DE102017218327A1 - Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine - Google Patents

Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine Download PDF

Info

Publication number
DE102017218327A1
DE102017218327A1 DE102017218327.6A DE102017218327A DE102017218327A1 DE 102017218327 A1 DE102017218327 A1 DE 102017218327A1 DE 102017218327 A DE102017218327 A DE 102017218327A DE 102017218327 A1 DE102017218327 A1 DE 102017218327A1
Authority
DE
Germany
Prior art keywords
lambda
signal
way catalyst
value
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102017218327.6A
Other languages
English (en)
Other versions
DE102017218327B4 (de
Inventor
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Priority to DE102017218327.6A priority Critical patent/DE102017218327B4/de
Priority to US16/755,468 priority patent/US11143129B2/en
Priority to PCT/EP2018/077250 priority patent/WO2019072730A1/de
Priority to KR1020207013350A priority patent/KR102302834B1/ko
Priority to CN201880066710.0A priority patent/CN111279056B/zh
Publication of DE102017218327A1 publication Critical patent/DE102017218327A1/de
Application granted granted Critical
Publication of DE102017218327B4 publication Critical patent/DE102017218327B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2474Characteristics of sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D2041/1468Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an ammonia content or concentration of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Es werden ein Verfahren zum Betreiben einer Brennkraftmaschine und eine Brennkraftmaschine beschrieben. Im Abgasstrang der Brennkraftmaschine befindet sich ein Dreiwegekatalysator mit Lambdaregelung, dem ein NO-Sensor mit integrierter Lambdasonde nachgeordnet ist. Durch kombinierte Messung eines Lambdawertes und NH-Wertes durch den NO-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators wird ein Lambdasollwert stromauf des Dreiwegekatalysators bestimmt. Auf diese Weise lässt sich das Emissionsverhalten des Dreiwegekatalysators besonders genau überwachen und steuern.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist.
  • In Bezug auf die Emissionen von Brennkraftmaschinen werden immer strengere Anforderungen gestellt. Dies betrifft auch den Einsatz von geregelten Dreiwegekatalysatoren, mittels denen in bekannter Weise die Oxidation von CO und CmHn und die Reduktion von NOx parallel zueinander durchgeführt werden. Voraussetzung dafür ist ein konstant stöchiometrisches Kraftstoffverhältnis (Lambda = 1). Ein derartiger Dreiwegekatalysator kann daher nur bei Fahrzeugen mit Ottomotor und Lambdaregelung eingesetzt werden.
  • Neben einer Lambdasonde stromauf des Dreiwegekatalysators zur Lambdaregelung wird hierbei ferner eine Lambdasonde stromab des Dreiwegekatalysators zur Überwachung der Funktionsweise des Katalysators eingesetzt. Damit sowohl die NOx- als auch die CO2/HC-Emessionen minimiert werden, ist somit eine entsprechend genaue Lambdaregelung bzw. Katalysatorüberwachung von großer Bedeutung.
  • Wie erwähnt, ist es hierbei bekannt, eine Lambdasonde stromauf des Dreiwegekatalysators und eine Lambdasonde stromab des Dreiwegekatalysators zu verwenden. Die Lambdaregelung nach dem Katalysator wird dabei durch Vorgabe eines Sollwertes für das Spannungssignal (Binärsignal) der Lambdasonde realisiert. Beispielsweise wird ein Sollwert von 750 mV mit einer Bandbreite von ± 20 mV vorgegeben. Innerhalb dieses Bereiches wird der Lambdasollwert stromauf des Katalysators nicht durch das Binärsignal der Lambdasonde stromab des Katalysators korrigiert. Außerhalb dieses Bereiches wird der Lambdasollwert stromauf des Katalysators korrigiert, und zwar in Abhängigkeit von der Spannungsdifferenz zwischen dem Sollwert und dem gemessenen Wert stromab des Dreiwegekatalysators. Wenn sich der Messwert unter dem Sollwert befindet, wird der Lambdasollwert stromauf des Katalysators in Richtung auf fett reduziert. Wenn sich der Messwert über dem Sollwert befindet, wird der Lambdasollwert stromauf des Katalysators in die Richtung mager erhöht.
  • Es kann auch von Vorteil sein, den Sollwert der Lambdasonde (des Binärsensors) beispielsweise über 750 mV einzustellen, um einen NOx-Durchbruch auf bessere Weise verhindern zu können. Bei einer höheren Binärspannung kann jedoch eine Spannungsänderung zu einer größeren Lambdaverschiebung führen, und die Genauigkeit des Lambdawertes stromab des Dreiwegekatalysators kann über den Binärspannungswert der Sonde nicht mehr garantiert werden. Dies kann zu einer höheren Lambdadrift in Richtung auf fett führen, was eine höhere HC- und CO-Emission bewirkt. Die bekannte Vorgehensweise ist daher mit Ungenauigkeiten behaftet.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zur Verfügung zu stellen, mit dem sich die Emissionen eines Dreiwegekatalysators besonders genau steuern lassen.
  • Diese Aufgabe wird erfindungsgemäß bei einem Verfahren der angegebenen Art durch die folgenden Schritte gelöst:
    • - Anordnen eines NOx-Sensors mit integrierter Lambdasonde stromab des Dreiwegekatalysators;
    • - Erzeugen eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals mit dem NOx-Sensor;
    • - Festlegen eines Schwellenwertes des elektrischen Signals und Bestimmen eines Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen dem Sollwert des elektrischen Signals nach dem Dreiwegekatalysator und dem gemessenen elektrischen Signal, wenn das gemessene elektrische Signal unter dem Schwellenwert liegt;
    • - wenn das gemessene elektrische Signal über dem Schwellenwert liegt, Bestimmen des Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen einem NH3-Sollwert des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors; und
    • - wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert, Erhöhen des Lambdasollwertes stromauf des Dreiwegekatalysators und, wenn die gemessene NH3-Konzentration niedriger ist als der NH3-Sollwert, Reduzieren des Lambdasollwertes stromauf des Dreiwegekatalysators.
  • Bei der vorliegenden Erfindung wird ein für die Emissionssteuerung wichtiger Lambdasollwert stromauf eines Dreiwegekatalysators durch kombinierte Messung eines Lambdawertes und NH3-Wertes durch einen NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators bestimmt bzw. festgelegt. Durch die genaue Festlegung dieses Lambdasollwertes vor dem Dreiwegekatalysator kann Lambda nach dem Katalysator in einem genau definierten Bereich gehalten werden, um die NOx- und CO2/HC-Emissionen zu minimieren.
  • Bei dem erfindungsgemäßen Verfahren wird unterhalb eines Schwellenwertes des den Lambdawert wiedergebenden elektrischen Signals (Binärsignals), der beispielsweise auf 650 mV festgesetzt wird, der Lambdasollwert stromauf des Dreiwegekatalysators durch die Differenz zwischen dem Sollwert des elektrischen Signals für den Lambdawert und dem gemessenen Lambdawert (Binärsignal) bestimmt. Über einem Schwellenwert des entsprechenden Lambdasignals (Binärsignals), d.h. beispielsweise über 650 mV, wird der Lambdasollwert stromauf des Katalysators jedoch auf andere Weise bestimmt, nämlich mithilfe der Differenz zwischen einem NH3-Sollwert, der beispielsweise in Abhängigkeit von der Katalysatortemperatur auf 10 ppm festgelegt wird, des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors. Die nach dem Dreiwegekatalysator anfallende NH3-Menge wird daher erfindungsgemäß zu Steuerungszwecken verwendet, da in einem fetten Gemischzustand NH3 durch den Dreiwegekatalysator erzeugt wird und das NH3-Signal in Bezug auf den Lambdawert nach dem Dreiwegekatalysator sehr sensitiv ist. NH3 kann dabei ebenfalls mit dem NOx-Sensor gemessen werden.
  • In diesem Bereich wird nunmehr der Lambdasollwert vor dem Dreiwegekatalysator in Abhängigkeit von der vorstehend erwähnten Differenz variiert, und zwar wird der Lambdasollwert vor dem Dreiwegekatalysator auf mager hin erhöht, wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert. Wenn im Gegensatz dazu die gemessene NH3-Konzentration geringer ist als der NH3-Sollwert, wird der Lambdasollwert vor dem Dreiwegekatalysator auf fett hin reduziert.
  • In weiterer Ausführung des erfindungsgemäßen Verfahrens wird der NH3-Sollwert adaptiert, da über die Lebensdauer des Dreiwegekatalysators bei gleichem Lambdawert infolge Alterung des Katalysators die NH3-Erzeugung zurückgehen und die NOx-Durchbruchswahrscheinlichkeit ansteigen kann. Der NH3-Sollwert kann dabei beispielsweise in der folgenden Weise adaptiert werden:
  • Der Sollwert des elektrischen Signals wird bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert, und der Lambdasollwert vor dem Dreiwegekatalysator wird über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt. Die Geschwindigkeit der Reduzierung kann hier beispielsweise 40 mV pro sec in Richtung der niedrigen Spannung (beispielsweise 400 mV) betragen.
  • Gleichzeitig kann das NOx-Signal vom NOx-Sensor gemessen und aufgrund der Reduktion der NH3-Konzentration kontinuierlich auf ein Minimum reduziert werden und dann durch die höhere Durchbruchswahrscheinlichkeit der NOx-Konzentration durch den Katalysator wieder erhöht werden, wobei der Minimalwert des NOx-Signals für die Adaption und auch die Diagnose des Dreiwegekatalysators verwendet werden kann. Der NH3-Sollwert entspricht dabei dem Minimalwert und einer Differenz (Delta, beispielsweise 10 ppm). Bei einem neuen Katalysator sollte der Minimalwert 0 betragen.
  • Wenn der Minimalwert über einem Schwellenwert liegt, beispielsweise 70 ppm (in Abhängigkeit von der Temperatur), wird der Katalysator als defekt diagnostiziert.
  • Um die Genauigkeit des NOx-Sensors bei einer niedrigen Konzentration zu erhöhen, wird vorzugsweise das Offset des NOx-Sensors während einer Absperrung der Kraftstoffzufuhr oder eines Motorstopps adaptiert, wobei während dieser Phase das NOx-Signal kontinuierlich beobachtet wird, bis ein stabiler Minimalwert erreicht ist, und wobei dieser Wert benutzt wird, um ein NOx-Signalkennfeld zu adaptieren, da in diesem Fall das NOx-Ausgangssignal 0 sein sollte. Das NOx-Signalkennfeld entspricht hierbei der Korrelation zwischen dem Strom des NOx-Sensors und dem NOx-Konzentrationsausgangssignal.
  • Die einzige Figur zeigt in einem Diagramm das NOx-Signal und das binäre Lambdasignal von einem NOx-Sensor mit integrierter Lambdasonde, der nach einem Dreiwegekatalysator im Abgasstrang eines Ottomotors angeordnet ist. Auf der Abszisse ist hierbei der Lambdawert nach dem Dreiwegekatalysator eingetragen. Die Ordinate gibt das NOx-Signal in ppm sowie das binäre Lambdasensorsignal in mV wieder.
  • Im fetten Bereich des Lambdasignals ist ein Schwellenwert des Lambdasignals von 750 mV angegeben. Unterhalb dieses Schwellenwertes, d.h. unterhalb 750 mV, wird der Lambdasollwert vor dem Katalysator durch die Differenz zwischen dem Sollwert des Binärsignals und dem gemessenen Binärsignal bestimmt. Oberhalb dieses Schwellenwertes von 750 mV wird der Lambdasollwert vor dem Katalysator durch die Differenz zwischen einem NH3-Sollwert, der hier mit 10 ppm angegeben ist, des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors bestimmt. Wenn die gemessene NH3-Konzentratin höher ist als der NH3-Sollwert, wird der Lambdasollwert vor dem Katalysator auf mager erhöht. Wenn die Konzentration niedriger ist als der NH3-Sollwert, wird der Lambdasollwert auf fett verringert.
  • Durch eine kombinierte Messung eines Lambdawertes und eines NH-Wertes durch einen NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators lässt sich somit eine besonders genaue Festlegung des Lambdasollwertes vor dem Katalysator erreichen.
  • Die vorliegende Erfindung betrifft ferner eine Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist, wobei ein NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators angeordnet ist, der zur Erzeugung eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals und zur Erzeugung eines die NH3-Konzentration im Abgas wiedergebenden NH3-Signals ausgebildet und zur Weiterleitung dieser Signale an eine Steuereinrichtung ausgebildet ist.
  • Vorzugsweise ist bei der Brennkraftmaschine der stromab des Dreiwegekatalysators angeordnete NOx-Sensor zur Erzeugung eines die NOx-Konzentration im Abgas wiedergebenden NOx-Signals und zur Weiterleitung dieses Signals an die Steuereinrichtung ausgebildet.

Claims (7)

  1. Verfahren zum Betreiben einer Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist, mit den folgenden Schritten: - Anordnen eines NOx-Sensors mit integrierter Lambdasonde stromab des Dreiwegekatalysators; - Erzeugen eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals mit dem NOx-Sensor; - Festlegen eines Schwellenwertes des elektrischen Signals und Bestimmen eines Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen dem Sollwert des elektrischen Signals nach dem Dreiwegekatalysator und dem gemessenen elektrischen Signal, wenn das gemessene elektrische Signal unter dem Schwellenwert liegt; - wenn das gemessene elektrische Signal über dem Schwellenwert liegt, Bestimmen des Lambdasollwertes stromauf des Dreiwegekatalysators mithilfe der Differenz zwischen einem NH3-Sollwert des NOx-Sensors und dem gemessenen NH3-Signal des NOx-Sensors; und - wenn die gemessene NH3-Konzentration höher ist als der NH3-Sollwert, Erhöhen des Lambdasollwertes stromauf des Dreiwegekatalysators und, wenn die gemessene NH3-Konzentration niedriger ist als der NH3-Sollwert, Reduzieren des Lambdasollwertes stromauf des Dreiwegekatalysators.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der NH3-Sollwert adaptiert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Adaption des NH3-Sollwertes der Sollwert des elektrischen Signals bei quasistatischen Bedingungen langsam in Richtung auf einen niedrigen Spannungswert vom tatsächlichen Spannungswert reduziert wird und der Lambdasollwert vor dem Dreiwegekatalysator über die Differenz zwischen dem Sollwert des elektrischen Signals und dem tatsächlichen Signal eingeregelt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass gleichzeitig das NOx-Signal vom NOx-Sensor gemessen und aufgrund der Reduktion der NH3-Konzentration kontinuierlich auf ein Minimum reduziert wird und dann durch die höhere Durchbruchswahrscheinlichkeit der NOx-Konzentration durch den Katalysator wieder erhöht wird, wobei der Minimalwert des NOx-Signals für die Adaption und auch die Diagnose des Dreiwegekatalysators verwendet wird.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Offset des NOx-Sensors während einer Absperrung der Kraftstoffzufuhr oder eines Motorstopps adaptiert wird, wobei während dieser Phase das NOx-Signal kontinuierlich beobachtet wird, bis ein stabiler Minimalwert erreicht ist, und wobei dieser Wert benutzt wird, um ein NOx-Signalkennfeld zu adaptieren, da in diesem Fall das NOx-Ausgangssignal Null sein sollte.
  6. Brennkraftmaschine, in deren Abgasstrang ein Dreiwegekatalysator mit Lambdaregelung angeordnet ist, dadurch gekennzeichnet, dass ein NOx-Sensor mit integrierter Lambdasonde stromab des Dreiwegekatalysators angeordnet ist, der zur Erzeugung eines einen Lambdawert nach dem Dreiwegekatalysator wiedergebenden elektrischen Signals und zur Erzeugung eines die NH3-Konzentration im Abgas wiedergebenden NH3-Signals ausgebildet und zur Weiterleitung dieser Signale an eine Steuereinrichtung ausgebildet ist.
  7. Brennkraftmaschine nach Anspruch 6, dadurch gekennzeichnet, dass der stromab des Dreiwegekatalysators angeordnete NOx-Sensor zur Erzeugung eines die NOx-Konzentration im Abgas wiedergebenden NOx-Signals und zur Weiterleitung dieses Signals an die Steuereinrichtung ausgebildet ist.
DE102017218327.6A 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung Active DE102017218327B4 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102017218327.6A DE102017218327B4 (de) 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
US16/755,468 US11143129B2 (en) 2017-10-13 2018-10-08 Method for operating an internal combustion engine
PCT/EP2018/077250 WO2019072730A1 (de) 2017-10-13 2018-10-08 Verfahren zum betreiben einer brennkraftmaschine und brennkraftmaschine
KR1020207013350A KR102302834B1 (ko) 2017-10-13 2018-10-08 내연기관을 동작시키는 방법 및 내연기관
CN201880066710.0A CN111279056B (zh) 2017-10-13 2018-10-08 用于运行内燃机的方法和内燃机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017218327.6A DE102017218327B4 (de) 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung

Publications (2)

Publication Number Publication Date
DE102017218327A1 true DE102017218327A1 (de) 2019-04-18
DE102017218327B4 DE102017218327B4 (de) 2019-10-24

Family

ID=63832406

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017218327.6A Active DE102017218327B4 (de) 2017-10-13 2017-10-13 Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung

Country Status (5)

Country Link
US (1) US11143129B2 (de)
KR (1) KR102302834B1 (de)
CN (1) CN111279056B (de)
DE (1) DE102017218327B4 (de)
WO (1) WO2019072730A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019206610A1 (de) 2018-04-26 2019-10-31 Cpt Group Gmbh Verfahren zum betreiben einer brennkraftmaschine
DE102019210362A1 (de) * 2019-07-12 2021-01-14 Robert Bosch Gmbh Verfahren zum Überwachen mindestens einer Ammoniakmesszelle
DE102020106502A1 (de) 2020-03-10 2021-09-16 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung mit einer Sensoreinrichtung sowie entsprechende Antriebseinrichtung
DE102021203935A1 (de) 2021-04-20 2022-10-20 Volkswagen Aktiengesellschaft Verfahren zur Durchführung einer On-Board-Diagnose eines Abgaskatalysators
DE102021132412B3 (de) 2021-12-09 2023-06-01 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102022103558A1 (de) 2022-02-15 2023-08-17 Audi Aktiengesellschaft Vorrichtung und Verfahren zur Lambdaregelung von Ottomotoren und Kraftfahrzeug
DE102020004757B4 (de) 2019-08-19 2024-05-16 Ngk Insulators, Ltd. Betriebssteuerverfahren für einen fahrzeugmotor und fahrzeugsystem

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017218327B4 (de) 2017-10-13 2019-10-24 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852244C1 (de) * 1998-11-12 1999-12-30 Siemens Ag Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
DE10117050C1 (de) * 2001-04-05 2002-09-12 Siemens Ag Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
US20100241340A1 (en) * 2009-03-23 2010-09-23 Ford Global Technologies, Llc Calibration scheme for an exhaust gas sensor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116543B2 (ja) * 2000-12-07 2008-07-09 エーイーピー・インヴェストメンツ・インコーポレーテッド 酸素・窒素酸化物複合センサ
ATE447098T1 (de) * 2005-12-05 2009-11-15 Bosch Gmbh Robert Verfahren zur diagnose eines in einem abgasbereich einer brennkraftmaschine angeordneten katalysators und vorrichtung zur durchführung des verfahrens
JP2008175173A (ja) 2007-01-19 2008-07-31 Mitsubishi Motors Corp 空燃比制御装置
JP4492669B2 (ja) * 2007-10-24 2010-06-30 トヨタ自動車株式会社 内燃機関の空燃比制御装置
CN102482967B (zh) * 2009-09-16 2014-10-15 丰田自动车株式会社 内燃机的排气净化装置及排气净化方法
US8915062B2 (en) * 2009-10-09 2014-12-23 GM Global Technology Operations LLC Method and apparatus for monitoring a reductant injection system in an exhaust aftertreatment system
EP2761154A4 (de) 2011-09-28 2016-01-06 Continental Controls Corp Automatisches sollwerteinstellungssystem und -verfahren für ein system zur steuerung des luft-kraftstoff-verhältnisses in einem motor
EP2599985B1 (de) * 2011-11-30 2014-10-29 Hoerbiger Kompressortechnik Holding GmbH Steuerung des Luft-Kraftstoff-Verhältnisses und Steuerungsverfahren
DE102012201767A1 (de) * 2012-02-07 2013-08-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dynamiküberwachung von Gas-Sensoren
DE102014201000A1 (de) * 2014-01-21 2015-07-23 Volkswagen Aktiengesellschaft Verfahren zur Diagnose eines Abgaskatalysators sowie Kraftfahrzeug
US10046276B2 (en) * 2014-09-24 2018-08-14 Ngk Spark Plug Co., Ltd. Sensor control method and sensor control apparatus
DE102015219113A1 (de) 2015-10-02 2017-04-06 Volkswagen Ag Verfahren und Vorrichtung zur Abgasnachbehandlung eines Verbrennungsmotors
JP6783629B2 (ja) * 2016-11-07 2020-11-11 日本特殊陶業株式会社 センサ制御装置、内燃機関制御システムおよび内燃機関制御装置
DE102017218327B4 (de) 2017-10-13 2019-10-24 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852244C1 (de) * 1998-11-12 1999-12-30 Siemens Ag Verfahren und Vorrichtung zur Abgasreinigung mit Trimmregelung
DE10117050C1 (de) * 2001-04-05 2002-09-12 Siemens Ag Verfahren zum Reinigen des Abgases einer Brennkraftmaschine
US20100241340A1 (en) * 2009-03-23 2010-09-23 Ford Global Technologies, Llc Calibration scheme for an exhaust gas sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206451B4 (de) * 2018-04-26 2020-12-24 Vitesco Technologies GmbH Verfahren zum Betreiben einer Brennkraftmaschine mit 3-Wege-Katalysator und Lambdaregelung über NOx-Emissionserfassung
US11428143B2 (en) 2018-04-26 2022-08-30 Vitesco Technologies GmbH Method for operating an internal combustion engine
WO2019206610A1 (de) 2018-04-26 2019-10-31 Cpt Group Gmbh Verfahren zum betreiben einer brennkraftmaschine
DE102019210362A1 (de) * 2019-07-12 2021-01-14 Robert Bosch Gmbh Verfahren zum Überwachen mindestens einer Ammoniakmesszelle
DE102020004757B4 (de) 2019-08-19 2024-05-16 Ngk Insulators, Ltd. Betriebssteuerverfahren für einen fahrzeugmotor und fahrzeugsystem
DE102020106502B4 (de) 2020-03-10 2024-01-04 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung mit einer Sensoreinrichtung sowie entsprechende Antriebseinrichtung
DE102020106502A1 (de) 2020-03-10 2021-09-16 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung mit einer Sensoreinrichtung sowie entsprechende Antriebseinrichtung
CN115217600A (zh) * 2021-04-20 2022-10-21 大众汽车股份公司 用于执行废气催化器的车载诊断的方法
EP4080027A1 (de) 2021-04-20 2022-10-26 Volkswagen Aktiengesellschaft Verfahren zur durchführung einer on-board-diagnose eines abgaskatalysators
DE102021203935A1 (de) 2021-04-20 2022-10-20 Volkswagen Aktiengesellschaft Verfahren zur Durchführung einer On-Board-Diagnose eines Abgaskatalysators
DE102021132412B3 (de) 2021-12-09 2023-06-01 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102022103558A1 (de) 2022-02-15 2023-08-17 Audi Aktiengesellschaft Vorrichtung und Verfahren zur Lambdaregelung von Ottomotoren und Kraftfahrzeug
WO2023156252A1 (de) 2022-02-15 2023-08-24 Vitesco Technologies GmbH Vorrichtung und verfahren zur lambdaregelung von ottomotoren und kraftfahrzeug

Also Published As

Publication number Publication date
US20200240345A1 (en) 2020-07-30
KR102302834B1 (ko) 2021-09-16
CN111279056B (zh) 2022-03-01
DE102017218327B4 (de) 2019-10-24
WO2019072730A1 (de) 2019-04-18
US11143129B2 (en) 2021-10-12
KR20200057782A (ko) 2020-05-26
CN111279056A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
DE102017218327B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Dreiwegekatalysator und Lambdaregelung
EP1327138B1 (de) Verfahren und vorrichtung zur eigendiagnose eines nox-sensors
AT399398B (de) Verfahren zur überprüfung und justierung von lambda-sonden-geregelten katalytischen abgasreinigungsanlagen von verbrennungsmotoren
DE102018206451B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit 3-Wege-Katalysator und Lambdaregelung über NOx-Emissionserfassung
DE19953601C2 (de) Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
DE102008024177B3 (de) Verfahren, Vorrichtung und System zur Diagnose eines NOx-Sensors für eine Brennkraftmaschine
DE102017124312B4 (de) Ammoniakkonzentrationsberechnungsvorrichtung, ammoniakkonzentrationsberechnungssystem und ammoniakkonzentrationsberechnungsverfahren
DE10319983B3 (de) Verfahren und Vorrichtung zur Lambda-Regelung und zur Katalysatordiagnose bei einer Brennkraftmaschine
DE69634580T2 (de) Feststellungsvorrichtung der Katalysatorverschlechterung einer Brennkraftmaschine
DE102012211683A1 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Zweipunkt-Lambdasonde
DE102013201228A1 (de) Verfahren und Vorrichtung zur Bestimmung der Sauerstoffspeicherfähigkeit einer Abgasreinigungsanlage
DE19811574A1 (de) Verfahren und Vorrichtung zum Überwachen der Funktionsfähigkeit eines Katalysators einer Brennkraftmaschine
DE102004009615A1 (de) Verfahren zur Ermittlung der aktuellen Sauerstoffbeladung eines 3-Wege-Katalysators einer lambdageregelten Brennkraftmaschine
DE3443649A1 (de) Verfahren zur ueberpruefung der katalysatorfunktion bei einem mit (lambda)-sonden-regelung ausgeruesteten kraftfahrzeug-otto-motor
DE112018002709T5 (de) Gassensor-steuervorrichtung
DE102012221549A1 (de) Verfahren und Vorrichtung zur Bestimmung einer Zusammensetzung eines Gasgemischs
DE102009045376A1 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE10309422B4 (de) Verfahren und Vorrichtung zur Kalibrierung eines NOx-Sensors
DE102009054935B4 (de) Verfahren und Vorrichtung zur Diagnose der Dynamik eines Abgassensors
DE102005062116A1 (de) Verfahren zur Überwachung eines Abgasnachbehandlungssystems
DE102017205325A1 (de) Verfahren und Steuereinheit zum Betrieb eines Partikelfilters
DE102014202035A1 (de) Verfahren und Vorrichtung zur Überwachung eines Stickoxid-Speicher-Katalysators
DE102016210143A1 (de) Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
EP2652297B1 (de) Verfahren zur erkennung der betriebsbereitschaft einer sprung-lambdasonde
DE102015222022B4 (de) Verfahren und Vorrichtung zur Korrektur einer Kennlinie einer Lambdasonde

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE