DE10339792A1 - Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium, sowie ein Einkristall aus Silicium und davon abgetrennte Halbleiterscheiben - Google Patents

Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium, sowie ein Einkristall aus Silicium und davon abgetrennte Halbleiterscheiben Download PDF

Info

Publication number
DE10339792A1
DE10339792A1 DE10339792A DE10339792A DE10339792A1 DE 10339792 A1 DE10339792 A1 DE 10339792A1 DE 10339792 A DE10339792 A DE 10339792A DE 10339792 A DE10339792 A DE 10339792A DE 10339792 A1 DE10339792 A1 DE 10339792A1
Authority
DE
Germany
Prior art keywords
single crystal
crucible
melt
heat
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE10339792A
Other languages
English (en)
Other versions
DE10339792B4 (de
Inventor
Wilfried Von Dr. Ammon
Janis Dr. Virbulis
Martin Dr. Weber
Thomas Dr. Wetzel
Herbert Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Priority to DE10339792.2A priority Critical patent/DE10339792B4/de
Priority to KR1020040019725A priority patent/KR100588425B1/ko
Priority to TW093108047A priority patent/TWI265983B/zh
Priority to US10/809,070 priority patent/US20040192015A1/en
Priority to JP2004093343A priority patent/JP4095975B2/ja
Priority to CNB2004100314255A priority patent/CN100374628C/zh
Publication of DE10339792A1 publication Critical patent/DE10339792A1/de
Priority to KR1020060018468A priority patent/KR100699425B1/ko
Priority to KR1020060018467A priority patent/KR100689958B1/ko
Priority to US11/513,701 priority patent/US7708830B2/en
Application granted granted Critical
Publication of DE10339792B4 publication Critical patent/DE10339792B4/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/203Controlling or regulating the relationship of pull rate (v) to axial thermal gradient (G)
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Einkristalls aus Silicium durch Ziehen des Einkristalls gemäß der Czochralski-Methode aus einer Schmelze, die in einem sich drehenden Tiegel vorgehalten wird, wobei der Einkristall an einer Wachstumsfront wächst, wobei dem Zentrum der Wachstumsfront durch einen zur Wachstumsfront gerichteten Wärmestrom gezielt Wärme zugeführt wird. Gegenstand der Erfindung sind weiterhin ein Einkristall aus Silicium mit einem Sauerstoffgehalt von 4 È 10·17· cm·-3· bis 7,2 È 10·17· cm·-3· und einer radialen Konzentrationsänderung von Bor oder Phosphor von unter 5%, der keine agglomerierten Eigenpunktdefekte hat und Halbleiterscheiben, die von dem Einkristall abgetrennt werden, sowie Halbleiterscheiben mit agglomerierten Leerstellendefekten (COPs) als einzigem Eigenpunktdefekt-Typ.

Description

  • Gegenstand der Erfindung sind ein Verfahren zur Herstellung eines Einkristalls aus Silicium durch Ziehen des Einkristalls gemäß der Czochralski-Methode aus einer Schmelze, die in einem sich drehenden Tiegel vorgehalten wird, wobei der Einkristall an einer Wachstumsfront wächst, sowie ein Einkristall und von diesem abgetrennte Halbleiterscheiben.
  • Es ist bekannt, dass die Herstellung von Einkristallen, die einen Durchmesser von 200 mm oder größer haben, eine besondere Herausforderung darstellt, insbesondere, weil es große Schwierigkeiten bereitet, die radialen Kristalleigenschaften in einem möglichst engen Toleranzbereich gezielt einzustellen. Das betrifft die Konzentration von Fremd- oder Dotierstoffen und vor allem die Kristalldefekte und Eigenpunktdefekte, beziehungsweise deren Agglomerate. Zu den Eigenpunktdefekten gehören Zwischengitteratome aus Silicium (silicon self-interstitials) und Leerstellen (vacancies), die sich an der Wachstumsfront des Einkristalls bilden. Sie bestimmen ganz wesentlich die später im Einkristall auftretenden radialen und axialen Defektverteilungen und beeinflussen auch die auftretenden Fremdstoffverteilungen. Beispielsweise tragen Leerstellen zur Präzipitation von Sauerstoff bei. Sauerstoffpräzipitate bilden, wenn sie eine Größe von etwa 70 nm überschreiten, sauerstoffinduzierte Stapelfehler (OSF). Die Leerstellen selber können sich zu Agglomeraten zusammenlagern und sogenannte COPs (crystal originated particles) bilden. Agglomerate von Zwischengitteratomen formen lokale Kristallversetzungen aus, die aufgrund der angewendeten Nachweismethode auch als Lpits (large etch pits) bezeichnet werden. Die Stoffkonzentrationen und die thermischen Verhältnisse an der Wachstumsfront und im erstarrenden Einkristall bestimmen die Art und die Verteilung der Kristalldefekte und der Fremdstoffe.
  • Die thermischen Bedingungen beim Ziehen des Einkristalls ergeben sich aus den Wärmequellen, das heißt den eingesetzten Heizelementen, und der bei der Erstarrung abgegebenen Kristallisationswärme. Die Wärmeenergie wird zum Einkristall übertragen durch Strahlung, durch Wärmeleitung und durch Wärmetransport, beispielsweise über die Schmelzenströme. Die Wärmeabfuhr im Bereich der Wachstumsfront wird maßgeblich von der abgestrahlten Wärme am Rand des Einkristalls und von der Wärmeableitung im Einkristall bestimmt. Insgesamt lässt sich der Wärmehaushalt daher durch den Aufbau der Ziehanlage, das heißt über die geometrische Anordnung der wärmeleitenden Teile, der Wärmeschilder und durch zusätzliche Wärmequellen einstellen. Ferner tragen die Prozessbedingungen wie beispielsweise Wachstumsgeschwindigkeit, Druck, Menge, Art und Führung von Spülgasen durch die Ziehanlage wesentlich zur Wärmebilanz bei. Mit einer Erhöhung des Druckes oder der Spülgasmenge wird beispielsweise eine Temperaturverringerung erreicht. Größere Ziehgeschwindigkeiten steigern die erzeugte Kristallisationswärme.
  • Die wärmetransportierenden Schmelzenströme lassen sich im Voraus kaum genau bestimmen. Durch die im Allgemeinen ringförmig um den Tiegel angeordneten Heizelemente wird eine konvektive Schmelzenströmung erzeugt. Zusammen mit der üblicherweise angewendeten gegensinnigen Rotation von Einkristall und Tiegel ergibt sich ein Schmelzenbewegungsmuster, das sich dadurch auszeichnet, dass am Tiegelrand ein nach oben gerichteter und unterhalb des wachsenden Einkristalls ein nach unten gerichteter Schmelzenstrom entsteht.
  • Wie Experimente zeigen, ist die Schmelzenbewegung auch abhängig vom Betrag und der Richtung der Drehungen des Tiegels und des Einkristalls. Eine gleichsinnige Drehung ergibt beispielsweise ein völlig anderes Konvektionsmuster als eine gegensinnige Drehung. Das Kristallziehen mit gleichsinniger Drehung wurde früher bereits untersucht (Zulehner/Huber in Crystals 8, Springer Verlag Berlin Heidelberg 1982, S.44–46). In der Regel wird eine gegensinnige Drehung bevorzugt, weil sie im Vergleich zu einer gleichsinnigen Drehung zu weniger sauerstoffreichem Material und zu deutlich stabileren Verhältnissen beim Kristallwachstum führt. Die Variante mit gleichsinniger Drehung wird im Allgemeinen in industriellem Maßstab nicht eingesetzt.
  • Die wärme- und sauerstofftransportierenden Schmelzenströme können auch durch die Kraftwirkung von angelegten elektromagnetischen Feldern beeinflusst werden. Statische oder dynamische Felder ermöglichen es, den Betrag und die Richtung der Schmelzenströme zu verändern, so dass sich verschiedene Sauerstoffgehalte einstellen lassen. Sie werden daher vor allem zur Sauerstoffsteuerung verwendet. Magnetfelder werden in verschiedenen Varianten eingesetzt, beispielsweise in Form von statischen Magnetfeldern (horizontale, vertikale und CUSP Magnetfelder), ein- oder mehrphasigen Wechselfeldern, rotierenden Magnetfeldern und magnetischen Wanderfeldern. Gemäß der Patentanmeldung US-2002/0092461 A1 wird beispielsweise ein magnetisches Wanderfeld eingesetzt, um den Einbau von Sauerstoff in den Einkristall kontrollieren zu können. Neuere numerische Simulationen zur Wirkung magnetischer Felder auf die Schmelzenbewegung sind beispielsweise dargestellt in 'Numerical investigation of silicon melt flow in large diameter CZ-crystal growth under the influence of steady and dynamic magnetic fields', Journal of Crystal Growth 230 (2001) 92–99.
  • Für die Kristalleigenschaften ist die radiale Temperaturverteilung an der Wachstumsfront des Kristalls von herausragender Bedeutung. Sie wird wesentlich durch die am Rand des Einkristalls abgestrahlte Wärme bestimmt. Deshalb beobachtet man in der Regel einen viel stärkeren Temperaturabfall am Rand des Einkristalls, als in dessen Zentrum. Der axiale Temperaturabfall wird meist mit G (axialer Temperaturgradient) bezeichnet. Seine radiale Variation G(r) bestimmt ganz wesentlich die Eigenpunktdefektverteilung und damit auch die weiteren Kristalleigenschaften. Die sich aus dem Wärmehaushalt ergebende radiale Änderung des Temperaturgradienten G wird in der Regel aus numerischen Simulationsrechnungen bestimmt. Experimentell kann die radiale Variation des Temperaturgradienten aus dem Verhalten der radialen Kristalldefektverteilung für verschieden Wachstumsgeschwindigkeiten abgeleitet werden.
  • Im Hinblick auf die Entstehung von Kristalldefekten ist das Verhältnis V/G(r) von zentraler Bedeutung, wobei G(r) der axiale Temperaturgradient an der Wachstumsfront des Einkristalls ist und von der radialen Position (dem Radius r) im Einkristall abhängt und V die Geschwindigkeit ist, mit der der Einkristall aus der Schmelze gezogen wird. Liegt das Verhältnis V/G über einem kritischen Wert k1, so treten überwiegend Leerstellendefekte (vacancies) auf, die agglomerieren können und dann beispielsweise als COPs (crystal originated particles) identifiziert werden können. Sie werden je nach Nachweismethode gelegentlich auch als LPD (light point defects) oder LLS (localized light scatterer) bezeichnet. Aufgrund des meist abfallenden radialen Verlaufes von V/G treten die größten COPs am häufigsten im Zentrum des Kristalls auf. Im Allgemeinen haben sie Durchmesser von etwa 100 nm und können bei der Bauelementeherstellung Probleme bereiten. Größe und Anzahl der COPs bestimmen sich aus der Ausgangskonzentration der Leerstellen, den Abkühlraten und der Anwesenheit von Fremdstoffen bei der Agglomeration. Die Anwesenheit von Stickstoff führt beispielsweise zu einer Verschiebung der Größenverteilung zu kleineren COPs mit größerer Defektdichte.
  • Liegt das Verhältnis von V/G unter einem kritischen Wert k2, der kleiner als k1 ist, so treten überwiegend Eigenpunktdefekte in Form von Zwischengitteratomen (silicon self-interstitials) in Erscheinung, die ebenfalls Agglomerate bilden können und sich makroskopisch als Versetzungsschleifen zeigen. Diese werden häufig als A-Swirl, die kleinere Form als B-Swirl, oder kurz aufgrund ihrer Erscheinung als Lpit-Defekte (large etch pits) bezeichnet. Die Größe von Lpits liegt im Bereich bis 10 μm. In der Regel können selbst epitaktische Schichten diese Defekte nicht mehr fehlerlos überdecken. Auch diese Defekte können daher die Funktionsfähigkeit der auf Siliciumscheiben erzeugten elektronischen Bauelemente beeinträchtigen.
  • Im weitesten Sinne wird der Bereich in dem weder eine Agglomeration von Leerstellen noch von Zwischengitteratomen stattfindet, in dem also V/G zwischen k1 und k2 liegt, als neutrale Zone oder perfekter Bereich bezeichnet. Der Wert von V/G bei dem der Kristall vom Leerstellen- zum Zwischengitterüberschuss wechselt liegt naturgemäß zwischen k1 und k2 und wird in der Literatur als kritische Grenze mit Ckrit = 1.3·10–3 cm2 min 1 K 1 angegeben (Ammon, Journal of Crystal Growth, 151, 1995, 273–277). Man unterscheidet im engeren Sinne jedoch weiter einen Bereich, in dem sich noch freie, nicht agglomerierte Leerstellen befinden und ein von freien Zwischengitteratomen bestimmtes Gebiet. Der Leerstellenbereich, auch v-Gebiet (vacancies) genannt, zeichnet sich dadurch aus, dass bei genügend hohem Sauerstoffgehalt des Einkristalls dort oxidationsinduzierte Stapelfehler entstehen, während der i-Bereich (interstitials) völlig fehlerfrei bleibt. In diesem engeren Sinne ist daher nur das i-Gebiet ein wirklich perfekter Kristallbereich.
  • Große, eingewachsene Sauerstoffausscheidungen mit einem Durchmesser von über etwa 70 nm können als sauerstoffinduzierte Stapelfehler (OSF) sichtbar gemacht werden. Dazu werden die aus dem Einkristall geschnittenen Halbleiterscheiben einer speziellen Temperaturbehandlung unterzogen, die als feuchte Oxidation bezeichnet wird. Das Größenwachstum der beim Kristallziehen entstehenden Sauerstoffpräzipitate, die gelegentlich auch als as grown BMD (bulk micro defects) bezeichnet werden, wird durch Leerstellen des Siliziumgitters gefördert. Daher findet man OSF vor allem im v-Bereich.
  • Praktisch defektfrei wird der Einkristall, wenn es gelingt, die Ziehbedingungen so einzustellen, dass der radiale Verlauf der Defektfunktion v/G(r) innerhalb der kritischen Grenzen der COP- oder Lpit-Bildung liegt. Das ist jedoch insbesondere dann nicht einfach zu realisieren, wenn Einkristalle mit einem vergleichsweise großen Durchmesser gezogen werden, weil dann der Wert von G deutlich von der radialen Position r abhängt. In der Regel ist der Temperaturgradient G am Rand des Einkristalls aufgrund von Wärmestrahlungsverlusten sehr viel höher als im Zentrum.
  • Der radiale Verlauf der Defektfunktion V/G(r) beziehungsweise des Temperaturgradienten G(r) kann dazu führen, dass auf einer, aus dem Einkristall geschnittenen Halbleiterscheibe mehrere Defektbereiche vorhanden sein können. Im Zentrum treten bevorzugt COPs auf. Die Größenverteilung der agglomerierten Leerstellen ergibt sich aus der Abkühlrate des Einkristalls im Bereich der Wachstumsfront. Durch eine hohe Abkühlrate (über 2 K/min), beziehungsweise kleinen Verweilzeiten im Temperaturbereich vom Schmelzpunkt bis etwa 1100 °C oder mittels Stickstoffdotierung der Schmelze kann die Größenverteilung der COPs von wenigen großen zu vielen kleinen, weniger störenden COPs gezielt verändert werden. Man findet auch eine radiale Größenverteilung im COP-Gebiet in der Form, dass sich mit zunehmendem Radius kleinere Defekte ausbilden. An das COP-Gebiet schließt sich der sauerstoffinduzierten Stapelfehlerkranz (OSF) an, als Ergebnis der Wechselwirkungen von Leerstellen und Sauerstoffausscheidungen. Nach außen folgt ein völlig defektfreies Gebiet, das wiederum von einem Bereich mit Kristalldefekten bestehend aus Zwischengitteragglomeraten (Lpits) begrenzt wird. Am Rand des Einkristalls diffundieren die Zwischengitteratome abhängig von den thermischen Verhältnissen aus, so dass dort wiederum ein zentimeterbreiter, defektfreier Ring entstehen kann.
  • Die auftretenden Kristalldefektbereiche im Zusammenhang mit dem radialen V/G-Verlauf sind bereits bei Eidenzon/Puzanov in Inorganic Materials, Vol. 33, No3, 1997, pp. 219–255 ausführlich dargestellt. In diesem Beitrag wird auch bereits auf Möglichkeiten verwiesen, defektfreies Material herzustellen. Dabei wird sowohl auf Abkühlraten im Temperaturbereich während der Agglomeration, auf die Einflussnahme mittels Stickstoffdotierung und auf Methoden wie der oszillierenden Wachstumsgeschwindigkeit verwiesen.
  • Bis zu einem gewissen Grad kann eine radiale Homogenisierung von v/G(r) durch den Einsatz von passiven oder aktiven Hitzeschildern in Bereich der Erstarrungsfront erreicht werden, wie es beispielsweise in der US-6153008 dargestellt wurde. Die meisten Veröffentlichungen betreffen die Beeinflussung des Abkühlverhaltens durch modifizierte Wärmeschilder. Mit dem bekannten Stand der Technik lässt sich damit jedoch eine ausreichende radiale V/G Homogenisierung für die Herstellung von perfect silicon, insbesondere bei großen Kristalldurchmessern, nicht erzielen. Mittels Fremdstoffe wie beispielsweise Stickstoff oder Kohlenstoff, aber auch Sauerstoff lässt sich die Defektverteilung in Größe und örtlicher Lage beeinflussen und damit auch die Präzipitation der Fremdstoffe, beispielsweise des Sauerstoffes, beeinflussen. Es ist daher auch von großer Bedeutung sowohl axiale, also auch radiale Fremdstoffprofile gezielt erzeugen und steuern zu können.
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren anzugeben, das es ermöglicht, auch bei großen Kristalldurchmessern die vom Kunden gewünschten Defektverteilungen im Einkristall gezielt einstellen zu können, so dass möglichst viele Halbleiterscheiben mit den spezifizierten Eigenschaften vom Einkristall abgetrennt werden können. Halbleiterscheiben, die nur COPs, insbesondere solche mit einer vorgegebenen Größen- und Dichteverteilung aufweisen und Halbleiterscheiben, die keine Agglomerate von Eigenpunktdefekten haben (perfect silicon), sind in diesem Zusammenhang von besonderem Interesse. Aber auch Halbleiterscheiben mit Stapelfehlerkranz (ring-wafer), mit beiden Eigenpunktdefekt-Typen oder mit nur einem Eigenpunktdefekt-Typ, zusammen mit einer vorgegebenen Sauerstoffkonzentration oder einer bestimmten Sauerstoffpräzipitation können vom Kunden spezifiziert sein.
  • Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Einkristalls aus Silicium durch Ziehen des Einkristalls gemäß der Czochralski-Methode aus einer Schmelze, die in einem sich drehenden Tiegel vorgehalten wird, wobei der Einkristall an einer Wachstumsfront wächst, das dadurch gekennzeichnet ist, dass dem Zentrum der Wachstumsfront durch einen zur Wachstumsfront gerichteten Wärmestrom gezielt Wärme zugeführt wird.
  • Gegenstand der Erfindung ist auch ein Einkristall aus Silicium mit einem Sauerstoffgehalt von 4·101 7 cm 3 bis 7,2·101 7 cm–3 und einer radialen Konzentrationsänderung von Bor oder Phosphor von unter 5%, der keine agglomerierten Eigenpunktdefekte hat und gegebenenfalls mit Stickstoff und/oder Kohlenstoff dotiert ist. Die radiale Variation der Sauerstoff-Konzentration (ROV) beträgt vorzugsweise höchstens 5%, besonders bevorzugt 2%.
  • Gegenstand der Erfindung sind auch Halbleiterscheiben, die von einem solchen Einkristall abgetrennt werden.
  • Gegenstand der Erfindung sind schließlich auch Halbleiterscheiben aus Silicium mit agglomerierten Leerstellendefekten (COPs) als einzigem Eigenpunktdefekt-Typ, wobei diese Defekte eine Variation ihres mittleren Durchmessers von weniger als 10% aufweisen und auf einer Kreisfläche der Halbleiterscheiben vorhanden sind, wobei der Durchmesser der Kreisfläche mindestens 90% des Durchmessers der Halbleiterscheiben beträgt.
  • Bei der Auswertung von durchgeführten Ziehversuchen wurde erkannt, dass eine unzureichende radiale Homogenisierung des Quotienten V/G(r) mit einer zu geringen Wärmezufuhr aus der Schmelze zum Zentrum der Wachstumsfront zusammenhängt. Bisher hat man sich nicht mit der Bedeutung der Wärmezufuhr aus der Schmelze für die Herstellung von perfect silicon befasst. Gemäß der vorliegenden Erfindung wird empfohlen, dem Zentrum der Wachstumsfront gezielt Wärme zuzuführen, so dass pro Zeiteinheit mehr Wärme das Zentrum der Wachstumsfront erreicht, als den das Zentrum umgebenden Randbereich der Wachstumsfront. Dies kann durch eine auf das Zentrum der Wachstumsfront wirkende Heizquelle und/oder durch eine im Zentrum der Schmelze aufwärtsgerichtete Schmelzenströmung erzielt werden. Neben der Bedeutung eines zur Wachstumsfront gerichteten, axialen Wärmestromes wurde weiterhin erkannt, dass in einem Bereich von bis zu 5 cm unterhalb des wachsenden Einkristalls eine zur Wachstumsfront parallele isotherme Temperaturverteilung in der Schmelze für eine radiale Homogenisierung besonders vorteilhaft ist. Ausgedrückt mittels eines axialen Temperaturgradienten Gs(r) in der Schmelze sollte in einem Bereich mit einer Ausdehnung von bis zu 5 cm unter der Wachstumsfront und von mindestens 90% des Durchmessers des Einkristalls eine Temperaturverteilung erzeugt werden, bei der die radiale Variation des axialen Temperaturgradienten in der Schmelze 15% nicht überschreitet. Die radiale Variation von Gs(r) ist bevorzugt kleiner als 10% und besonders bevorzugt kleiner als 3%. Die vorliegende Erfindung stellt somit Randbedingungen zur gezielten Defektsteuerung oder für die Herstellung von perfect silicon zur Verfügung.
  • Insbesondere im Hinblick auf die Herstellung von perfect silicon haben Versuche ergeben, dass das erfindungsgemäße Verfahren gegenüber Schwankungen der Ziehgeschwindigkeit besonders tolerant ist. So können Einkristalle aus Silicium mit einem Durchmesser von mindestens 200 mm, die keine agglomerierten Punktdefekte aufweisen auch dann noch gezogen werden, wenn die Ziehgeschwindigkeit um ± 0,02 mm/min, besonders bevorzugt um ± 0,025 mm/min oder mehr schwankt, wobei die Schwankungsbereite auf eine Einkristalllänge von mindestens 30 mm bezogen ist. Dieser Umstand erhöht die Ausbeute beträchtlich, ohne dass zusätzlicher und fehleranfälliger regeltechnischer Aufwand zur Kontrolle der Ziehgeschwindigkeit betrieben werden muss.
  • Gemäß einer Ausführungsform der Erfindung wird ein zum Zentrum der Wachstumsfront gerichteter Wärmestrom in Form einer aufwärtsgerichteten Schmelzenströmung durch gleichsinniges Drehen des Tiegels und des wachsenden Einkristalls erzeugt, wobei der Tiegel mit mindestens 10% der Drehgeschwindigkeit des Einkristalls gedreht wird. Da aber dadurch der Sauerstoffgehalt des Einkristalls auf technisch kaum interessante Konzentrationen angehoben wird, ist bevorzugt, durch Anlegen eines Magnetfelds dem Einbau von Sauerstoff in das Kristallgitter entgegenzuwirken. Dazu eignen sich beispielsweise magnetische Wanderfelder (TMF), die eine parallel zur Tiegelwand auf- bzw. abwärtsgerichtete Strömung erzeugen oder statische CUSP-Felder die eine Verringerung der Schmelzenbewegung in der Nähe des Tiegelrandes bewirken. Mit Hilfe der angeführten Magnetfelder lassen sich die Sauerstoffgehalte auf unter 6.0·101 7 cm–3 reduzieren und gleichzeitig die Wachstumsbedingungen stabilisieren. Für die Erzeugung der erforderlichen magnetischen Felder werden vorzugsweise Stromstärken von bis zu 3000 A bei bis zu 50 Spulenwindungen benutzt.
  • Ein zum Zentrum der Wachstumsfront gerichteter Wärmestrom kann gemäß einer weiteren Ausführungsform der Erfindung auch durch eine Wärmequelle erzeugt werden, die die Temperatur im Zentrum des Bodens des Tiegels im Vergleich zur Temperatur am Rand des Bodens gezielt erhöht. Die Temperatur des Tiegels ist im Zentrum des Tiegelbodens, also in dem Bereich, über dem das Zentrum der Wachstumsfront des Einkristalls liegt, um mindestens 2 K, vorzugsweise um mindestens 5 k und besonders bevorzugt um mindestens 10 K höher, als die Temperatur am Rand des Tiegelbodens. Eine Ausführungsform der Erfindung sieht deshalb den Einsatz eines Widerstandheizers vor, der im Zentrum des Tiegelbodens oder unter dem Zentrum des Tiegelbodens auf der Tiegelwelle angebracht ist. Statt eines Widerstandsheizers kann auch eine Induktionsspule verwendet werden, die mit mittlerer bis hoher Frequenz (50 Hz bis 500 kHz) betrieben wird. Durch die elektromagnetische Kraftwirkung der Spule wird eine aufwärts, zum Zentrum der Wachstumsfront gerichtete Strömung angetrieben. Zusätzlich wird die Schmelze vom Zentrum des Tiegelbodens aus erhitzt. Je nach geometrischer Anordnung werden Heizleistungen im Bereich von 1 kW bis 60 kW benötigt.
  • Gemäß einer anderen Ausführungsform der Erfindung wird ein bei Ziehanlagen zur Herstellung von Einkristallen mit Durchmessern von mindestens 200 mm üblicherweise vorhandener Bodenheizer für eine gezielte Beheizung der Schmelze vom Zentrum des Tiegelbodens aus eingesetzt, in dem durch Wärmeisolierung dafür Sorge getragen wird, dass der Bodenheizer das Zentrum des Tiegelbodens stärker aufheizt, als den Rand des Tiegelbodens. Zu diesem Zweck ist in der Bodenplatte und/oder dem Stütztiegel in einem äußeren Bereich eine konzentrische Aussparung vorgesehen, die mit wärmeisolierendem Material gefüllt ist, so dass der Quarztiegel im äußeren Bereich thermisch stärker isoliert ist. Die Bodenplatte trägt den Tiegel und einen diesen umgebenden Stütztiegel aus Graphit. Beim Aufheizen durch den Bodenheizer wird der Schmelze Wärme zugeführt und wegen der ringförmigen, thermischen Isolierung in der Bodenplatte oder dem Stütztiegel jedoch im Wesentlichen nur im Zentrum des Quarztiegelbodens. Als Isoliermaterial zum Füllen der Aussparung in der Bodenplatte und/oder im Stütztiegel eignen sich beispielsweise Graphitfolien oder Graphitfilze. Die benötigte Bodenheizerleistung liegt vorzugsweise über den üblichen Leistungen im Bereich von 20 kW bis 80 kW. Zusätzlich kann eine thermische Isolierung in die Tiegelwelle integriert werden, damit der Wärmeabfluss nach unten über die Tiegelwelle minimiert wird.
  • Eine andere erfindungsgemäße Ausführungsform zur gezielten Wärmezufuhr zum Zentrum Wachstumsfront besteht darin, dass eine Wärmequelle unter dem Zentrum des wachsenden Einkristalls in die Schmelze eingebracht wird. Das kann beispielsweise durch ein in Quarz eingebettetes, elektrisch betriebenes Heizelement aus Graphit verwirklicht werden oder mittels eines Heizelements, das durch Verwendung anderer prozessverträglicher Materialien vor der Schmelze geschützt ist.
  • Gemäß einer weiteren Ausführungsform der Erfindung wird ein Wärmestrom, der zum Zentrum der Wachstumsfront gerichtet ist, durch ein elektromagnetisches Feld erzeugt, dem die Schmelze ausgesetzt wird und das teilweise abgeschirmt ist, indem mindestens 10 % der Fläche einer Wand des Tiegels gegen ein Einwirken des elektromagnetischen Felds auf die Schmelze abgeschirmt wird. Eine besonders bevorzugte Möglichkeit des Erzeugens eines solchen Wärmestroms besteht in der Anwendung eines magnetischen Wanderfelds (travelling field). Die Kraftwirkung des Feldes ist abhängig vom Material der Abschirmung sowie von der Amplitude und von der Frequenz des elektrischen Stroms, der durch die das Magnetfeld erzeugenden Spulen fließt. Als magnetische Abschirmung können metallische Materialien verwendet werden, wie beispielsweise Kupferplatten mit einer Dicke im Zentimeterbereich, welche zwischen den Magnetspulen und dem Tiegel angeordnet werden und so einen Teil der Fläche der Tie gelwand und der dahinter befindlichen Schmelze dem Einfluss des Magnetfelds entziehen. Als besonders wirksam hat sich eine Abschirmung bestehend aus zwei sich gegenüberliegenden Platten mit einem Öffnungswinkel von jeweils 90° erwiesen. Es werden vorzugsweise Frequenzen von 10 Hz bis etwa 1000 Hz eingesetzt. Bei der Anwendung eines magnetischen Wanderfelds (travelling field) mit teilweiser Abschirmung in Form von rechteckigen Kupferplatten ist eine Frequenz im Bereich von 30 Hz bis 100 Hz besonders geeignet. Zur Erzeugung eines solchen Wanderfelds werden vorzugsweise Stromstärken von bis zu 500 A bei bis zu 50 Spulenwindungen benutzt. Hohe Tiegeldrehungen von mindestens 3 U/min reduzieren den Einfluss des Magnetfeldes, so dass die gewünschte Zufuhr von zusätzlicher Wärme zur Wachstumsfront über die Geschwindigkeit der Tiegeldrehung beeinflusst werden kann. Zu berücksichtigen ist ferner auch die jeweils im Tiegel vorliegende Schmelzenmenge, weil sich davon abhängig verschiedene Schmelzenstrommuster ausbilden können. Die notwendigen Bedingungen in Abhängigkeit von der jeweils vorliegenden Schmelzenmenge, das heißt, das Verhältnis von Magnetfeld, Abschirmung und Ziehprozessparameter, wie beispielsweise der Tiegeldrehung, werden durch Experimente und abschätzende Simulationsrechnungen jeweils näherungsweise bestimmt.
  • Die genannten Ausführungsformen der Erfindung können mit Maßnahmen kombiniert werden, die bereits bekannt sind und zur Homogenisierung des axialen Temperaturgradienten G(r) geeignet sind. Bevorzugt sind Kombinationen, bei denen zusätzlich Wärme zur Phasengrenze zugeführt wird, die vom wachsenden Einkristall, der diesen umgebenden Atmosphäre und der Schmelze gebildet wird. Dies kann beispielsweise durch Verwenden eines in der US-6,153,008 beschriebenen Hitzeschilds geschehen.
  • Besonders bevorzugt ist der Einsatz eines Heizelements am unteren Rand des Hitzeschildes, das in dieser Patentanmeldung beschrieben ist. Ferner kann über dem Heizelement zusätzlich ein auf den Einkristall wirkender Kühler angebracht werden, wie es beispielweise in US-5,567,399 dargestellt ist. Dadurch werden eine Erhöhung der Ziehgeschwindigkeit und eine weitere Justierung der radialen Homogenisierung von G(r) ermöglicht.
  • Die Erfindung wird nachfolgend an Hand von Figuren weiter erläutert. In 1 ist das Prinzip des erfindungsgemäßen Verfahrens schematisch dargestellt. 2 zeigt Verläufe des Quotienten V/G(r) in Abhängigkeit des Radius des Einkristalls. 3 zeigt die beim konventionellen Czochralski-Verfahren (mit gegensinniger Drehung von Einkristall und Tiegel) auftretenden typischen Schmelzenströme und 4 den daraus typischerweise resultierenden Verlauf des axialen Temperaturgradienten Gs(r) in der Schmelze. Im Vergleich dazu zeigen die 5 und 6 Schmelzenstrommuster beziehungsweise den Verlauf des axialen Temperaturgradienten Gs(r), wie sie bei der Durchführung des erfindungsgemäßen Verfahrens auftreten. Die 7 bis 13 zeigen verschiedene Anordnungen zu bevorzugten Ausführungsformen der Erfindung. 14 zeigt eine Anordnung gemäß 11, bei der zusätzlich ein Heizelement und ein Kühlelement vorgesehen sind.
  • In 1 ist das Prinzip des erfindungsgemäßen Verfahrens schematisch dargestellt. Der Einkristall 1 wächst an einer Wachstumsfront 2, zu deren Zentrum ein Wärmestrom 3 durch die Schmelze gezielt zugeführt wird. Mit Hilfe der veranschaulichten, zusätzlichen axialen Wärmezuführung ist es möglich, für Einkristalle mit großem Durchmesser von mindestens 200 mm eine für die Herstellung von perfect silicon ausreichende radiale Homogenisierung des Temperaturgradienten G(r) an der Wachstumsfront vorzunehmen oder einen für eine gezielte Defektsteuerung notwendigen Temperaturgradienten G(r) einzustellen. Die Qualität der Homogenisierung von G(r) geht aus der Temperaturverteilung in der Schmelze hervor. Besonders vorteilhaft ist es, wenn der in der Schmelze eingestellte axiale Temperaturgradienten Gs(r) in der Schmelze eine möglichst geringe radiale Variation aufweist, so dass die gezeigte, zur Wachstumsfront parallele isotherme Temperaturverteilung 7 entsteht.
  • Die Wirksamkeit des erfindungsgemäßen Verfahrens wird durch die in 2 dargestellten Verläufe des Quotienten v/G(r) in Abhängigkeit des Radius des Einkristalls für Einkristalle mit ei nem Durchmesser von 300 mm verdeutlicht. Die bei einer erfindungsgemäßen gleichsinnigen Drehung von Einkristall und Tiegel gefundene Wärmeströmung in der Schmelze zum Zentrum der Wachstumsfront führt zu einer sehr deutlichen radialen Homogenisierung von V/G(r), bezeichnet als Kurve (c), während eine versuchte Homogenisierung mittels Wärmeschutzschilder gemäß unterschiedlicher Ausbildungsformen (a) und (b), die nicht Gegenstand der Erfindung sind, zur Herstellung von perfect silicon nicht ausreicht. In den nachfolgenden Abbildungen ist die Wirkung des erfindungsgemäßen zentralen Wärmestromes (5 und 6) gegenüber einer konventionellen Schmelzenkonvektion (3 und 4) in Form von Ergebnissen aus Modellrechnungen gegenübergestellt.
  • 3 zeigt die beim konventionellen Czochralski-Verfahren (mit gegensinniger Drehung von Einkristall und Tiegel) auftretenden typischen Schmelzenströme, die sich durch eine abwärts zum Tiegelboden gerichtete axiale Strömung auszeichnen. Dabei entstehen wenige Zentimeter unterhalb der Wachstumsfront in der Schmelze Temperaturverhältnisse, die in 4 dargestellt sind. Der in der Schmelze auftretende axiale Temperaturgradient Gs(r) zeigt eine starke Veränderung in Abhängigkeit des Radius. Die radiale Änderung von Gs(r) beträgt innerhalb des Kristalldurchmessers etwa 17%.
  • Deutlich verschieden sind die Verhältnisse bei der Durchführung des erfindungsgemäßen Verfahrens, beispielsweise gemäß der Ausführungsform, bei dem die Schmelze einem asymmetrischen Wanderfeld ausgesetzt wird, das mittels zweier Abschirmungen erzeugt wird, die mindestens 10 % der Wandfläche des Tiegels abschirmen. Das Schmelzenstrommuster, dargestellt in 5, zeigt einen axialen, zur Wachstumsfront gerichteten Schmelzenstrom. Der durch den Schmelzenstrom verursachte Wärmetransport führt zu einer im Vergleich zu 4 deutlich verschiedenen Temperaturverteilung in der Schmelze unterhalb des wachsenden Einkristalls (6). Man findet einen deutlich homogeneren Temperaturgradienten Gs(r) in der Schmelze, der die gewünschte axiale Homogenisierung von Eigenpunktdefekten und Fremd- und Dotier stoffen im Einkristall zur Folge hat. In einer Siliciumschmelze beträgt die radiale Variation von Gs(r) unter 15%. Für die der 6 zu Grunde liegenden Bedingungen wurden im Durchschnitt 7% ermittelt.
  • In den nachfolgenden Abbildungen 7 bis 13 sind verschiedene Anordnungen zu bevorzugten Ausführungsformen der Erfindung dargestellt. In 7 bis 10 spielen Heizelemente eine zentrale Rolle, die als elektrische Widerstandsheizer, als Induktionsheizer oder gegebenenfalls auch als Strahlungsheizer ausgeführt sein können und an jeweils unterschiedlichen Positionen unter dem wachsenden Einkristall angeordnet sind. Jedes Heizelement fungiert als Wärmequelle, die einen Wärmestrom erzeugt, der zum Zentrum der Wachstumsfront des Einkristalls gerichtet ist. Zur Unterstützung der Wirkung der Heizelemente können thermisch isolierende Elemente 6, beispielsweise Graphitfolien oder Graphitfilze, ringförmig unter dem Quarztiegel, jedoch nicht unter dem Zentrum des Tiegelbodens, angebracht werden. Sie behindern eine außeraxiale Zufuhr von Wärme in die Schmelze. Um die Heizwirkung in den zum Zentrum der Wachstumsfront gerichteten Schmelzenstrom zu fokussieren, können gut oder extrem gut wärmeleitfähige Elemente, beispielsweise aus Graphit oder anderen prozessverträglichen Materialien in das Zentrum des Tiegelbodens eingelassen werden. Die mittels der Heizelemente zugeführte Energie wird jeweils den geometrischen und prozessbedingten Gegebenheiten angepasst und muss beispielsweise entsprechend der im Verlauf des Kristallwachstums abnehmenden Restschmelzenmenge im Tiegel nachjustiert werden.
  • 7 zeigt schematisch die Anordnung, die neben einem konventionellen Hauptheizer 4 ein zusätzliches Heizelement 8 aufweist, das unter dem Graphitstütztiegel 5 als Tiegelbodenheizer angeordnet ist und mittels der Wärmeisolierung 6 einen nach oben zum Zentrum der Wachstumsfront 2 des Einkristalls 1 gerichteten Wärmestrom 3 erzeugt. Die Wärmeisolierung 6 kann im Stütztiegel und/oder der Bodenplatte, die den Stütztiegel trägt, integriert werden. Die Heizleistung des zusätzlichen Tiegelbodenheizers 8 sollte vorzugsweise über 2% der Heiz leistung des Hauptheizers betragen, um einen effektiven Wärmestrom zu erzeugen. Der Tiegelbodenheizer kann beispielsweise als elektrischer Widerstandsheizer aus Graphit ausgeführt werden und gegebenenfalls verfahrbar gestaltet sein. Die notwendige Heizleistung muss der jeweiligen Schmelzenmenge (abhängig von der bereits erstarrten Kristalllänge) angepasst werden. Sie liegt im Bereich von über 5 kW.
  • In 8 sind weitere konstruktive Merkmale dargestellt, die zu einer verbesserten Wärmeübertragung im Tiegelzentrum führen. So kann der zentrale Wärmestrom mittels einer im Quarztiegelzentrum erhöhten Materialauflage verstärkt werden, beispielsweise durch eine mittige Verdickung 12 des Stütztiegels. Zur Verminderung der Wärmeabfuhr über die Tiegelwelle kann ein isolierendes Element 16 eingefügt werden.
  • In der Anordnung gemäß 9 ist ein wärmestromerzeugendes zusätzliches Heizelement 9 im Boden des Stütztiegels 5 integriert. Bei dieser Ausführungsform ist sowohl ein induktiv betriebener, als auch ein Widerstand-Heizelement verwendbar oder eine Kombination von beiden.
  • In der Anordnung nach 10 wird der erfindungsgemäß erforderliche Wärmestrom zum Zentrum der Wachstumsfront durch ein in der Schmelze unter der Wachstumsfront des wachsenden Einkristalls angeordnetes Heizelement 10 erzeugt. Einsetzbar ist zu diesem Zweck beispielsweise ein mit Quarz ummantelter Graphitheizer, beispielsweise ein Heizer mit der vergrößert dargestellten mäanderförmigen Heizzonenstruktur.
  • Mit einer Anordnung gemäß 11 wird ein gewünschter zum Zentrum der Wachstumsfront gerichteter Wärmestrom 3 mittels gleichsinniger Drehung von Einkristall und Tiegel erzeugt. Dazu muss die Geschwindigkeit der Tiegeldrehung auf einen Wert von mindestens 10% der Geschwindigkeit der Kristalldrehung eingestellt werden. In der Schmelze stellt sich ein bevorzugtes Strömungsmuster 11 ein. Während des Ziehvorganges können zusätzlich Variationen der Tiegel- oder der Kristalldrehung not wendig sein, um den sich verändernden thermischen Haushalt Rechnung zu tragen. Die im Allgemeinen wegen der gleichsinnigen Drehung von Tiegel und Einkristall stark erhöhten Sauerstoffgehalte in der Schmelze können durch vor allem im Randbereich des Tiegels auf die Schmelze wirkende Magnetfelder reduziert werden. Als besonders zweckmäßig sind statische, magnetische CUSP-Felder, die, ohne die verfahrensgemäßen Prozessbedingungen zu verschlechtern, Sauerstoffgehalte im Einkristall von unter 6.0·101 7 cm–3 ermöglichen.
  • Mit einer Anordnung gemäß 12 wird ein zum Zentrum der Wachstumsfront gerichteter Wärmestrom 3 durch ein statisches elektrisches Feld zwischen dem Tiegel und dem Einkristall erzeugt. Dazu muss eine positive Spannung von über 100 Volt an den Tiegel angelegt werden. In der Schmelze stellt sich ein bevorzugtes Strömungsmuster 11 ein.
  • Weitere erfindungsgemäße Ausführungsformen betreffen die Verwendung von elektromagnetischen Feldern, die über ihre Kraftwirkung auf die Schmelze einen senkrecht zur Wachstumsfront gerichteten Wärmestrom erzeugen, wobei die Kraftwirkung auf die Schmelze durch eine Abschirmung von mindestens 10 % der Wandfläche des Tiegels eingeschränkt ist. Die das Magnetfeld erzeugenden Spulen können außerhalb oder in der Kristallziehanlage angeordnet sein. Eine bevorzugte Ausführungsform dieses Typs umfasst ein teilweise abgeschirmtes magnetisches Wanderfeld (travelling magnetic field). In 13 ist eine geeignete Anordnung dargestellt, mit einem an einer Wachstumsfront 2 wachsenden Einkristall 1, einem durch die Wirkung des Wanderfelds erzeugten, zum Zentrum der Wachstumsfront gerichteten Wärmestrom 3 und einem um den Tiegel angeordneten ringförmigen Heizelement 4. In der Schmelze stellt sich ein bevorzugtes Strömungsmuster 11 ein. Das Wanderfeld wird von einem Magneten 13 erzeugt, der wiederum ringförmig um das Heizelement 4 angeordnet ist. Zum Erzeugen des Magnetfelds haben sich, bei einer Spulenwindungszahl von bis zu 50 und bei einem Spulendurchmesser von über 500 mm, elektrische Ströme von über 100 A bis zu 500 A als besonders geeignet erwiesen. Zur teilweisen Abschir mung des magnetischen Wanderfeldes sind zwei gegenüberliegende, radial innerhalb der Magnetspulen angebrachte Abschirmungen 14 vorhanden, durch die die Rotationssymmetrie des Feldes gebrochen wird, so dass sich in Richtung der Abschirmungen etwas andere Verhältnisse ausbilden als senkrecht dazu. Die Abschirmungen bestehen vorzugsweise aus Kupfer und besitzen einen Öffnungswinkel von jeweils 90°. Sie schirmen mindestens 10% der Wandfläche des Tiegels ab.
  • 14 zeigt als besonders bevorzugte und beanspruchte Ausführungsform der Erfindung die Kombination der erfindungsgemäßen Ausführungsform gemäß 11 mit einer zusätzlichen Heizquelle 19, mit deren Hilfe zusätzlich Wärme zur Phasengrenze von Einkristall, der diesen umgebenden Atmosphäre und der Schmelze zugeführt wird. Die Heizquelle 19 umfasst vorzugsweise einen ringförmig ausgebildeten Widerstandsheizer, der den Einkristall 1 in der Nähe der Phasengrenze umgibt. Die Heizquelle 19 wird vorzugsweise mit Leistungen über 5 kW beaufschlagt, so dass der Temperaturgradient G(r) an der Phasengrenze des Einkristalls homogenisiert wird. Die Heizquelle 19 ist über eine Isolierung mit einem üblichen Wärmeschild 18 verbunden, der eine hinreichende Abschirmung des Einkristalls von der Wärmestrahlung der Schmelze gewährleistet und damit ebenfalls die Temperaturverteilung im Einkristall beeinflusst. Zu diesem Zweck werden den Anforderungen entsprechend geometrisch geformte Hitzeschilder benutzt, die beispielsweise auch aus mehreren Lagen Graphit, Graphitfilz, Molybdän oder Kombinationen davon bestehen können. Eine zusätzliche Kühlvorrichtung 17 ist oberhalb der Heizquelle 19 angeordnet. Mit der Kühlvorrichtung 17 ist eine weitere Möglichkeit zur Einstellung der notwendigen Temperaturverteilung möglich. Außerdem wird durch die Kühlvorrichtung der Gradient G insgesamt erhöht, so dass eine höhere Ziehgeschwindigkeit ermöglicht wird, beispielsweise über 0.36 mm/min für perfekte 300 mm Kristalle. Mittels der um den Tiegel angeordneten Magnetspulen 13 werden statische oder dynamische Magnetfelder in der Schmelze erzeugt, so dass sich die notwendigen wärme- und sauerstofftransportierenden Schmelzenströme genau einstellen lassen.
  • Selbstverständlich umfasst die vorliegende Erfindung auch andere Kombinationen der beschriebenen Ausführungsformen und Merkmale, auch wenn solche Kombinationen nicht ausdrücklich erwähnt sind.

Claims (25)

  1. Verfahren zur Herstellung eines Einkristalls aus Silicium durch Ziehen des Einkristalls gemäß der Czochralski-Methode aus einer Schmelze, die in einem sich drehenden Tiegel vorgehalten wird, wobei der Einkristall an einer Wachstumsfront wächst, dadurch gekennzeichnet, dass dem Zentrum der Wachstumsfront durch einen zur Wachstumsfront gerichteten Wärmestrom gezielt Wärme zugeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Krümmung der Wachstumsfront verringert oder erhöht wird.
  3. Verfahren nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, dass ein axialer Temperaturgradient G(r) an der Wachstumsfront vergleichmäßigt wird, wobei r von 0 bis zum Radius des wachsenden Einkristalls reicht.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in einem Bereich mit einer Ausdehnung von bis zu 5 cm unter der Wachstumsfront und von mindestens 90% des Durchmessers des Einkristalls eine Temperaturverteilung erzeugt wird, bei der eine radiale Variation des axialen Temperaturgradienten Gs(r) in der Schmelze kleiner als 15% ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmestrom durch eine Wärmequelle erzeugt wird, die die Temperatur im Zentrum eines Bodens des Tiegels im Vergleich zur Temperatur am Rand des Bodens des Tiegels gezielt erhöht.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass unter dem Tiegel ein Bodenheizer angeordnet wird und durch Wärmeisolierung dafür Sorge getragen wird, dass der Bodenheizer das Zentrum des Bodens des Tiegels stärker aufheizt, als den Rand des Bodens des Tiegels.
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Wärmequelle im Zentrum eines Bodens des Tiegels angeordnet wird.
  8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Temperatur des Tiegels im Zentrum des Bodens des Tiegels um mindestens 2 K gegenüber der Temperatur am Rand des Bodens des Tiegels erhöht ist.
  9. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Wärmequelle unter der Wachstumsfront in der Schmelze angeordnet wird.
  10. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmestrom mittels gleichsinniger Drehung des Einkristalls und des Tiegels erzeugt wird, wobei der Tiegel mit mindestens 10% der Drehgeschwindigkeit des Einkristalls gedreht wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Schmelze einem magnetischen CUSP-Feld ausgesetzt wird.
  12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Schmelze einem magnetischen Wanderfeld ausgesetzt wird.
  13. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmestrom durch ein elektromagnetisches Feld erzeugt wird, dem die Schmelze ausgesetzt wird, wobei mindestens 10 % einer Wandfläche des Tiegels gegen ein Einwirken des elektromagnetischen Felds auf die Schmelze abgeschirmt wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der Wärmestrom durch ein magnetisches Wanderfeld erzeugt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass eine Rotationssymmetrie des elektromagnetischen Felds durch die teilweise Abschirmung des Felds gebrochen wird.
  16. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Wärmestrom durch Anlegen einer positiven elektrischen Spannung von über 100 Volt an den Tiegel erzeugt wird.
  17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass zur Phasengrenze von Einkristall, der diesen umgebenden Atmosphäre und der Schmelze zusätzlich Wärme zugeführt wird.
  18. Verfahren nach einem der Ansprüche 1 bis Anspruch 17, dadurch gekennzeichnet, dass der wachsende Einkristall durch eine Kühlvorrichtung gekühlt wird.
  19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass eine Schwankung der Ziehgeschwindigkeit beim Ziehen eines Einkristalls aus Silicium mit einem Durchmesser von mindestens 200 mm mit einer Ziehgeschwindigkeit, bei der weder Defekte durch agglomerierte Leerstellen, noch Defekte durch agglomerierte Zwischengitteratome entstehen, mindestens ± 0,02 mm/min beträgt, während der Einkristall über eine Länge von mindestens 30 mm gezogen wird.
  20. Einkristall aus Silicium mit einem Sauerstoffgehalt von 4·101 7 cm 3 bis 7.2·101 7 cm 3 und einer radialen Konzentrationsänderung von Bor oder Phosphor von unter 5%, der keine agglomerierten Eigenpunktdefekte hat.
  21. Einkristall nach Anspruch 20, der mit Stickstoff und/oder Kohlenstoff dotiert ist.
  22. Einkristall nach Anspruch 20 oder Anspruch 21 mit einer radialen Sauerstoff-Konzentrations-Variation (ROV) von höchstens 5 %.
  23. Halbleiterscheiben aus Silicium, abgetrennt von einem Einkristall gemäß einem der Ansprüche 20 bis 22.
  24. Halbleiterscheiben aus Silicium mit agglomerierten Leerstellendefekten (COPs) als einzigem Eigenpunktdefekt-Typ, wobei diese Defekte eine Variation ihres mittleren Durchmessers von weniger als 10% aufweisen und auf einer Kreisfläche der Halbleiterscheiben vorhanden sind, wobei der Durchmesser der Kreisfläche mindestens 90% des Durchmessers der Halbleiterscheiben beträgt.
  25. Vorrichtung zum Herstellen eines Einkristalls nach der Czochralski-Methode, umfassend einen eine Schmelze enthaltenden Tiegel, eine den Tiegel umgebende Heizvorrichtung, eine den Tiegel umgebende magnetische Einrichtung, die ein statisches oder ein dynamisches Magnetfeld erzeugt, eine über der Schmelze angeordnete Heizquelle, die Wärme der Phasengrenze von Einkristall, Gasphase und Schmelze zuführt, eine den Einkristall umgebende Kühlvorrichtung, ein den Einkristall umgebendes Hitzeschild und eine Steuerungseinheit, die ein gleichsinniges Drehen des Einkristalls und des Tiegels bewirkt.
DE10339792.2A 2003-03-27 2003-08-28 Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium Expired - Lifetime DE10339792B4 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE10339792.2A DE10339792B4 (de) 2003-03-27 2003-08-28 Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium
KR1020040019725A KR100588425B1 (ko) 2003-03-27 2004-03-23 실리콘 단결정, 결정된 결함분포를 가진 실리콘 단결정 및 실리콘 반도체 웨이퍼의 제조방법
US10/809,070 US20040192015A1 (en) 2003-03-27 2004-03-25 Method and device for the production of a silicon single crystal, silicon single crystal, and silicon semiconductor wafers with determined defect distributions
TW093108047A TWI265983B (en) 2003-03-27 2004-03-25 Method and device for the production of a silicon single crystal, silicon single crystal and silicon semiconductor wafers with determined defect distributions
JP2004093343A JP4095975B2 (ja) 2003-03-27 2004-03-26 シリコン単結晶を製造するための方法及び装置、シリコン単結晶及びこれから切り出された半導体ウェーハ
CNB2004100314255A CN100374628C (zh) 2003-03-27 2004-03-29 硅单晶的生产方法及装置、硅单晶和硅半导体晶片
KR1020060018468A KR100699425B1 (ko) 2003-03-27 2006-02-24 실리콘 단결정, 결정된 결함분포를 가진 실리콘 단결정 및실리콘 반도체 웨이퍼의 제조 장치
KR1020060018467A KR100689958B1 (ko) 2003-03-27 2006-02-24 실리콘 단결정, 결정된 결함분포를 가진 실리콘 단결정 및실리콘 반도체 웨이퍼
US11/513,701 US7708830B2 (en) 2003-03-27 2006-08-31 Method and device for the production of a silicon single crystal, silicon single crystal, and silicon semiconductor wafers with determined defect distributions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10313940 2003-03-27
DE10313940.0 2003-03-27
DE10339792.2A DE10339792B4 (de) 2003-03-27 2003-08-28 Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium

Publications (2)

Publication Number Publication Date
DE10339792A1 true DE10339792A1 (de) 2004-10-14
DE10339792B4 DE10339792B4 (de) 2014-02-27

Family

ID=32980762

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10339792.2A Expired - Lifetime DE10339792B4 (de) 2003-03-27 2003-08-28 Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium

Country Status (1)

Country Link
DE (1) DE10339792B4 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006060359A1 (de) * 2006-12-20 2008-06-26 Siltronic Ag Verfahren und Vorrichtung zur Herstellung von Halbleiterscheiben aus Silicium
DE102007005346A1 (de) 2007-02-02 2008-08-14 Siltronic Ag Halbleiterscheiben aus Silicium und Verfahren zu deren Herstellung
DE102007028548A1 (de) * 2007-06-18 2008-12-24 Forschungsverbund Berlin E.V. Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
DE102008046617A1 (de) 2008-09-10 2010-03-11 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren für deren Herstellung
DE102009027436A1 (de) * 2009-07-02 2011-01-13 Calisolar Gmbh Verfahren und Vorrichtung zur Züchtung von Kristallen aus elektrisch leitenden Schmelzen, die in der Diamant- oder Zinkblendestruktur kristallisieren
CN101187059B (zh) * 2006-10-04 2011-04-27 硅电子股份公司 具有良好的内在吸收能力的硅晶片及其制造方法
DE102009056638A1 (de) * 2009-12-02 2011-06-09 Siltronic Ag Verfahren zum Ziehen eines Einkristalls aus Silizium mit einem Abschnitt mit gleich bleibenden Durchmesser
DE102010023101B4 (de) * 2010-06-09 2016-07-07 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben aus Silizium
WO2017108406A1 (de) * 2015-12-22 2017-06-29 Siltronic Ag Siliciumscheibe mit homogener radialer sauerstoffvariation
DE102015224983B4 (de) * 2015-12-11 2019-01-24 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
CN110284186A (zh) * 2019-07-30 2019-09-27 刘冬雯 一种直拉单晶炉及其纵向温度梯度的测定控制方法
WO2020249422A1 (de) 2019-06-14 2020-12-17 Siltronic Ag Verfahren zur herstellung von halbleiterscheiben aus silizium
EP3940124A1 (de) 2020-07-14 2022-01-19 Siltronic AG Kristallstück aus monokristallinem silizium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178490A (ja) * 1985-02-04 1986-08-11 Agency Of Ind Science & Technol 単結晶引き上げ装置
JPH0416591A (ja) * 1990-05-10 1992-01-21 Furukawa Electric Co Ltd:The 化合物半導体の単結晶引き上げ装置
US5162072A (en) * 1990-12-11 1992-11-10 General Electric Company Apparatus and method for control of melt flow pattern in a crystal growth process
JPH05294782A (ja) * 1992-04-15 1993-11-09 Kawasaki Steel Corp シリコン単結晶の製造装置
DE19503357A1 (de) * 1995-02-02 1996-08-08 Wacker Siltronic Halbleitermat Vorrichtung zur Herstellung eines Einkristalls
JP3228173B2 (ja) * 1997-03-27 2001-11-12 住友金属工業株式会社 単結晶製造方法
JP3870646B2 (ja) * 2000-01-17 2007-01-24 株式会社Sumco 単結晶引上装置
JP3512074B2 (ja) * 2000-03-06 2004-03-29 日本電気株式会社 半導体単結晶育成装置および半導体単結晶育成方法
JP4808832B2 (ja) * 2000-03-23 2011-11-02 Sumco Techxiv株式会社 無欠陥結晶の製造方法
DE10102126A1 (de) * 2001-01-18 2002-08-22 Wacker Siltronic Halbleitermat Verfahren und Vorrichtung zum Herstellen eines Einkristalls aus Silicium
JP2003002782A (ja) * 2001-06-15 2003-01-08 Toshiba Ceramics Co Ltd シリコン単結晶引上方法およびその装置

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187059B (zh) * 2006-10-04 2011-04-27 硅电子股份公司 具有良好的内在吸收能力的硅晶片及其制造方法
US7964275B2 (en) 2006-10-04 2011-06-21 Siltronic Ag Silicon wafer having good intrinsic getterability and method for its production
US8172941B2 (en) 2006-12-20 2012-05-08 Siltronic Ag Method and device for producing semiconductor wafers of silicon
DE102006060359B4 (de) * 2006-12-20 2013-09-05 Siltronic Ag Verfahren und Vorrichtung zur Herstellung von Halbleiterscheiben aus Silicium
DE102006060359A1 (de) * 2006-12-20 2008-06-26 Siltronic Ag Verfahren und Vorrichtung zur Herstellung von Halbleiterscheiben aus Silicium
DE102007005346A1 (de) 2007-02-02 2008-08-14 Siltronic Ag Halbleiterscheiben aus Silicium und Verfahren zu deren Herstellung
US8231725B2 (en) 2007-02-02 2012-07-31 Siltronic Ag Semiconductor wafers of silicon and method for their production
US8043427B2 (en) 2007-02-02 2011-10-25 Siltronic Ag Semiconductor wafers of silicon and method for their production
DE102007028548A1 (de) * 2007-06-18 2008-12-24 Forschungsverbund Berlin E.V. Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
DE102007028548B4 (de) * 2007-06-18 2009-07-16 Forschungsverbund Berlin E.V. Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
US8398766B2 (en) 2008-09-10 2013-03-19 Siltronic Ag Semiconductor wafer composed of monocrystalline silicon and method for producing it
DE102008046617A1 (de) 2008-09-10 2010-03-11 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren für deren Herstellung
DE102008046617B4 (de) * 2008-09-10 2016-02-04 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren für deren Herstellung
DE102009027436A1 (de) * 2009-07-02 2011-01-13 Calisolar Gmbh Verfahren und Vorrichtung zur Züchtung von Kristallen aus elektrisch leitenden Schmelzen, die in der Diamant- oder Zinkblendestruktur kristallisieren
DE102009027436B4 (de) * 2009-07-02 2014-07-17 Calisolar Gmbh Verfahren zur Züchtung von Kristallen aus elektrisch leitenden Schmelzen, die in der Diamant- oder Zinkblendestruktur kristallisieren
DE102009056638B4 (de) * 2009-12-02 2013-08-01 Siltronic Ag Verfahren zum Ziehen eines Einkristalls aus Silizium mit einem Abschnitt mit gleich bleibendem Durchmesser
US8906157B2 (en) 2009-12-02 2014-12-09 Siltronic Ag Method for pulling a single crystal composed of silicon with a section having a diameter that remains constant
DE102009056638A1 (de) * 2009-12-02 2011-06-09 Siltronic Ag Verfahren zum Ziehen eines Einkristalls aus Silizium mit einem Abschnitt mit gleich bleibenden Durchmesser
DE102010023101B4 (de) * 2010-06-09 2016-07-07 Siltronic Ag Verfahren zur Herstellung von Halbleiterscheiben aus Silizium
DE102015224983B4 (de) * 2015-12-11 2019-01-24 Siltronic Ag Halbleiterscheibe aus einkristallinem Silizium und Verfahren zu deren Herstellung
WO2017108406A1 (de) * 2015-12-22 2017-06-29 Siltronic Ag Siliciumscheibe mit homogener radialer sauerstoffvariation
US10731271B2 (en) 2015-12-22 2020-08-04 Siltronic Ag Silicon wafer with homogeneous radial oxygen variation
WO2020249422A1 (de) 2019-06-14 2020-12-17 Siltronic Ag Verfahren zur herstellung von halbleiterscheiben aus silizium
CN110284186A (zh) * 2019-07-30 2019-09-27 刘冬雯 一种直拉单晶炉及其纵向温度梯度的测定控制方法
CN110284186B (zh) * 2019-07-30 2024-02-06 刘冬雯 一种直拉单晶炉及其纵向温度梯度的测定控制方法
EP3940124A1 (de) 2020-07-14 2022-01-19 Siltronic AG Kristallstück aus monokristallinem silizium
WO2022012936A1 (de) 2020-07-14 2022-01-20 Siltronic Ag Kristallstück aus monokristallinem silizium

Also Published As

Publication number Publication date
DE10339792B4 (de) 2014-02-27

Similar Documents

Publication Publication Date Title
DE3528674C2 (de)
DE102006060359B4 (de) Verfahren und Vorrichtung zur Herstellung von Halbleiterscheiben aus Silicium
EP0527477B1 (de) Verfahren zur Regelung des Sauerstoffgehaltes in Siliciumkristallen
DE19861325B4 (de) Verfahren zum Herstellen eines Siliziumstabs unter Steuern des Ziehgeschwindigkeitsverlaufs in einem Heißzonenofen
DE10259588B4 (de) Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium
DE10339792B4 (de) Verfahren und Vorrichtung zur Herstellung eines Einkristalls aus Silicium
DE3239570C2 (de) Verfahren zur Steuerung der Sauerstoffkonzentration von Siliciumeinkristallen
DE112013001054B4 (de) Verfahren zum Herstellen eines Silizium-Einkristall-Wafers
DE69902911T2 (de) Widerstandsheizung fur eine kristallzüchtungsvorrichtung und verfahren zu ihrer verwendung
DE20118092U1 (de) Vorrichtung zur Herstellung von Siliciumeinkristallen hoher Qualität
DE19806045A1 (de) Verfahren zum Herstellen von einkristallinen Siliziumstäben und Siliziumwafern unter Steuern des Ziehgeschwindigkeitsverlaufs in einem Heißzonenofen, sowie mit dem Verfahren hergestellte Stäbe und Wafer
DE112009003601B4 (de) Einkristall-Herstellungsanlage und Verfahren zur Herstellung elnes Einkristalls
WO2010083818A1 (de) Verfahren und vorrichtung zur herstellung von siliziumdünnstäben
DE102007028548B4 (de) Vorrichtung und Verfahren zur Herstellung von Kristallen aus elektrisch leitenden Schmelzen
DE10102126A1 (de) Verfahren und Vorrichtung zum Herstellen eines Einkristalls aus Silicium
EP0758689B1 (de) Verfahren und Vorrichtung zur Herstellung von Einkristallen
AT400848B (de) Vorrichtung zum züchten eines einkristalls
DE102008059521B4 (de) Verfahren zum Erstarren einer Nichtmetall-Schmelze
WO2012038432A1 (de) Kristallisationsanlage und kristallisationsverfahren zur herstellung eines blocks aus einem material, dessen schmelze elektrisch leitend ist
DE102010052522B4 (de) Verfahren und Vorrichtung zur Herstellung von Einkristallen aus Halbleitermaterial
DE102016209008B4 (de) Verfahren zur Herstellung einer Halbleiterscheibe aus einkristallinem Silizium, Vorrichtung zur Herstellung einer Halbleiterscheibe aus einkristallinem Silizium und Halbleiterscheibe aus einkristallinem Silizium
DE1769935C3 (de) Verfahren zum Ziehen eines Einkristalls aus einer Schmelze
DE102011051608A1 (de) Verfahren und Vorrichtung zum gerichteten Erstarren einer Nichtmetall-Schmelze
WO2014202284A1 (de) Kristallisationsanlage und kristallisationsverfahren zur kristallisation aus elektrisch leitenden schmelzen sowie über das verfahren erhältliche ingots
DE2212310A1 (de) Verfahren zur beeinflussung des radialen widerstandsverlaufes in einem halbleitereinkristallstab beim tiegelfreien zonenschmelzen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R020 Patent grant now final

Effective date: 20141128

R071 Expiry of right