DE10344149A1 - Verfahren zur Herstellung von ringförmigen Vollkatalysatoren - Google Patents

Verfahren zur Herstellung von ringförmigen Vollkatalysatoren Download PDF

Info

Publication number
DE10344149A1
DE10344149A1 DE10344149A DE10344149A DE10344149A1 DE 10344149 A1 DE10344149 A1 DE 10344149A1 DE 10344149 A DE10344149 A DE 10344149A DE 10344149 A DE10344149 A DE 10344149A DE 10344149 A1 DE10344149 A1 DE 10344149A1
Authority
DE
Germany
Prior art keywords
annular
diameter
ring
shaped
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10344149A
Other languages
English (en)
Inventor
Jochen Dr. Petzoldt
Klaus Joachim Dr. Müller-Engel
Signe Dr. Unverricht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE10344149A priority Critical patent/DE10344149A1/de
Publication of DE10344149A1 publication Critical patent/DE10344149A1/de
Priority to US10/934,525 priority patent/US7777082B2/en
Priority to TW093128054A priority patent/TWI356733B/zh
Priority to MYPI20043765A priority patent/MY144024A/en
Priority to KR1020067005560A priority patent/KR101095152B1/ko
Priority to RU2006113641/04A priority patent/RU2377068C2/ru
Priority to JP2006527324A priority patent/JP4868520B2/ja
Priority to PCT/EP2004/010436 priority patent/WO2005030393A1/de
Priority to EP04765332.4A priority patent/EP1663488B1/de
Priority to CNB2004800274294A priority patent/CN100542673C/zh
Priority to BRPI0414556-9A priority patent/BRPI0414556B1/pt
Priority to ZA200603201A priority patent/ZA200603201B/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8876Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/34Mechanical properties
    • B01J35/37Crush or impact strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/55Cylinders or rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Ein Verfahren zur Herstellung von ringförmigen Vollkatalysatoren durch thermisches Behandeln von ringförmigen Vollkatalysatorvorläuferformkörpern, wobei die Seitendruckfestigkeit der ringförmigen Vollkatalysatorvorläuferformkörper >= 12 N und 23 N beträgt. Außerdem dabei resultierende ringförmige Vollkatalysatoren mit spezifischer Porenstruktur sowie die Verwendung solcher ringförmiger Vollkatalysatoren zur gasphasenkatalytischen partiellen oxidativen Herstellung von (Meth)acrolein.

Description

  • Vorliegende Erfindung betrifft ein Verfahren zur Herstellung von ringförmigen Vollkatalysatoren mit gekrümmter und/oder nicht gekrümmter Stirnfläche der Ringe, deren Aktivmasse eine Stöchiometrie der allgemeinen Formel I, Mo12BiaFebX1 cX2 dX3 eX4 fOn (I), mit
    X1 = Nickel und/oder Kobalt,
    X2 = Thallium, ein Alkalimetall und/oder ein Erdalkalimetall,
    X3 = Zink, Phosphor, Arsen, Bor, Antimon, Zinn, Cer, Blei und oder Wolfram,
    X4 = Silicium, Aluminium, Titan und/oder Zirkonium,
    a = 0,2 bis 5,
    b = 0,01 bis 5,
    c = 0 bis 10,
    d = 0 bis 2,
    e = 0 bis 8,
    f = 0 bis 10 und
    n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in 1 bestimmt wird,
    oder eine Stöchiometrie der allgemeinen Formel II,
    [Y1 a'Y2 b'Ox']p[Y3 c'Y4 d'Y5 e'Y6 f'Y7 g'Y2 h'Oy']q (II), mit
    Y1 = nur Wismut oder Wismut und wenigstens eines der Elemente Tellur, Antimon, Zinn und Kupfer,
    Y2 = Molybdän oder Molybdän und Wolfram,
    Y3 = ein Alkalimetall, Thallium und/oder Samarium,
    Y4 = ein Erdalkalimetall, Nickel, Kobalt, Kupfer, Mangan, Zink, Zinn, Cadmium und/oder Quecksilber,
    Y5 = Eisen oder Eisen und wenigstens eines der Elemente Vanadium, Chrom und Cer,
    Y6 = Phosphor, Arsen, Bor und/oder Antimon,
    Y7 = ein seltenes Erdmetall, Titan, Zirkonium, Niob, Tantal, Rhenium, Ruthenium, Rhodium, Silber, Gold, Aluminium, Gallium, Indium, Silicium, Germanium, Blei, Thorium und/oder Uran,
    a' = 0,01 bis 8,
    b' = 0,1 bis 30,
    c' = Obis 4,
    d' = 0 bis 20
    e' > 0 bis 20,
    f' = 0 bis 6,
    g' = 0 bis 15,
    h' = 8 bis 16, x', y' = Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II bestimmt werden und
    p, q = Zahlen, deren Verhältnis p/q 0,1 bis 10 beträgt,
    und deren ringförmige Geometrie, ohne Berücksichtigung einer gegebenenfalls bestehenden Krümmung der Stirnfläche, eine Länge L von 2 bis 11 mm, einen Außendurchmesser A von 2 bis 11 mm und eine Wandstärke W von 0,75 mm bis 1,75 mm aufweist, bei dem man aus Quellen der elementaren Konstituenten der Aktivmasse ein feinteiliges formbares Gemisch erzeugt und aus diesem Gemisch, gegebenenfalls nach Zugabe von Formungs- und/oder Verstärkungshilfsmitteln, ringförmige Vollkatalysatorvorläuferformkörper formt, deren Stirnflächen gekrümmt und/oder nicht gekrümmt sind, und diese durch thermisches Behandeln bei erhöhter Temperatur in die ringförmigen Vollkatalysatoren überführt.
  • Außerdem betrifft die vorliegende Erfindung die Verwendung der nach dem erfindungsgemäßen Verfahren erhältlichen ringförmigen Vollkatalysatoren als Katalysatoren mit erhöhter Aktivität und Selektivität für die gasphasenkatalytische Partialoxidation von Propen zu Acrolein sowie von iso-Buten bzw. tert.-Butanol bzw. dessen Methylether zu Methacrolein.
  • Eingangs beschriebene Verfahren zur Herstellung ringförmiger Vollkatalysatoren sind bekannt (vgl. z.B. EP-A 575897, DE-A 3300044, DE-A 19855913, DE-A 10046957, EP-A 1340538, DE-A 19948523, DE-A 44070202 sowie DE-A 10101695). Ebenso ist aus vorgenannten Schriften die Verwendung solcher ringförmiger Vollkatalysatoren als Katalysatoren für die gasphasenkatalytische Partialoxidation von Propen zu Acrolein sowie von iso-Buten bzw. tert.-Butanol bzw. dem Methylether des tert.-Butanols zu Methacrolein bekannt.
  • Hinsichtlich der zur Formung des ringförmigen Vollkatalysatorvorläuferformkörpers anzuwendenden Kräfte schweigen sich die Schriften des Standes der Technik in der Regel aus.
  • Lediglich die DE-A 10101695 und die DE-A 10121592 lehren diesbezüglich, dass die Kompaktierung (Verdichtung) zu den ringförmigen Vollkatalysatorvorläuferformkörpern so erfolgen solle, dass die Seitendruckfestigkeit der resultierenden ringförmigen Vollkatalysatorvorläuferformkörper 10N beträgt.
  • Nachteilig an z.B. der Lehre der DE-A 10101695 ist jedoch, dass die gemäß der Lehre der DE-A 10101695 resultierenden ringförmigen Vollkatalysatoren bei ihrer Verwendung als Katalysatoren für die gasphasenkatalytische Partialoxidation von Propen zu Acrolein bzw. von iso-Buten oder tert.-Butanol (bzw. dessen Methylether) zu Methacrolein sowohl hinsichtlich ihrer Aktivität als auch hinsichtlich der Selektivität der Zielproduktbildung nicht voll zu befriedigen vermögen.
  • Die Aufgabe der vorliegenden Erfindung bestand daher darin, ein verbessertes Verfahren zur Herstellung ringförmiger Vollkatalysatoren zur Verfügung zu stellen.
  • Demgemäss wurde ein wie Eingangs beschriebenes Verfahren gefunden, das dadurch gekennzeichnet ist, dass die Formung (Verdichtung) zu den ringförmigen Vollkatalysatorvorläuferformkörpern so erfolgt, dass die Seitendruckfestigkeit der resultierenden ringförmigen Vollkatalysatorvorläuferformkörper ≥ 12 N und ≤ 23 N beträgt. Vorzugsweise beträgt die Seitendruckfestigkeit der resultierenden ringförmigen Vollkatalysatorvorläuferformkörper ≥ 13 N und ≤ 22 N bzw. ≥ 14 N und ≤ 21 N. Ganz besonders bevorzugt beträgt die Seitendruckfestigkeit der resultierenden ringförmigen Vollkatalysatorvorläuferformkörper ≥ 15 N und ≤ 20 N.
  • Ferner beträgt die Körnung des zu ringförmigen Vollkatalysatorvorläuferformkörpern zu formenden feinteiligen formbaren Gemischs erfindungsgemäß vorteilhaft 200 μm bis 1,5 mm, besonders vorteilhaft 400 μm bis 1 mm. In günstiger Weise liegen wenigstens 80 Gew.-%, besser wenigstens 90 Gew.-% und besonders vorteilhaft wenigstens 95 oder 98 oder mehr Gew.-% der Gesamtmasse in diesem Körnungsbereich.
  • Als Seitendruckfestigkeit wird dabei in dieser Schrift die Druckfestigkeit bei Stauchung des ringförmigen Vollkatalysatorvorläuferformkörpers senkrecht zur zylindrischen Einhüllenden (d.h., parallel zur Fläche der Ringöffnung) verstanden.
  • Dabei beziehen sich alle Seitendruckfestigkeiten dieser Schrift auf eine Bestimmung mittels einer Material-Prüfmaschine der Firma Zwick GmbH & Co. (D-89079 Ulm) des Typs Z 2.5 / TS1S. Diese Material-Prüfmaschine ist für quasistatische Beanspruchung mit zügigem, ruhendem, schwellendem oder wechselndem Verlauf konzipiert. Sie ist für Zug-, Druck- und Biegeversuche geeignet. Der installierte Kraftaufnehmer des Typs KAF-TC der Firma A.S.T. (D-01307 Dresden) mit der Herstellnummer 03-2038 wurde dabei entsprechend der DIN EN ISO 7500-1 kalibriert und war für den Messbereich 1–500 N einsetzbar (relative Messunsicherheit: ±0,2 %).
  • Die Messungen wurden mit folgenden Parametern durchgeführt:
    Vorkraft: 0,5 N.
    Vorkraft-Geschwindigkeit: 10 mm/min.
    Prüfgeschwindigkeit: 1,6 mm/min.
  • Dabei wurde der obere Stempel zunächst langsam bis kurz vor die Fläche der zylindrischen Einhüllenden des ringförmigen Vollkatalysatorvorläuferformkörpers abgesenkt. Dann wurde der obere Stempel abgestoppt, um anschließend mit der deutlich langsameren Prüfgeschwindigkeit mit minimaler, zu weiterer Absenkung erforderlicher, Vorkraft abgesenkt zu werden.
  • Die Vorkraft, bei der der Vollkatalysatorvorläuferformkörper Rissbildung zeigt, ist die Seitendruckfestigkeit (SDF).
  • Erfindungsgemäß besonders vorteilhafte Vollkatalysatorringgeometrien erfüllen zusätzlich die Bedingung L/A = 0,3 bis 0,7. Besonders bevorzugt ist L/A 0,4 bis 0,6.
  • Weiterhin ist es erfindungsgemäß vorteilhaft, wenn das Verhältnis I/A (wobei 1 der Innendurchmesser der Vollkatalysatorringgeometrie ist) 0,5 bis 0,8, vorzugsweise 0,6 bis 0,7 beträgt.
  • Besonders vorteilhaft sind Vollkatalysatorringgeometrien, die gleichzeitig eines der vorteilhaften L/A-Verhältnisse und eines der vorteilten 1/A-Verhältnisse aufweisen. Solche mögliche Kombinationen sind z.B. L/A = 0,3 bis 0,7 und 1/A = 0,5 bis 0,8 oder 0,6 bis 0,7. Alternativ kann L/A 0,4 bis 0,6 und I/A gleichzeitig 0,5 bis 0,8 oder 0,6 bis 0,7 betragen.
  • Ferner ist es erfindungsgemäß bevorzugt, wenn L 2 bis 6 mm und besonders bevorzugt wenn L 2 bis 4 mm beträgt.
  • Weiterhin ist es vorteilhaft, wenn A 4 bis 8 mm, vorzugsweise 5 bis 7 mm beträgt.
  • Die Wandstärke der erfindungsgemäß erhältlichen Vollkatalysatorringgeometrien beträgt mit Vorteil 1 bis 1,5 mm.
  • D.h., erfindungsgemäß günstige Vollkatalysatorringgeometrien sind z.B. solche mit L = 2 bis 6 mm und A = 4 bis 8 mm oder 5 bis 7 mm. Alternativ kann L 2 bis 4 mm und A gleichzeitig 4 bis 8 mm oder 5 bis 7 mm betragen. In allen vorgenannten Fällen kann die Wandstärke W 0,75 bis 1,75 mm oder 1 bis 1,5 mm betragen.
  • Besonders bevorzugt sind unter den vorgenannten günstigen Vollkatalysatorgeometrien jene, bei denen gleichzeitig die vorstehend genannten L/A sowie 1/A Kombinationen erfüllt sind.
  • Mögliche erfindungsgemäß erhältliche Vollkatalysatorringgeometrien sind somit (A × L × I) 5 mm × 3 mm × 2 mm, oder 5 mm × 3 mm × 3 mm, oder 5,5 mm × 3 mm × 3,5 mm, oder 6 mm × 3 mm × 4 mm, oder 6,5 mm × 3 mm × 4,5 mm, oder 7 mm × 3 mm × 5mm.
  • Die Stirnflächen der erfindungsgemäß erhältlichen Ringe können auch entweder beide oder nur eine wie in der EP-A 184790 beschrieben gekrümmt sein und zwar z.B. so, dass der Radius der Krümmung vorzugsweise das 0,4 bis 5-fache des Außendurchmessers A beträgt. Erfindungsgemäß bevorzugt sind beide Stirnflächen ungekrümmt.
  • Alle diese Vollkatalysatorringgeometrien eignen sich z.B. sowohl für die gasphasenkatalytische Partialoxidation von Propen zu Acrolein als auch für die gasphasenkatalytische Partialoxidation von iso-guten oder tert.-Butanol oder dem Methylether des tert.-Butanols zu Methacrolein.
  • Betreffend die Aktivmassen der Stöchiometrie der allgemeinen Formel 1 betragen der stöchiometrische Koeffizient b vorzugsweise 2 bis 4, der stöchiometrische Koeffizient c vorzugsweise 3 bis 10, der stöchiometrische Koeffizient d vorzugsweise 0,02 bis 2, der stöchiometrische Koeffizient e vorzugsweise 0 bis 5 und der stöchiometrische Koeffizient a beträgt vorzugsweise 0,4 bis 2. Der stöchiometrische Koeffizient f beträgt vorteilhaft 0,5 oder 1 bis 10. Besonders bevorzugt liegen die vorgenannten stöchiometrischen Koeffizienten gleichzeitig in den genannten Vorzugsbereichen.
  • Ferner ist X1 vorzugsweise Kobalt, X2 ist vorzugsweise K, Cs und/oder Sr, besonders bevorzugt K, X3 ist bevorzugt Zink und/oder Phosphor und X4 ist bevorzugt Si. Besonders bevorzugt weisen die Variablen X1 bis X4 gleichzeitig die vorgenannten Bedeutungen auf.
  • Besonders bevorzugt weisen alle stöchiometrischen Koeffizienten a bis f und alle Variablen X' bis X4 gleichzeitig ihre vorgenannten vorteilhaften Bedeutungen auf.
  • Innerhalb der Stöchiometrien der allgemeinen Formel II sind jene bevorzugt, die der allgemeinen Formel III [Bia„Z2 b„Ox„]p"[Z2 12Z3 c„Z4 d„Fee„Z5 f„Z6 g„Z7 h„Oy„]q„ (III), mit
    Z2 = Molybdän oder Molybdän und Wolfram,
    Z3 = Nickel und/oder Kobalt, vorzugsweise Ni,
    Z4 = Thallium, ein Alkalimetall und/oder ein Erdalkalimetall, vorzugsweise K, Cs und/oder Sr,
    Z5 = Phosphor, Arsen, Bor, Antimon, Zinn, Cer und/oder Bi,
    Z6 = Silicium, Aluminium, Titan und/oder Zirkonium, vorzugsweise Si,
    Z7 = Kupfer, Silber und/oder Gold,
    a" = 0,1 bis 1,
    b" = 0,2 bis 2,
    c" = 3 bis 10,
    d" = 0,02 bis 2,
    e" = 0,01 bis 5, vorzugsweise 0,1 bis 3,
    f" = 0 bis 5,
    g" = 0 bis 10, vorzugsweise > 0 bis 10, besonders bevorzugt 0,2 bis 10 und ganz besonders bevorzugt 0,4 bis 3,
    h" = 0 bis 1,
    x", y" = Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in III bestimmt werden und
    p", q" = Zahlen, deren Verhältnis p"/q" 0,1 bis 5, vorzugsweise 0,5 bis 2 beträgt, entsprechen.
  • Ferner sind erfindungsgemäß Aktivmassen der Stöchiometrie II bevorzugt, die dreidimensional ausgedehnte, von ihrer lokalen Umgebung aufgrund ihrer von ihrer lokalen Umgebung verschiedenen Zusammensetzung abgegrenzte, Bereiche der chemischen Zusammensetzung Y1 a'Y2 b'Ox' enthalten, deren Größtdurchmesser (längste durch den Schwerpunkt des Bereichs gehende Verbindungsstrecke zweier auf der Oberfläche (Grenzfläche) des Bereichs befindlicher Punkte) 1 nm bis 100 μm, häufig 10 nm bis 500 nm oder 1 μm bis 50 bzw. 25 μm, beträgt.
  • Besonders vorteilhafte erfindungsgemäß erhältliche Aktivmassen der Stöchiometrie II sind solche, in denen Y1 nur Wismut ist.
  • Innerhalb der Aktivmassen der Stöchiometrie III sind diejenigen erfindungsgemäß bevorzugt, in denen Z2 b„ = (Wolfram)b„ und Z2 12 = (Molybdän)12 ist.
  • Ferner sind erfindungsgemäß Aktivmassen der Stöchiometrie III bevorzugt, die dreidimensional ausgedehnte, von ihrer lokalen Umgebung aufgrund ihrer von ihrer lokalen Umgebung verschiedenen Zusammensetzung abgegrenzte, Bereiche der chemischen Zusammensetzung Bia„Z2 b„Ox„ enthalten, deren Größtdurchmesser (längste durch den Schwerpunkt des Bereichs gehende Verbindungsstrecke zweier auf der Oberfläche (Grenzfläche) des Bereichs befindlicher Punkte) 1 nm bis 100 μm, häufig 10 nm bis 500 nm oder 1 μm bis 50 bzw. 25 μm, beträgt.
  • Ferner ist es von Vorteil, wenn wenigstens 25 mol-% (bevorzugt wenigstens 50 mol-% und besonders bevorzugt wenigstens 100 mol-%) des gesamten Anteils [Y1 a'Y2 b'Ox']p ([Bia„Z2 b„Ox„]p„) der erfindungsgemäß erhältlichen Aktivmassen der Stöchiometrie II (Aktivmassen der Stöchiometrie III) in den erfindungsgemäß erhältlichen Aktivmassen der Stöchiometrie II (Aktivmassen der Stöchiometrie III) in Form dreidimensional ausgedehnter, von ihrer lokalen Umgebung aufgrund ihrer von ihrer lokalen Umgebung verschiedenen chemischen Zusammensetzung abgegrenzter, Bereiche der chemischen Zusammensetzung [Y1 a'Y2 b'Ox' ([Bia„Z2 b„Ox„]) vorliegen, deren Größtdurchmesser im Bereich 1 nm bis 100 μm liegt.
  • Als Formungshilfsmittel (Gleitmittel) kommen für das erfindungsgemäße Verfahren z.B. Ruß, Stearinsäure, Stärke, Polyacrylsäure, Mineral- oder Pflanzenöl, Wasser, Bortrifluorid oder Graphit in Betracht. Auch Glycerin und Celluloseether können als Gleitmittel eingesetzt werden. Bezogen auf die zum Vollkatalysatorvorläuferformkörper zu formende Masse werden in der Regel ≤ 5 Gew.-%, meist ≤ 3 Gew.-%, vielfach ≤ 2 Gew.-% an Formungshilfsmittel zugesetzt. Üblicherweise beträgt die vorgenannte Zusatzmenge ≥ 0,5 Gew.-%. Erfindungsgemäß bevorzugtes Gleithilfsmittel ist Graphit.
  • Im Rahmen der thermischen Behandlung der ringförmigen Vollkatalysatorvorläuferformkörper werden die Formungshilfsmittel meist weitgehend in gasförmige Komponenten zersetzt und/oder verbrannt, so dass der erfindungsgemäß erhältliche ringförmige Vollkatalysator normalerweise teilweise oder vollständig frei von mitverwendeten Formungshilfsmitteln ist. Soweit noch Formungshilfsmittel in den erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren enthalten ist, verhält es sich bezüglich der durch die Vollkatalysatoren katalysierten Partialoxidationen im wesentlichen inert.
  • Letzteres gilt auch für gegebenenfalls vorab der Formgebung zugesetzte feinteilige Verstärkungsmittel wie Mikrofasern aus Glas, Asbest, Siliciumcarbid oder Kaliumtitanat. Die Formung zum ringförmigen Vollkatalysatorvorläuferformkörper kann z.B. mittels einer Tablettierungsmaschine, einer Extrusionsverformungsmaschine oder dergleichen durchgeführt werden.
  • Die thermische Behandlung des ringförmigen Vollkatalysatorvorläuferformkörpers erfolgt in der Regel bei Temperaturen, die die 350°C überschreiten. Normalerweise wird im Rahmen der thermischen Behandlung die Temperatur von 650°C jedoch nicht überschritten. Erfindungsgemäß vorteilhaft wird im Rahmen der thermischen Behandlung die Temperatur von 600°C, bevorzugt die Temperatur von 550°C und besonders bevorzugt die Temperatur von 500°C nicht überschritten. Ferner wird beim erfindungsgemäßen Verfahren im Rahmen der thermischen Behandlung des ringförmigen Vollkatalystorvorläuferformkörpers vorzugsweise die Temperatur von 380°C, mit Vorteil die Temperatur von 400°C, mit besonderem Vorteil die Temperatur von 420°C und ganz besonders bevorzugt die Temperatur von 440°C überschritten. Dabei kann die thermische Behandlung in ihrem zeitlichen Ablauf auch in mehrere Abschnitte gegliedert sein. Beispielsweise kann zunächst eine thermische Behandlung bei einer Temperatur von 150 bis 350°C, vorzugsweise 220 bis 280°C, und daran anschließend eine thermische Behandlung bei einer Temperatur von 400 bis 600°C, vorzugsweise 430 bis 550°C durchgeführt werden.
  • Normalerweise nimmt die thermische Behandlung des ringförmigen Vollkatalysatorvorläuferformkörpers mehrere Stunden (meist mehr als 5 h) in Anspruch. Häufig erstreckt sich die Gesamtdauer der thermischen Behandlung auf mehr als 10 h. Meist werden im Rahmen der thermischen Behandlung des ringförmigen Vollkatalysatorvorläuferformkörpers Behandlungsdauern von 45 h bzw. 25 h nicht überschritten. Oft liegt die Gesamtbehandlungsdauer unterhalb von 20 h. Erfindungsgemäß vorteilhaft werden im Rahmen der erfindungsgemäßen thermischen Behandlung des ringförmigen Vollkatalysatorvorläuferformkörpers 500°C (460°C) nicht überschritten und die Behandlungsdauer im Temperaturfenster von ≥ 400°C (≥ 440°C) erstreckt sich auf 5 bis 20 h.
  • Die thermische Behandlung (auch die nachfolgend angesprochene Zersetzungsphase) der ringförmigen Vollkatalysatorvorläuferformkörper kann sowohl unter Inertgas als auch unter einer oxidativen Atmosphäre wie z.B. Luft (Gemisch aus Inertgas und Sauerstoff) sowie auch unter reduzierender Atmosphäre (z.B. Gemisch aus Inertgas, NH3, CO und/oder H2 oder Methan, Acrolein, Methacrolein) erfolgen. Selbstredend kann die thermische Behandlung auch unter Vakuum ausgeführt werden.
  • Prinzipiell kann die thermische Behandlung der ringförmigen Vollkatalysatorvorläuferformkörper in den unterschiedlichsten Ofentypen wie z.B. beheizbare Umluftkammern, Hordenöfen, Drehrohröfen, Bandcalzinierer oder Schachtöfen durchgeführt werden. Erfindungsgemäß bevorzugt erfolgt die thermische Behandlung der ringförmigen Vollkatalysatorvorläuferformkörper in einer Bandcalciniervorrichtung, wie sie die DE-A 10046957 und die WO 02/24620 empfehlen.
  • Die thermische Behandlung der ringförmigen Vollkatalysatorvorläuferformkörper unterhalb von 350°C verfolgt in der Regel die thermische Zersetzung der in den Vollkatalysatorvorläuferformkörpern enthaltenen Quellen der elementaren Konstituenten des angestrebten ringförmigen Vollkatalysators. Häufig erfolgt beim erfindungsgemäßen Verfahren diese Zersetzungsphase im Rahmen des Aufheizuens auf Temperaturen 350°C.
  • Die ringförmigen Vollkatalysatorvorläuferformkörper von erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren, deren Aktivmasse eine Stöchiometrie der allgemeinen Formel 1, oder der allgemeinen Formel II, oder der allgemeinen Formel III aufweist, können in erfindungsgemäßer Weise dadurch hergestellt werden, dass man von Quellen der elementaren Konstituenten der Aktivmasse des gewünschten ringförmigen Vollkatalysators ein (möglichst inniges) feinteiliges, der Stöchiometrie der gewünschten Aktivmasse entsprechend zusammengesetztes, formbares Gemisch erzeugt und aus diesem, gegebenenfalls nach Zusatz von Formungs- und/oder Verstärkungshilfsmitteln, einen ringförmigen Vollkatalysatorvorläuferformkörper (mit gekrümmter und/oder nicht gekrümmter Stirnfläche) formt, dessen Seitendruckfestigkeit ≥ 12 N und ≤ 23 N beträgt. Die Geometrie des ringförmigen Vollkatalysatorvorläuferformkörpers wird dabei im wesentlichen derjenigen des gewünschten ringförmigen Vollkatalysators entsprechen.
  • Als Quellen für die elementaren Konstituenten der gewünschten Aktivmasse kommen solche Verbindungen in Betracht, bei denen es sich bereits um Oxide handelt und/oder um solche Verbindungen, die durch Erhitzen, wenigstens in Abwesenheit von Sauerstoff, in Oxide überführbar sind.
  • Neben den Oxiden kommen als solche Ausgangsverbindungen vor allem Halogenide, Nitrate, Formiate, Oxalate, Citrate, Acetate, Carbonate, Aminkomplexe, Ammonium-Salze und/oder Hydroxide in Betracht (Verbindungen wie NH4OH, (NH4)2CO3, NH4NO3, NH4CHO2, CH3COOH, NH4CH3CO2 und/oder Ammoniumoxalat, die spätestens beim späteren Calcinieren zu vollständig gasförmig entweichenden Verbindungen zerfallen und/oder zersetzt werden können, können in das feinteilige formbare Gemisch (vorzugsweise ein Trockengemisch) zusätzlich eingearbeitet werden.
  • Das, vorzugsweise innige, Vermischen der Ausgangsverbindungen (Quellen) zur Herstellung des feinteiligen formbaren Gemischs kann beim erfindungsgemäßen Verfahren in trockener oder in nasser Form erfolgen. Erfolgt es in trockener Form, so werden die Ausgangsverbindungen zweckmäßigerweise als feinteilige Pulver (die Körnung sollte vorteilhaft s 100 μm, vorzugsweise ≤ 50 μm betragen; in der Regeln wird der zahlenmittlere Korngrößtdurchmesser ≥ 10 μm betragen) eingesetzt. Nach eventuellem Zusatz von Formungs- und/oder Verstärkungshilfsmitteln kann anschließend die Formgebung zum ringförmigen Vollkatalysatorvorläuferformkörper erfolgen.
  • Erfindungsgemäß bevorzugt erfolgt das innige Vermischen jedoch in nasser Form. Üblicherweise werden dabei die Ausgangsverbindungen in Form einer wässrigen Lösung und/oder Suspension miteinander vermischt. Besonders innige formbare Gemi sche werden dabei dann erhalten, wenn ausschließlich von in gelöster Form vorliegenden Quellen der elementaren Konstituenten ausgegangen wird. Als Lösungsmittel wird bevorzugt Wasser eingesetzt. Anschließend wird die erhaltene Lösung oder Suspension getrocknet, wobei der Trocknungsprozeß vorzugsweise durch Sprühtrocknung mit Austrittstemperaturen von 100 bis 150°C erfolgt. Die Körnung des resultierenden Sprühpulvers beträgt in typischer Weise 20 bis 50 μm.
  • Das Sprühpulver kann nun als solches oder nach Zusatz von Formungs- und/oder Verstärkungshilfsmittel zu den ringförmigen Vollkatalysatorvorläuferformkörpern verdichtet (geformt) werden. Die feinteiligen Verstärkungshilfsmittel können aber auch bereits vorab der Sprühtrocknung (teilweise oder vollständig) zugesetzt werden. Auch kann bei der Trocknung das Lösungs- bzw. Suspendiermittel nur teilweise entfernt werden, falls seine Mitverwendung als Formungshilfsmittel beabsichtigt ist.
  • Anstatt das Sprühpulver, gegebenenfalls nach Zusatz von Formungs- und/oder Verstärkungshilfsmittel, unmittelbar zu den ringförmigen Vollkatalysatorvorläuferformkörpern (mit gekrümmter und/oder nicht gekrümmter Stirnfläche der Ringe) zu formen, ist es häufig zweckmäßig, zunächst eine Zwischenkompaktierung durchzuführen, um das Pulver zu vergröbern (in der Regel auf eine Körnung von 400 μm bis 1 mm). Anschließend erfolgt mit dem vergröberten Pulver die eigentliche Ringformung, wobei bei Bedarf zuvor nochmals feinteiliges Gleitmittel zugegeben werden kann.
  • Als günstiges Gleitmittel für eine solche Zwischenkompaktierung (ebenso wie für die Endformung) hat sich feinteiliges Graphit der Fa. Timcal AG (San Antonio, US) vom Typ TIMREX P44 bzw. Graphitpulver T44 der Fa. Lonza, CH-5643 Sins (Siebanalyse oder Laserbeugung: min. 50 Gew.-% < 24 μm, max. 10 Gew.-% > 24 μm und ≤ 48 μm, max. 5 Gew.-% > 48 μm, BET-Oberfläche: 6 bis 13 m2/g) als zweckmäßig erwiesen. Es fungiert nach der durchgeführten Zwischenkompaktierung gleichzeitig als Gleitmittel bei der eigentlichen Ringformung (und kann bei Bedarf wie beschrieben zuvor zusätzlich ergänzt werden). Es erweist sich als günstig, wenn der Ascherückstand des verwendeten Graphit (Glühen bei 815°C unter Luft) ≤ 0,1 Gew.-% beträgt.
  • Eine solche Zwischenkompaktierung zum Zweck der Kornvergröberung kann beispielsweise mittels eines Kompaktierers der Fa. Hosokawa Bepex GmbH (D-74211 Leingarten), vom Typ Kompaktor K 200/100 erfolgen. Die Härte des Zwischenkompaktats liegt häufig bereits im Bereich von 10 N. Für die Ringformung zum Vollkatalysatorvorläuferformkörper kommt z.B. ein Kilian Rundläufer (der Fa. Kilian in D-50735 KöIn) vom Typ RX 73 oder S 100 in Betracht. Alternativ kann eine Tablettenpresse der Fa. Korsch (D-13509 Berlin) vom Typ PH 800-65 eingesetzt werden.
  • Insbesondere zur Herstellung von Aktivmassen der Stöchiometrie der allgemeinen Formel II oder III ist es vorteilhaft, ein Mischoxid Y1 a'Y2 b'OX' bzw. Bia''Z2 b''Ox'' als Quelle der Elemente Y1, Y2 bzw. Bi, Z2 in Abwesenheit der übrigen Konstituenten der Aktivmassen der Stöchiometrie der allgemeinen Formel II bzw. III vorzubilden und damit nach seiner Vorbildung, wie bereits beschrieben, mit Quellen der übrigen Konstituenten der Aktivmassen der Stöchiometrie der allgemeinen Formel II bzw. III ein feinteiliges formbares Gemisch zu erzeugen, um daraus, gegebenenfalls nach Zusatz von Formungs- und/oder Verstärkungshilfsmitteln den ringförmigen Vollkatalysatorvorläuferformkörper zu formen.
  • Bei einer solchen Vorgehensweise ist lediglich darauf zu achten, dass für den Fall, dass die Herstellung des feinteiligen formbaren Gemischs naß erfolgt (in Suspension), die vorgebildeten Mischoxide Y1 a'Y2 b'Ox' bzw. Bia ''Z2 b''Ox'' nicht in nennenswertem Umfang in Lösung gehen.
  • Ausführlich wird eine wie vorstehend beschriebene Herstellweise in den Schriften DE-A 4407020, EP-A 835, EP-A 575897 und DE-C 3338380 beschrieben.
  • Beispielsweise kann man wasserlösliche Salze von Y' wie Nitrate, Carbonate, Hydroxide oder Acetate mit Y2-Säuren oder deren Ammoniumsalzen in Wasser mischen, die Mischung trocknen (vorzugsweise sprühtrocknen) und die getrocknete Masse anschließend thermisch behandeln. Die thermisch behandelte Masse wird nachfolgend zweckmäßig zerkleinert (z.B. in einer Kugelmühle oder durch Strahlmahlen) und aus dem dabei erhältlichen, in der Regel aus im wesentlichen kugelförmigen Partikeln bestehenden, Pulver die Kornklasse mit einem im für die Aktivmasse der Stöchiometrie der allgemeinen Formel II bzw. III gewünschten Größtdurchmesserbereich liegenden Korngrößtdurchmesser durch in an sich bekannter Weise durchzuführendes Klassieren (z.B. Naß- oder Trockensiebung) abgetrennt und vorzugsweise mit, bezogen auf die Masse dieser abgetrennten Kornklasse, 0,1 bis 3 Gew.-%, feinteiligem SiO2 (der zahlenmittlere Korngrößtdurchmesser der üblicherweise im wesentlichen kugelförmigen SiO2-Partikel beträgt zweckmäßigerweise 10 bis 50 nm) vermischt und so eine Ausgangsmasse 1 hergestellt. Die thermische Behandlung erfolgt zweckmäßig bei Temperaturen von 400 bis 900°C, vorzugsweise bei 600 bis 900°C. Letzteres gilt insbesondere dann, wenn es sich bei dem vorgebildeten Mischoxid um ein solches der Stöchiometrie BiZ2O6, Bi2Z2 2O9 und/oder Bi2Z2 3O12 handelt, unter denen das Bi2Z2 2O9 bevorzugt ist, insbesondere wenn Z2 = Wolfram.
  • Üblicherweise erfolgt die thermische Behandlung im Luftstrom (z.B. in einem Drehrohrofen, wie er in der DE-A 10325487 beschrieben ist). Die Dauer der thermischen Behandlung erstreckt sich in der Regel auf wenige Stunden.
  • Von den übrigen Bestandteilen der gewünschten Aktivmasse der allgemeinen Formel II bzw. III wird normalerweise ausgehend von in an sich bekannter Weise geeigneten Quellen (vgl. EP-A 835 und DE-C 3338380 sowie DE-A 4407020) in erfindungsgemäß zweckmäßiger Weise z.B. ein möglichst inniges, vorzugsweise feinteiliges Trockengemisch hergestellt (z.B. wasserlösliche Salze wie Halogenide, Nitrate, Acetate, Carbonate oder Hydroxide in einer wässrigen Lösung vereinen und anschließend die wässrige Lösung z.B. sprühtrocknen oder nicht wasserlösliche Salze, z.B. Oxide, in wässrigem Medium suspendieren und anschließend die Suspension z.B. sprühtrocknen), das hier als Ausgangsmasse 2 bezeichnet wird. Wesentlich ist nur, dass es sich bei den Bestandteilen der Ausgangsmasse 2 entweder bereits um Oxide handelt, oder um solche Verbindungen, die durch Erhitzen, gegebenenfalls in Anwesenheit von Sauerstoff, in Oxide überführbar sind. Anschließend werden die Ausgangsmasse 1 und die Ausgangsmasse 2 im gewünschten Mengenverhältnis in erfindungsgemäßer Weise, gegebenenfalls nach Zusatz von Formungs- und/oder Verstärkungshilfsmitteln, zum zum ringförmigen Vollkatalysatorvorläuferformkörper formbaren Gemisch vermischt. Die Formung kann, wie bereits beschrieben, anwendungstechnisch zweckmäßig über die Stufe einer Zwischenkompaktierung erfolgen.
  • In einer weniger bevorzugten Ausführungsform kann das vorgebildete Mischoxid Y1 a'Y2 b'Ox' bzw. Bia''Z2 b''Ox'' mit Quellen der übrigen Bestandteile der gewünschten Aktivmasse auch in flüssigem, vorzugsweise wässrigem, Medium innig vermischt werden. Dieses Gemisch wird anschließend z.B. zu einem innigen Trockengemisch getrocknet und sodann, wie bereits beschrieben, geformt und thermisch behandelt. Dabei können die Quellen der übrigen Konstituenten in diesem flüssigen Medium gelöst und/oder suspendiert vorliegen, wohingegen das vorgebildete Mischoxid in diesem flüssigen Medium im wesentlichen unlöslich sein sollte, d.h., suspendiert vorliegen muß.
  • Die vorgebildeten Mischoxidpartikel sind im fertiggestellten ringförmigen Vollkatalysator in der durch die Klassierung eingestellten Längstausdehnung im wesentlichen unverändert enthalten.
  • Erfindungsgemäß bevorzugt beträgt die spezifische Oberfläche von solchermaßen vorgebildeten Mischoxiden Y1 a'Y2 b'Ox' bzw. Bia''Z2 b''Ox'' 0,2 bis 2, vorzugsweise 0,5 bis 1,2 m2/g. Ferner resultiert das Porengesamtvolumen von solchermaßen vorgebildeten Mischoxiden vorteilhaft überwiegend von Mikroporen.
  • Alle Angaben in dieser Schrift zu Bestimmungen von spezifischen Oberflächen bzw. von Mikroporenvolumina beziehen sich auf Bestimmungen nach DIN 66131 (Bestimmung der spezifischen Oberfläche von Feststoffen durch Gasadsorption (N2) nach Brunauer-Emmet-Teller (BET)).
  • Alle Angaben in dieser Schrift zu Bestimmungen von Porengesamtvolumina sowie von Durchmesserverteilungen auf diese Porengesamtvolumina beziehen sich, soweit nichts anderes erwähnt wird, auf Bestimmungen mit der Methode der Quecksilberporosi metrie in Anwendung des Gerätes Auto Pore 9220 der Fa. Micromeritics GmbH, 4040 Neuß, DE (Bandbreite 30Å bis 0,3 mm).
  • Erfindungsgemäß vorteilhaft erhaltene ringförmige Vollkatalysatoren sind solche, deren spezifische Oberfläche O 5 bis 20 bzw. 15 m2/g, häufig 5 bis 10 m2/g beträgt. Das Porengesamtvolumen der erfindungsgemäß erhaltenen ringförmigen Vollkatalysatoren liegt dabei erfindungsgemäß vorteilhaft im Bereich von 0,1 bis 1 bzw. 0,8 cm3/g, häufig im Bereich 0,2 bis 0,4 cm3/g.
  • Im Unterschied zur Lehre der WO 03/039744 sowie zur Lehre der EP-A 279374 tragen die verschiedenen Porendurchmesser bei erfindungsgemäß erhaltenen ringförmigen Vollkatalysatoren in vorteilhafter Weise wie folgt zum Porengesamtvolumen bei:
    Poren mit Durchmesser im Bereich < 0,03 μm: ≤ 5 Vol.-%;
    Poren mit Durchmesser im Bereich von ≥ 0,03 bis ≤ 0,1 μm: ≤ 25 Vol.-%;
    Poren mit Durchmesser im Bereich von > 0,1 bis < 1 μm: ≥ 70 Vol.-%; und
    Poren mit Durchmesser im Bereich ? 1 bis ≤ 10 μm: ≤ 10 Vol.-%.
  • D.h., im Unterschied zur Lehre der EP-A 279374, spielt bei erfindungsgemäß erhaltenen ringförmigen Vollkatalysatoren der Anteil der Poren mit einem Durchmesser ≥ 1 μm in der Regel nur eine untergeordnete Rolle.
  • Ferner spielt bei erfindungsgemäß erhaltenen ringförmigen Vollkatalysatoren der Anteil der Poren mit einem Durchmesser im Bereich von ≥ 0,03 bis ≤ 0,1 μm in der Regel eine kleinere Rolle.
  • Besonders vorteilhaft verteilt sich bei erfindungsgemäß erhaltenen ringförmigen Vollkatalysatoren der Anteil der verschiedenen Porendurchmesser am Porengesamtvolumen wie folgt: Poren mit Durchmesser im Bereich < 0,03 μm: ≥ 0 und ≤ 5 Vol.-%, vorzugsweise ≤ 3 Vol.-%; Poren mit Durchmesser im Bereich von ≥ 0,03 bis ≤ 0,1 μm: ≥ 3 bzw. ≥ 5 und ≤ 20 bzw. ≤ 15 Vol.-%; Poren mit Durchmesser im Bereich von > 0,1 bis < 1 μm: ≥ 75 bzw. ≥ 80 und ≤ 95 bzw. ≤ 90 Vol.-%; Poren mit Durchmesser im Bereich ≥ 1 μm bis ≤ 10 μm: ≥ 0 und ≤ 5 Vol.-%, vorzugsweise ≤ 3 Vol.-%.
  • D.h., für erfindungsgemäß vorteilhaft erhaltene ringförmige Vollkatalysatoren spielt hinsichtlich deren Performance bei der Verwendung als Katalysatoren zur Partialoxidation von Propen zu Acrolein, bzw. iso-Buten oder tert. Butanol oder Methylether von tert. Butanol zu Methacrolein der Porendurchmesserbereich > 0,1 bis < 1 μm die entscheidende Rolle.
  • Im Unterschied dazu fördern Poren im Porendurchmesserbereich von 0,01 bis 0,1 μm die Partialoxidation von Propen zu Acrylsäure. Dies ist dann vorteilhaft, wenn die Aktivmasse in der ersten Stufe einer zweistufigen Partialoxidation von Propen zu Acrylsäure eingesetzt wird, da in der ersten Stufe gebildete Acrylsäure in der zweiten Stufe weitgehend erhalten bleibt.
  • Das vorstehende wird auch dadurch zusätzlich bestätigt, dass für erfindungsgemäß erhaltene, besonders vorteilhafte ringförmige Vollkatalysatoren nicht nur die vorstehenden Bedingungen hinsichtlich spezifischer Oberfläche O, Porengesamtvolumen V und Porendurchmesserverteilung erfüllt sind, sondern zusätzlich der prozentual den größten Beitrag zum Porengesamtvolumen V leistende Porendurchmesser dmax im Durchmesserbereich 0,3 bis 0,8 μm, besonders vorteilhaft im Durchmesserbereich 0,4 bis 0,7 μm und ganz besonders vorteilhaft im Durchmesserbereich 0,5 bis 0,6 μm liegt.
  • Erfindungsgemäß überrascht, dass mit zunehmender Seitendruckfestigkeit des ringförmigen Vollkatalysatorvorläuferformkörpers die Porendurchmesser im resultierenden Vollkatalysatorring in der Regel zu größeren Werten verschoben werden.
  • Dies überrascht insofern, als die Seitendruckfestigkeit des resultierenden ringförmigen Vollkatalysators sich dabei gleichzeitig zu höheren Werten verschiebt. In überraschender Weise ist die Seitendruckfestigkeit des erfindungsgemäß resultierenden ringförmigen Vollkatalysators im Regelfall kleiner als die Seitendruckfestigkeit des zugehörigen ringförmigen Vollkatalysatorvorläuferformkörpers.
  • In typischer Weise betragen die Seitendruckfestigkeiten von erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren 5 bis 13 N, häufig 8 bis 11 N. Diese Seitendruckfestigkeiten von erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren liegen normalerweise auch dann vor, wenn die übrigen als vorteilhaft beschriebenen physikalischen Eigenschaften (z.B. 0, V und Porendurchmesserverteilung) von erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren vorliegen.
  • Wie bereits erwähnt, eignen sich die erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren insbesondere als Katalysatoren für die Partialoxidation von Propen zu Acrolein bzw. von iso-Buten und/oder tert. Butanol zu Methacrolein. Die Partialoxidation kann dabei z.B. wie in den Schriften WO 00/53557, WO 00/53558, DE-A 199 10 506, EP-A 1 106 598, WO 01/36364, DE-A 199 27 624, WO 00/53557, DE-A 199 48 248, DE-A 199 48 523, DE-A 199 48 241, EP-A 700 714, DE-A 19948523, DE- 248, DE-A 199 48 523, DE-A 199 48 241, EP-A 700 714, DE-A 19948523, DE-A 10313213, DE-A 10313209, DE-A 10232748, DE-A 10313208, WO 03/039744. EP-A 279 374, DE-A 33 38 380, DE-A 33 00 044, EP-A 575 897 sowie DE-A 44 07 020 beschrieben durchgeführt werden, wobei die Katalysatorbeschickung z.B. nur erfindungsgemäß erhältliche ringförmige Vollkatalysatoren oder z.B. mit inerten Formkörpern verdünnte ringförmige Vollkatalysatoren umfassen kann. Im letzteren Fall wird die Katalysatorbeschickung erfindungsgemäß vorteilhaft in der Regel so gestaltet, dass ihre volumenspezifische Aktivität in Strömungsrichtung der Reaktionsgasgemisches kontinuierlich, sprunghaft und/oder stufenförmig zunimmt.
  • Dabei erweisen sich insbesondere die in dieser Schrift individualisiert hervorgehobenen Ringgeometrien der erfindungsgemäß erhältlichen Vollkatalysatoren dann als vorteilhaft, wenn die Belastung der Katalysatorbeschickung mit im Reaktionsgasausgangsgemisch enthaltenem Propen, iso-Buten und/oder tert. Butanol (bzw. dessen Methylether) ≥ 130 Nl/l Katalysatorbeschickung·h beträgt. Dies insbesondere dann, wenn auch die anderen in dieser Schrift als vorteilhaft beschriebenen physikalischen Eigenschaften von erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren gegeben sind.
  • Dieses vorteilhafte Verhalten von erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren, insbesondere den vorgenannten, liegt aber auch dann vor, wenn die vorgenannte Belastung der Katalysatorbeschickung ≥ 140 Nl/l·h, oder ≥ 150 Nl/l·h, oder ≥ 160 Nl/l·h beträgt. Im Normalfall wird die vorgenannte Belastung der Katalysatorbeschickung ≤ 600 Nl/l·h, häufig ≤ 500 Nl/l·h, vielfach ≤ 400 Nl/l·h oder ≤ 350 Nl/l·h betragen. Belastungen im Bereich von 160 Nl/l·h bis 300 bzw. 250 oder 200 Nl/l·h sind besonders typisch.
  • Selbstverständlich können die erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren als Katalysatoren für die Partialoxidation von Propen zu Acrolein bzw. von iso-Buten und/oder tert. Butanol (bzw. dessen Methylether) zu Methacrolein auch bei Belastungen der Katalysatorbeschickung mit der partiell zu oxidierenden Ausgangsverbindung von < 130 Nl/l·h, oder ≤ 120 Nl/l·h, oder ≤ 110 Nl/l·h, betrieben werden. In der Regel wird diese Belastung jedoch bei Werten ≥ 60 Nl/l·h, oder ≥ 70 Nl/l·h, oder ≥ 80 Nl/l·h liegen.
  • Prinzipiell kann die Belastung der Katalysatorbeschickung mit der partiell zu oxidierenden Ausgangsverbindung (Propen, iso-guten und/oder tert. Butanol (bzw. dessen Methylether)) über zwei Stellschrauben eingestellt werden:
    • a) die Belastung der Katalysatorbeschickung mit Reaktionsausgangsgemisch; und/oder
    • b) den Gehalt des Reaktionsgasausgangsgemischs mit der partiell zu oxidierenden Ausgangsverbindung.
  • Die erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren eignen sich insbesondere auch dann, wenn bei oberhalb von 130 Nl/l·h liegenden Belastungen der Katalysatorbeschickung mit der partiell zu oxidierenden organischen Verbindung die Belastungseinstellung vor allem über die vorgenannte Stellschraube a) erfolgt.
  • Der Propenanteil (iso-Butenanteil bzw. tert. Butanolanteil (bzw. dessen Methyletheranteil)) im Reaktionsgasausgangsgemisch wird im Regelfall (d.h. im wesentlichen unabhängig von der Belastung) 4 bis 20 Vol.-%, häufig 5 bis 15 Vol.-%, oder 5 bis 12 Vol.%, oder 5 bis 8 Vol.-% betragen (jeweils bezogen auf das Gesamtvolumen).
  • Häufig wird man das Verfahren der mit den erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren katalysierten Partialoxidation (im wesentlichen unabhängig von der Belastung) bei einem partiell zu oxidierende (organische) Verbindung (z.B. Propen): Sauerstoff : indifferente Gase (einschließlich Wasserdampf) Volumenverhältnis im Reaktionsgasausgangsgemisch von 1:(1,0 bis 3,0):(5 bis 25), vorzugsweise 1:(1,5 bis 2,3):(10 bis 15) durchführen.
  • Unter indifferenten Gasen (oder auch Inertgasen) werden dabei solche Gase verstanden, die im Verlauf der Partialoxidation zu wenigstens 95 mol-%, vorzugsweise zu wenigstens 98 mol-% chemisch unverändert erhalten bleiben.
  • Bei den vorstehend beschriebenen Reaktionsgasausgangsgemischen kann das indifferente Gas zu ≥ 20 Vol.-%, oder zu ≥ 30 Vol.-%, oder zu ≥ 40 Vol.-%, oder zu ≥ 50 Vol.-%, oder zu ≥ 60 Vol.-%, oder zu ≥ 70 Vol.-%, oder zu ≥ 80 Vol.-%, oder zu ≥ 90 Vol.-%, oder zu ≥ 95 Vol.-% aus molekularem Stickstoff bestehen.
  • Bei Belastungen der Katalysatorbeschickung mit der partiell zu oxidierenden organischen Verbindung von Z 250 Nl/l·h ist jedoch die Mitverwendung von inerten Verdünnungsgasen wie Propan, Ethan, Methan, Pentan, Butan, CO2, CO, Wasserdampf und/oder Edelgasen für das Rektionsgasausgangsgemisch empfehlenswert. Generell können diese inerten Gase und ihre Gemische aber auch bereits bei geringeren erfindungsgemäßen Belastungen der Katalysatorbeschickung mit der partiell zu oxidierenden organischen Verbindung eingesetzt werden. Auch kann Kreisgas als Verdünnungsgas mitverwendet werden. Unter Kreisgas wird das Restgas verstanden, das verbleibt, wenn man aus dem Produktgasgemisch der Partialoxidation die Zielverbindung im wesentlichen selektiv abtrennt. Dabei ist zu berücksichtigen, dass die Partialoxidationen zu Acrolein oder Methacrolein mit den erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren nur die erste Stufe einer zweistufigen Partialoxidation zu Acrylsäure oder Methacrylsäure als den eigentlichen Zielverbindungen sein können, so dass die Kreisgasbildung dann meist erst nach der zweiten Stufe erfolgt. Im Rahmen einer solchen zweistufigen Partialoxidation wird in der Regel das Produktgasgemisch der ersten Stufe als solches, gegebenenfalls nach Abkühlung und/oder Sekundärsauerstoffzugabe, der zweiten Partialoxidationsstufe zugeführt.
  • Bei der Partialoxidation von Propen zu Acrolein, unter Anwendung der erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren, kann eine typische Zusammensetzung des Reaktionsgasausgangsgemischs (unabhängig von der gewählten Belastung) z.B. die nachfolgenden Komponenten enthalten:
    6 bis 6,5 Vol.-% Propen,
    3 bis 3,5 Vol.-% H2O,
    0,3 bis 0,5 Vol.-% CO,
    0,8 bis 1,2 Vol.-% CO2,
    0,025 bis 0,04 Vol.-% Acrolein,
    10,4 bis 10,7 Vol.-% 02 und
    als Restmenge ad 100% molekularer Stickstoff,
    oder:
    5,4 Vol.-% Propen,
    10,5 Vol.-% Sauerstoff, 1,2 Vol.-% COx,
    81,3 Vol.-% N2 und
    1,6 Vol.-% H2O.
  • Das Reaktionsgasausgangsgemisch kann aber auch wie folgt zusammengesetzt sein:
    6 bis 15 Vol.-% Propen,
    4 bis 30 Vol.-% (häufig 6 bis 15 Vol.-%) Wasser,
    ≥ 0 bis 10 Vol.-% (vorzugsweise ≥ 0 bis 5 Vol.-%) von Propen, Wasser, Sauerstoff und Stickstoff verschiedenen Bestandteilen, soviel molekularem Sauerstoff, dass das molare Verhältnis von enthaltenem molekularem Sauerstoff zu enthaltenem molekularem Propen 1,5 bis 2,5 beträgt und als Restmenge bis zur 100 Vol.-% Gesamtmenge aus molekularem Stickstoff.
  • Eine andere mögliche Reaktionsgasausgangsgemischzusammensetzung kann enthalten:
    6,0 Vol.-% Porpen,
    60 Vol.-% Luft und
    34 Vol.-% H2O.
  • Alternativ können auch Reaktionsgasausgangsgemische der Zusammensetzung gemäß Example 1 der EP-A 990 636, oder gemäß Example 2 der EP-A 990 636, oder gemäß Example 3 der EP-A 1 106 598, oder gemäß Example 26 der EP-A 1 106 598, oder gemäß Example 53 der EP-A 1 106 598 verwendet werden.
  • Auch eignen sich die erfindungsgemäß erhältlichen ringförmigen Katalysatoren für die Verfahren der DE-A 10246119 bzw. DE-A 10245585.
  • Weitere erfindungsgemäß geeignete Reaktionsgasausgangsgemische können im nachfolgenden Zusammensetzungsraster liegen:
    7 bis 11 Vol.-% Propen,
    6 bis 12 Vol.-% Wasser,
    ≥ 0 bis 5 Vol.-% von Propen, Wasser, Sauerstoff und Stickstoff verschiedenen Bestandteilen,
    soviel molekularem Sauerstoff, dass das molare Verhältnis von enthaltenem Sauerstoff zu enthaltenem molekularem Propen 1,6 bis 2,2 beträgt, und
    als Restmenge bis zur 100 Vol.-% Gesamtmenge molekularer Stickstoff.
  • Im Fall von Methacrolein als Zielverbindung kann das Reaktionsgasausgangsgemisch insbesondere auch wie in der DE-A 44 07 020 beschrieben zusammengesetzt sein.
  • Die Reaktionstemperatur für die Propenpartialoxidation liegt bei Verwendung der erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren häufig bei 300 bis 380°C. Das gleiche trifft im Fall von Methacrolein als Zielverbindung zu.
  • Der Reaktionsdruck liegt für die vorgenannten Partialoxidationen in der Regel bei 0,5 bzw. 1,5 bis 3 bzw. 4 bar.
  • Die Gesamtbelastung der Katalysatorbeschickung mit Reaktionsgasausgangsgemisch beläuft sich bei den vorgenannten Partialoxidationen typisch auf 1000 bis 10000 Nl/l·h, meist auf 1500 bis 5000 Nl/l·h und oft auf 2000 bis 4000 Nl/l·h.
  • Als im Reaktionsgasausgangsgemisch zu verwendendes Propen kommen vor allem polymer grade Propen und chemical grade Propen in Betracht, wie es z.B. die DE-A 10232748 beschreibt.
  • Als Sauerstoffquelle wird normalerweise Luft eingesetzt.
  • Die Durchführung der Partialoxidation in Anwendung der erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren kann im einfachsten Fall z.B. in einem Einzonen-Vielkontaktrohr-Festbettreaktor durchgeführt werden, wie ihn die DE-A 44 31 957, die EP-A 700 714 und die EP-A 700 893 beschreiben.
  • Üblicherweise sind in den vorgenannten Rohrbündelreaktoren die Kontaktrohre aus ferritischem Stahl gefertigt und weisen in typischer Weise eine Wanddicke von 1 bis 3 mm auf. Ihr Innendurchmesser beträgt in der Regel 20 bis 30 mm, häufig 22 bis 26 mm. Eine typische Kontaktrohrlänge beläuft sich z.B. auf 3,20 m. Ihr Innendurchmesser beträgt in der Regel 20 bis 30 mm, häufig 22 bis 26 mm. Anwendungstechnisch zweckmäßig beläuft sich die im Rohrbündelbehälter untergebrachte Anzahl an Kontaktrohren auf wenigstens 5000, vorzugsweise auf wenigstens 1000. Häufig beträgt die Anzahl der im Reaktionsbehälter untergebrachten Kontaktrohre 15000 bis 30000. Rohrbündelreaktoren mit einer oberhalb von 40000 liegenden Anzahl an Kontaktrohren bilden eher die Ausnahme. Innerhalb des Behälters sind die Kontaktrohre im Normalfall homogen verteilt angeordnet, wobei die Verteilung zweckmäßig so gewählt wird, dass der Abstand der zentrischen Innenachsen von zueinander nächstliegenden Kontaktrohren (die sogenannte Kontaktrohrteilung) 35 bis 45 mm beträgt (vgl. EP-B 468 290).
  • Die Durchführung der Partialoxidation kann aber auch in einem Mehrzonen (z.B. „Zwei")-Vielkontaktrohr-Festbettreaktor durchgeführt werden, wie es die DE-A 199 10 506, die DE-A 10313213, die DE-A 10313208 und die EP-A 1 106 598 insbesondere bei erhöhten Belastungen der Katalysatorbeschickung mit der partiell zu oxidierenden organischen Verbindung empfehlen. Eine typische Kontaktrohrlänge im Fall eines Zweizonen-Vielkontaktrohr-Festbettreaktors beträgt 3,50 m. Alles andere gilt im wesentlichen wie beim Einzonen-Vielkontaktrohr-Festbettreaktor beschrieben. Um die Kontaktrohre, innerhalb derer sich die Katalysatorbeschickung befindet, wird in jeder Temperierzone ein Wärmeaustauschmittel geführt. Als solche eignen sich z.B. Schmelzen von Salzen wie Kaliumnitrat, Kaliumnitrit, Natriumnitrit und/oder Natriumnitrat, oder von niedriger schmelzenden Metallen wie Natrium, Quecksilber sowie Legierungen verschiedener Metalle. Die Fließgeschwindigkeit des Wärmeaustauschmittels innerhalb der jeweiligen Temperierzone wird in der Regel so gewählt, dass die Temperatur des Wärmeaustauschmittels von der Eintrittsstelle in die Temperaturzone bis zur Austrittsteile aus der Temperaturzone um 0 bis 15°C, häufig 1 bis 10°C, oder 2 bis 8°C, oder 3 bis 6°C beträgt.
  • Die Eingangstemperatur des Wärmeaustauschmittels, das, über die jeweilige Temperierzone betrachtet, im Gleichstrom oder im Gegenstrom zum Reaktionsgasgemisch geführt werden kann, wird vorzugsweise wie in den Schriften EP-A 1 106 598, DE-A 19948523, DE-A 19948248, DE-A 10313209, EP-A 700 714, DE-A 10313208, DE-A 10313213, WO 00/53557, WO 00/53558, WO 01 /36364, W 0 00/53557 sowie den anderen in dieser Schrift als Stand der Technik zitierten Schriften empfohlen gewählt.
  • Innerhalb der Temperierzone wird das Wärmeaustauschmittel bevorzugt mäanderförmig geführt. In der Regel verfügt der Vielkontaktrohr-Festbettreaktor zusätzlich über Thermorohre zur Bestimmung der Gastemperatur im Katalysatorbett. In zweckmäßiger Weise wird der Innendurchmesser der Thermorohre und der Durchmesser der innenliegenden Aufnahmehülse für das Thermoelement so gewählt, dass das Verhältnis von Reaktionswärme entwickelndem Volumen zu Wärme abführender Oberfläche bei Thermorohr und Arbeitsrohren gleich ist.
  • Der Druckverlust sollte bei Arbeitsrohren und Thermorohr, bezogen auf gleiche GHSV, gleich sein. Ein Druckverlustangleich beim Thermorohr kann durch Zusatz von versplittetem Katalysator zu den Katalysatorformkörpern erfolgen. Dieser Ausgleich erfolgt zweckmäßig über die gesamte Thermorohrlänge homogen.
  • Zur Bereitung der Katalysatorbeschickung in den Kontaktrohren können beim erfindungsgemäßen Verfahren, wie bereits erwähnt, nur erfindungsgemäß erhältliche ringförmige Vollkatalysatoren oder z.B. auch weitgehend homogene Gemische aus erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren und keine Aktivmasse aufweisenden, sich bezüglich der heterogen katalysierten partiellen Gasphasenoxidation im wesentlichen inert verhaltenden Formkörpern verwendet werden. Als Materialien für solche inerten Formkörper kommen z.B. poröse oder unporöse Aluminiumoxide, Siliciumdioxid, Thoriumdioxid, Zirkondioxid, Siliciumcarbid, Silikate wie Magnesium- oder Aluminiumsilikat oder Steatit (z.B. vom Typ C220 der Fa. CeramTec, DE) in Betracht.
  • Die Geometrie solcher inerter Verdünnungsformkörper kann im Prinzip beliebig sein. D.h., es können beispielsweise Kugeln, Polygone, Vollzylinder oder auch, wie die Katalysatorformkörper, Ringe sein. Häufig wird man als inerte Verdünnungsformkörper solche wählen, deren Geometrie derjenigen der mit ihnen zu verdünnenden Katalysatorformkörper entspricht. Längs der Katalysatorbeschickung kann aber auch die Geometrie des Katalysatorformkörpers gewechselt oder Katalysatorformkörper unterschiedlicher Geometrie in weitgehend homogener Abmischung eingesetzt werden. In einer weniger bevorzugten Vorgehensweise kann auch die Aktivmasse des Katalysatorformkörpers längs der Katalysatorbeschickung verändert werden.
  • Ganz generell wird, wie bereits erwähnt, die Katalysatorbeschickung mit Vorteil so gestaltet, dass die volumenspezifische (d.h., die auf die Einheit des Volumens normierte) Aktivität in Strömungsrichtung des Reaktionsgasgemisches entweder konstant bleibt oder zunimmt (kontinuierlich, sprunghaft oder stufenförmig).
  • Eine Verringerung der volumenspezifischen Aktivität kann in einfacher Weise z.B. dadurch erzielt werden, dass man eine Grundmenge von erfindungsgemäß einheitlich hergestellten ringförmigen Vollkatalysatoren mit inerten Verdünnungsformkörpern homogen verdünnt. Je höher der Anteil der Verdünnungsformkörper gewählt wird, desto geringer ist die in einem bestimmten Volumen der Beschickung enthaltene Aktivmasse bzw. Katalysatoraktivität. Eine Verringerung kann aber auch dadurch erzielt werden, dass man die Geometrie der erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren so verändert, dass die in der Einheit des Ringgesamtvolumens (einschließlich der Ringöffnung) enthaltene Aktivmassenmenge kleiner wird.
  • Für die heterogen katalysierten Gasphasenpartialoxidationen mit den erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren wird die Katalysatorbeschickung vorzugsweise entweder auf der gesamten Länge einheitlich mit nur einem Vollkatalysatorring gestaltet oder wie folgt strukturiert. Zunächst auf einer Länge von 10 bis 60%, bevorzugt 10 bis 50%, besonders bevorzugt 20 bis 40% und ganz besonders bevorzugt 25 bis 35% (d.h., z.B. auf einer Länge von 0,70 bis 1,50 m, bevorzugt 0,90 bis 1,20 m), jeweils der Gesamtlänge der Katalysatorbeschickung, ein im wesentlichen homogenes Gemisch aus erfindungsgemäß erhältlichem ringförmigem Vollkatalysator (wobei beide vorzugsweise im wesentlichen die gleiche Geometrie aufweisen), wobei der Gewichtsanteil der Verdünnungsformkörper (die Massendichten von Katalysatorformkörpern und von Verdünnungsformkörpern unterscheiden sich in der Regel nur geringfügig) normalerweise 5 bis 40 Gew.-%, oder 10 bis 40 Gew.-%, oder 20 bis 40 Gew.-%, oder 25 bis 35 Gew.-% beträgt. Im Anschluß an diesen ersten Beschickungsabschnitt befindet sich dann vorteilhaft bis zum Ende der Länge der Katalysatorbeschickung (d.h., z.B. auf einer Länge von 2,00 bis 3,00 m, bevorzugt 2,50 bis 3,00 m) entweder eine nur in geringerem Umfang (als im ersten Abschnitt) verdünnte Schüttung des erfindungsgemäß erhältlichen ringförmigen Vollkatalysators, oder, ganz besonders bevorzugt, eine alleinige (unverdünnte) Schüttung desselben ringförmigen Vollkatalysators, der auch im ersten Abschnitt verwendet worden ist. Natürlich kann über die gesamte Beschickung auch eine konstante Verdünnung gewählt werden. Auch kann im ersten Abschnitt nur mit einem erfindungsgemäß erhältlichen ringförmigen Vollkatalysator von geringer, auf seinen Raumbedarf bezogener, Aktivmassendichte und im zweiten Abschnitt mit einem erfindungsgemäß erhältlichen ringförmigen Vollkatalysator mit hoher, auf seinen Raumbedarf bezogener, Aktivmassendichte beschickt werden (z.B. 6,5 mm x 3 mm x 4,5 mm [A x L x I] im ersten Abschnitt, und 5 x 2 x 2 mm im zweiten Abschnitt).
  • Insgesamt werden bei einer mit den erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren als Katalysatoren durchgeführten Partialoxidation zur Herstellung von Acrolein oder Methacrolein die Katalysatorbeschickung, das Reaktionsgasausgangsgemisch, die Belastung und die Reaktionstemperatur in der Regel so gewählt, dass beim einmaligen Durchgang des Reaktionsgasgemischs durch die Katalysatorbeschickung ein Umsatz der partiell zu oxidierenden organischen Verbindung (Propen, iso-Butan, tert-Butanol bzw. dessen Methylether) von wenigstens 90 mol-%, oder 92 mol-%, vorzugsweise von wenigstens 95 mol-% resultiert. Die Selektivität der Acrolein- bzw. Methacroleinbildung wird dabei regelmäßig ≥ 94 mol-%, bzw. ≥ 95 mol-%, oder ≥ 96 mol- %, oder ≥ 97 mol-% betragen. In natürlicher Weise werden dabei möglichst geringe Heißpunkttemperaturen angestrebt.
  • Insgesamt bedingen dabei die erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren sowohl eine erhöhte Aktivität als auch eine erhöhte Selektivität der Zielproduktbildung.
  • Abschließend sei festgehalten, das die erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren auch ein vorteilhaftes Bruchverhalten bei der Reaktorbefüllung aufweisen. Auch ihr Druckverlustverhalten ist vorteilhaft. Im übrigen eignen sich die erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren ganz generell als Katalysatoren mit erhöhter Aktivität und Selektivität für gasphasenkatalytische Partialoxidationen organischer Verbindungen wie niederer (z.B. 3 bis 6 (d.h. 3, 4, 5, oder 6) C-Atome enthaltender) Alkane, Alkanole, Alkanale, Alkene und Alkenale zu olefinisch ungesättigten Adehyden und/oder Carbonsäuren, sowie den entsprechenden Nitriten (Ammoxidation, vor allem von Propen zu Acrylnitril und von 2-Methylpropen bzw. tert.-Butanol (bzw. dessen Methylether) zu Methacnlnitril) sowie für gasphasenkatalytisch oxidative Dehydrierungen organischer Verbindungen (z.B. 3, 4, 5, oder 6 C-Atome enthaltender).
  • Für das erfindungsgemäße Verfahren besonders vorteilhafte Stöchiometrien sind:
    • a) [Bi2W2O9 × 2WO3]0,5[Mo12Co5,5Fe2,94Si1,59K0,08Ox]1;
    • b) Mo12Ni6,5Zn2Fe2Bi1P0,0065K0,06Ox·10SiO2;
    • c) Mo12Co7Fe2,94Bi0,6Si1,59K0,08Ox;
    • d) wie Multimetalloxid II-Vollkatalysator gemäß Beispiel 1 der DE-A 197 46 210; und
    • e) Wie Beispiel 1c aus der EP-A 015 565.
  • Der Wismutgehalt der erfindungsgemäß erhältlichen Aktivmassen kann auch wie in der DE-A 100 63 162 beschrieben eingestellt werden. Dabei wird aus Ausgangsverbindungen der elementaren Konstituenten der angestrebten Aktivmasse eine Lösung oder Suspension erzeugt, die zwar die zur Herstellung der Aktivmasse erforderliche Gesamtmenge der von Bi verschiedenen elementaren Konstituenten, aber nur eine Teilmenge des zur Herstellung der Aktivmasse erforderlichen Bi enthält, die Lösung oder Suspension unter Erhalt einer Trockenmasse getrocknet und die zur Herstellung der Aktivmasse zusätzlich benötigte Restmenge an Bi in Form einer Ausgangsverbindung des Bi wie in der DE-A 100 63 162 beschrieben unter Erhalt eines formbaren Gemischs in diese Trockenmasse eingearbeitet (z.B. wie im Beispiel der DE-A 100 63 162), das formbare Gemisch in erfindungsgemäßer Weise (gegebenenfalls nach Zugabe von Formungs- und/oder Verstärkungshilfsmitteln) zu einem ringförmigen Vollkatalysatorformkörper geformt und dieser durch thermisches Behandeln (z.B. wie im Beispiel der DE-A 100 63 162) in den gewünschten ringförmigen Vollkatalysator überführt. Die Stöchiometrien (insbesondere der Ausführungsbeispiele) und thermischen Be handlungsbedingungen dieser (vorgenannten) Schrift sind erfindungsgemäß gleichfalls besonders geeignet. Dies gilt insbesondere für die Stöchiometrie Mo12Bi1,0Fe3CO7Si1,6K0,08. Die Inbetriebnahme einer frischen Katalysatorbeschickung mit erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren kann wie in der DE-A 10337788 beschrieben erfolgen. In der Regel nehmen Aktivität und Selektivität der Zielproduktbildung anfänglich mit der Betriebsdauer der Katalysatorbeschickung zu. Diese Formierung kann dadurch beschleunigt werden, dass man sie bei im wesentlichen gleichbleibendem Umsatz unter erhöhter Belastung der Katalysatorbeschickung mit Reaktionsgasausgangsgemisch durchführt und nach weitgehend vollzogener Formierung die Belastung auf ihren Zielwert zurücknimmt.
  • Es überrascht, dass das Verhältnis R von scheinbarer Massendichte zu wahrer Massendichte p (so wie es in der EP-A 1340538 definiert ist) bei den erfindungsgemäß erhältlichen ringförmigen Vollkatalysatoren in der Regel > 0,55 beträgt. Meist beträgt R ≤ 0,9 bzw. ≤ 0,8 und ≥ 0,6 bzw. ≥ 0,65.
  • Dabei ist R = 1/(1 + V·p).
  • V ist das Porengesamtvolumen.
  • Beispiele und Vergleichsbeispiele A) Herstellung von ringförmigen Vollkatalysatoren mit der nachfolgenden Stöchiometrie S1 der Aktivmasse: Mo12Co7Fe2,94Bi0,6Si1,59K0,08Ox, Bei 60°C wurden 213 kg Ammoniumheptamolybdattetrahydrat (81,5 Gew.-% MoO3) in 600 1 Wasser gelöst. In diese Lösung wurden unter Aufrechterhaltung der 60°C 0,97 kg einer 46,8 gew.-%igen wässrigen Kaliumhydroxidlösung von 20°C eingerührt (dabei wurde eine Lösung A erhalten).
  • Eine zweite Lösung B wurde hergestellt, indem man unter Rühren zu 333,7 kg einer wässrigen Kobalt-(II)-nitratlösung (12,4 Gew.-% Co) bei 30°C 116,25 kg einer 20°C aufweisenden wässrigen Eisen-(III)-nitratlösung (14,2 Gew.-% Fe) gab. Nach beendeter Zugabe wurde noch 30 min. bei 30°C gerührt. Danach wurden bei 60°C 112,3 kg einer 20°C aufweisenden wässrigen Wismutnitratlösung (11,2 Gew.-% Bi) unter Erhalt der Lösung B eingerührt. Innerhalb von 30 min. wurde bei 60°C die Lösung B in die Lösung A eingerührt. 15 min. nach beendetem Einrühren wurden bei 60°C 19,16 kg Kieselsol (der Fa. Dupont, Typ Ludox®, 46,80 Gew.-% Si02, Dichte: 1,36 bis 1,42 g/cm3, pH = 8,5 bis 9,5, Alkaligehalt max. 0,5 Gew.-%) in die erhaltene Maische gegeben. Unter Aufrechterhaltung der 60°C wurde noch 15 min. nachgerührt. Dann wurde die erhaltene Maische im Gegenstromverfahren sprühgetrocknet (Gaseingangs temperatur: 400 ± 10°C, Gasausgangstemperatur: 140 ± 5°C) wobei ein Sprühpulver erhalten wurde, dessen Glühverlust (3 h bei 600°C unter Luft) 30 % seines Gewichtes betrug. Die Körnung des Sprühpulvers betrug im wesentlichen einheitlich 30 μm.
  • In Teilmengen des erhaltenen Sprühpulvers wurden jeweils zusätzlich 1,5 Gew.-% (bezogen auf die Sprühpulvermenge) feinteiliges Graphit (Siebanalyse: min. 50 Gew.-% < 24 μm, max. 10 Gew.-% ≥ 24 μm und ≤ 48 μm, max. 5 Gew.-% > 48 μm, BET-Oberfläche: 6 bis 13 m2/g) vom Typ TIMREX P44, der Firma Timcal AG (San Antonio, US) eingemischt. Das dabei jeweils resultierende Trockengemisch wurde mittels eines Kompaktors der Fa. Hosokawa Bepex GmbH (D-74211 Leingarten) vom Typ Kompaktor K 200/100 unter den Bedingungen von 2,8 mm Spaltbreite, 1,0 mm Siebweite, 400 μm Siebweite Unterkorn, 60 kN Presssollkraft und 65 bis 70 Upm Schneckendrehzahl durch Vorkompaktieren auf eine im wesentlichen einheitliche Korngröße von 400 μm bis 1 mm vergröbert. Das Kompaktat hatte eine Härte von 10 N.
  • Das Kompaktat wurde anschließend mit, bezogen auf sein Gewicht, weiteren 2 Gew.% desselben Graphit vermischt und anschließend in einem Kilian Rundläufer (Tablettiermaschine) vom Typ Rx73, der Fa. Kilian, D-50735 KöIn, unter Stickstoffatmosphäre zu ringförmigen Vollkatalysatorvorläuferformkörpern mit nicht gekrümmter Stirnfläche der Geometrie 5 mm x 3 mm x 2 mm (A x L x 1) mit unterschiedlicher Seitendruckfestigkeit verdichtet.
  • Die resultierenden Vollkatalysatorvorläuferformkörper und ihre Seitendruckfestigkeiten waren:
    BVV 1: 15 N;
    BVV 2: 20 N;
    VVV 1: 25 N.
  • Zur abschließenden thermischen Behandlung wurden jeweils 1900 g der Vollkatalysatorvorläuferformkörper in einer beheizbaren Umluftkammer (0,12 m3 Innenvolumen) aufgeschüttet (2 Nm3 Luft/min.). Anschließend wurde die Temperatur in der Schüttung wie folgt verändert:
    • – mit 1 °C/min: von 25°C auf 160°C erhöht;
    • – dann 100 min. bei 160°C gehalten;
    • – danach mit 3°C/min. von 160°C auf 200°C erhöht;
    • – dann 100 min. bei 200°C gehalten;
    • – danach mit 2°C/min. von 200°C auf 230°C erhöht;
    • – dann 100 min. bei 230°C gehalten;
    • – danach mit 3°C/min. von 230°C auf 270°C erhöht;
    • –dann 100 min. bei 270°C gehalten;
    • – danach mit 1°C/min. auf 380°C erhöht;
    • – dann 4,5 h bei 380°C gehalten;
    • – danach mit 1°C/min. auf 430°C erhöht;
    • – dann 4,5 h bei 430°C gehalten;
    • – danach mit 1 °C/min. auf 500°C erhöht;
    • – dann 9 h bei 500°C gehalten;
    • - danach innerhalb von 4 h auf 25°C abgekühlt.
  • Dabei wurden aus den ringförmigen Vollkatalysatorvorläuferformkörpern die nachfolgenden ringförmigen Vollkatalysatoren erhalten (der erste Buchstabe B steht jeweils für Beispiel, der erste Buchstabe V steht für Vergleichsbeispiel):
    BVV 1 → BVK 1;
    BVV 2 → BVK 2; und
    VVV 1 → VVK 1.
  • Die Parameter O, V, der wesentliche, den größten Beitrag zum Porengesamtvolumen leistende, Porendurchmesser dmax sowie der prozentuale Anteil derjenigen Porendurchmesser am Porengesamtvolumen, deren Durchmesser > 0,1 und < 1 μm betragen, waren von diesen ringförmigen Vollkatalysatoren wie folgt beschaffen: BVK 1: O = 6,4 cm2/g; V = 0,32 cm3/g; dmax = 0,32 μm; V0,1 1-% = 91%. BVK 2: O = 6,8 cm2/g; V = 0,34 cm3/g; dmax = 0,36 μm; V0,1 1-% = 87 %.
  • Die 1(3) und 2(4) zeigen außerdem die Porenverteilung des ringförmigen Vollkatalysators BVK1 (BVK2). In 1(3) zeigt die Abszisse den Porendurchmesser in μm und die Ordinate den differentiellen Beitrag in ml/g des jeweiligen Porendurchmessers zum Porengesamtvolumen. In 2(4) zeigt die Abszisse ebenfalls den Porendurchmesser in μm und die Ordinate das Integral über die individuellen Beiträge der einzelnen Porendurchmesser zum Porengesamtvolumen in ml/g.
  • (Anstatt die thermische Behandlung wie beschrieben durchzuführen, kann man sie auch wie in Beispiel 3 der DE-A 10046957 beschrieben mittels einer Bandcalziniervorrichtung durchführen; die Kammern besitzen eine Grundfläche (bei einer einheitlichen Kammerlänge von 1,40 m) von 1,29 m2 (Zersetzung, Kammern 1-4) und 1,40 m2 (Calcination, Kammern 5-8) und werden von unten durch das grobmaschige Band von 75 Nm3/h Zuluft durchströmt, die mittels rotierender Ventilatoren angesaugt werden; innerhalb der Kammern war die zeitliche und örtliche Abweichung der Temperatur vom Sollwert stets ≤ 2°C; durch die Kammern werden die ringförmigen Vollkatalysatorvorläuferformkörper in einer Schichthöhe von 50 mm bis 70 mm geführt; im übrigen wird wie in Beispiel 3 der DE-A 10046957 beschrieben verfahren; die resultierenden ringförmigen Vollkatalysatoren können wie die ringförmigen Vollkatalysatoren BVK1, BVK2 und VVK1 für die nachfolgend unter C) beschriebene gasphasenkatalytische Partialoxidation von Propen zu Acrolein eingesetzt werden).
  • B) Herstellung von ringförmigen Vollkatalysatoren mit der nachfolgenden Stöchiometrie S2 der Aktivmasse: [Bi2W2O9·2WO3]0,5([MO12Co5,5Fe2,94S1,59K0,08Ox]1
  • 1. Herstellung einer Ausgangsmasse 1
  • In 775 kg einer wäßrigen salpetersauren Wismutnitratlösung (11,2 Gew.% Bi; freie Salpetersäure 3 bis 5 Gew.%; Massendichte: 1,22 bis 1,27 g/ml) wurden bei 25°C portionsweise 209,3 kg Wolframsäure (72,94 Gew.% W) eingerührt. Das resultierende wäßrige Gemisch wurde anschließend noch 2 h bei 25°C gerührt und anschließend sprühgetrocknet.
  • Die Sprühtrocknung erfolgte in einem Drehscheibensprühturm im Gegenstrom bei ei-, ner Gaseintrittstemperatur von 300 ± 10°C und einer Gasaustrittstemperatur von 100 ± 10°C. Das erhaltene Sprühpulver (Partikelgröße im wesentlichen einheitlich 30 μm), das einen Glühverlust von 12 Gew.-% aufwies (3 h bei 600°C unter Luft glühen), wurde anschließend mit 16,8 Gew.-% (bezogen auf das Pulver) Wasser in einem Kneten angeteigt und mittels eines Extruders (Drehmoment: ≤ 50 Nm) zu Strängen des Durchmessers 6 mm extrudiert. Diese wurden in Abschnitte von 6 cm geschnitten, auf einem 3-zonigen Bandtrockner bei einer Verweilzeit von 120 min bei Temperaturen von 90–95°C (Zone 1), 115°C (Zone 2) und 125°C (Zone 3) an Luft getrocknet und dann bei einer Temperatur im Bereich von 780 bis 810°C thermisch behandelt (calciniert; im luftdurchströmten Drehrohrofen (0,3 mbar Unterdruck, 1,54 m3 Innenvolumen, 200 Nm3 Luft/h)). Wesentlich bei der genauen Einstellung der Calcinationstemperatur ist, daß sie an der angestrebten Phasenzusammensetzung des Calcinationsprodukts orientiert zu erfolgen hat. Gewünscht sind die Phasen WO3 (monoklin) und Bi2W2O9, unerwünscht ist das Vorhandensein von y-Bi2WO6 (Russellit). Sollte daher nach der Calcination die Verbindung y-Bi2WO6 anhand eines Reflexes im Pulverröntgendiffraktogramm bei einem Reflexwinkel von 20 = 28,4° (CuKα-Strahlung) noch nachweisbar sein, so ist die Präparation zu wiederholen und die Calcinationstemperatur innerhalb des angegebenen Temperaturbereichs oder die Verweilzeit bei gleichbleibender Calcinationstemperatur zu erhöhen, bis das Verschwinden des Reflexes erreicht wird. Das so erhaltene vorgebildete calcinierte Mischoxid wurde gemahlen, so daß der X50-Wert (vgl. Ullmann's Encyclopedia of Industrial Chemistry, 6th Edition (1998) Electronic Release, Kapitel 3.1.4 oder DIN 66141) der resultierenden Körnung 5 mm betrug. Das Mahlgut wurde dann mit 1 Gew.% (bezogen auf das Mahlgut) feinteiligem SiO2 der Fa. Degussa vom Typ Sipernat® (Rüttelgewicht 150 g/l; X50-Wert der SiO2-Partikel betrug 10 μm, die BET-Oberfläche betrug 100 m2/g) vermischt.
  • 2. Herstellung einer Ausgangsmasse 2
  • Eine Lösung A wurde hergestellt, indem man bei 60°C unter Rühren in 600 l Wasser 213 kg Ammoniumheptamolybdattetrahydrat (81,5 Gew.-% MoO3) löste und die resultierende Lösung unter Aufrechterhaltung der 60°C und Rühren mit 0,97 kg einer 20°C aufweisenden wässrigen Kaliumhydroxidlösung (46,8 Gew.% KOH) versetzte.
  • Eine Lösung B wurde hergestellt indem man bei 60°C in 262,9 kg einer wässrigen Co(II)-baltnitratlösung (12,4 Gew.% Co) 116,25 kg einer wäßrigen Eisen-(III)-nitratlösung (14,2 Gew.% Fe) eintrug. Anschließend wurde unter Aufrechterhaltung der 60°C die Lösung B über einen Zeitraum von 30 Minuten kontinuierlich in die vorgelegte Lösung A gepumpt. Anschließend wurde 15 Minuten bei 60°C gerührt. Dann wurden dem resultierenden wäßrigen Gemisch 19,16 kg eines Kieselgels der Fa. Dupont vom Typ Ludox (46,80 Gew.% SiO2, Dichte: 1,36 bis 1,42 g/ml, pH 8,5 bis 9,5, Alkaligehalt max. 0,5 Gew.%) zugegeben und danach noch weitere 15 Minuten bei 60°C gerührt.
  • Anschließend wurde in einem Drehscheibensprühturm im Gegenstrom sprühgetrocknet (Gaseintrittstemperatur: 400 ± 10°C, Gasaustrittstemperatur: 140 ± 5°C). Das resultierende Sprühpulver wies einen Glühverlust von ca. 30 Gew.% (3 h bei 600°C unter Luft glühen) und eine im wesentlichen einheitliche Körnung von 30 μm auf.
  • 3. Herstellung der Multimetalloxidaktivmasse
  • Die Ausgangsmasse 1 wurde mit der Ausgangsmasse 2 in den für eine Multimetalloxidaktivmasse der Stöchiometrie [Bi2W2O9· 2WO3]0,5[Mo1 2Co5,5Fe2,94Si1,59K0,08Ox]1 erforderlichen Mengen in einem Mischer mit Messerköpfen homogen vermischt. Bezogen auf die vorgenannte Gesamtmasse wurden zusätzlich 1 Gew.% feinteiliges Graphit der Fa. Timcal AG (San Antonio, US), vom Typ TIMREX P44 (Siebanalyse: min. 50 Gew.% < 24 mm, max. 10 Gew.% ≥ 24 μm und ≤ 48 μm, max. 5 Gew.% > 48 μm, BET-Oberfläche: 6 bis 13 m2/g) homogen eingemischt. Das resultierende Gemisch wurden dann in einem Kompaktor (Fa. Hosokawa Bepex GmbH, D-74211 Leingarten) vom Typ Kompaktor K200/100 mit konkaven, geriffelten Glattwalzen gefahren (Spaltweite: 2,8 mm, Siebweite: 1,0 mm, Siebweite Unterkorn: 400 μm, Presssollkraft: 60 kN, Schneckendrehzahl: 65 bis 70 Umdrehungen je Minute). Das resultierende Kompaktat wies eine Härte von 10N und eine im wesentlichen einheitliche Körnung von 400 μm bis 1 mm auf.
  • Das Kompaktat wurde anschließend mit, bezogen auf sein Gewicht, weiteren 2 Gew.desselben Graphit vermischt und anschließend in einem Kilian Rundläufer (Tablettiermaschine) vom Typ R × 73, der Fa. Kilian, D-50735 Köln, unter Stickstoffatmosphäre zu ringförmigen Vollkatalysatorvorläuferformkörpern unterschiedlicher Geometrie (A × L × I) mit unterschiedlicher Seitendruckfestigkeit verdichtet.
  • Die resultierenden Vollkatalysatorvorläuferformkörper, ihre Geometrien und ihre Seitendruckfestigkeiten waren:
    BVV3: 5 mm × 3 mm × 2 mm; 19 N (Masse: 129 mg).
    BVV4: 5mm × 3mm × 3mm; 16N.
    BVV5: 5 mm × 3 mm × 3 mm; 17 N.
    BVV6: 5,5 mm × 3 mm × 3,5 mm; 14 N.
    BVV7: 5,5 mm × 3 mm × 3,5 mm; 15,5 N.
    BVV8: 6 mm × 3 mm × 4 mm; 13 N.
    BVV9: 6 mm × 3 mm × 4 mm; 16,3 N.
    VVV2: 6,5 mm × 3 mm × 4,5 mm; 11 N.
    BVV10: 6,5 mm × 3 mm × 4,5 mm; 15,6 N.
    VVV3: 7 mm × 3 mm × 5 mm; 11,7 N.
    BVV11: 7 mm × 3 mm × 5 mm; 16,3 N.
    VVV4: 5 mm × 3 mm × 2 mm; 10,5 N
  • 5 (6) zeigt die Porenverteilung im ringförmigen Vollkatalysatorvorläuferformkörper BVV3. Die Achsenbeschriftung von 5 entspricht derjenigen von 7 und die Achsenbeschriftung von 6 entspricht derjenigen von 2.
  • Zur abschließenden thermischen Behandlung wurden jeweils 1000 g der Vollkatalysatonrorläuferformkörper in einem Luft durchströmten Muffelofen (60 1 Innenvolumen, 1 1/h Luft pro Gramm Vollkatalysatorvorläuferformkörper) zunächst mit einer Aufheizrate von 180°C/h von Raumtemperatur (25°C) auf 190°C aufgeheizt. Diese Temperatur wurde für 1 h aufrechterhalten und dann mit einer Aufheizrate von 60°C/h auf 210°C erhöht. Die 210°C wurden wiederum während 1 h aufrechterhalten, bevor sie mit einer Aufheizrate von 60°C/h, auf 230°C erhöht wurden. Diese Temperatur wurde ebenfalls 1 h aufrechterhalten, bevor sie, wiederum mit einer Aufheizrate von 60°C/h, auf 265°C erhöht wurde. Die 265°C wurden anschließend ebenfalls während 1 h aufrechterhalten. Danach wurde zunächst auf Raumtemperatur abgekühlt und damit die Zersetzungsphase im wesentlichen abgeschlossen. Dann wurde mit einer Aufheizrate von 180°C/h auf 465°C erhitzt und diese Calcinationstemperatur während 4 h aufrechterhalten.
  • Dabei wurden aus den ringförmigen Vollkatalysatorvorläuferformkörpern die nachfolgenden ringförmigen Vollkatalysatoren erhalten (der erste Buchstabe B steht jeweils für Beispiel, der erste Buchstabe V steht jeweils für Vergleichsbeispiel):
    Figure 00290001
  • Zusätzlich enthält die vorstehende Tabelle Werte für die spezifische Oberfläche O, das Porengesamtvolumen V, den Porendurchmesser dmax der den größten Beitrag zum Porengesamtvolumen leistet, sowie die prozentualen Anteile derjenigen Porendurchmesser am Porengesamtvolumen, deren Durchmesser > 0,1 und < 1 μm betragen und R-Werte.
  • Die 7 und 8 zeigen außerdem die Porenverteilung des ringförmigen Vollkatalysators BVK3 für zwei voneinander unabhängige Reproduktionen. Auf der Abszisse ist der Porendurchmesser in μm aufgetragen. Auf der linken Ordinate ist der Logarithmus des differentiellen Beitrags in ml/g des jeweiligen Porendurchmessers zum Porengesamtvolumen aufgetragen (Kurve +). Das Maximum weist den Porendurchmesser mit dem größten Beitrag zum Porengesamtvolumen aus. Auf der rechten Ordinate ist in ml/g das Intergal über die individuellen Beiträge der einzelnen Porendurchmesser zum Porengesamtvolumen aufgetragen (Kurve O). Der Endpunkt ist das Porengesamtvolumen. Die 9 und 10 zeigen die Porenverteilung einer weiteren Reproduktion des BVK3 bei gleicher Achsenbeschriftung wie in 7, B.
  • Entsprechende Figuren bilden die 11, 12 (BVK4), die 13, 14 (BVK6), die 15 (BVK7), die 16, 17 (BVK8) und die 18 (BVK9).
  • Anstatt die thermische Behandlung wie beschrieben durchzuführen, kann man sie auch wie in Beispiel 1 der DE-A 10046957 (die Schütthöhe in der Zersetzung (Kammern 1 bis 4) beläuft sich dabei jedoch vorteilhaft auf 44 mm bei einer Verweilzeit pro Kammer von 1,46 h und in der Calcination (Kammern 5 bis 8) beläuft sie sich vorteilhaft auf 130 mm bei einer Verweilzeit von 4,67 h) beschrieben mittels einer Bandcalziniervorrichtung durchführen; die Kammern besitzen eine Grundfläche (bei einer einheitlichen Kammerlänge von 1,40 m) von 1,29 m2 (Zersetzung) und 1,40 m2 (Calcination) und werden von unten durch das grobmaschige Band von 75 Nm3/h Zuluft durchströmt, die mittels rotierender Ventilatoren angesaugt werden. Innerhalb der Kammern ist die zeitliche und örtliche Abweichung der Temperatur vom Sollwert stets ≤ 2°C. Im übrigen wird wie in Beispiel 1 der DE-A 10046957 beschrieben verfahren. Die resultierenden ringförmigen Vollkatalysatoren können wie die ringförmigen Vollkatalysatoren BVK3 bis BVK4 für die nachfolgend beschriebene gasphasenkatalytische Partialoxidation von Propen zu Acrolein eingesetzt werden.
  • Als weitere Alternative kann die thermische Behandlung in einem Umluftofen (z.B. in einem solchen der Fa. Elino vom Typ Laborkammerofen KA-040/006-08 EW.OH bzw. einem solchen der Fa. Heraeus vom Typ K 750) so durchgeführt werden, dass man innerhalb von 6 h auf 270°C erwärmt und anschließend so lange die 270°C aufrechterhält, bis die Umluft frei ist von nitrosen Gasen. Nachfolgend wird innerhalb von 1,5 h auf eine Temperatur von 430°C bis 460°C (vorzugsweise auf 438°C) erwärmt und diese Temperatur 10 h aufrechterhalten. Die Luftspülung beträgt 800 Nl/h. 1000 g ringförmige Vollkatalysatorvorläuferformkörper sind in einen quaderförmigen Drahtkorb (10 cm hoch, 14 cm x 14 cm Grundfläche) in einer Schütthöhe von ca. 4 cm eingefüllt. Die Restgrundfläche des Tragekorbes wird in entsprechender Schütthöhe mit Steatitringen (wie immer in den Beispielen und Vergleichsbeispielen vom Typ C220 der Fa. Ceram Tec, DE)gleicher Geometrie belegt.
  • Diese thermischen Behandlungsbedingungen können auch auf die ringförmigen Vollkatalysatorvorläuferformkörper BVV1, BVV2 und VVV1 angewendet werden. Alle resultierenden ringförmigen Vollkatalysatoren können in der unter C) beispielhaft beschriebenen gasphasenkatalytischen Partialoxidation eingesetzt werden.
  • C) Testung der in A) und B) hergestellten ringförmigen Vollkatalysatoren für eine heterogen katalysierte Partialoxidation von Propen zu Acrolein
  • 1. Versuchsanordnung
  • Ein Reaktionsrohr (V2A Stahl; 21 mm Außendurchmesser, 3 mm Wandstärke, 15 mm Innendurchmesser, Länge 100 cm) wurde von oben nach unten in Strömungsrichtung wie folgt beschickt:
    Abschnitt 1:
    30 cm Länge
    Steatitringe der Geometrie 5 mm x 3 mm x 2 mm (Außendurchmesser x Länge x Innendurchmesser) als Vorschüttung.
  • Abschnitt 2:
    70 cm Länge
    Katalysatorbeschickung mit den in A) und B) hergestellten ringförmigen Vollkatalysatoren.
  • Die Temperierung des Reaktionsrohres erfolgte mittels eines mit Stickstoff geperlten Salzbades.
  • 2. Versuchsdurchführung
  • Die beschriebene, jeweils frisch hergerichtete, Versuchsanordnung wurde jeweils kontinuierlich mit einem Beschickungsgasgemisch (Gemisch aus Luft, polymer grade Propylen und Stickstoff) der Zusammensetzung:
    5 Vol.-% Propen,
    10 Vol.-% Sauerstoff und
    als Restmenge bis 100 Vol.-% N2 beschickt, wobei die Belastung und die Thermostatisierung des Reaktionsrohres so erfolgte, dass der Propenumsatz U (mol-%) bei einmaligem Durchgang des Beschickungsgasgemisches durch das Reaktionsrohr kontinierlich etwa 95 mol-% betrug.
  • Die nachfolgende Tabelle zeigt die in Abhängigkeit von der gewählten Katalysatorbeschickung und Propenbelastung (PL in Nl/l·h) derselben zur Umsatzerlangung erforderlichen Salzbadtemperaturen TS (°C) sowie die dabei erzielten Acroleinselektivitäten SA (mol-%). Die angegebenen Ergebnisse beziehen sich stets auf das Ende einer Betriebsdauer von 120 h. Die Selektivität SAA der Acrylsäurenebenproduktbildung lag im Bereich von 4 bis 17 mol-%.
  • Figure 00310001
  • Figure 00320001
  • Die vorstehenden Versuche können aber auch in entsprechender Weise (gleicher Zielumsatz) in einem Reaktionsrohr der nachfolgenden Art durchgeführt werden: V2A Stahl; 30 mm Außendurchmesser, 2 mm Wandstärke, 26 mm Innendurchmesser, 350 cm Länge, ein in der Reaktionsrohrmitte zentriertes Thermorohr (4 mm Außendurchmesser) zur Aufnahme eines Thermoelements mit dem die Temperatur im Reaktionsrohr auf seiner gesamten Länge ermittelt werden kann.
  • In Strömungsrichtung wird dabei wie folgt beschickt:
    Abschnitt 1: 80 cm Länge
    Steatitringe der Geometrie 7 mm x 7 mm x 4 mm
    (Außendurchmesser x Länge x Innendurchmesser) als Vorschüttung.
  • Abschnitt 2: 270 cm Länge Katalysatorbeschickung mit den in A) und B) hergestellten ringförmigen Vollkatalysatoren.
  • Die Temperierung des Reaktionsrohres erfolgt mittels eines im Gegenstrom gepumpten Salzbades.
  • PL wird durchgehend zu 100 gewählt. Die Zusammensetzung des Reaktionsgasausgangsgemisches ist 5,4 Vol.-% Propen, 10,5 Vol.-% Sauerstoff, 1,2 Vol.-% COx, 81,3 Vol.-% N2 und 1,6 Vol.-% H2O.
  • Diese Versuchsdurchführung kann in entsprechender Weise auch mit einer Katalysatorbeschickung durchgeführt werden, deren Abschnitt 2 wie folgt gestaltet ist (jeweils in Strömungsrichtung):
    I. Zunächst auf 100 cm Länge ein homogenes Gemisch aus 65 Gew.-% BVK3 und 35 Gew.-% Steatitringen (5 mm x 3 mm x 2 mm);
    anschließend auf 170 cm Länge ein homogenes Gemisch aus 90 Gew.-% BVK3 und 10 Gew.-% Steatitringen (5 mm x 3 mm x 2 mm);
    oder
    II. Zunächst auf 100 cm Länge BVK10;
    anschließend auf 170 cm Länge BVK3;
    oder
    III. Zunächst auf 100 cm Länge ein homogenes Gemisch aus 70 Gew.-% BVK3 und 30 Gew.-% Steatitringen (5 mm x 3 mm x 2 mm); anschließend auf 170 cm Länge BVK3.
  • TS wird in allen Fällen so gewählt, dass U-Propen = 95 mol-%.

Claims (28)

  1. Verfahren zur Herstellung von ringförmigen Vollkatalysatoren mit gekrümmter und/oder nicht gekrümmter Stirnfläche der Ringe, deren Aktivmasse eine Stöchiometrie der allgemeinen Formel I, Mo12BiaFebX1 cX2 dX3 eX4 fOn (I), mit X1 = Nickel und/oder Kobalt, X2 = Thallium, ein Alkalimetall und/oder ein Erdalkalimetall, X3 = Zink, Phosphor, Arsen, Bor, Antimon, Zinn, Cer, Blei und oder Wolfram, X4 = Silicium, Aluminium, Titan und/oder Zirkonium, a = 0,2 bis 5, b = 0,01 bis 5, c = 0 bis 10, d = 0 bis 2, e = 0 bis 8, f = 0 bis 10 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in I bestimmt wird, oder eine Stöchiometrie der allgemeinen Formel II, [Y1 a'Y2 b'Ox']p[Y3 c'Y4 d'Y5 e'Y6 f'Y7 g'Y2 h'Oy']q (II), mit Y1 = nur Wismut oder Wismut und wenigstens eines der Elemente Tellur, Antimon, Zinn und Kupfer, Y2 = Molybdän oder Molybdän und Wolfram, Y3 = ein Alkalimetall, Thallium und/oder Samarium, Y4 = ein Erdalkalimetall, Nickel, Kobalt, Kupfer, Mangan, Zink, Zinn, Cadmium und/oder Quecksilber, Y5 = Eisen oder Eisen und wenigstens eines der Elemente Vanadium, Chrom und Cer, Y6 = Phosphor, Arsen, Bor und/oder Antimon, Y7 = ein seltenes Erdmetall, Titan, Zirkonium, Niob, Tantal, Rhenium, Ruthenium, Rhodium, Silber, Gold, Aluminium, Gallium, Indium, Silicium, Germanium, Blei, Thorium und/oder Uran, a' = 0,01 bis 8, b' = 0,1 bis 30, c'= 0 bis 4, d' = 0 bis 20, e' > 0 bis 20, f' = 0 bis 6, g' = 0 bis 15, h' = 8 bis 16, x', y' = Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II bestimmt werden und p, q = Zahlen, deren Verhältnis p/q 0,1 bis 10 beträgt, und deren ringförmige Geometrie, ohne Berücksichtigung einer gegebenenfalls bestehenden Krümmung der Stirnfläche, eine Länge L von 2 bis 11 mm, einen Außendurchmesser A von 2 bis 11 mm und eine Wandstärke W von 0,75 mm bis 1,75 mm aufweist, bei dem man aus Quellen der elementaren Konstituenten der Aktivmasse ein feinteiliges formbares Gemisch erzeugt und aus diesem Gemisch, gegebenenfalls nach Zugabe von Formungs- und/oder Verstärkungshilfsmitteln, ringförmige Vollkatalysatorvorläuferformkörper formt, deren Stirnflächen gekrümmt und/oder nicht gekrümmt sind, und diese durch thermisches Behandeln bei erhöhter Temperatur in die ringförmigen Vollkatalysatoren überführt, dadurch gekennzeichnet, dass die Seitendruckfestigkeit der ringförmigen Vollkatalysatorvorläuferformkörper ≥ 12 N und ≤ 23 N beträgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Seitendruckfestigkeit der ringförmigen Vollkatalysatorvorläuferformkörper ≥ 13 N bis ≤ 22 N beträgt.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Seitendruckfestigkeit der ringförmigen Vollkatalysatorvorläuferformkörper ≥ 15 N bis ≤ 20 N beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die ringförmige Geometrie zusätzlich die Bedingung L/A = 0,3 bis 0,7 erfüllt.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die ringförmige Geometrie zusätzlich die Bedingung L/A = 0,4 bis 0,6 erfüllt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die ringförmige Geometrie zusätzlich das Verhältnis Innendurchmesser I/Außendurchmesser A = 0,5 bis 0,8 erfüllt.
  7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die ringförmige Geometrie zusätzlich das Verhältnis Innendurchmesser I/Außendurchmesser A = 0,6 bis 0,7 erfüllt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass L = 2 bis 6 mm beträgt.
  9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass L = 2 bis 4 mm beträgt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass A = 4 bis 8 mm beträgt.
  11. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass A = 5 bis 7 mm beträgt.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Wandstärke der ringförmigen Geometrie 1 bis 1,5 mm beträgt.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die ringförmige Geometrie, ausgedrückt als A x L x I, eine ringförmige Geometrie aus der Gruppe umfassend a) 5mm × 3mm × 2mm, b) 5mm × 3mm × 3mm, c) 5,5 mm × 3 mm × 3,5 mm, d) 6mm × 3mm × 4mm, e) 6,5 mm × 3 mm × 4,5 mm und f) 7mm × 3mm × 5mm ist.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Aktivmasse eine Stöchiometrie der allgemeinen Formel 1 aufweist, wobei a = 0,4 bis 2; b = 2 bis 4; c = 3 bis 10; d = 0,02 bis 2; e = 0 bis 5 und f = 0,5 bis 10.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Aktivmasse eine Stöchiometrie der allgemeinen Formel 1 aufweist, wobei X1 = Co; X2 = K, Cs und/oder Sr; X3 = Zn und/oder P und X4 = Si ist.
  16. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Aktivmasse eine Stöchiometrie der allgemeinen Formel II hat, und dreidimensional ausgedehnte, von ihrer lokalen Umgebung aufgrund ihrer von ihrer lokalen Umgebung verschiedenen Zusammensetzung abgegrenzte, Bereiche der chemischen Zusammensetzung Y1 a'Y2 b'Ox' aufweist, deren Größtdurchmesser 1 nm bis 100 μm beträgt.
  17. Verfahren nach einem der Ansprüche 1 bis 13 oder 16, dadurch gekennzeichnet, dass Y1 = Bi.
  18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die thermische Behandlung des ringförmigen Vollkatalysatorvorläufertormkörpers bei Temperaturen erfolgt, die die Temperatur 350°C überschreiten und die Temperatur 650°C nicht überschreiten.
  19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die thermische Behandlung auf einem Bandcalcinierer erfolgt.
  20. Ringförmiger Vollkatalysator mit gekrümmter und/oder nicht gekrümmter Stirnfläche des Rings, dessen Aktivmasse eine Stöchiometrie der allgemeinen Formel 1, Mo12BiaFebX1 cX2 dX3 eX4 fOn (I), mit X1 = Nickel und/oder Kobalt, X2 = Thallium, ein Alkalimetall und/oder ein Erdalkalimetall, X3 = Zink, Phosphor, Arsen, Bor, Antimon, Zinn, Cer, Blei und/oder Wolfram, X4 = Silicium, Aluminium, Titan und/oder Zirkonium, a = 0,2 bis 5, b = 0,001 bis 5, c = 0 bis 10, d = 0 bis 2, e = 0 bis 8, f = 0 bis 10 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in I bestimmt wird, oder eine Stöchiometrie der allgemeinen Formel II, [Y1 a'Y2 b'Ox']p[Y3 c'Y4 d'Y5 e'Y6 f'Y7 g'Y2 h'Oy']q (II), mit Y1 = nur Wismut oder Wismut und wenigstens eines der Elemente Tellur, Antimon, Zinn und Kupfer, Y2 = Molybdän oder Molybdän und Wolfram, Y3 = ein Alkalimetall, Thallium und/oder Samarium, Y4 = ein Erdalkalimetall, Nickel, Kobalt, Kupfer, Mangan, Zink, Zinn, Cadmium und/oder Quecksilber, Y5 = Eisen oder Eisen und wenigstens eines der Elemente Vanadium, Chrom und Cer, Y6 = Phosphor, Arsen, Bor und/oder Antimon, Y7 = ein seltenes Erdmetall, Titan, Zirkonium, Niob, Tantal, Rhenium, Ruthenium, Rhodium, Silber, Gold, Aluminium, Gallium, Indium, Silicium, Germanium, Blei, Thorium und/oder Uran, a' = 0,01 bis 8, b' = 0,1 bis 30, c'= 0 bis 4, d' = 0 bis 20, e' > 0 bis 20, f' = 0 bis 6, g' = 0 bis 15, h' = 8 bis 16, x', y' = Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II bestimmt werden und p, q = Zahlen, deren Verhältnis p/q 0,1 bis 10 beträgt, und dessen ringförmige Geometrie, ohne Berücksichtigung einer gegebenenfalls bestehenden Krümmung der Stirnfläche, eine Länge L von 2 bis 11 mm, einen Außendurchmesser A von 2 bis 11 mm und eine Wandstärke W von 0,75 mm bis 1,75 mm aufweist, und der dadurch gekennzeichnet ist, dass die spezifische Oberfläche O 5 bis 20 m2/g und das Porengesamtvolumen V 0,1 bis 1 cm3/g beträgt, wobei die verschiedenen Porendurchmesser wie folgt zu V beitragen: Poren mit Durchmesser im Bereich < 0,03 μm: ≤ 5 Vol.-%; Poren mit Durchmesser im Bereich ≥ 0,03 bis ≤ 0,1 μm: ≤ 25 Vol.-%; Poren mit Durchmesser im Bereich > 0,1 bis < 1 μm: ≥ 70 Vol.-% und Poren mit Durchmesser im Bereich ≥ 1 bis ≤ 10 μm: ≤ 10 Vol.-%.
  21. Ringförmiger Vollkatalysator nach Anspruch 20, mit 0 = 5 bis 10 m2/g.
  22. Ringförmiger Vollkatalysator nach Anspruch 20 oder 21, mit V = 0,2 bis 0,4 cm3/g.
  23. Ringförmiger Vollkatalysator nach einem der Ansprüche 20 bis 22, wobei die verschiedenen Porendurchmesser wie folgt zu V beitragen: Poren mit Durchmesser im Bereich < 0,03 μm: ≥ 0 Vol.-% und ≥ 5 Vol.-%; Poren mit Durchmesser im Bereich ≥ 0,03 bis ≤ 0,1 μm: ≥ 3 und ≤ 20 Vol.-%; Poren mit Durchmesser im Bereich > 0,1 bis < 1 μm: ≥ 75 und ≤ 95 Vol.-% und Poren mit Durchmesser im Bereich Z 1 bis ≤ 10 μm: ≥ 0 und ≤ 5 Vol.-%.
  24. Ringförmiger Vollkatalysator nach einem der Ansprüche 20 bis 23, wobei der den größten Beitrag zum Porengesamtvolumen V leistende Porendurchmesser dmax 0,3 bis 0,8 μm beträgt.
  25. Ringförmiger Vollkatalysator nach einem der Ansprüche 20 bis 24, dessen Seitendruckfestigkeit 5 bis 13N beträgt.
  26. Ringförmiger Vollkatalysator nach einem der Ansprüche 1 bis 25, dessen Verhältnis aus scheinbarer Massendichte zu wahrer Massendichte > 0,55 beträgt.
  27. Ringförmiger Vollkatalysatorvorläuferformkörper, der durch thermisches Behandeln bei erhöhter Temperatur in einen ringförmigen Vollkatalysator mit gekrümm ter und/oder nicht gekrümmter Stirnfläche des Rings, dessen Aktivmasse eine Stöchiometrie der allgemeinen Formel 1, Mo12BiaFebX1 cX2 dX3 eX4 fOn (I), mit X1 = Nickel und/oder Kobalt, X2 = Thallium, ein Alkalimetall und/oder ein Erdalkalimetall, X3 = Zink, Phosphor, Arsen, Bor, Antimon, Zinn, Cer, Blei und oder Wolfram, X4 = Silicium, Aluminium, Titan und/oder Zirkonium, a = 0,2 bis 5, b = 0,01 bis 5, c = 0 bis 10, d = 0 bis 2, e = 0 bis 8, f = 0 bis 10 und n = eine Zahl, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in 1 bestimmt wird, oder eine Stöchiometrie der allgemeinen Formel II, [Y1 a'Y2 b'Ox']p[Y3 c'Y4 d'Y5 e'Y6 f'Y7 g'Y2 h'Oy']q (II), mit Y1 = nur Wismut oder Wismut und wenigstens eines der Elemente Tellur, Antimon, Zinn und Kupfer, Y2 = Molybdän oder Molybdän und Wolfram, Y3 = ein Alkalimetall, Thallium und/oder Samarium, Y4 = ein Erdalkalimetall, Nickel, Kobalt, Kupfer, Mangan, Zink, Zinn, Cadmium und/oder Quecksilber, Y5 = Eisen oder Eisen und wenigstens eines der Elemente Vanadium, Chrom und Cer, Y6 = Phosphor, Arsen, Bor und/oder Antimon, Y7 = ein seltenes Erdmetall, Titan, Zirkonium, Niob, Tantal, Rhenium, Ruthenium, Rhodium, Silber, Gold, Aluminium, Gallium, Indium, Silicium, Germanium, Blei, Thorium und/oder Uran, a' = 0,01 bis 8, b' = 0,1 bis 30, c' = 0 bis 4, d' = 0 bis 20, e' > 0 bis 20, f'= 0 bis 6, g' = 0 bis 15, h' = 8 bis 16, x', y' = Zahlen, die durch die Wertigkeit und Häufigkeit der von Sauerstoff verschiedenen Elemente in II bestimmt werden und p, q = Zahlen, deren Verhältnis p/q 0,1 bis 10 beträgt, und dessen ringförmige Geometrie, ohne Berücksichtigung einer gegebenenfalls bestehenden Krümmung der Stirnfläche, eine Länge L von 2 bis 11 mm, einen Außendurchmesser A von 2 bis 11 mm und eine Wandstärke W von 0,75 mm bis 1,75 mm aufweist, überführbar und dadurch erhältlich ist, dass man aus Quellen der elementaren Konstituenten der Aktivmasse ein feinteiliges, formbares Gemisch erzeugt und aus diesem Gemisch, gegebenenfalls nach Zugabe von Formungs- und/oder Verstärkungshilfsmitteln, einen ringförmigen Vollkatalysatorvorläuferformkörper, dessen Stirnflächen gekrümmt und/oder nicht gekrümmt sind, so formt, dass seine Seitendruckfestigkeit ≥ 12 N und ≤ 23 N beträgt.
  28. Verfahren zur Herstellung von Acrolein und/oder Methacrolein durch heterogen katalysierte partielle Gasphasenoxidation von Propen, iso-Buten und/oder tert. Butanol, dadurch gekennzeichnet, dass der Katalysator für die Gasphasenoxidation ein ringförmiger Vollkatalysator gemäß einem der Ansprüche 20 bis 26 oder ein ringförmiger Vollkatalysator erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 19 ist.
DE10344149A 2003-09-22 2003-09-22 Verfahren zur Herstellung von ringförmigen Vollkatalysatoren Withdrawn DE10344149A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE10344149A DE10344149A1 (de) 2003-09-22 2003-09-22 Verfahren zur Herstellung von ringförmigen Vollkatalysatoren
US10/934,525 US7777082B2 (en) 2003-09-22 2004-09-07 Preparation of annular unsupported catalysts
TW093128054A TWI356733B (en) 2003-09-22 2004-09-16 Preparation of annular unsupported catalysts
MYPI20043765A MY144024A (en) 2003-09-22 2004-09-16 Preparation of annular unsupported catalysts
BRPI0414556-9A BRPI0414556B1 (pt) 2003-09-22 2004-09-17 Processos para a preparação de catalisadores não-suportados anulares e de acroleína e/ou metacroleína, catalisador não-suportado anular, e, corpo precursor de catalisador não-suportado anular
KR1020067005560A KR101095152B1 (ko) 2003-09-22 2004-09-17 환상 성형된 비지지 촉매의 제조 방법
RU2006113641/04A RU2377068C2 (ru) 2003-09-22 2004-09-17 Способ получения кольцеобразных сплошных катализаторов
JP2006527324A JP4868520B2 (ja) 2003-09-22 2004-09-17 リング状の非担持触媒の製造方法
PCT/EP2004/010436 WO2005030393A1 (de) 2003-09-22 2004-09-17 Verfahren zur herstellung von ringförmigen vollkatalysatoren
EP04765332.4A EP1663488B1 (de) 2003-09-22 2004-09-17 Verfahren zur herstellung von ringförmigen vollkatalysatoren
CNB2004800274294A CN100542673C (zh) 2003-09-22 2004-09-17 制备环状超催化剂的方法
ZA200603201A ZA200603201B (en) 2003-09-22 2006-04-21 Method for the production of annular-shaped super catalysts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10344149A DE10344149A1 (de) 2003-09-22 2003-09-22 Verfahren zur Herstellung von ringförmigen Vollkatalysatoren

Publications (1)

Publication Number Publication Date
DE10344149A1 true DE10344149A1 (de) 2004-04-08

Family

ID=31984518

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10344149A Withdrawn DE10344149A1 (de) 2003-09-22 2003-09-22 Verfahren zur Herstellung von ringförmigen Vollkatalysatoren

Country Status (4)

Country Link
US (1) US7777082B2 (de)
DE (1) DE10344149A1 (de)
TW (1) TWI356733B (de)
ZA (1) ZA200603201B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108342A1 (de) * 2004-04-30 2005-11-17 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure durch heterogen katalysierte gasphasenpartialoxidation wenigstens einer c3-kohlenwasserstoffvorläuferverbindung
US7208636B2 (en) 2003-11-18 2007-04-24 Basf Aktiengesellschaft Preparation of acrolein by heterogeneously catalyzed partial gas phase oxidation of propene
DE102007009981A1 (de) 2007-03-01 2008-09-04 Evonik Degussa Gmbh Aus hohlen Formen bestehende Mischoxidkatalysatoren
WO2015067659A1 (de) 2013-11-11 2015-05-14 Basf Se Mechanisch stabiler hohlzylindrischer katalysatorformkörper zur gasphasenoxidation eines alkens zu einem ungesättigten aldehyd und/oder einer ungesättigten carbonsäure
EP3770145A1 (de) 2019-07-24 2021-01-27 Basf Se Verfahren zur kontinuierlichen herstellung von acrolein oder acrylsäure als zielprodukt aus propen

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004021764A1 (de) * 2004-04-30 2005-06-02 Basf Ag Verfahren zur Herstellung von Acrylsäure durch heterogen katalysierte Gasphasenpartialoxidation wenigstens einer C3-Kohlenwasserstoffvorläuferverbindung
DE502006003470D1 (de) * 2005-08-05 2009-05-28 Basf Se
US7682594B2 (en) * 2006-06-21 2010-03-23 National Central University Method for producing photocatalyst
JP5361737B2 (ja) 2007-01-19 2013-12-04 ビーエーエスエフ ソシエタス・ヨーロピア その活物質が多元素酸化物である触媒成形体を製造する方法
DE102007017080A1 (de) * 2007-04-10 2008-10-16 Basf Se Verfahren zur Beschickung eines Längsabschnitts eines Kontaktrohres
JP5292194B2 (ja) * 2008-07-04 2013-09-18 日揮株式会社 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
DE102008042061A1 (de) * 2008-09-12 2010-03-18 Basf Se Verfahren zur Herstellung von geometrischen Katalysatorformkörpern
US9492814B2 (en) 2013-04-08 2016-11-15 Saudi Basic Industries Corporation Catalyst for conversion of propylene to product comprising a carboxylic acid moiety
EP3068754B1 (de) 2013-11-11 2018-01-31 Basf Se Verfahren zur herstellung eines ungesättigten aldehyds und/oder einer ungesättigten carbonsäure
BR112018006782B1 (pt) * 2015-10-05 2020-11-10 Basf Se processo para produção de um catalisador, e, uso de um catalisador
CA3058093A1 (en) 2017-03-27 2018-10-04 Mitsubishi Chemical Corporation Catalyst and catalyst group
WO2018181226A1 (ja) 2017-03-27 2018-10-04 三菱ケミカル株式会社 触媒及び触媒群
WO2024037905A1 (de) 2022-08-16 2024-02-22 Basf Se Verfahren zur herstellung von vollkatalysatorformkörpern zur gasphasenoxidation eines alkens und/oder eines alkohols zu einem α,β-ungesättigtem aldehyd und/oder einer α,β-ungesättigten carbonsäure

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141842A (en) * 1980-04-07 1981-11-05 Kanegafuchi Chem Ind Co Ltd Catalyst formed in novel cylindrical shape
JPS58119346A (ja) * 1982-01-06 1983-07-15 Nippon Shokubai Kagaku Kogyo Co Ltd プロピレン酸化用触媒
US4537874A (en) 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
ES2028180T3 (es) * 1987-06-05 1992-07-01 Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha Catalizador para la oxidacion de acroleina y procedimiento para su preparacion.
DE3930533C1 (de) * 1989-09-13 1991-05-08 Degussa Ag, 6000 Frankfurt, De
DE4220859A1 (de) 1992-06-25 1994-01-05 Basf Ag Multimetalloxidmassen
US5583086A (en) * 1993-03-09 1996-12-10 Basf Aktiengesellschaft Cesium containing multimetal oxide catalyst compositions for the preparation of methacrolein by gas-phase-catalytic oxidation
DE19855913A1 (de) * 1998-12-03 2000-06-08 Basf Ag Multimetalloxidmasse zur gasphasenkatalytischen Oxidation organischer Verbindungen
MY121878A (en) * 1999-03-10 2006-02-28 Basf Ag Method for the catalytic gas-phase oxidation of propene into acrylic acid
DE19948523A1 (de) 1999-10-08 2001-04-12 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
DE19955168A1 (de) * 1999-11-16 2001-05-17 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
DE10009017A1 (de) 2000-02-25 2001-09-06 Basf Ag Geformte Katalysatoren
DE10121592A1 (de) 2001-05-03 2002-05-23 Basf Ag Verfahren der katalytischen Gasphasenoxidation von Propen zu Acrylsäure
DE10051419A1 (de) 2000-10-17 2002-04-18 Basf Ag Katalysator bestehend aus einem Trägerkörper und einer auf der Oberfläche des Trägerkörpers aufgebrachten katalytisch aktiven Oxidmasse
DE10046957A1 (de) * 2000-09-21 2002-04-11 Basf Ag Verfahren zur Herstellung eines Multimetalloxid-Katalysators, Verfahren zur Herstellung ungesättigter Aldehyde und/oder Carbonsäuren und Bandcalziniervorrichtung
DE10101695A1 (de) 2001-01-15 2002-07-18 Basf Ag Verfahren zur heterogen katalysierten Gasphasenpartialoxidation von Vorläuferverbindungen der (Meth)acrylsäure
JP4242597B2 (ja) 2002-02-28 2009-03-25 株式会社日本触媒 不飽和アルデヒド合成用触媒とその製造方法、およびその触媒を用いた不飽和アルデヒドの製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7208636B2 (en) 2003-11-18 2007-04-24 Basf Aktiengesellschaft Preparation of acrolein by heterogeneously catalyzed partial gas phase oxidation of propene
US7772148B2 (en) 2003-11-18 2010-08-10 Basf Aktiengesellschaft Heterogeneous catalyst for the preparation of acrolein by partial gas phase oxidation of propene
WO2005108342A1 (de) * 2004-04-30 2005-11-17 Basf Aktiengesellschaft Verfahren zur herstellung von acrylsäure durch heterogen katalysierte gasphasenpartialoxidation wenigstens einer c3-kohlenwasserstoffvorläuferverbindung
DE102007009981A1 (de) 2007-03-01 2008-09-04 Evonik Degussa Gmbh Aus hohlen Formen bestehende Mischoxidkatalysatoren
WO2008104432A1 (de) 2007-03-01 2008-09-04 Evonik Degussa Gmbh Aus hohlen formen bestehende mischoxidkatalysatoren
RU2491122C2 (ru) * 2007-03-01 2013-08-27 Эвоник Дегусса Гмбх Смешанные оксидные катализаторы в виде полых тел
WO2015067659A1 (de) 2013-11-11 2015-05-14 Basf Se Mechanisch stabiler hohlzylindrischer katalysatorformkörper zur gasphasenoxidation eines alkens zu einem ungesättigten aldehyd und/oder einer ungesättigten carbonsäure
US9700876B2 (en) 2013-11-11 2017-07-11 Basf Se Mechanically stable hollow cylindrical shaped catalyst bodies for gas phase oxidation of an alkene to an unsaturated aldehyde and/or an unsaturated carboxylic acid
EP3770145A1 (de) 2019-07-24 2021-01-27 Basf Se Verfahren zur kontinuierlichen herstellung von acrolein oder acrylsäure als zielprodukt aus propen
WO2021013640A1 (en) 2019-07-24 2021-01-28 Basf Se A process for the continuous production of either acrolein or acrylic acid as the target product from propene

Also Published As

Publication number Publication date
TW200524672A (en) 2005-08-01
TWI356733B (en) 2012-01-21
US7777082B2 (en) 2010-08-17
ZA200603201B (en) 2008-02-27
US20050065371A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
EP1663488B1 (de) Verfahren zur herstellung von ringförmigen vollkatalysatoren
EP2114562B1 (de) Verfahren zur herstellung von katalysatorformkörpern, deren aktivmasse ein multielementoxid ist
EP1912735B1 (de) Verfahren zur herstellung von katalysatorformkörpern, deren aktivmasse ein mischoxid ist
EP2331258B1 (de) Verfahren zur herstellung von geometrischen katalysatorformkörpern
EP1159248B1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
EP2323760B1 (de) Verfahren zur herstellung von geometrischen katalysatorformkörpern
DE102007004961A1 (de) Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
DE102007005606A1 (de) Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
DE102005037678A1 (de) Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
EP1682474B1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten gasphasenpartialoxidation von propen zu acrolein
DE10344149A1 (de) Verfahren zur Herstellung von ringförmigen Vollkatalysatoren
EP1230204A1 (de) Verfahren der katalytischen gasphasenoxidation von propen zu acrylsäure
WO2015067659A1 (de) Mechanisch stabiler hohlzylindrischer katalysatorformkörper zur gasphasenoxidation eines alkens zu einem ungesättigten aldehyd und/oder einer ungesättigten carbonsäure
WO2005042459A1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten gasphasenpartialoxidation von propen zu acrylsäure
WO2005113127A1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten gasphasenpartialoxidation wenigstens einer organischen verbindung
EP3068754B1 (de) Verfahren zur herstellung eines ungesättigten aldehyds und/oder einer ungesättigten carbonsäure
DE102004025445A1 (de) Verfahren zum Langzeitbetrieb einer heterogen katalysierten Gasphasenpartialoxidation wenigstens einer organischen Verbindung
DE102008042060A1 (de) Verfahren zur Herstellung von geometrischen Katalysatorformkörpern
EP1689524B1 (de) Verfahren zur herstellung von acrolein durch heterogen katalysierte partielle gasphasenoxidation von propen
EP0668103B1 (de) Multimetalloxidmassen
EP1745001A1 (de) Verfahren zur herstellung von acrylsäure durch heterogen katalysierte gasphasenpartialoxidation wenigstens einer c3-kohlenwasserstoffvorläuferverbindung
DE102009047291A1 (de) Verfahren zur Herstellung von (Meth)acrolein durch heterogen katalysierte Gasphasen-Partialoxidation
EP1345689A2 (de) Verfahren zur herstellung einer mo, bi, fe sowie ni und/oder co enthaltenden multimetalloxidaktivmasse
DE10353954A1 (de) Verfahren zur Herstellung von Acrolein durch heterogen katalysierte partielle Gasphasenoxidation von Propen
DE10350812A1 (de) Verfahren zum Langzeitbetrieb einer heterogen katalysierten Gasphasenpartialoxidation von Propen zu Acrolein

Legal Events

Date Code Title Description
OAV Publication of unexamined application with consent of applicant
8130 Withdrawal