DE102017004562A1 - Verfahren zum Herstellen eines Mikroprojektors und eines Projektionsdisplays - Google Patents

Verfahren zum Herstellen eines Mikroprojektors und eines Projektionsdisplays Download PDF

Info

Publication number
DE102017004562A1
DE102017004562A1 DE102017004562.3A DE102017004562A DE102017004562A1 DE 102017004562 A1 DE102017004562 A1 DE 102017004562A1 DE 102017004562 A DE102017004562 A DE 102017004562A DE 102017004562 A1 DE102017004562 A1 DE 102017004562A1
Authority
DE
Germany
Prior art keywords
projection
projection lens
lenses
array
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102017004562.3A
Other languages
English (en)
Inventor
Sven Fröhlich
Sven Bernhard Kiriczi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Docter Optics SE
Original Assignee
Docter Optics SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Docter Optics SE filed Critical Docter Optics SE
Priority to DE102017004562.3A priority Critical patent/DE102017004562A1/de
Priority to DE112018001926.8T priority patent/DE112018001926A5/de
Priority to PCT/EP2018/060846 priority patent/WO2018210549A1/de
Priority to US16/610,584 priority patent/US11624972B2/en
Publication of DE102017004562A1 publication Critical patent/DE102017004562A1/de
Priority to US18/130,079 priority patent/US20230244130A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Lenses (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen eines Mikroprojektors für ein Projektionsdisplay, wobei der Mikroprojektor einen Träger umfasst, auf dem ein Projektionslinsenarray mit einer Mehrzahl von Projektionslinsen angeordnet ist, wobei auf einer dem Projektionslinsenarray abgewandten Seite des Trägers ein Objektstrukturenarray mit einer Mehrzahl von, insbesondere identischen, Objektstrukturen angeordnet ist, wobei einer Objektstruktur zumindest eine Projektionslinse derart zugeordnet ist, dass sich die Projektionen der Objektstrukturen durch die Projektionslinsen zu einem Gesamtbild überlagern, wobei insbesondere vorgesehen ist, dass der Abstand zwischen einer Projektionslinse und der zugeordneten Objektstruktur der Brennweite der jeweiligen Projektionslinse entspricht.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines (integrierten) Projektionsdisplays sowie ein (integriertes) Projektionsdisplay. Die Erfindung betrifft zudem ein Verfahren zum Herstellen eines (integrierten) Mikroprojektors für ein Projektionsdisplay, insbesondere eines (integrierten) Mikroprojektors, wie es aus der DE 10 2009 024 894 A1 (vgl. z.B. 1/2 gemäß der DE 10 2009 024 894 A1 ), der US 8 777 424 B2 (incorporated by reference in its entirety) bzw. der DE 10 2011 076 083 A1 (incorporated by reference in its entirety) bekannt ist.
  • Die in der DE 10 2009 024 894 A1 vorgeschlagene Anordnung besteht aus einer regelmäßigen Anordnung mehrerer Feldlinsen, abzubildender identischer Strukturen und Projektionslinsen. Eine Lichtquelle beleuchtet ein Feldlinsenarray, in dessen unmittelbarer Nähe sich ein Array bildgebender Strukturen befindet. Das jeweilige zu projizierende Objekt (bildgebende Struktur) befindet sich in der Brennweite der zugeordneten Linse des Projektionslinsenarrays. Die korrespondierende Feldlinse befindet sich im Vergleich zum Abstand der Projektionslinse zum Objekt sehr nahe am Objekt, um eine Köhlersche Beleuchtung der Projektionslinse zu gewährleisten. Das Projektionslinsenarray gemäß der DE 10 2009 024 894 A1 (incorporated by reference in its entirety) bildet eine Überlagerung aller Einzelbilder auf einem Schirm ab. Durch das Verwenden von Mikrolinsen in einer regelmäßigen Anordnung als Projektionsobjektive in einer Vielkanalarchitektur ist es gemäß der DE 10 2009 024 894 A1 möglich, die Baulänge des Gesamtsystems gegenüber herkömmlichen Einkanalprojektoren gleicher Bildhelligkeit zu reduzieren. Während die geringe Baulänge des Mikroprojektors aus den Brennweiten der Linsen von nur wenigen Millimetern resultiert, sorgt die Objektflächenvervielfachung gemäß der DE 10 2009 024 894 A1 für eine proportionale Steigerung der Bildhelligkeit.
  • Durch einen leicht verringerten Mittenabstand (Pitch) der Projektionslinsen gegenüber den bildgebenden Strukturen entsteht ein vom Arrayzentrum nach außen wachsender Versatz des jeweiligen Objekts und der entsprechenden Projektionsoptik. Die so entstehende leichte Verkippung der optischen Achsen äußerer Projektoren gegenüber der des Zentralkanals sorgt für eine Superposition der reellen Einzelabbildungen in einer endlichen Entfernung D auf die für die Projektion vorgesehene Projektionsfläche.
  • Gemäß der DE 10 2009 024 894 A1 ergibt sich die Projektionsentfernung D des Mikroprojektors aus der Brennweite f der Projektionslinse, dem Mittenabstand der Projektionsoptiken PPL und dem Mittenabstand der Bilder PBL (vgl. 3 gemäß der DE 10 2009 024 894 A1 ): D = f * p P L p B L p P L
    Figure DE102017004562A1_0001
  • Die Vergrößerung M des Mikroprojektors folgt aus dem Verhältnis der Projektionsentfernung D zur Brennweite f der Projektionslinse: M = D f = p P L p B L p P L
    Figure DE102017004562A1_0002
  • Das Projektionsdisplay generiert gemäß der DE 10 2009 024 894 A1 eine zweidimensionale Projektion auf eine Projektionsfläche wobei gemäß der DE 10 2009 024 894 A1 identische Objekte projiziert werden. Durch die Superposition der Projektionen von Projektionslinsen mit Köhlerscher Beleuchtung erzielt der Mikroprojektor gemäß der DE 10 2009 024 894 A1 parallel zur Projektion die Homogenisierung der Lichtquelle.
  • Der maximale Öffnungswinkel der Lichtquelle soll den Akzeptanzwinkel der Feldlinse, unter dem die Austrittspupille der Projektionslinse voll ausgeleuchtet wird, nicht überschreiten, da sonst gemäß der DE 10 2009 024 894 A1 dem eigentlichen Bild benachbarte Störbilder entstehen können. Als Beleuchtung können gemäß der DE 10 2009 024 894 A1 z.B. sehr flache Einheiten, ähnlich den Hinterleuchtungen von transmittiven Displays ( US 2008/0310160 A1 ), mit angepassten Auskoppelstrukturen verwendet werden. Der Akzeptanzwinkel peripherer Einzelprojektoren des Mikroprojektors wird gemäß der DE 10 2009 024 894 A1 durch die telezentrische Abstrahlcharakteristik der Quelle im Vergleich zum zentralen Projektorkanal eingeschränkt. Eine zusätzliche makroskopische Feldlinse z.B. in Form einer dünnen Fresnellinse kann gemäß der DE 10 2009 024 894 A1 diese Telezentrie aufheben und somit gemäß der DE 10 2009 024 894 A1 die Gesamthelligkeit der Projektion weiter steigern (4 gemäß der DE 10 2009 024 894 A1 ).
  • Das Aufbringen geeigneter lichtführender Elemente, z.B. Konzentratoren, als Teil des Feldlinsenarrays kann gemäß der DE 10 2009 024 894 A1 die Totzonen zwischen den Feldlinsen ausblenden und somit den Füllfaktor erheblich steigern (5 gemäß der DE 10 2009 024 894 A1 ). Das Verwenden von sogenannten „gechirpten“ Linsenarrays, also Linsenarrays mit kontinuierlich über das Array variablen Parametern (z.B. unterschiedliche Brennweiten der Projektionslinsen über das Array bzw. unterschiedliche Brennweiten tangential und sagittal durch Ausbildung als elliptische Linsen), kann eine Korrektur des Defokus und des Astigmatismus der peripheren Projektionsoptiken erzielen.
  • Um den Einfluss der Verzeichnung sowohl des Einzelkanals als auch der Superposition aller abbildenden Kanäle zu unterdrücken, ist gemäß der DE 10 2009 024 894 A1 eine kanalweise Vorverzerrung der bildgebenden Strukturen möglich. Die Verwendung von kurzbrennweitigen Mikrolinsen ist gemäß der DE 10 2009 024 894 A1 mit einer Einschränkung der übertragbaren Informationen verbunden. Die darstellbare Bildauflösung wird gemäß der DE 10 2009 024 894 A1 durch die Überlagerung von Aberrationen und Beugungseffekten begrenzt. Eine Steigerung der Gesamtinformationsübertragung ist gemäß der DE 10 2009 024 894 A1 durch Segmentierung des Projektionsbildes und Zuweisen definierter Gesichtsfeldbereiche an Gruppen von Einzelprojektoren in einer verschränkten Anordnung innerhalb eines Mikroprojektors möglich (vgl. 6/7 gemäß der DE 10 2009 024 894 A1 ).
  • Eine Vollfarbprojektion wird gemäß der DE 10 2009 024 894 A1 durch Verschachteln von drei Array-Projektionsdisplays gemäß der DE 10 2009 024 894 A1 , von denen jedes einen Grundfarbanteil des zu projizierenden Bildes in Form von identischen Objektstrukturen darstellt, ermöglicht (vgl. 8/9 gemäß der DE 10 2009 024 894 A1 ). Weiter besteht gemäß der DE 10 2009 024 894 A1 die Möglichkeit der kanalweisen Farbfehlerkorrektur, welche im Vergleich zu herkömmlichen einkanaligen Projektionssystemen mit komplexen achromatisierten mehrlinsigen Projektionsobjektiven eine drastische Vereinfachung der Projektionsoptik darstellt. Wird die Objektstruktur durch einen digitalen Bildgeber generiert, der als Bildinhalt ein Array identischer Bilder in variablem Pitch zeigt, ermöglicht der Mikroprojektor die Darstellung dynamischer Bildinhalte.
  • Durch elektronischen Versatz der Einzelbilder auf dem Bildgeber kann gemäß der DE 10 2009 024 894 A1 die Projektionsdistanz ohne mechanische Komponenten geregelt werden (s.o. Formel für den Projektionsabstand D). In Kombination mit einer Abstandsmessung zur Projektionsfläche kann gemäß der DE 10 2009 024 894 A1 somit innerhalb eines Regelkreises die Projektionsdistanz elektronisch nachgeführt werden. Der Bildgeber kann gemäß der DE 10 2009 024 894 A1 z.B. ein transmittives LCD-Display (vgl. 10 gemäß der DE 10 2009 024 894 A1 ) sein.
  • Es ist Aufgabe der Erfindung, ein verbessertes Projektionsdisplay bzw. einen verbesserten Mikroprojektor anzugeben. Es ist weiterhin Aufgabe der Erfindung, ein besonders geeignetes Verfahren zur Herstellung eines Mikroprojektors bzw. eines Projektionsdisplays bzw. eines verbesserten Mikroprojektors bzw. Projektionsdisplays anzugeben.
  • Zur Lösung der Aufgabe wird vorgeschlagen, Einzellinsen eines Mikroprojektors, insbesondere eines Mikroprojektors mit einem oder mehreren der vorgenannten Merkmale, (mittels eines 3D Druck-Verfahrens bzw. mittels eines Druckverfahrens, z.B. 3D-Inkjet-Druck) zu drucken, wobei insbesondere vorgesehen ist, dass der Mikroprojektor einen Träger umfasst, auf dem ein Projektionslinsenarray mit einer Mehrzahl von Projektionslinsen angeordnet ist, wobei auf einer dem Projektionslinsenarray abgewandten Seite des Trägers ein Objektstrukturenarray mit einer Mehrzahl von, insbesondere identischen, Objektstrukturen angeordnet ist, wobei einer Objektstruktur zumindest eine Projektionslinse derart zugeordnet ist, dass sich die Projektionen der Objektstrukturen durch die Projektionslinsen zu einem Gesamtbild überlagern, wobei insbesondere vorgesehen ist, dass der Abstand zwischen einer Projektionslinse und der zugeordneten Objektstruktur der Brennweite der jeweiligen Projektionslinsen entspricht, wobei sich direkt oder mittels einer Zwischenschicht unter teilweiser Ausgestaltung entsprechend auf dem Objektstrukturenarray ein Feldlinsenarray derart angeordnet ist, dass bei Beleuchtung des Feldlinsenarrays eine Köhlersche Beleuchtung der den jeweiligen Feldlinsen zugeordneten Objektstrukturen bzw. Projektionslinsen ermöglicht wird.
  • Zur Lösung der Aufgabe wird zudem vorgeschlagen, insbesondere Einzellinsen eines Projektionsdisplays, insbesondere ein Projektionsdisplay das Teil eines Mikroprojektors mit einem oder mehreren der vorgenannten Merkmale ist, (mittels eines 3D Druck-Verfahrens bzw. mittels eines Druckverfahrens, z.B. 3D-lnkjet-Druck) zu drucken, wobei insbesondere vorgesehen ist, dass das Projektionsdisplay einen Träger umfasst, auf dem ein Projektionslinsenarray mit einer Mehrzahl von Projektionslinsen angeordnet ist, wobei auf einer dem Projektionslinsenarray abgewandten Seite des Trägers ein Objektstrukturenarray mit einer Mehrzahl von, insbesondere identischen, Objektstrukturen angeordnet ist, wobei einer Objektstruktur zumindest eine Projektionslinse derart zugeordnet ist, dass sich die Projektionen der Objektstrukturen durch die Projektionslinsen zu einem Gesamtbild überlagern, wobei insbesondere vorgesehen ist, dass der Abstand zwischen einer Projektionslinse und der zugeordneten Objektstruktur der Brennweite der jeweiligen Projektionslinsen entspricht, und wobei auf dem Objektstrukturenarray eine Beleuchtungsschicht zur Beleuchtung der Objektstrukturen bzw. Projektionslinsen vorgesehen ist.
  • Vorgenannte Aufgabe wird zudem durch ein Projektionsdisplay gelöst, das eines oder mehrere der im Zusammenhang mit einem vorgenannten Mikroprojektor genannten Merkmale umfasst, gelöst, wobei das Projektionsdisplay einen Träger umfasst, auf dem ein Projektionslinsenarray mit einer Mehrzahl von Projektionslinsen angeordnet ist, wobei auf einer dem Projektionslinsenarray abgewandten Seite des Trägers ein Objektstrukturenarray mit einer Mehrzahl von, insbesondere identischen, Objektstrukturen angeordnet ist, wobei einer Objektstruktur zumindest eine Projektionslinse derart zugeordnet ist, dass sich die Projektionen der Objektstrukturen durch die Projektionslinsen zu einem Gesamtbild überlagern, wobei insbesondere vorgesehen ist, dass der Abstand zwischen einer Projektionslinse und der zugeordneten Objektstruktur der Brennweite der jeweiligen Projektionslinsen entspricht, und wobei auf dem Objektstrukturenarray eine Beleuchtungsschicht zur Beleuchtung der Objektstrukturen bzw. Projektionslinsen angeordnet ist.
  • Eine Beleuchtungsschicht im Sinne der Erfindung ist insbesondere ein Flächenstrahler bzw. insbesondere ein gerichteter Flächenstrahler. Eine Beleuchtungsschicht im Sinne der Erfindung ist insbesondere eine LED-Schicht bzw. eine OLED-Schicht. Eine Beleuchtungsschicht im Sinne der Erfindung ist insbesondere eine gerichtete Schicht, eine gerichtete LED bzw. eine gerichtete OLED. Eine geeignete Schicht ist zum Beispiel in der WO 2008/121414 A1 (incorporated by reference in its entirety) offenbart. So kann zum Beispiel eine Beleuchtungsschicht im Sinne der Erfindung die Schichten 303, 302 und 301 der WO 2008/121414 A1 bzw. entsprechende Schichten umfassen. Eine Beleuchtungsschicht im Sinne der Erfindung umfasst insbesondere eine transparente Elektrode und eine, insbesondere reflektierende, Elektrode. Zwischen der transparenten Elektrode und der, insbesondere reflektierenden, Elektrode ist insbesondere eine Lichtschicht angeordnet, die einen ersten Bereich, umfassend ein organisches emittierendes Material und einen zweiten Bereich, umfassend ein Niedrig-Index-Material, das einen Brechungsindex aufweist, der kleiner ist als der Brechungsindex des organischen emittierenden Materials, wobei der zweite Bereich benachbart zu dem ersten Bereich angeordnet ist. In vorteilhafter Ausgestaltung weist das Niedrig-Index-Material einen Brechungsindex von 1.0 bis 3.0 auf. In weiterhin vorteilhafter Ausgestaltung der Erfindung weist das Niedrig-Index-Material einen Brechungsindex von 1.0 bis 1.5 auf. In weiterhin vorteilhafter Ausgestaltung der Erfindung bildet das Niedrig-Index-Material ein Gitter, das in einer Ebene parallel zu der transparenten Elektrode und zu der reflektierenden Elektrode ausgerichtet ist. In weiterhin vorteilhafter Ausgestaltung der Erfindung ist das Gitter mit einer Periodizität ausgelegt, die größer als die Wellenlänge von Licht ist. In weiterhin vorteilhafter Ausgestaltung der Erfindung ist die Periodizität nicht größer als das fünffache der Breite der Gitterlinien. In weiterhin vorteilhafter Ausgestaltung der Erfindung ist die Periodizität nicht größer als das Vierfache der Breite der Gitterlinien. In weiterhin vorteilhafter Ausgestaltung der Erfindung ist die Periodizität nicht größer als das Dreifache der Breite der Gitterlinien. In weiterhin vorteilhafter Ausgestaltung der Erfindung besteht oder umfasst das Niedrig-Index-Material Aerogel, Teflon, gradiertes/gestuftes Dünnschicht SiO2, gradierte/gestufte Dünnschicht TiO2 und/oder Lagen von SiO2 Nano-Stäbchen.
  • Es wird insbesondere mit einer Hybrid-Polymer-„Tinte“ gedruckt. Als Tinte ist insbesondere Ormocer vorgesehen. Als Ausgangsmaterial der Tinte sind insbesondere anorganisch-organische Hybridpolymere, sog. Ormocere, vorgesehen. Diese werden je nach Randbedingungen des Druckverfahrens mit einem Lösemittel gemischt, um die Viskosität der Tinte einzustellen. Es werden insbesondere mehrere Tröpfchen auf eine Stelle zum Aufbau eines Tropfens (=Mikrolinse nach Aushärtung), der aus mehreren Tröpfchen besteht bzw. mehrere Tröpfchen aufweist, gedruckt. In der Terminologie dieser Offenbarung ist ein Tröpfchen eine Portion Tinte, die einen Druckkopf verlässt. Ein Tropfen ist das Volumen von Tinte, das sich auf einem Träger, wie einem Substrat oder einem beschichteten Substrat, aufbaut, wenn mehrere Tröpfchen auf eine Stelle gedruckt werden. Geeignete Druckverfahren offenbart zum Beispiel der Artikel W. Royall Cox, Ting Chen, Donald J. Hayes, Michael E. Grove: „Low-cost fiber collimation for MOEMS switches by ink-jet printing“, MOEMS and Miniaturized Systems II, M. Edward Motamedi, Rolf Göring, Editors, Proceedings of SPIE Vol. 4561 (2001), S. 93 - 101. Dabei ist es vorteilhafterweise vorgesehen, dass sich die Tropfen bzw. die aus den Tropfen gebildeten Mikrolinsen (anders als in der DE 10 2009 024 894 A1 ) nicht berühren.
  • Es ist insbesondere vorgesehen, dass die durch die Tröpfchen aufgebauten Mikrolinsen individuell gestaltet werden. D.h. insbesondere, dass sich zumindest zwei, jedoch vorteilhafterweise mehrere Mikrolinsen (z.B. eines Mikroprojektors bzw. eines Projektionsdisplays) voneinander unterscheiden. Dabei ist insbesondere vorgesehen, dass sich korrespondierende Mikrolinsen von unterschiedlichen Mikroprojektoren einer Charge unterscheiden. So kann zum Beispiel die Mikrolinse mit den Koordinaten i,j (i-te Spalte von links, darin j-te Projektionslinse von oben) eines ersten Mikroprojektors bzw. eines Projektionsdisplays (einer Charge) aus einer anderen Anzahl von Tröpfchen gebildet sein als eine Mikrolinse mit den Koordinaten i,j eines zweiten Mikroprojektors bzw. eines Projektionsdisplays (der Charge). Es ist insbesondere vorgesehen, dass die Anzahl der Tröpfchen für eine Mikrolinse individuell angesteuert bzw. ausgewählt bzw. errechnet bzw. bestimmt wird. Der Ausdruck Mikrolinse bezieht sich auf Projektionslinsen oder auf Projektionslinsen und Feldlinsen.
  • In einer Ausgestaltung wird ein Substrat (die Begriffe „Substrat“ und „Träger“ werden in dieser Offenbarung synonym verwendet) bereitgestellt. Auf das Substrat wird direkt oder indirekt die optische Nutzschicht, also das abzubildende Objekt (=abzubildende identische Struktur) aufgebracht. Es ist insbesondere vorgesehen, dass die Seite des Substrats mit den abzubilden Objekten (=abzubildende identische Struktur) und/oder deren abgewandten Seite des Substrats beschichtet wird. Derartige Beschichtungen werden zum Beispiel in der DE 10 2013 021 795 A1 und der WO99/19900 vorgeschlagen. Wie zum Beispiel in der WO99/19900 (incorporated by reference in its entirety), der US 2006/0158482 A1 (incorporated by reference in its entirety) oder der WO 2004/070438 A1 (incorporated by reference in its entirety) kann vorgesehen sein, anstelle einer durchgängigen Beschichtung Beschichtungsinseln vorzusehen. Es kann vorgesehen sein, dass sich zumindest zwei Beschichtungsinseln in ihrem Material und/oder in ihrer Geometrie (insbesondere ihrem Durchmesser) unterscheiden. Ein geeignetes Material wird insbesondere so gewählt, dass es durch die Benetzungseigenschaften des gewählten Materials für die Beschichtungsinsel den Aufbau einer gewünschten Mikrolinse bzw. eines gewünschten Tropfens. Einzelheiten zum Einstellen der Form eines Tropfens bzw. einer entsprechenden Mikrolinse kann „Handbook of Optical System - Volume 1: Fundamentals of Technical Optics“, Herbert Gross, WILEY-VCH Verlag GmbH & Co. KGaA, 2005, ISBN-13 978-3-40377-6 (incorporated by reference in its entirety) entnommen werden (siehe auch WO99/19900 und WO 2004/070438 A1 ). Die Größe bzw. die Form der Mikrolinse bzw. des Tropfens wird durch die Anzahl der Tröpfchen (sowie ggf. durch die Benetzungseigenschaften (der Tinte und des Lösemittelgehalts)) eingestellt. Es ist vorteilhafterweise vorgesehen, den Träger zu erwärmen. Details können zum Beispiel dem Artikel Y. Sung et al., Journal of Biomedical Optics 20 (2015) (incorporated by reference in its entirety) entnommen werden.
  • Es ist insbesondere vorgesehen, dass in Abhängigkeit der optischen Soll-Parameter und in Abhängigkeit (gemessener) Eigenschaften der Beschichtungsinsel, wie etwa der Schichtdicke, korrigierte optische Soll-Parameter der Mikrolinse errechnet werden. Ein optischer Parameter kann zum Beispiel die Brennweite sein. Aus den korrigierten optischen Soll-Parametern wird, zum Beispiel über eine geeignete Kennlinie, wie sie zum Beispiel in der W. Royall Cox, Ting Chen, Donald J. Hayes, Michael E. Grove: „Low-cost fiber collimation for MOEMS switches by ink-jet printing“, MOEMS and Miniaturized Systems II, M. Edward Motamedi, Rolf Göring, Editors, Proceedings of SPIE Vol. 4561 (2001), S. 93 - 101 (siehe dort 11) offenbart ist, die Anzahl der Tröpfchen, die auf eine Stelle gedruckt werden, um eine Mikrolinse bzw. einen Tropfen zu erzeugen, bestimmt. Geeignete Verfahren zum Einstellen der Tropfenform bzw. der entsprechenden Mikrolinse (= Tropfen) offenbaren die W. Royall Cox, Ting Chen, Donald J. Hayes, Michael E. Grove: „Low-cost fiber collimation for MOEMS switches by inkjet printing“, MOEMS and Miniaturized Systems II, M. Edward Motamedi, Rolf Göring, Editors, Proceedings of SPIE Vol. 4561 (2001), S. 93 - 101 (incorporated by reference in its entirety), US 5 498 444 (incorporated by reference in its entirety) und US 5 707 684 (incorporated by reference in its entirety).
  • Es kann auch vorgesehen sein, die Anzahl der Tröpfchen direkt und nicht erst indirekt in Abhängigkeit der (optischen) Soll-Parameter und in Abhängigkeit (gemessener) Eigenschaften der Beschichtungsinsel, wie etwa der Schichtdicke, zu bestimmen. In diesem Fall tritt an die Stelle einer Kennlinie ein Kennlinienfeld.
  • Eine Kennlinie bzw. ein Kennlinienfeld kann als Tabelle, Look-up-Table, als neuronales Netz und oder als(numerische) Funktion implementiert sein, wie z.B.: V K O R R ( Δ S , Δ d ) = h 2 π 3 ( 3R-h )
    Figure DE102017004562A1_0003
    mit h = R- R 2 ( d + Δ d ) 2 4
    Figure DE102017004562A1_0004
    und R = ( S + Δ S ) ( n S n ) n S
    Figure DE102017004562A1_0005
  • Dabei bedeutet
  • S*
    Sollwert der Dicke des Trägers
    ΔS*
    Abweichung des Istwertes der Dicke des Trägers vom Sollwert der Dicke des Trägers
    ns
    Brechungsindex des Materials der Mikrolinse
    n
    Brechungsindex von Luft
    d*
    Sollwert des Durchmessers der Beschichtungsinsel, auf die die Mikrolinse gedruckt wird, oder Sollwert des Durchmessers der Grundfläche der Mikrolinse
    Δd
    Abweichung des Istwertes des Durchmessers der Beschichtungsinsel, auf die die Mikrolinse gedruckt wird, vom Sollwert des Durchmessers der Beschichtungsinsel, auf die die Mikrolinse gedruckt wird
  • Es ist insbesondere vorgesehen, dass der Tropfen (=Mikrolinse) direkt oder später nach Aufbringen der gewünschten Anzahl von Tröpfchen belichtet wird, zum Beispiel durch UV-Strahlung. Auf diese Weise wird eine Aushärtung erreicht. Das beschriebene Verfahren wird vorteilhafterweise auf beiden Seiten des Substrats angewandt. Es kann jedoch auch vorgesehen sein, dass nur die Projektionslinsen, nicht jedoch die Feldlinsen, gedruckt werden. Es kann ein hybrides Verfahren vorgesehen sein, bei dem die Feldlinsen (z. B. durch UV-Molding) geprägt werden und die Projektionslinsen gedruckt werden.
  • In einer weiteren Ausgestaltung sind die abzubilden Objekte veränderbar bzw. individuell ansteuerbar. Auf diese Weise können unterschiedliche Projektionsmuster erzielt werden (siehe DE 10 2009 024 894 A1 ). So kann zum Beispiel vor einem Kraftfahrzeug ein Pfeil projiziert werden, der entweder nach links oder nach rechts zeigt, je nachdem wie die Objekte, die abgebildet werden angesteuert werden. Es kann auch vorgesehen sein, dass sich das Projektionsmuster und damit die Ansteuerung der Objekte in Abhängigkeit des Schlüssels bzw. Zündschlüssels eines Kraftfahrzeuges einstellen lässt. D.h. der Benutzer des einen Schlüssels erhält eine andere Projektion als der Benutzer eines anderen Schlüssels.
  • Eine Mikrolinse im Sinne der Erfindung ist insbesondere eine Linse, deren Durchmesser kleiner ist als 1 mm. Drucken auf der Stelle bzw. auf einer Stelle soll im Sinne der Erfindung insbesondere umfassen, dass exakt an die Stelle gedruckt wird oder, dass zumindest im Bereich gedruckt wird, indem die Mikrolinse entstehen soll. Eine Charge von Mikroprojektoren bzw. Projektionsdisplays im Sinne der Erfindung ist insbesondere eine Menge von Mikroprojektoren bzw. Projektionsdisplays, die aus einem Wafer gefertigt werden. Eine Charge von Mikroprojektoren bzw. Projektionsdisplays kann im Sinne der Erfindung auch eine Menge von Mikroprojektoren sein, die aus Wafern einer Wafercharge gefertigt werden.
  • Der Ausdruck „integriert“ bedeutet im Sinne der Erfindung insbesondere „zu einer Einheit zusammengefasst“.
  • Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen. Dabei zeigen:
    • 1 einen prinzipiellen Aufbau eines Projektionsdisplays,
    • 2 ein Ausführungsbeispiel eines Mikroprojektors,
    • 3 ein weiteres Ausführungsbeispiel eines Mikroprojektors,
    • 4 ein weiteres Ausführungsbeispiel eines Mikroprojektors,
    • 5 einen prinzipiellen Aufbau eines abgewandelten Projektionsdisplays,
    • 6 ein Ausführungsbeispiel eines Projektionsdisplays gemäß der Abwandlung entsprechend 5,
    • 7 ein weiteres Ausführungsbeispiel eines Projektionsdisplays gemäß der Abwandlung entsprechend 5,
    • 8 ein weiteres Ausführungsbeispiel eines Projektionsdisplays gemäß der Abwandlung entsprechend 5,
    • 9 ein Ausführungsbeispiel einer Lichtschicht,
    • 10 ein weiteres Ausführungsbeispiel einer Lichtschicht, und
    • 11 ein Ausführungsbeispiel eines Verfahrens zum Herstellen eines Mikroprojektors bzw. eines Projektionsdisplays.
  • 1 zeigt einen prinzipiellen Aufbau eines Projektionsdisplays 100. Das Projektionsdisplay 100 umfasst einen Mikroprojektor 200 sowie eine Lichtquelle 300 zur Beleuchtung des Mikroprojektors 200. Der Mikroprojektor 200 umfasst ein Substrat 3 bzw. einen Träger, auf dem eine Beschichtungslage 2 angeordnet sein kann. Auf der Beschichtungslage 2 oder auf dem Substrat 3 direkt ist eine Projektionslinsenlage 1 angeordnet. Auf der der Projektionslage 1 abgewandten Seite des Substrats 3 ist eine Objektlage 4 mit abzubildenden Objektstrukturen angeordnet. Auf der Objektlage 4 ist optional eine Beschichtungslage 5 und auf dieser wiederum eine Feldlinsenlage 6. Die Feldlinsenlage 6 kann auch direkt auf der Objektlage 4 angeordnet sein.
  • 2 zeigt ein Ausführungsbeispiel eines Mikroprojektors. Dabei sind auf einem Substrat 3 Beschichtungsinseln 21, 22, 23, 24 angeordnet. Auf den Beschichtungsinseln 21, 22, 23, 24 wiederum sind Mikrolinsen 11, 12, 13, 14, insbesondere aus Hybrid-Polymer, angeordnet. Die Projektionslinsen 11, 12, 13, 14 sind Teil eines Projektionslinsenarrays. Auf der dem Projektionslinsenarray abgewandten Seite des Substrats sind Objektstrukturen 41, 42, 43, 44 angeordnet, die mittels des Projektionslinsenarrays bzw. mittels der Projektionslinsen 11, 12, 13, 14 abgebildet werden. So bildet die Projektionslinse 11 die Objektstruktur 41 ab, die Projektionslinse 12 bildet die Objektstruktur 42 ab, die Projektionslinse 13 bildet die Objektstruktur 43 ab und die Projektionslinse 14 bildet die Objektstruktur 44 ab. In diesem Sinne bilden die Projektionslinse 11 und die Objektstruktur 41 einen optischen Kanal, die Projektionslinse 12 und die Objektstruktur 42 einen optischen Kanal, die Projektionslinse 13 und die Objektstruktur 43 einen optischen Kanal und die Projektionslinse 14 und die Objektstruktur 44 einen optischen Kanal.
  • Auf den Objektstrukturen 41, 42, 43, 44 ist optional jeweils eine Zwischenschicht 51, 52, 53, 54 vorgesehen. Auf den optionalen Beschichtungsinseln 51, 52, 53, 54 ist ein Feldlinsenarray mit Feldlinsen 61, 62, 63, 64 angeordnet. Die Feldlinsen 61, 62, 63, 64 sind insbesondere aus Hybrid-Polymermaterial gefertigt. Mittels des Feldlinsenarrays wird eine Köhlersche Beleuchtungsoptik implementiert.
  • 3 zeigt ein weiteres Ausführungsbeispiel eines Mikroprojektors. Abweichend von dem Ausführungsbeispiel gemäß 2 ist dabei auf den Objektstrukturen 41, 42, 43, 44 eine Feldlinsenarrayschicht 6' angeordnet, die Feldlinsen 61', 62', 63', 64' aufweist bzw. in die Feldlinsen 61', 62', 63', 64' eingeprägt sind.
  • 4 zeigt ein weiteres alternatives Ausführungsbeispiel eines Mikroprojektors. Dabei ist in Abweichung von dem Mikroprojektor in 3 vorgesehen, dass die Projektionslinsen 11', 12', 13' und 14' direkt auf das Substrat 3 gedruckt werden, wobei jedoch vorgesehen ist, dass die Oberfläche des Substrats 3 unterhalb der Projektionslinsen 11', 12', 13' und 14' im Sinne einer geeigneten Benetzungsfähigkeit verändert bzw. erwärmt (vgl. Y. Sung et al., Journal of Biomedical Optics 20 (2015) (incorporated by reference in its entirety)) ist.
  • 5 zeigt einen prinzipiellen Aufbau eines Projektionsdisplays 100A. Das Projektionsdisplay 100A umfasst ein Substrat 3 bzw. einen Träger, auf dem eine Beschichtungslage 2 angeordnet sein kann. Auf der Beschichtungslage 2 oder auf dem Substrat 3 direkt ist eine Projektionslinsenlage 1 angeordnet. Auf der der Projektionslage 1 abgewandten Seite des Substrats 3 ist eine Objektlage 4 mit abzubildenden Objektstrukturen angeordnet. Auf der Objektlage 4 ist optional eine Beschichtungslage 5 und auf dieser wiederum eine Beleuchtungsschicht 300A angeordnet. Die Beleuchtungsschicht 300A kann auch direkt auf der Objektlage 4 angeordnet sein. Die Beleuchtungsschicht 300A dient der Beleuchtung der Objektlage 4 bzw. der Projektionslage 1. Gleiche Bezugszeichen wie in Bezug auf die anderen Figuren bezeichnen gleiche zumindest jedoch gleichartige Elemente.
  • 6 zeigt ein Ausführungsbeispiel eines Projektionsdisplays entsprechend dem Projektionsdisplay 300A. Dabei sind auf einem Substrat 3 Beschichtungsinseln 21, 22, 23, 24 angeordnet. Auf den Beschichtungsinseln 21, 22, 23, 24 wiederum sind Mikrolinsen 11, 12, 13, 14, insbesondere aus Hybrid-Polymer, angeordnet. Die Projektionslinsen 11, 12, 13, 14 sind Teil eines Projektionslinsenarrays. Auf der dem Projektionslinsenarray abgewandten Seite des Substrats sind Objektstrukturen 41, 42, 43, 44 angeordnet, die mittels des Projektionslinsenarrays bzw. mittels der Projektionslinsen 11, 12, 13, 14 abgebildet werden. So bildet die Projektionslinse 11 die Objektstruktur 41 ab, die Projektionslinse 12 bildet die Objektstruktur 42 ab, die Projektionslinse 13 bildet die Objektstruktur 43 ab und die Projektionslinse 14 bildet die Objektstruktur 44 ab. In diesem Sinne bilden die Projektionslinse 11 und die Objektstruktur 41 einen optischen Kanal, die Projektionslinse 12 und die Objektstruktur 42 einen optischen Kanal, die Projektionslinse 13 und die Objektstruktur 43 einen optischen Kanal und die Projektionslinse 14 und die Objektstruktur 44 einen optischen Kanal. Es kann vorgesehen sein, dass zwischen den Objektstrukturen 41, 42, 43 und 44 Zwischenelemente 812, 823, 834 vorgesehen sind, die beispielsweise opak sein können. Auf der Objektstruktur 41 ist eine gerichtete Flächenlichtquelle 301 wie sie beispielsweise in der WO 2008/121414 A1 offenbart ist, vorgesehen. Entsprechend sind auf den Objektstrukturen 42, 43 und 44 ebenfalls entsprechende Flächenlichtquellen 302, 303 und 304 angeordnet.
  • 7 zeigt ein weiteres Ausführungsbeispiel eines Projektionsdisplays entsprechend dem Projektionsdisplay 300A. Dabei sind entsprechend dem Ausführungsbeispiel gemäß 6 Mikrolinsen 11, 12, 13, 14 auf Beschichtungsinseln 21, 22, 23, 24 sowie ein Substrat 3 und die Objektstrukturen 41, 42, 43, 44 vorgesehen. Auf den Objektstrukturen ist (direkt oder indirekt) eine transparente Elektrodenschicht 3101 vorgesehen. Zudem ist eine reflektierende Elektrodenschicht 3103 vorgesehen. Zwischen der reflektierenden Elektrodenschicht 3103 und der transparenten Elektrodenschicht 3101 sind lichtemittierende Schichtabschnitte 3112, 3122, 3132 und 3142 vorgesehen. Die lichtemittierenden Schichtabschnitte 3112, 3122, 3132 und 3142 sind insbesondere als gerichtete Flächenstrahler insbesondere als gerichtete LEDs oder gerichtete OLEDs ausgestaltet. Sie können beispielshaft gemäß der Schicht 302 der WO 2008/121414 A1 ausgestaltet sein.
  • 8 zeigt eine Abwandlung des Projektionsdisplays gemäß 7, wobei anstelle der lichtemittierenden Schichtabschnitte 3112, 3122, 3132 und 3142 eine lichtemittierende Schicht 3102 vorgesehen ist. Es kann beispielsweise vorgesehen sein, dass die opaken Zwischenelemente 812, 823 und 834 in Richtung der transparenten Elektrode 3101 reflektierend bzw. spiegelnd ausgestaltet sind.
  • In Bezug auf die Ausführungsbeispiele der Projektionsdisplays gemäß 6, 7 und 8, kann auch vorgesehen sein, dass anstelle der Beschichtungsinseln 21, 22, 23, 24 mit den Mikrolinsen 11, 12, 13 und 14 Mikrolinsen 11', 12', 13', 14' entsprechend 4 verwendet werden bzw. verwendbar sind.
  • 9 und 10 zeigen Ausführungsbeispiele für die Ausgestaltung der emittierenSchichtabschnitte 3112, 3122, 3132 und 3142 bzw. der lichtimitierende Schicht 3102. Die Lichtschichten, d.h. die lichtemittierenden Schichtabschnitte 3112, 3122, 3132 und 3142 bzw. die lichtemittierende Schicht 3102, umfassen einen ersten Bereich 350, umfassend ein, beispielsweise organisches, emittierendes Material und einen zweiten Bereich 360, umfassend ein Niedrig-Index-Material, das einen Brechungsindex aufweist, der kleiner ist als der Brechungsindex des, beispielsweise organischen, emittierenden Materials, wobei das Niedrig-Index-Material einen Brechungsindex von 1.0 bis 3.0, insbesondere 1.0 bis 1.5, aufweist. Das Niedrig-Index-Material bildet ein Gitter, das in einer Ebene parallel zu der transparenten Elektrode und zu der reflektierenden Elektrode ausgerichtet ist. Zudem ist das Gitter mit einer Periodizität P ausgelegt, die größer als die Wellenlänge von Licht ist. In weiterhin vorteilhafter Ausgestaltung der Erfindung ist die Periodizität P nicht größer als das sechsfache der Breite der Gitterlinien, wie in 9 dargestellt. In vorteilhafter Ausgestaltung ist die Periodizität P nicht größer als das Vierfache der Breite der Gitterlinien wie in 10 dargestellt. Das Niedrig-Index-Material besteht aus oder umfasst Aerogel, Teflon, gradiertes/gestuftes Dünnschicht SiO2, gradierte/gestufte Dünnschicht TiO2 und/oder Lagen von SiO2 Nano-Stäbchen.
  • Zur Herstellung des Mikrolinsenprojektors bzw. eines Projektionsdisplays ist vorgesehen, dass die Projektionslinsen 11, 12, 13 und 14, wie in 11 beispielhaft dargestellt, auf den Träger 3 bzw. auf die Beschichtung 21, 22, 23, 24 gedruckt werden. Dazu wird mittels eines Druckkopfes 74 eine Mehrzahl von Tröpfchen 120 auf eine Stelle gedruckt, so dass sich die Tröpfchen 120 in flüssigem Zustand vereinen und eine Tropfenmasse 12' bilden, die durch weitere Zugabe von Tröpfchen zu einem Tropfen anwächst, der nach Aushärtung die entsprechende Projektionslinse, in diesem Fall die Projektionslinse 12, bildet. Dazu erhält der Drehkopf 74 von einem Druckertreiber 73 Informationen über die Anzahl ANZ der zu druckenden Tröpfchen 120 sowie eine Positionsangabe DPOS zur Angabe der Position, an der die Tröpfchen 120 platziert werden sollen. Es ist insbesondere vorgesehen, dass die Anzahl der Tröpfchen 120 abhängig von dem Ist-Wert der Dicke des Substrats 3 bzw. der Abweichung ΔS des ((direkt oder an Hand eines anderen Wafers derselben Charge) gemessenen) Ist-Wertes der Dicke des Substrats 3 von seinem Soll-Wert S* und/oder dem Ist-Wert des Durchmessers d der Beschichtungsinseln 21, 22, 23, 24 bzw. von dem Abweichung Δd des Durchmessers der Beschichtungsinseln 21, 22, 23, 24 von deren Soll-Wert d*. Es ist insbesondere vorgesehen, dass die Dicke des Substrats 3 auch die Dicke der jeweiligen Beschichtung 21, 22, 23, 24 mit umfasst.
  • Es ist insbesondere vorgesehen, dass mittels einer Sensoranordnung 71 die entsprechenden Ist-Werte bzw. Abweichungen Δd, ΔS gemessen, und einem Korrekturmodul 72 zugeführt werden, das ein korrigiertes Sollvolumen V*KORR an den Druckertreiber 73 ausgibt. Dazu weist das Korrekturmodul 72 eine entsprechende Kennlinie auf oder errechnet z.B. das korrigierte Sollvolumen V*KORR wie folgt: V K O R R ( Δ S , Δ d ) = h 2 π 3 ( 3 R-h )
    Figure DE102017004562A1_0006
    mit h = R- R 2 ( d + Δ d ) 2 4
    Figure DE102017004562A1_0007
    und R = ( S + Δ S + Δ f ) ( n S n ) n S
    Figure DE102017004562A1_0008
  • Dabei ist ΔP der Sollwert für eine Defokussierung der Objektstruktur, die der Projektionslinsen zugeordnet ist.
  • Bei den beschriebenen Herstellungsverfahren ist insbesondere vorgesehen, dass zunächst die Objektstrukturen auf den Träger 3 aufgebracht werden und anschließend die Beleuchtungsschicht. Danach werden die Projektionslinsen 11, 12, 13, 14 bzw. 11', 12', 13' und 14' gedruckt, wobei zuvor gegebenenfalls die Beschichtungsinseln 21, 22, 23 und 24 aufgebracht bzw. gedruckt werden.
  • Es ist insbesondere vorgesehen, dass mehrere Mikroprojektoren bzw. Projektionsdisplays auf einem Wafer gefertigt werden, der nach Fertigstellung der Mikroprojektoren bzw. Projektionsdisplays derart getrennt wird, dass die fertigen Mikroprojektoren bzw. Projektionsdisplays entstehen.
  • Die Elemente und Schichten in den Figuren sind unter Berücksichtigung von Einfachheit und Klarheit und nicht notwendigerweise maßstabsgetreu gezeichnet. So sind z.B. die Größenordnungen einiger Elemente bzw. Schichten deutlich übertrieben gegenüber anderen Elementen bzw. Schichten dargestellt, um das Verständnis der Ausführungsbeispiele der vorliegenden Erfindung zu verbessern.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102009024894 A1 [0001, 0002, 0004, 0006, 0007, 0008, 0009, 0010, 0011, 0017, 0025]
    • US 8777424 B2 [0001]
    • DE 102011076083 A1 [0001]
    • US 2008/0310160 A1 [0007]
    • WO 2008/121414 A1 [0016, 0035, 0036]
    • DE 102013021795 A1 [0019]
    • WO 9919900 [0019]
    • WO 99/19900 [0019]
    • US 2006/0158482 A1 [0019]
    • WO 2004/070438 A1 [0019]
    • US 5498444 [0020]
    • US 5707684 [0020]
  • Zitierte Nicht-Patentliteratur
    • Y. Sung et al., Journal of Biomedical Optics 20 (2015) (incorporated by reference in its entirety) entnommen werden [0019]

Claims (6)

  1. Verfahren zum Herstellen eines Projektionsdisplays, wobei Projektionsdisplay einen Träger umfasst, auf dem ein Projektionslinsenarray mit einer Mehrzahl von Projektionslinsen angeordnet ist, wobei auf einer dem Projektionslinsenarray abgewandten Seite des Trägers ein Objektstrukturenarray mit einer Mehrzahl von, insbesondere identischen, Objektstrukturen angeordnet ist, wobei einer Objektstruktur zumindest eine Projektionslinse derart zugeordnet ist, dass sich die Projektionen der Objektstrukturen durch die Projektionslinsen zu einem Gesamtbild überlagern, wobei insbesondere vorgesehen ist, dass der Abstand zwischen einer Projektionslinse und der zugeordneten Objektstruktur der Brennweite der jeweiligen Projektionslinse entspricht, wobei auf dem Objektstrukturenarray eine Beleuchtungsschicht zur Beleuchtung der Objektstrukturen bzw. Projektionslinse angeordnet wird oder ist, dadurch gekennzeichnet, dass die Projektionslinsen mittels einer transparenten Tinte, insbesondere aus einer Vielzahl von Tröpfchen, die sich im flüssigen Zustand zu einem Tropfen vereinen, der nach Aushärtung eine Projektionslinse bildet, gedruckt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die transparente Tinte ein Hybrid-Polymer, z.B. Ormocer, oder eine Lösung eines Hybrid-Polymers in einem (geeigneten) Lösungsmittel ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Anzahl der Tröpfchen für zwei benachbarte Projektionslinsen verschieden ist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl von Tröpfchen zum Drucken einer Projektionslinse in Abhängigkeit der Dicke des Trägers und/oder dessen Abweichung von einem Sollwert der Dicke des Trägers bestimmt wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anzahl von Tröpfchen zum Drucken einer Projektionslinse in Abhängigkeit des Durchmessers der Beschichtungsinsel, auf die die Projektionslinse gedruckt wird, und/oder dessen Abweichung von einem Sollwert des Durchmessers der Beschichtungsinsel, auf die die Projektionslinse gedruckt wird, bestimmt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke des Trägers gemessen wird.
DE102017004562.3A 2017-05-14 2017-05-14 Verfahren zum Herstellen eines Mikroprojektors und eines Projektionsdisplays Withdrawn DE102017004562A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102017004562.3A DE102017004562A1 (de) 2017-05-14 2017-05-14 Verfahren zum Herstellen eines Mikroprojektors und eines Projektionsdisplays
DE112018001926.8T DE112018001926A5 (de) 2017-05-14 2018-04-27 Projektionsdisplay
PCT/EP2018/060846 WO2018210549A1 (de) 2017-05-14 2018-04-27 Projektionsdisplay
US16/610,584 US11624972B2 (en) 2017-05-14 2018-04-27 Projection display
US18/130,079 US20230244130A1 (en) 2017-05-14 2023-04-03 Projection display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017004562.3A DE102017004562A1 (de) 2017-05-14 2017-05-14 Verfahren zum Herstellen eines Mikroprojektors und eines Projektionsdisplays

Publications (1)

Publication Number Publication Date
DE102017004562A1 true DE102017004562A1 (de) 2018-11-15

Family

ID=62492574

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102017004562.3A Withdrawn DE102017004562A1 (de) 2017-05-14 2017-05-14 Verfahren zum Herstellen eines Mikroprojektors und eines Projektionsdisplays
DE112018001926.8T Pending DE112018001926A5 (de) 2017-05-14 2018-04-27 Projektionsdisplay

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE112018001926.8T Pending DE112018001926A5 (de) 2017-05-14 2018-04-27 Projektionsdisplay

Country Status (3)

Country Link
US (2) US11624972B2 (de)
DE (2) DE102017004562A1 (de)
WO (1) WO2018210549A1 (de)

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498444A (en) 1994-02-28 1996-03-12 Microfab Technologies, Inc. Method for producing micro-optical components
CA2306384A1 (en) 1997-10-14 1999-04-22 Patterning Technologies Limited Method of forming an electronic device
US6909554B2 (en) 2000-12-27 2005-06-21 Finisar Corporation Wafer integration of micro-optics
KR101115291B1 (ko) 2003-04-25 2012-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액적 토출 장치, 패턴의 형성 방법, 및 반도체 장치의 제조 방법
US7532405B2 (en) * 2004-10-06 2009-05-12 Panasonic Corporation Micro lens, micro lens array, and method of manufacturing the same
US20080265757A1 (en) 2007-03-30 2008-10-30 Stephen Forrest Low Index Grids (LIG) To Increase Outcoupled Light From Top or Transparent OLED
US9508957B2 (en) * 2007-03-30 2016-11-29 The Regents Of The University Of Michigan OLED with improved light outcoupling
KR101363673B1 (ko) 2007-06-14 2014-02-17 엘지디스플레이 주식회사 백라이트 유닛 및 이를 구비한 액정표시장치
DE102009024894A1 (de) 2009-06-15 2010-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsdisplay und dessen Verwendung
JP5480567B2 (ja) * 2009-09-01 2014-04-23 パナソニック株式会社 有機発光素子
KR101084178B1 (ko) 2009-12-14 2011-11-17 한국과학기술원 유기 발광 소자, 이를 포함하는 조명 장치, 및 이를 포함하는 유기 발광 디스플레이 장치
FR2964254B1 (fr) 2010-08-30 2013-06-14 Saint Gobain Support de dispositif a diode electroluminescente organique, un tel dispositif a diode electroluminescente organique et son procede de fabrication
KR101890876B1 (ko) * 2011-03-23 2018-08-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치의 제작 방법
DE102011076083A1 (de) 2011-05-18 2012-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsdisplay und Verfahren zum Anzeigen eines Gesamtbildes für Projektionsfreiformflächen oder verkippte Projektionsflächen
US9818967B2 (en) * 2013-06-28 2017-11-14 Universal Display Corporation Barrier covered microlens films
DE102013021795A1 (de) 2013-12-23 2015-06-25 Docter Optics Se Scheinwerferlinsenarray für einen Kraftfahrzeugscheinwerfer
DE102015216985A1 (de) * 2015-09-04 2017-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsvorrichtung und Verfahren zur Projektion mit optischen Freiformflächen
JP2018006283A (ja) 2016-07-08 2018-01-11 株式会社小糸製作所 車両用灯具
DE102017003721A1 (de) 2017-03-01 2018-09-06 Docter Optics Se Verfahren zum Herstellen eines Mikroprojektors für ein Projektionsdisplay

Also Published As

Publication number Publication date
US11624972B2 (en) 2023-04-11
US20200159100A1 (en) 2020-05-21
US20230244130A1 (en) 2023-08-03
WO2018210549A1 (de) 2018-11-22
DE112018001926A5 (de) 2019-12-19

Similar Documents

Publication Publication Date Title
DE102020107072A1 (de) Projektionsdisplay
DE102017009563A1 (de) Verfahren zurn Herstellen eines Mikroprojektors für ein Projektionsdisplay
DE102009055080B4 (de) Verfahren und Vorrichtung zum Herstellen einer Struktur, Abformwerkzeug
AT518905B1 (de) Projektionseinrichtung für einen Kraftfahrzeugscheinwerfer und Verfahren zu seiner Herstellung
EP3833903B1 (de) Lichtmodul für einen kraftfahrzeugscheinwerfer aus einer vielzahl von mikro-optiksystemen
EP2210132A1 (de) Mikrolinsen-array mit integrierter beleuchtung
WO2017102443A1 (de) Verfahren zur herstellung eines mikrolinsenarrays
WO2011015384A1 (de) Sicherheitsanordnung
WO2018157964A1 (de) Verfahren zum herstellen eines mikroprojektors für ein projektionsdisplay
EP3529064A1 (de) Brillenglas und verfahren zu dessen herstellung
EP2338150A2 (de) Sicherheitsanordnung
EP3585599A1 (de) Verfahren zum herstellen eines optischen mikrolinsenarrays
DE102010030089A1 (de) Beleuchtungsoptik für die Mikro-Lithografie sowie Projektionsbelichtungsanlage mit einer derartigen Beleuchtungsoptik
AT505195B1 (de) Vorrichtung zum übertragen von in einer maske vorgesehenen strukturen auf ein substrat
DE102017004562A1 (de) Verfahren zum Herstellen eines Mikroprojektors und eines Projektionsdisplays
DE102019130994B4 (de) Verfahren zum Herstellen eines Mikroprojektors, eines Projektionsdisplays, eines Fahrassistenzsystems und eines Fahrzeugs
DE102005010506B4 (de) Optisches Element und Verfahren zu dessen Herstellung
DE102019107437A1 (de) Verfahren zum Herstellen eines Mikroprojektors für ein Projektionsdisplay
EP3517654B1 (de) Verfahren zur herstellung eines formeinsatzes mit (sub-)mikrostrukturen sowie werkstück mit (sub-)mikrostrukturen
DE102009019254A1 (de) Justagevorrichtung und Verfahren zur Herstellung eines optischen Bauteils
EP2462565B1 (de) Sicherheitsanordnung
DE102014015592A1 (de) Herstellung eines Lichtleitelements mit einer Auskoppelstruktur

Legal Events

Date Code Title Description
R118 Application deemed withdrawn due to claim for domestic priority