von Wasch- oder Reinigungsmitteln sind Enzyme einsetzbar. Hierzu gehören insbesondere Proteasen, Amylasen, Lipasen, Hemicellulasen, Cellulasen oder Oxidoreduktasen, sowie vorzugsweise deren Gemische. Diese Enzyme sind im Prinzip natürlichen Ursprungs; ausgehend von den natürlichen Molekülen stehen für den Einsatz in Wasch- und Reinigungsmitteln verbesserte Varianten zur Verfügung, die entsprechend bevorzugt eingesetzt werden. Wasch- oder Reinigungsmittel enthalten Enzyme vorzugsweise in Gesamtmengen von 1 x 10"6 bis 5 Gew.-% bezogen .auf aktives Protein. Die Proteinkonzentration kann mit Hilfe bekannter Methoden, zum Beispiel dem BCA-Verfahren oder dem Biuret-Verfahren bestimmt werden.
Unter den Proteasen sind solche vom Subtilisin-Typ bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg sowie deren weiterentwickelte Formen, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K Und die Proteasen TW3 und TW7.
Beispiele für erfindungsgemäß einsetzbare Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus B. amyloliquefaciens, aus ß. stearothermophilus, aus Aspergillus niger und A. oryzae sowie die für den Einsatz in Wasch- und Reinigungsmitteln verbesserten Weiterentwicklungen der vorgenannten Amylasen. Desweiteren sind für diesen Zweck die α- Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus B. agaradherens (DSM 9948) hervorzuheben.
Erfindungsgemäß einsetzbar sind weiterhin Lipasen oder Cutinasen, insbesondere wegen ihrer Triglycerid-spaltenden Aktivitäten, aber auch, um aus geeigneten Vorstufen in situ Persäuren zu erzeugen. Hierzu gehören beispielsweise die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Desweiteren sind beispielsweise die Cutinasen einsetzbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Einsetzbar sind weiterhin Lipasen, beziehungsweise Cutinasen, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind.
Weiterhin können Enzyme eingesetzt werden, die unter dem Begriff Hemicellulasen zusammengefaßt werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Pektinlyasen (=Pektinasen), Pektinesterasen, Pektatlyasen, Xyloglucanasen (=Xylanasen), Pullulanasen und ß-Glucanasen. Zur Erhöhung der bleichenden Wirkung können erfindungsgemäß Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie HaIo-, Chloro-, Bromo-, Lignin-, Glucose- oder Mangan-peroxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) eingesetzt werden. Vorteilhafterweise werden zusätzlich vorzugsweise organische, besonders bevorzugt aromatische, mit den Enzymen wechselwirkende Verbindungen zugegeben, um die Aktivität der betreffenden Oxidoreduktasen zu verstärken (Enhancer) oder um bei stark unterschiedlichen Redoxpotentialen zwischen den oxidierenden Enzymen und den Anschmutzungen den Elektronenfluss zu gewährleisten (Mediatoren).
Die Enzyme können in jeder nach dem Stand der Technik etablierten Form eingesetzt werden. Hierzu gehören beispielsweise die durch Granulation, Extrusion oder Lyophilisierung erhaltenen festen Präparationen oder, insbesondere bei flüssigen oder gelförmigen Mitteln, Lösungen der Enzyme, vorteilhafterweise möglichst konzentriert, wasserarm und/oder mit Stabilisatoren versetzt.
Alternativ können die Enzyme sowohl für die feste als auch für die flüssige Darreichungsform verkapselt werden, beispielsweise durch Sprühtrocknung oder Extrusion der Enzymlösung zusammen mit einem vorzugsweise natürlichen Polymer oder in Form von Kapseln, beispielsweise solchen, bei denen die Enzyme wie in einem erstarrten Gel eingeschlossen sind oder in solchen vom Kem-Schale-Typ, bei dem ein enzymhaltiger Kern mit einer Wasser-, Luft- und/oder Chemikalien-undurchlässigen Schutzschicht überzogen ist. In aufgelagerten Schichten können zusätzlich weitere Wirkstoffe, beispielsweise Stabilisatoren, Emulgatoren, Pigmente, Bleich- oder Farbstoffe aufgebracht werden. Derartige Kapseln werden nach an sich bekannten Methoden, beispielsweise durch Schüttel- oder Rollgranulation oder in Fluid-bed-Prozessen aufgebracht. Vorteilhafterweise sind derartige Granulate, beispielsweise durch Aufbringen polymerer Filmbildner, staubarm und aufgrund der Beschichtung lagerstabil.
Weiterhin ist es möglich, zwei oder mehrere Enzyme zusammen zu konfektionieren, so dass ein einzelnes Granulat mehrere Enzymaktivitäten aufweist.
Ein Protein und/oder Enzym kann besonders während der Lagerung gegen Schädigungen wie beispielsweise Inaktivierung, Denaturierung oder Zerfall etwa durch physikalische Einflüsse, Oxidation oder proteolytische Spaltung geschützt werden. Bei mikrobieller Gewinnung der Proteine und/oder Enzyme ist eine Inhibierung der Proteolyse besonders bevorzugt, insbesondere wenn auch die Mittel Proteasen enthalten. Wasch- oder Reinigungsmittel können zu diesem Zweck Stabilisatoren enthalten; die Bereitstellung derartiger Mittel stellt eine bevorzugte Ausführungsform der vorliegenden Erfindung dar. Bevorzugt werden ein oder mehrere Enzyme und/oder Enzymzubereitungen, vorzugsweise feste Protease-Zubereitungen und/oder Amylase-Zubereitungen, in Mengen von 0,1 bis 5 Gew.-%, vorzugsweise von 0,2 bis 4,5 Gew.-% und insbesondere von 0,4 bis 4 Gew.-%, jeweils bezogen auf das gesamte enzymhaltige Mittel, eingesetzt.
Glaskorrosionsinhibitoren verhindern das Auftreten von Trübungen, Schlieren und Kratzern aber auch das Irisieren der Glasoberfläche von maschinell gereinigten Gläsern. Bevorzugte Glaskorrosionsinhibitoren stammen aus der Gruppe der Magnesium- und/oder Zinksalze und/oder Magnesium- und/oder Zinkkomplexe.
Das Spektrum der erfindungsgemäß bevorzugten Zinksalze, vorzugsweise organischer Säuren, besonders bevorzugt organischer Carbonsäuren, reicht von Salzen, die in Wasser schwer oder nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/l, vorzugsweise unterhalb 10 mg/l, insbesondere unterhalb 0,01 mg/l aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/l, vorzugsweise oberhalb 500 mg/l, besonders bevorzugt oberhalb 1 g/l und insbesondere oberhalb 5 g/l aufweisen (alle Löslichkeiten bei 200C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkeitrat, das Zinkoleat und das Zinkstearat, zu der Gruppe der löslichen Zinksalze gehören beispielsweise das Zinkformiat, das Zinkacetat, das Zinklactat und das Zinkgluconat.
Mit besonderem Vorzug wird als Glaskorrosionsinhibitor mindestens ein Zinksalz einer organischen Carbonsäure, besonders bevorzugt um ein Zinksalz aus der Gruppe Zinkstearat, Zinkoleat, Zinkgluconat, Zinkacetat, Zinklactat und/oder Zinkeitrat eingesetzt. Auch Zinkricinoleat, Zinkabietat und Zinkoxalat sind bevorzugt.
Im Rahmen der vorliegenden Erfindung beträgt der Gehalt von Reinigungsmitteln an Zinksalz vorzugsweise zwischen 0,1 bis 5 Gew.-%, bevorzugt zwischen 0,2 bis 4 Gew.-% und insbesondere zwischen 0,4 bis 3 Gew.-%, bzw. der Gehalt an Zink in oxidierter Form (berechnet als Zn2+) zwischen 0,01 bis 1 Gew.-%, vorzugsweise zwischen 0,02 bis 0,5 Gew.-% und insbesondere zwischen 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht des glaskorrosionsinhibitorhaltigen Mittels.
Korrosionsinhibitoren dienen dem Schütze des Spülgutes oder der Maschine, wobei im Bereich des maschinellen Geschirrspülens besonders Silberschutzmittel eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotria∑ole und der Übergangsmetallsalze oder - komplexe eingesetzt werden, Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Erfindungsgemäß bevorzugt werden 3-Amino-5-alkyl-1,2,4-triazole bzw. ihre physiologisch verträglichen Salze eingesetzt, wobei diese Substanzen mit besonderem Vorzug in einer Konzentration von 0,001 bis 10 Gew.-%, vorzugsweise 0,0025 bis 2 Gew.-%, besonders bevorzugt 0,01 bis 0,04 Gew.-% eingesetzt werden. Bevorzugte Säuren für die Salzbildung sind Salzsäure, Schwefelsäure, Phosphorsäure, Kohlensäure, schweflige Säure, organische Carbonsäuren wie Essig-, Glykol-, Citronen-, Bernsteinsäure. Ganz besonders wirksam sind 5- Pentyl-, 5-Heptyl-, 5-Nonyl-, 5-Undecyl-, 5-lsononyl-, 5-Versatic-10-säurealkyl-3-amino-1 ,2,4- triazole sowie Mischungen dieser Substanzen.
Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und Stickstoff-haltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z.B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen eingesetzt. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan- und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
Anstelle von oder zusätzlich zu den vorstehend beschriebenen Silberschutzmitteln, beispielsweise den Benzotriazolen, können redoxaktive Substanzen eingesetzt werden. Diese Substanzen sind vorzugsweise anorganische redoxaktive Substanzen aus der Gruppe der Mangan-, Titian-, Zirkonium-, Hafnium-, Vanadium-, Cobalt- und Cer-Salze und/oder -Komplexe, wobei die Metalle vorzugsweise in einer der Oxidationsstufen II, III, IV, V oder VI vorliegen.
Die verwendeten Metallsalze bzw. Metallkomplexe sollen zumindest teilweise in Wasser löslich sein. Die zur Salzbildung geeigneten Gegenionen umfassen alle üblichen ein-, zwei-, oder dreifach negativ geladenen anorganischen Anionen, z.B. Oxid, Sulfat, Nitrat, Fluorid, aber auch organische Anionen wie z.B. Stearat.
Besonders bevorzugte Metallsalze und/oder Metallkomplexe sind ausgewählt aus der Gruppe MnSO4, Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(II)-[I -Hydroxyethan-1 ,1 - diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3)3, sowie deren Gemische, so dass die Metallsalze und/oder Metallkomplexe ausgewählt aus der Gruppe MnSO4, Mn(ll)-citrat, Mn(ll)-stearat, Mn(ll)-acetylacetonat, Mn(ll)-[1-Hydroxyethan-1 ,1- diphosphonat], V2O5, V2O4, VO2, TiOSO4, K2TiF6, K2ZrF6, CoSO4, Co(NO3)2, Ce(NO3)3 mit besonderem Vorzug eingesetzt werden.
Die anorganischen redoxaktiven Substanzen, insbesondere Metallsalze bzw. Metallkomplexe sind vorzugsweise gecoatet, d.h. vollständig mit einem wasserdichten, bei den Reinigungstemperaturen aber leichtlöslichen Material überzogen, um ihre vorzeitige Zersetzung oder Oxidation bei der Lagerung zu verhindern. Bevorzugte Coatingmaterialien, die nach bekannten Verfahren, etwa Schmelzcoatingverfahren nach Sandwik aus der Lebensmittelindustrie, aufgebracht werden, sind Paraffine, Mikrowachse, Wachse natürlichen Ursprungs wie Camaubawachs, Candellilawachs, Bienenwachs, höherschmelzende Alkohole wie beispielsweise Hexadecanol, Seifen oder Fettsäuren.
Die genannten Metallsalze und/oder Metallkomplexe sind in Reinigungsmitteln, vorzugsweise in einer Menge von 0,05 bis 6 Gew.-%, vorzugsweise 0,2 bis 2,5 Gew.-%, jeweils bezogen auf das gesamte Mittel enthalten.
Um den Zerfall vorgefertigter Formkörper zu erleichtern, ist es möglich, Desintegrationshilfsmittel, sogenannte Tablettensprengmittel, in diese Mittel einzuarbeiten, um die Zerfallszeiten zu verkürzen. Unter Tablettensprengmitteln bzw. Zerfallsbeschleunigern werden Hilfsstoffe verstanden, die für den raschen Zerfall von Tabletten in Wasser oder Magensaft und für die Freisetzung der Pharmaka in resorbierbarer Form sorgen.
Diese Stoffe, die auch aufgrund ihrer Wirkung als "Spreng"mittei bezeichnet werden, vergrößern bei Wasserzutritt ihr Volumen, wobei einerseits das Eigenvolumen vergrößert (Quellung), andererseits auch über die Freisetzung von Gasen ein Druck erzeugt werden kann, der die Tablette in kleinere Partikel zerfallen läßt. Altbekannte Desintegrationshilfsmittel sind beispielsweise Carbonat/Citronensäure-Systeme, wobei auch andere organische Säuren eingesetzt werden können. Quellende Desintegrationshilfsmittel sind beispielsweise synthetische Polymere wie Polyvinylpyrrolidon (PVP) oder natürliche Polymere bzw. modifizierte Naturstoffe wie Cellulose und Stärke und ihre Derivate, Alginate oder Casein-Derivate.
Bevorzugt werden Desintegrationshilfsmittel in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationshilfsmittelhaltigen Mittels, eingesetzt.
Als bevorzugte Desintegrationsmittel werden Desintegrationsmittel auf Cellulosebasis eingesetzt, so dass bevorzugte Wasch- und Reinigungsmittel ein solches Desintegrationsmittel auf Cellulosebasis in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise 3 bis 7 Gew.-% und insbesondere 4 bis 6 Gew.-% enthalten, Reine Cellulose weist die formale Bruttozusammensetzung (C6Hi0Os)n auf und stellt formal betrachtet ein ß-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy- Wasserstoffatome substituiert wurden. Aber auch Celiulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen. In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen. Die genannten Cellulosederivate werden vorzugsweise nicht allein als Desintegrationsmittel auf Cellulosebasis eingesetzt, sondern in Mischung mit Cellulose verwendet. Der Gehalt dieser Mischungen an Cellulosederivaten beträgt vorzugsweise unterhalb 50 Gew. -%, besonders bevorzugt unterhalb 20 Gew.-%, bezogen auf das Desintegrationsmittel auf Cellulosebasis. Besonders bevorzugt wird als Desintegrationsmittel auf Cellulosebasis reine Cellulose eingesetzt, die frei von Cellulosederivaten ist.
Die als Desintegrationshilfsmittel eingesetzte Cellulose wird vorzugsweise nicht in feinteiliger Form eingesetzt, sondern vor dem Zumischen zu den zu verpressenden Vorgemischen in eine gröbere Form überführt, beispielsweise granuliert oder kompaktiert. Die Teilchengrößen solcher Desintegrationsmittel liegen zumeist oberhalb 200 μm, vorzugsweise zu mindestens 90 Gew.-% zwischen 300 und 1600 μm und insbesondere zu mindestens 90 Gew.-% zwischen 400 und 1200 μm.
Als weiteres Desintegrationsmittel auf Cellulosebasis oder als Bestandteil dieser Komponente kann mikrokristalline Cellulose eingesetzt werden. Diese mikrokristalline Cellulose wird durch partielle Hydrolyse von Cellulosen unter solchen Bedingungen erhalten, die nur die amorphen Bereiche (ca. 30% der Gesamt-Cellulosemasse) der Cellulosen angreifen und vollständig auflösen, die kristallinen Bereiche (ca. 70%) aber unbeschadet lassen. Eine nachfolgende Desaggregation der durch die Hydrolyse entstehenden mikrofeinen Cellulosen liefert die mikrokristallinen Cellulosen, die Primärteilchengrößen von ca. 5 μm aufweisen und beispielsweise zu Granulaten mit einer mittleren Teilchengröße von 200 μm kompaktierbar sind.
Bevorzugte Desintegrationshilfsmittel, vorzugsweise ein Desintegrationshilfsmittel auf Cellulosebasis, vorzugsweise in granulärer, cogranulierter oder kompaktierter Form, sind in den desintegrationsmittelhaltigen Mitteln in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 3 bis 7 Gew.-% und insbesondere von 4 bis 6 Gew.-%, jeweils bezogen auf das Gesamtgewicht des desintegrationsmittelhaltigen Mittels, enthalten.
Erfindungsgemäß bevorzugt können darüber hinaus weiterhin gasentwickelnde Brausesysteme als Tablettendesintegrationshilfsmittel eingesetzt werden. Das gasentwickelnde Brausesystem kann aus einer "einzigen Substanz bestehen, die bei Kontakt mit Wasser ein Gas freisetzt. Unter diesen Verbindungen ist insbesondere das Magnesiumperoxid zu nennen, das bei Kontakt mit Wasser Sauerstoff freisetzt. Üblicherweise besteht das gasfreisetzende Sprudelsystem jedoch seinerseits aus mindestens zwei Bestandteilen, die miteinander unter Gasbildung reagieren. Während hier eine Vielzahl von Systemen denk- und ausführbar ist, die beispielsweise Stickstoff, Sauerstoff oder Wasserstoff freisetzen, wird sich das in den Wasch- und Reinigungsmittel eingesetzte Sprudelsystem sowohl anhand ökonomischer als auch anhand ökologischer Gesichtspunkte auswählen lassen. Bevorzugte Brausesysteme bestehen aus Alkalimetallcarbonat und/oder -hydrogencarbonat sowie einem Acidifizierungsmittel, das geeignet ist, aus den Alkalimetallsalzen in wäßrige Lösung Kohlendioxid freizusetzen.
Als Acidifizierungsmittel, die aus den Alkalisalzen in wäßriger Lösung Kohlendioxid freisetzen, sind beispielsweise Borsäure sowie Alkalimetallhydrogensulfate,
Alkalimetalldihydrogenphosphate und andere anorganische Salze einsetzbar. Bevorzugt werden allerdings organische Acidifizierungsmittel verwendet, wobei die Citronensäure ein besonders bevorzugtes Acidifizierungsmittel ist. Bevorzugt sind Acidifizierungsmittel im Brausesystem aus der Gruppe der organischen Di-, Tri- und Oligocarbonsäuren bzw. Gemische.
Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang- Ylang-Öl.
Um wahrnehmbar zu sein, muss ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Auf Grund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms bzw. Duftstoffs während des Verdampfens, wobei man die Geruchseindrücke in "Kopfnote" (top note), "Herz- bzw. Mittelnote" (middle note bzw. body) sowie "Basisnote" (end note bzw. dry out) unterteilt. Da die Geruchswahrnehmung zu einem großen Teil auch auf der Geruchsintensität beruht, besteht die Kopfnote eines Parfüms bzw. Duftstoffs nicht allein aus leichtflüchtigen Verbindungen, während die Basisnote zum größten Teil aus weniger flüchtigen, d.h. haftfesten Riechstoffen besteht. Bei der Komposition von Parfüms können leichter flüchtige Riechstoffe beispielsweise an bestimmte Fixative gebunden werden, wodurch ihr zu schnelles Verdampfen verhindert wird. Bei der nachfolgenden Einteilung der Riechstoffe in "leichter flüchtige" bzw. "haftfeste" Riechstoffe ist also über den Geruchseindruck und darüber, ob der entsprechende Riechstoff als Kopf- oder Herznote wahrgenommen wird, nichts ausgesagt.
Die Duftstoffe können direkt verarbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die durch eine langsamere Duftfreisetzung für langanhaltenden Duft sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Kompiexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber den mit den farbstoffhaltigen Mitteln zu behandelnden Substraten wie beispielsweise Textilien, Glas, Keramik oder Kunststoffgeschirr, um diese nicht anzufärben.
Bei der Wahl des Färbemittels muss beachtet werden, dass die Färbemittel eine hohe Lagerstabilität und Unempfindlichkeit gegenüber Licht sowie keine zu starke Affinität gegenüber Glas, Keramik oder Kunststoffgeschirr aufweisen. Gleichzeitig ist auch bei der Wahl geeigneter Färbemittel zu berücksichtigen, dass Färbemittel unterschiedliche Stabilitäten gegenüber der Oxidation aufweisen. Im allgemeinen gilt, dass wasserunlösliche Färbemittel gegen Oxidation stabiler sind als wasserlösliche Färbemittel. Abhängig von der Löslichkeit und damit auch von der Oxidationsempfindlichkeit variiert die Konzentration des Färbemittels in den Wasch- oder Reinigungsmitteln. Bei gut wasserlöslichen Färbemitteln werden typischerweise Färbemittel- Konzentrationen im Bereich von einigen 10"2 bis 10'3 Gew.-% gewählt. Bei den auf Grund ihrer Brillanz insbesondere bevorzugten, allerdings weniger gut wasserlöslichen Pigmentfarbstoffen liegt die geeignete Konzentration des Färbemittels in Wasch- oder Reinigungsmitteln dagegen typischerweise bei einigen 10"3 bis 10"4 Gew.-%.
Es werden Färbemittel bevorzugt, die im Waschprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrdsofarbstoffe.
Zusätzlich zu den bisher ausführlich beschriebenen Komponenten können die Wasch- und Reinigungsmittel weitere Inhaltsstoffe enthalten, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften dieser Mittel weiter verbessern. Bevorzugte Mittel enthalten einen oder mehrere Stoffe aus der Gruppe der Elektrolyt^, pH-Stellmittel, Fluoreszenzmittel, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, • optische Aufheller,
Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbüberträgungsinhibitoren, antimikrobiellen Wirkstoffen, Germizide, Fungizide, Antioxidantien, Antistatika, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel sowie UV-Absorber.
Als Elektrolyte aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen Sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI2 in den Wasch- oder Reinigungsmitteln bevorzugt.
Um den pH-Wert von Wasch- oder Reinigungsmitteln in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. Üblicherweise überschreitet die Menge dieser Stellmittel 1 Gew.-% der Gesamtformulierung nicht.
Als Schauminhibitoren, kommen u.a. Seifen, Öle, Fette, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können. Als Trägermaterialien eignen sich beispielsweise anorganische Salze wie Carbonate oder Sulfate, Cellulosederivate oder Silikate sowie Mischungen der vorgenannten Materialien. Im Rahmen der vorliegenden Anmeldung bevorzugte Mittel enthalten Paraffine, vorzugsweise unverzweigte Paraffine (n-Paraffine) und/oder Silikone, vorzugsweise linear-polymere Silikone, welche nach dem Schema (R2SiO)X aufgebaut sind und auch als Silikonöle bezeichnet werden. Diese Silikonöle stellen gewöhnlich klare, farblose, neutrale, geruchsfreie, hydrophobe Flüssigkeiten dar mit einem Molekulargewicht zwischen 1000 und 150.000, und Viskositäten zwischen 10 und 1.000.000 mPa-s.
Geeignete Antiredepositionsmittel, die auch als soil repellents bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglycolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Insbesondere bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.
Optische Aufheller (sogenannte „Weißtöner") können den Wasch- oder Reinigungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilien zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleichwirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyryl-biphenylen,
Methylumbelliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate.
Vergrauungsinhibitoren haben die Aufgabe, den. von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Ceilulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Als Vergrauungsinhibitoren einsetzbar sind weiterhin Celluloseether wie Carboxymethylcellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie
Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxy-methylcellulose und deren Gemische.
Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können synthetische Knitterschutzmittel eingesetzt werden. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester. Phobier- und Imprägnierverfahren dienen der Ausrüstung von Textilien mit Substanzen, welche die Ablagerung von Schmutz verhindern oder dessen Auswaschbarkeit erleichtern. Bevorzugte Phobier- und Imprägniermittel sind perfluorierte Fettsäuren, auch in Form ihrer Aluminium- u. Zirconiumsalze, organische Silikate, Silikone, Polyacrylsäureester mit perfluorierter Alkohol- Komponente oder mit perfluoriertem Acyl- oder Sulfonyl-Rest gekoppelte, polymerisierbare Verbindungen. Auch Antistatika können enthalten sein. Die schmutzabweisende Ausrüstung mit Phobier- und Imprägniermitteln wird oft als eine Pflegeleicht-Ausrüstung eingestuft. Das Eindringen der Imprägniermittel in Form von Lösungen oder Emulsionen der betreffenden Wirkstoffe kann durch Zugabe von Netzmitteln erleichtert werden, die die Oberflächenspannung herabsetzen. Ein weiteres Einsatzgebiet von Phobier- und Imprägniermitteln ist die wasserabweisende Ausrüstung von Textilwaren, Zelten, Planen, Leder usw., bei der im Gegensatz zum Wasserdichtmachen die Gewebeporen nicht verschlossen werden, der Stoff also atmungsaktiv bleibt (Hydrophobieren). Die zum Hydrophobieren verwendeten Hydrophobiermittel überziehen Textilien, Leder, Papier, Holz usw. mit einer sehr dünnen Schicht hydrophober Gruppen, wie längere Alkyl-Ketten oder Siloxan-Gruppen. Geeignete Hydrophobiermittel sind z.B. Paraffine, Wachse, Metallseifen usw. mit Zusätzen an Aluminium- oder Zirconium-Salzen, quartäre Ammonium-Verbindungen mit langkettigen Alkyl-Resten, Harnstoff-Derivate, Fettsäuremodifizierte Melaminharze, Chrom-Komplexsalze, Silikone, Zinn-organische Verbindungen und Glutardialdehyd' sowie perfluorierte Verbindungen. Die hydrophobierten Materialien fühlen sich nicht fettig an; dennoch perlen - ähnlich wie an gefetteten Stoffen - Wassertropfen an ihnen ab, ohne zu benetzen. So haben z.B. Silikon-imprägnierte Textilien einen weichen Griff und sind wasser- und schmutzabweisend; Flecke aus Tinte, Wein, Fruchtsäften und dergleichen sind leichter zu entfernen.
Zur Bekämpfung von Mikroorganismen können antimikrobielle Wirkstoffe eingesetzt werden. Hierbei unterscheidet man je nach antimikrobiellem Spektrum und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw.. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarlylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei auch gänzlich auf diese Verbindungen verzichtet werden kann.
Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Wasch- und Reinigungsmitteln und/oder den behandelten Textilien zu verhindern, können die Mittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite und Phosphonate. Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. Äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. L'auryl- (bzw. Stearyl-) dimethylbenzylammoniumchloride eignen sich ebenfalls als Antistatika für Textilien bzw. als Zusatz zu Waschmitteln, wobei zusätzlich ein Ävivageeffekt erzielt wird.
Zur Pflege der Textilien und zur Verbesserung der Textileigenschaften wie einem weicheren "Griff" (Avivage) und verringerter elektrostatischer Aufladung (erhöhter Tragekomfort) können Weichspüler eingesetzt werden. Die Wirkstoffe in Weichspülformulierungen sind "Esterquats", quartäre Ammoniumverbindungen mit zwei hydrophoben Resten, wie beispielsweise das Disteraryldimethylammoniumchlorid, welches jedoch wegen seiner ungenügenden biologischen Abbaubarkeit zunehmend durch quartäre Ammoniumverbindungen ersetzt wird, die in ihren hydrophoben Resten Estergruppen als Sollbruchstellen für den biologischen Abbau enthalten. Derartige "Esterquats" mit verbesserter biologischer Abbaubarkeit sind beispielsweise dadurch erhältlich, dass man Mischungen von Methyldiethanolamin und/oder Triethanolamin mit Fettsäuren verestert und die Reaktionsprodukte anschließend in an sich bekannter Weise mit Alkylierungsmitteln quaterniert. Als Appretur weiterhin geeignet ist Dimethylolethylenhamstoff.
Zur Verbesserung des Wasserabsorptionsvermögens, der Wiederbenetzbarkeit der behandelten Textilien und zur Erleichterung des Bügeins der behandelten Textilien können Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten von Wasch- oder Reinigungsmitteln durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C- Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Weitere bevorzugte Silikone sind die Polyalkylenoxid-modifizierten Polysiloxane, also Polysiloxane, welche beispielsweise Polyethylenglykole aufweisen sowie die Polyalkylenoxid-modifizierten Dimetylpolysiloxane.
Schließlich können erfindungsgemäß auch UV-Absorber eingesetzt werden, die auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung, Weiterhin sind auch substituierte Benzotriazole, in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbeiliferon und die körpereigene Urocansäure geeignet.
Proteinhydrolysate sind auf Grund ihrer faserpflegenden Wirkung weitere im Rahmen der vorliegenden Erfindung bevorzugte Aktivsubstanzen aus dem Gebiet der Wasch- und Reinigungsmittel. Proteinhydrolysate sind Produktgemische, die durch sauer, basisch qder enzymatisch katalysierten Abbau von Proteinen (Eiweißen) erhalten werden. Erfindungsgemäß können Proteinhydrolysate sowohl pflanzlichen als auch tierischen Ursprungs eingesetzt werden. Tierische Proteinhydrolysate sind beispielsweise' Elastin-, Kollagen-, Keratin-, Seiden- und Milch- eiweiß-Proteinhydrolysate, die auch in Form von Salzen vorliegen können. Erfindungsgemäß bevorzugt ist die Verwendung von Proteinhydrolysaten pflanzlichen Ursprungs, z.B. Soja-, Mandel-, Reis-, Erbsen-, Kartoffel- und Weizenproteinhydrolysate. Wenngleich der Einsatz der Proteinhydrolysate als solche bevorzugt ist,' können an deren Stelle gegebenenfalls auch anderweitig erhaltene Aminosäuregemische oder einzelne Aminosäuren wie beispielsweise Arginin, Lysin, Histidin oder Pyrroglutaminsäure eingesetzt werden. Ebenfalls möglich ist der Einsatz von Derivaten der Proteinhydrolysate, beispielsweise in Form ihrer Fettsäure- Kondensationsprodukte.

Claims

Patentansprüche
1. Verpackungssystem für Wasch- oder Reinigungsmitteldosiereinheiten, umfassend a) ein primäres Verpackungssystem in Form einer Anzahl (n) > 2 wasserunlöslicher Beutel, wobei jeder dieser Beutel eine Anzahl (x) > 2 Wasch- oder Reinigungsmitteldosiereinheiten enthält; sowie b) ein sekundäres Verpackungssystem in Form eines eines wasserunlöslichen Beutels, welcher die (n) wasserunlöslichen Beutel des primären Verpackungssystems enthält.
2. Verpackungssystem nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Wasch- oder Reinigungsmitteldosiereinheiten um befüllte wasserlösliche oder wasserdispergierbare Beutel handelt.
3. Verpackungssystem nach Anspruch 1, dadurch gekennzeichnet, dass die Wasch- oder Reinigungsmitteldosiereinheiten einen verpressten Formkörper und eine mit diesem Formkörper haftend verbundene wasserlösliche Folie umfassen.
4. Verpackungssystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Wasch- oder Reinigungsmitteldosiereinheiten bezogen auf das Gesamtgewicht der enthaltenen wasch- oder reinigungsaktiven Substanzen mehr als 4 Gew.-%, vorzugsweise mehr als 6 Gew.-% und insbesondere mehr als 8 Gew.-% Natriumpercarbonat enthalten.
5. Verpackungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wasch- oder Reinigungsmitteldosiereinheiten bezogen auf das Gesamtgewicht der enthaltenen wasch- oder reinigungsaktiven Substanzen 0,5 bis 8 Gew.-%, vorzugsweise 1 bis 7 und insbesondere 2 bis 6 Gew.-% nichtionische Tenside enthalten.
6. Verpackungssystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die wasserunlöslichen Beutel des primären Verpackungssystems jeweils eine Anzahl (x) > 3, vorzugsweise (x) > 4, besonders bevorzugt (x) > 5 Wasch- oder Reinigungsmitteldosiereinheiten enthalten.
7. Verpackungssystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das primäre Verpackungssystem aus einer Anzahl (n) > 3, vorzugsweise (n) > 4, besonders bevorzugt (n) > 5 wasserunlöslicher Beutel besteht.
8. Verpackungssystem nach einem der Ansprüche 1' bis 7, dadurch gekennzeichnet, dass sich die Anzahl (n) der wasserunlöslichen Beutel des primären Verpackungssystems und die Anzahl (x) der in jedem dieser Beutel enthaltenen Wasch- oder Reinigungsmitteldosiereinheiten um nicht mehr als 3, vorzugsweise nicht mehr als 2 und insbesondere nicht mehr als 1 unterscheiden.
9. Verpackungssystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das primäre und/oder das sekundäre Verpackungssystem eine Feuchtigkeitsdampfdurchlässigkeitsrate von 0,1 g/m2/Tag bis weniger "als 20 g/m2 Tag aufweist/aufweisen, wenn das Verpackungssystem bei 23°C und einer relativen Gleichgewichtsfeuchtigkeit von 85% gelagert wird.
10. Verpackungssystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens ein wässerunlöslicher Beutel des primären Verpackungssystems und/oder der wasserunlösliche Beutel des sekundären Verpackungssystems aufgeblasen ist.
11. Verpackungssystem nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mindestens ein wasserunlöslicher Beutel des primären Verpackungssystems und/oder
der wasserunlöslichen Beutel des sekundären Verpackungssystems mit einem Gas befüllt ist, welches eine von der Umgebungsluft abweichende Zusammensetzung aufweist.
12. Verpackungssystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass mindestens ein wasserunlöslicher Beutel des primären Verpackungssystems und/oder der wasserunlöslichen Beutel des sekundären Verpackungssystems vakuumversiegelt ist.
13. Verpackungssystem nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass es sich bei mindestens einem der wasserunlöslichen Beutel des primären Verpackungssystems und/oder dem wasserunlöslichen Beutel des sekundären Verpackungssystems um einen Standbodenbeutel, Klotzbodenbeutel, Seitenfaltenbeutel oder ein Flowpack handelt.
14. Verpackungssystem nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass mindestens einer der wasserunlöslichen Beutel des primären Verpackungssystems und/oder der wasserunlösliche Beutel des sekundären Verpackungssystems eine wiederverschließbare Öffnung aufweist.
PCT/EP2006/002999 2005-04-27 2006-04-01 Verpackunqssystem für wasch- oder reinigungsmittel WO2006114185A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT06723958T ATE541028T1 (de) 2005-04-27 2006-04-01 Verpackungssystem für wasch- oder reinigungsmittel
EP06723958A EP1907294B1 (de) 2005-04-27 2006-04-01 Verpackungssystem für wasch- oder reinigungsmittel
PL06723958T PL1907294T3 (pl) 2005-04-27 2006-04-01 Układ opakowaniowy do środków piorących lub czyszczących
ES06723958T ES2377880T3 (es) 2005-04-27 2006-04-01 Sistema de envase de detergentes y productos de limpieza
US11/877,448 US20080261851A1 (en) 2005-04-27 2007-10-23 Packaging system for detergents or cleansers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005025690.2 2005-04-27
DE102005025690A DE102005025690B4 (de) 2005-04-27 2005-04-27 Verpackungssystem für Wasch-oder Reinigungsmittel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/877,448 Continuation US20080261851A1 (en) 2005-04-27 2007-10-23 Packaging system for detergents or cleansers

Publications (1)

Publication Number Publication Date
WO2006114185A1 true WO2006114185A1 (de) 2006-11-02

Family

ID=36579830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002999 WO2006114185A1 (de) 2005-04-27 2006-04-01 Verpackunqssystem für wasch- oder reinigungsmittel

Country Status (7)

Country Link
US (1) US20080261851A1 (de)
EP (1) EP1907294B1 (de)
AT (1) ATE541028T1 (de)
DE (1) DE102005025690B4 (de)
ES (1) ES2377880T3 (de)
PL (1) PL1907294T3 (de)
WO (1) WO2006114185A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858966A1 (de) * 2020-02-03 2021-08-04 The Procter & Gamble Company Vakuumverpackung für einheitswaschmittelportionen

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2264136B1 (de) * 2009-06-19 2013-03-13 The Procter & Gamble Company Flüssige Handspülmittelzusammensetzung
ES2412707T5 (es) * 2009-06-19 2023-06-12 Procter & Gamble Composición detergente líquida para lavado de vajillas a mano
US9994799B2 (en) 2012-09-13 2018-06-12 Ecolab Usa Inc. Hard surface cleaning compositions comprising phosphinosuccinic acid adducts and methods of use
US20140308162A1 (en) 2013-04-15 2014-10-16 Ecolab Usa Inc. Peroxycarboxylic acid based sanitizing rinse additives for use in ware washing
US8871699B2 (en) 2012-09-13 2014-10-28 Ecolab Usa Inc. Detergent composition comprising phosphinosuccinic acid adducts and methods of use
US9752105B2 (en) 2012-09-13 2017-09-05 Ecolab Usa Inc. Two step method of cleaning, sanitizing, and rinsing a surface
US20160200501A1 (en) 2015-01-14 2016-07-14 Monosol, Llc Web of cleaning products having a modified internal atmosphere and method of manufacture

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2704037A1 (de) * 1976-02-19 1977-08-25 Sig Schweiz Industrieges Packung mit innen- und aussenbeutel
EP0755875A1 (de) * 1995-06-30 1997-01-29 Orihiro Co., Ltd. Packungen sowie deren Herstellungsverfahren
DE10025187A1 (de) 2000-05-20 2001-07-19 Henkel Kgaa Verpackung für tablettenförmige Gegenstände
DE10026551A1 (de) 2000-05-27 2001-11-08 Henkel Kgaa Verpackung für tablettenförmige Gegenstände
WO2001083657A2 (en) 2000-04-28 2001-11-08 The Procter & Gamble Company Pouched compositions
WO2002085736A1 (en) 2001-04-20 2002-10-31 Reckitt Benckiser (Uk) Limited Water-soluble container comprising at least two compartments
EP1256623A1 (de) 2001-05-08 2002-11-13 The Procter & Gamble Company Kit bestehend aus wasserlöslichen oder dispergierbaren Beuteln
EP1314654A2 (de) 1999-03-17 2003-05-28 Unilever Plc Wasserlösliche Verpackung
EP1396440A1 (de) 2002-09-05 2004-03-10 The Procter & Gamble Company Flüssigkeitsgefüllten Beuteln enthaltendes verpacktes Produkt
DE10254313A1 (de) 2002-11-21 2004-06-09 Henkel Kgaa Verfahren zur Herstellung befüllter Wasch- und Reinigungsmittelformkörper
EP1516918A2 (de) 2000-11-27 2005-03-23 The Procter & Gamble Company Verpackung für Waschmittel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2234655A (en) * 1939-04-26 1941-03-11 Ivers Lee Co Multiple package
DE3326249A1 (de) * 1983-07-21 1985-01-31 Henkel Kgaa Wasch-, spuel- oder reinigungsmittelverpackung
US4933100A (en) * 1988-01-19 1990-06-12 Colgate-Palmolive Co. Built synthetic organic detergent composition patties and processes for washing laundry therewith
TR28810A (tr) * 1991-04-02 1997-04-07 Rhone Poulenc Agrochimie Bir kaplara koyma sistemi ve toksik veya tehlikeli mamülleri, mesela pestisidler ve bunlarin konsantratlari gibi zirai kimyasal bilesimleri depolamak, ambalajlamak ve nakletmek icin elverisli olan kaplar.
DE4408718A1 (de) * 1994-03-15 1995-09-21 Henkel Kgaa Bruch- und lagerstabile, polyfunktionelle Reinigungstabletten, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19852936A1 (de) * 1998-01-24 1999-08-12 Henkel Kgaa Verpackung für tablettenförmige Gegenstände
FR2793220B1 (fr) * 1999-05-04 2001-06-01 Oreal Ensemble pour la mise en contact extemporanee d'au moins deux elements, utilisation d'un tel ensemble et procede de traitement
DE10108153A1 (de) * 2000-09-28 2002-10-24 Henkel Kgaa Muldentabletten und Verfahren zu ihrer Herstellung
DE10336796B4 (de) * 2003-08-08 2005-05-19 Henkel Kgaa Wasch- oder Reinigungsmittel
US7325688B1 (en) * 2003-09-26 2008-02-05 Gowan Milling Company, L.L.C. Pressurized water-soluble pouch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2704037A1 (de) * 1976-02-19 1977-08-25 Sig Schweiz Industrieges Packung mit innen- und aussenbeutel
EP0755875A1 (de) * 1995-06-30 1997-01-29 Orihiro Co., Ltd. Packungen sowie deren Herstellungsverfahren
EP1314654A2 (de) 1999-03-17 2003-05-28 Unilever Plc Wasserlösliche Verpackung
WO2001083657A2 (en) 2000-04-28 2001-11-08 The Procter & Gamble Company Pouched compositions
DE10025187A1 (de) 2000-05-20 2001-07-19 Henkel Kgaa Verpackung für tablettenförmige Gegenstände
DE10026551A1 (de) 2000-05-27 2001-11-08 Henkel Kgaa Verpackung für tablettenförmige Gegenstände
EP1516918A2 (de) 2000-11-27 2005-03-23 The Procter & Gamble Company Verpackung für Waschmittel
WO2002085736A1 (en) 2001-04-20 2002-10-31 Reckitt Benckiser (Uk) Limited Water-soluble container comprising at least two compartments
EP1256623A1 (de) 2001-05-08 2002-11-13 The Procter & Gamble Company Kit bestehend aus wasserlöslichen oder dispergierbaren Beuteln
EP1396440A1 (de) 2002-09-05 2004-03-10 The Procter & Gamble Company Flüssigkeitsgefüllten Beuteln enthaltendes verpacktes Produkt
DE10254313A1 (de) 2002-11-21 2004-06-09 Henkel Kgaa Verfahren zur Herstellung befüllter Wasch- und Reinigungsmittelformkörper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858966A1 (de) * 2020-02-03 2021-08-04 The Procter & Gamble Company Vakuumverpackung für einheitswaschmittelportionen
WO2021158380A1 (en) * 2020-02-03 2021-08-12 The Procter & Gamble Company Vacuum pack for unitized detergent portions

Also Published As

Publication number Publication date
DE102005025690B4 (de) 2007-02-01
EP1907294A1 (de) 2008-04-09
ATE541028T1 (de) 2012-01-15
ES2377880T3 (es) 2012-04-02
US20080261851A1 (en) 2008-10-23
DE102005025690A1 (de) 2006-11-09
PL1907294T3 (pl) 2012-06-29
EP1907294B1 (de) 2012-01-11

Similar Documents

Publication Publication Date Title
EP1740689A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
EP1740690A1 (de) Verfahren zur herstellung von wasch-oder reinigungsmitteln
EP1776448B1 (de) Verfahren zur herstellung portionierter wasch- oder reinigungsmittel
DE102005025690B4 (de) Verpackungssystem für Wasch-oder Reinigungsmittel
EP1735419B1 (de) Maschinelles geschirrspülmittel
EP1922401B1 (de) Wasch- oder reinigungsmittel
EP1781764A1 (de) Klarspülhaltige wasch- und reinigungsmittel mit schwefelhaltigen aminosäuren
DE102004051619A1 (de) Wasch- oder Reinigungsmittel
EP1888736B1 (de) Wasch- oder reinigungsmittel dosiereinheit
DE102005045440A1 (de) Portionierte Wasch- oder Reinigungsmittelzusammensetzung
WO2006111260A1 (de) Wasch- oder reinigungsmittel
DE102004040330A1 (de) Beschichteter Wasch- oder Reinigungsmittelformkörper
WO2006063724A1 (de) Schneidwerkzeug für folienbahnen
DE102005022786B4 (de) Wasch- oder Reinigungsmitteldosiereinheit
WO2006066721A1 (de) Dosiereinheit für wasch- oder reinigungsmittel
DE102004051620A1 (de) Wasch- oder Reinigungsmittel
WO2007107479A1 (de) Wasch- oder reinigungsmitteldosiereinheit
WO2006045453A1 (de) Wasch- oder reinigungsmitteldosiereinheit
EP1859018A1 (de) Mehrphasiger wasch- oder reinigungsmittelformkörper
WO2005019402A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
DE102004030148A1 (de) Verfahren zur Herstellung von Portionspackungen für wasch- oder reinigungsaktive Substanzen
DE10338368A1 (de) Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln
DE102004062338A1 (de) Verpacktes Wasch- oder Reinigungsmittel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006723958

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006723958

Country of ref document: EP