WO2017102443A1 - Verfahren zur herstellung eines mikrolinsenarrays - Google Patents

Verfahren zur herstellung eines mikrolinsenarrays Download PDF

Info

Publication number
WO2017102443A1
WO2017102443A1 PCT/EP2016/079907 EP2016079907W WO2017102443A1 WO 2017102443 A1 WO2017102443 A1 WO 2017102443A1 EP 2016079907 W EP2016079907 W EP 2016079907W WO 2017102443 A1 WO2017102443 A1 WO 2017102443A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection molding
base body
microlens
microlens array
mask
Prior art date
Application number
PCT/EP2016/079907
Other languages
English (en)
French (fr)
Inventor
Franziska Kley
Martin Mügge
Original Assignee
Hella Kgaa Hueck & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hella Kgaa Hueck & Co. filed Critical Hella Kgaa Hueck & Co.
Publication of WO2017102443A1 publication Critical patent/WO2017102443A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • B29D11/00298Producing lens arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/006Joining parts moulded in separate cavities
    • B29C45/0062Joined by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1642Making multilayered or multicoloured articles having a "sandwich" structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1671Making multilayered or multicoloured articles with an insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/082Construction of plunger or mould for making solid articles, e.g. lenses having profiled, patterned or microstructured surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • C03B19/025Other methods of shaping glass by casting molten glass, e.g. injection moulding by injection moulding, e.g. extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/40Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades
    • F21S41/43Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by screens, non-reflecting members, light-shielding members or fixed shades characterised by the shape thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • G02B3/0068Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between arranged in a single integral body or plate, e.g. laminates or hybrid structures with other optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1671Making multilayered or multicoloured articles with an insert
    • B29C2045/1673Making multilayered or multicoloured articles with an insert injecting the first layer, then feeding the insert, then injecting the second layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/41Profiled surfaces
    • C03B2215/414Arrays of products, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/71Injecting molten glass into the mould cavity
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/79Uniting product and product holder during pressing, e.g. lens and lens holder

Definitions

  • the invention relates to a method for producing a microlens array, comprising at least one light-transmissive base body with a planar extension, wherein the base body has a microlens structure on at least one base surface.
  • Microlens arrays have a plurality of small lens elements in a compact form, and the lens elements extend on a two-dimensional base surface in close alignment with one another.
  • Microlens arrays serve as optical elements in image processing and communication technology, for example in the case of beamers and pico beamers, or for head-up displays in vehicles or other display and projection applications.
  • the microlens arrays are irradiated by one or more light sources on a first light entrance side, and the radiated light travels through the areal extended microlens array and exits on an exit side, which faces the irradiation side of the microlens array.
  • the advantage for the exiting light is a very homogeneous light intensity over a defined area, and if masks are arranged under the respective microlenses, then the mask contour can be imaged accordingly.
  • the light entry side can be designed as a planar surface or already carry first optical means, for example a first microlens array.
  • DE 10 2010 030 138 A1 describes a microlens array with possible uses.
  • DE 10 2009 024 894 A1 describes a microlens array and its use, wherein the size of the entire microlens array of 0.5 mm to 10 mm is given, which also aims towards small space-optimized display and projection applications. It also describes how RGB representations or films can be imaged using LCD displays or OLED displays.
  • the disclosed microlens arrays are manufactured in very complex manufacturing processes.
  • DE 103 13 889 B3 shows a production method based on silicon wafers with introduced depressions and describes a glass flow method for forming the lenses. This process is technically complex and correspondingly expensive.
  • WO 2001/51220 A2 describes a production process in which a thixotropic coating is applied to a substrate, generally formed by a glass pane, which is subsequently shaped with an embossing stamp in the form of the desired microlens area and then cured by UV light. This process also represents an expensive, technically very complex process.
  • DE 602 00 225 T2 describes another production method which describes the microlenses by dropping a material into substrates provided with through-holes.
  • the described method in particular for the production of the microlenses of the microlens array, is a costly and complicated production process, so that there is the demand for a simpler, less complicated production of microlens arrays.
  • the object of the invention is the improvement of a method for producing a microlens array with a lower production cost.
  • the method for producing the microlens arrays should enable further features of the microlens arrays, in particular with regard to the microlens structure or further optical configurations of the translucent base body of the microlens array or with regard to a larger, areal and / or curved design of the microlens array.
  • the invention includes the technical teaching "that the at least one base body is produced with an injection molding tool in an injection molding process, so that the microlens structure is molded by a negative structure in the injection molding tool.
  • the microlens structure preferably comprises aspherical lenses or free-form lenses or pyramidal lenses or conical lenses or prismatic optics or a combination thereof.
  • Injection molding or injection molding methods are generally known as low cost manufacturing methods for a variety of products. More recent, very precise processes for the production of injection molding tools have created the prerequisites « to produce very dimensionally accurate components by injection molding. With the use according to the invention of the injection molding process for the production of microlens arrays, the disadvantage of a very complex, costly production process is overcome, and by a suitable process control for casting the microlens arrays in injection molds very precise, microscopic structures can be made with a corresponding surface quality. Elaborate embossing processes with thixotropic coatings on glass substrates can thus be dispensed with and the materials that can be used by injection molding are extremely diverse.
  • the advantage is advantageously additionally achieved that the microlens arrays can be equipped with further structural features which, in the simplest case, can be combined with a single injection molding step to produce the actual microlens array.
  • the injection molding process at least one holding formation is formed on the base body, which is produced in a common injection molding step in the same material as the base body.
  • the holding projections formed on the base body may be provided on the edge side, and for example distributed twice, three or four times on the circumference of the base body.
  • the holding formations can be designed in the form of tabs or domes, and the holding formations can be provided, for example, for hot-setting or for producing a circumferential welding geometry for ultrasonic welding or laser beam welding. Consequently, the use of an injection molding method results in advantageous possibilities for equipping the microlens array with additional features; in particular, the microlens array can be produced in one piece as it is.
  • the microlens array has a prism structure, which is also produced by injection molding.
  • the prism structure can also be produced on a base surface of the base body opposite the microlens structure by means of an impression of a negative structure in the injection molding tool.
  • the advantage lies in particular in the fact that the prism structure in its optical geometry can be carried out arbitrarily by the injection molding method used, and it is achieved by the applied prism structure on the opposite side of the microlens structure that, when the microlens array is illuminated, collimation optics are no longer necessary to achieve this To illuminate the microlens array with a collimated light.
  • the microlens array can be produced with a mask, wherein, in addition to the production of at least one main body of the microlens array and the mask is produced by injection molding.
  • the method has, for example, the following steps: Production of a base by injection molding; Injection of the mask to the base body with a further injection molding step.
  • the method comprises the steps of: producing a mask by injection molding; Injection of a base body to the mask in a further injection molding step.
  • the microlens array is produced with the base body and with the mask in the multicomponent injection molding process or in the in-mold process, so that at least one base body is molded onto the mask or so that the mask is molded onto the base body ,
  • the production of the first component and the injection of the second component can be carried out with particular advantage in a single injection molding tool, which is equipped for example with slides to create subsequent cavities.
  • the microlens array has a base body made of glass, so that the base body is produced in a glass injection molding process, so that the microlens structure is shaped by a negative structure in the glass injection molding tool.
  • low-melting glasses are known, which are particularly suitable for the inventive method.
  • the advantage is in particular a very high surface quality of the injection-molded glass product, which requires no reworking.
  • the method further comprises introducing the negative structure into the injection molding tool for molding the microlens structure and / or the prism structure and / or a Haiteanformung, wherein according to the invention, the negative structure in the injection molding tool by means of a high-speed diamond tool processing or by means of a laser-layer construction technique is produced.
  • the Possibility to create the microlens structure in the stereolithography process is the Possibility to create the microlens structure in the stereolithography process.
  • Known methods are the exact geometry in the nanometer or micrometer range. These so-called rapid prototyping methods are often also used for end products.
  • a galvano can then be molded, which is then used as a tool insert in an injection molding tool.
  • Alternative materials are, for example, plastics, such as PMMA, PC or the like, and it is also possible to use an optical silicone in order to produce the basic body of the microlens array by injection molding.
  • the invention further relates to a microlens array which is produced by the method according to the invention.
  • the microlens array can have two base bodies, between which a mask is arranged, wherein the connection between the base bodies and the mask is formed by means of a multi-component injection molding method or by means of an in-mold method.
  • the at least one base body to a glass or an optical silicone.
  • FIG. 1 shows a perspective view of a microlens array with a one-piece base body and with holding projections formed on it
  • FIG. 2 shows a microlens array with two basic bodies, between which a mask is arranged
  • FIG. 3 shows a microlens array with a base body which has a free contour deviating from a mathematical basic shape
  • FIG. 4 shows a perspective view of a basic body of a microlens array having a microlens structure which has a honeycomb shape
  • FIG. 5 shows a perspective view of a microlens array having a microlens structure, which has a strip-shaped microlens structure
  • FIG. 6 shows a perspective view of a base body of a microlens array with a prism structure applied on the front plane side of the base body
  • FIG. 7 shows a modified embodiment of a microlens array with two
  • Basic bodies and a mask present between the basic bodies, a first basic body having a microlens structure on a concave surface, and the further basic body having a microlens structure on a convex surface,
  • FIG. 8 shows a view of a microlens array with two basic bodies and with a mask arranged between the basic bodies, the basic bodies having concave surfaces on which the microlens structure is applied,
  • FIG. 1 shows an exemplary embodiment of a microlens array 1 with an approximately square base body, and the square base body has a planar extension, and microlens structures 11 are located on the side surfaces.
  • the microlenses of the microlens structure 11 are of square construction, and each microlens covers opposite microlens structures 1 is associated with a respective opposite microlens.
  • a beam path results for each pair of microlenses, and an illuminated surface having an essentially identical light intensity and a corresponding one results on the side opposite the light source for illuminating the microlens array 1 sharp boundary.
  • the exemplary embodiment shows a microlens array 1 with a base body 0, which is produced with an injection molding tool in an injection molding process, so that the microlens structure 11 is shaped by a negative structure in the injection molding tool.
  • the microlens array 1 holding projections 12 on the base body 10, which are made of the same material with the base body 10 in a common injection molding step.
  • the injection molding process according to the invention for the production of the basic body affords the advantages of further possible structural features on the base body 10, which are formed by way of example as holding structures 12, and which can also represent further formations, in order in particular to fulfill other functions.
  • FIG. 2 shows a further refinement of a microlens array 1 with two basic bodies 10, which are brought into contact with one another via two planar surfaces. Between the two basic bodies 10 is a mask 14, and on the outer side surfaces of the two basic body 10 microlens structures 11 are introduced.
  • the mask 10 can comprise microdias in a manner known per se, which, for example, contour the resulting light field when the microlens array 1 is illuminated.
  • the position of the micro-slide does not necessarily have to be centered, but rather depends on the optical design and is therefore variable.
  • FIG. 3 shows a further exemplary embodiment of a microlens array 1 with a microlens structure 11 introduced by way of example on a side surface of the base body 10, and the base body 10 has a free contour 15 which, for example, is not adapted to a basic mathematical form.
  • the exemplary embodiment shows that when the microlens array is produced by means of an injection molding process with an injection molding tool, free contours 15 are possible without the fabrication of the microlens arrays being bound to predetermined substrate formats, for example in a substrate application process.
  • curved or free curved surfaces can also be produced by means of the injection molding process
  • Surfaces can be used as carrier surfaces for a microlens array 1.
  • FIG. 4 shows a perspective view of an exemplary embodiment of a microlens array 1 with a base body 10, and microlens structures 11 having a honeycomb structure are introduced on the side surfaces of the flat base body 10.
  • FIG. 5 shows an exemplary embodiment of a microlens array 1 in a perspective view, in which the microlens structure is designed in the manner of a stripe optical system, and the microlenses form, for example, semicircular cylindrical lenses.
  • FIGS. 4 and 5 show the flexibility in the production of microlens arrays 1 by means of an injection-molding method, since the injection-molding tool can be produced with a corresponding processing of any shapes.
  • the microlenses of the microlens structure 11 do not have to have all the same geometric configurations over the planar extent of the main body 10, and microlenses, for example, can have a different spherical design in the edge region of the microlens structure 11 than in the central region.
  • the strip optics can also be designed so that the geometric shape of the cylindrical lenses changes over the height of the base body 10.
  • FIG. 6 shows a further exemplary embodiment of a microlens array 1 with a prism structure 13 on a first side and with a microlens structure 11 on a first side.
  • the prism structure 13 is located on a light irradiation side 16, and the prism structure 13 can replace a collimating optic between a light source and the microlens array 1.
  • This exemplary embodiment also shows the flexibility in the production of the microlens array 1, since the injection molding tool can be produced with a negative structure on which the prismatic structure 13 can be molded.
  • FIG. 7 shows a modified exemplary embodiment of the microlens array 1 from FIG. 2, and a first base body 10 has a microlens structure 11 on a side surface, the side surface being concave.
  • the opposite side surface has a convex shape on which the microlens structure 11 is applied.
  • FIG. 8 shows a further modified exemplary embodiment of the microlens array 1 according to FIG. 2, wherein both side surfaces of the main body 10 are concave, on which the microlens structures 11 are applied.
  • FIGS. 7 and 8 show that a high level of flexibility in the production of a microlens array 1 is given by means of an injection molding process.
  • the negative structures in the injection molds can be made with high speed cutting tools, which can produce very high surface finishes, and can produce very fine structures down to the micrometer level.
  • FIG. 9 shows a main body 10 and a mask 14, and the mask 14 with imaging contours 17 introduced into the mask 14 is applied to a planar surface of the main body 10, which is formed opposite to a surface with a microlens structure 11.
  • FIG. 10 shows the microlens array 1 with a single basic body 10 and the mask 14 applied to a planar surface with the imaging contour 17, and opposite to the arrangement of the mask 14, the basic body 10 has the Microlens structure 11 on.
  • the microlens array 1 When the microlens array 1 is inserted, it is irradiated from the side of the mask 14, and the radiated light passes through the mask 14 through the openings of the imaging contours 17.
  • the exemplary hexagonal imaging contours 17 shown are associated with respective microlenses of the microlens structure 11 and the image, which can be achieved with the microlens array 1, also has the hexagonal shape of the imaging contour 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Mikrolinsenarrays (1), aufweisend wenigstens einen lichtdurchlässigen Grundkörper (10) mit einer flächigen Erstreckung, wobei der Grundkörper (10) auf wenigstens einer Grundfläche eine Mikrolinsenstruktur (11) aufweist. Erfindungsgemäß ist der wenigstens eine Grundkörper (10) mit einem Spritzgusswerkzeug in einem Spritzgussverfahren hergestellt, sodass die Mikrolinsenstruktur (11) von einer Negativstruktur im Spritzgusswerkzeug abgeformt wird. Weiterhin betrifft die Erfindung ein mit diesem Verfahren hergestelltes Mikrolinsenarray (1).

Description

Verfahren zur Herstellung eines Mikrolinsenarrays
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung eines Mikrolinsenarrays, aufweisend wenigstens einen lichtdurchlässigen Grundkörper mit einer flächigen Erstre- ckung, wobei der Grundkörper auf wenigstens einer Grundfläche eine Mikrolinsen- struktur aufweist.
Verfahren zur Herstellung von Mikrolinsenarrays sind aufgrund der sehr feinen Konturen mit hohen Genauigkeitsanforderungen aufwändig in der Herstellung. Mikrolinsenarrays weisen eine Vielzahl kleiner Linsenelemente in kompakter Form auf, und die Linsenelemente erstrecken sich auf einer zweidimensionalen Basisfläche in dichter Anordnung zueinander. Mikrolinsenarrays dienen als optische Elemente in der Bildverarbeitung und Kommunikationstechnik, zum Beispiel bei Beamern und Pico- Beamern oder für Head-Up-Displays in Fahrzeugen oder andere Display- und Projektionsanwendungen.
Die Mikrolinsenarrays werden von einer oder mehreren Lichtquellen auf einer ersten Lichteintrittsseite bestrahlt, und das aufgestrahlte Licht durchwandert das flächig erstreckte Mikrolinsenarray und tritt auf einer Austrittsseite wieder aus, die der Einstrahlseite des Mikrolinsenarrays gegenüberliegt. Der Vorteil für das austretende Licht ist eine sehr homogene Lichtintensität über einer definierten Fläche, und werden Masken unter die jeweiligen Mikrolinsen angeordnet, so kann die Maskenkontur entsprechend abgebildet werden. Die Lichteintrittsseite kann als eine Planfläche ausgeführt sein oder bereits erste optische Mittel tragen, beispielsweise ein erstes Mikrolinsenarray.
Beispielsweise beschreibt die DE 10 2010 030 138 A1 ein Mikrolinsenarray mit möglichen Verwendungen. Die DE 10 2009 024 894 A1 beschreibt ein Mikrolinsenarray und dessen Verwendung, wobei die Baugröße des gesamten Mikrolinsenarrays von 0,5 mm bis 10 mm angegeben wird, was ebenfalls in Richtung kleiner, bauraumoptimierter Display- und Projektionsanwendungen zielt. Weiterhin ist beschrieben, wie RGB-Darstellungen oder Filme mit Hilfe von LCD-Displays oder OLED-Displays damit abgebildet werden können. Die offenbarten Mikrolinsenarrays werden in sehr aufwändigen Herstellungsprozessen gefertigt. Beispielsweise zeigt die DE 103 13 889 B3 ein Herstellungsverfahren auf Basis von Siliziumwafern mit eingebrachten Vertiefungen und es wird ein Glasfließverfahren zur Bildung der Linsen beschrieben. Dieses Verfahren ist technisch aufwändig und entsprechend kostspielig.
Die WO 2001/51220 A2 beschreibt einen Herstellungsprozess, bei dem auf ein Substrat, in der Regel gebildet durch eine Glasscheibe, eine thixotrope Beschichtung aufgebracht wird, die anschließend mit einem Prägestempel in Form der gewünschten Mikrolinsenfläche geformt und dann durch UV-Licht ausgehärtet wird. Auch dieses Verfahren stellt einen teuren, technisch sehr aufwändigen Prozess dar.
In der DE 602 00 225 T2 ist ein weiteres Herstellungsverfahren beschrieben, das die Mikrolinsen durch ein Eintröpfeln eines Materials in mit Durchgangslöchern versehene Substrate beschreibt.
Den beschriebenen Verfahren insbesondere zur Herstellung der Mikrolinsen des Mikrolinsenarrays gemeinsam ist ein kostspieliger und aufwändiger Herstellungsprozess, so dass sich die Forderung nach einer einfacheren, weniger aufwändigen Herstellung von Mikrolinsenarrays ergibt.
OFFENBARUNG DER ERFINDUNG
Aufgabe der Erfindung ist die Verbesserung eines Verfahrens zur Herstellung eines Mikrolinsenarrays mit einem geringeren Herstellungsaufwand. Überdies soll das Verfahren zur Herstellung der Mikrolinsenarrays weitere Merkmale der Mikrolinsenarrays ermöglichen, insbesondere hinsichtlich der Mikrolinsenstruktur oder weiterer optischer Ausgestaltungen des lichtdurchlässigen Grundkörpers des Mikrolinsenarrays oder hinsichtlich einer größeren, flächigen und/oder gekrümmten Ausführung des Mikrolin- senarrays.
Diese Aufgabe wird ausgehend von einem Verfahren gemäß dem Oberbegriff des Anspruches 1 und ausgehend von einem Mikrolinsenarray gemäß Anspruch 8 mit den jeweils kennzeichnenden Merkmalen gelöst Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Die Erfindung schlieit die technische Lehre ein» dass der wenigstens eine Grundkörper mit einem Spritzgusswerkzeug in einem Spritzgussverfahren hergestellt wird, so dass die Mikrolinsenstruktur von einer Negativstruktur im Spritzgusswerkzeug abgeformt wird. Die Mikrolinsenstruktur weist vorzugsweise asphärische Linsen oder Freiformlinsen oder pyramidalen Linsen oder Kegellinsen oder prismatischen Optiken o- der einer Kombination davon auf.
Spritzgussverfahren oder Spritzgießverfahren sind im Allgemeinen als preiswerte Herstellungsverfahren für eine Vielzahl von Erzeugnissen bekannt. Durch neuere sehr genaue Verfahren zur Herstellung der Spritzgusswerkzeuge wurden die Voraussetzungen geschaffen« sehr maßgenaue Bauteile im Spritzgussverfahren herzustellen. Mit der erfindungsgemäßen Anwendung des Spritzgussverfahrens zur Herstellung von Mikrolinsenarrays wird der Nachteil eines sehr aufwändigen, kostspieligen Herstellungsverfahrens überwunden, und durch eine geeignete Prozessführung zum Abguss der Mikrolinsenarrays in Spritzgusswerkzeugen können sehr genaue, mikroskopische Strukturen mit einer entsprechenden Oberflächenqualität hergesteilt werden. Aufwändige Prägeverfahren mit thixotropen Beschichtungen auf Glassubstraten können damit entfallen, und die im Spritzgussverfahren verwendbaren Werkstoffe sind äußerst vielfältig.
Durch ein Herstellungsverfahren der Mikrolinsenarrays im Spritzgussverfahren wird vorteilhafterweise zusätzlich der Vorteil erreicht, dass die Mikrolinsenarrays mit weiteren Strukturmerkmalen ausgestattet werden können, die im einfachsten Fall mit einem einzigen Spritzgussschritt zur Herstellung des eigentlichen Mikrolinsenarrays mit her- gesteilt werden können. Beispielsweise wird im Spritzgussverfahren wenigstens eine Halteanformung am Grundkörper ausgebildet, die in einem gemeinsamen Spritzgussschritt materialeinheitlich mit dem Grundkörper hergestellt wird. Die am Grundkörper ausgebildeten Halteanformungen können randseitig vorgesehen sein, und beispielsweise zwei-, drei- oder vierfach auf dem Umfang des Grundkörpers verteilt angeordnet werden. Die Halteanformungen können laschenartig oder domartig ausgeführt sein, und die Halteanformungen können beispielsweise zum Warmverbügeln oder zur Herstellung einer umlaufenden Schweißgeometrie zum Ultraschallschweißen oder Laserstrahlschweißen vorgesehen werden. Durch die Verwendung eines Spritzgussverfahrens ergeben sich folglich vorteilhafte Möglichkeiten, das Mikrolinsenarray mit zusätzlichen Merkmalen auszustatten, insbesondere kann dabei das Mikrolinsenarray unverändert einteilig hergestellt werden.
Nach einer vorteilhaften Weiterbildung des Verfahrens ist vorgesehen, dass das Mikrolinsenarray eine Prismenstruktur aufweist, die ebenfalls im Spritzgussverfahren hergestellt wird. Die Prismenstruktur kann dabei auf einer der Mikrolinsenstruktur gegenüberliegenden Grundfläche des Grundkörpers ebenfalls durch eine Abformung von einer Negativstruktur im Spritzgusswerkzeug hergestellt werden. Der Vorteil liegt insbesondere darin, dass durch das verwendete Spritzgussverfahren die Prismenstruktur in ihrer optischen Geometrie beliebig ausgeführt werden kann, und durch die applizierte Prismenstruktur auf der gegenüberliegenden Seite der Mikrolinsenstruktur wird erreicht, dass bei einer Beleuchtung des Mikrolinsenarrays keine Kollimationsoptik mehr notwendig ist, um das Mikrolinsenarray mit einem kollimierten Licht zu beleuchten. Selbstverständlich besteht auch die Möglichkeit, einen Grundkörper im Spritzgussverfahren herzustellen, der auf beiden sich gegenüberliegenden Planflächen eine Mikrolinsenstruktur aufweist. Ein Vorteil wird insbesondere bezüglich einer sich über der flächigen Erstreckung des Grundkörpers ändernden jeweiligen Struktur der Mikrolin- sen erreicht, da diese nicht grundsätzlich zueinander geometrisch gleich ausgebildet sein müssen. Insbesondere ist auch hinsichtlich der Mikrolinsenstruktur dieser Vorteil umsetzbar, da die Prismenstruktur abhängig von der Position der Prismen auf dem Grundkörper unterschiedlich ausgestaltet ist. Gemäß einer noch weiteren Ausgestaltung des Verfahrens kann das Mikrolinsenarray mit einer Maske hergestellt werden, wobei neben der Herstellung wenigstens eines Grundkörpers des Mikrolinsenarrays auch die Maske im Spritzgussverfahren hergestellt wird. Das Verfahren weist dabei beispielsweise folgende Schritte auf: Herstellung eines Grundkörpers im Spritzgussverfahren; Anspritzen der Maske an den Grundkörper mit einem weiteren Spritzgussschritt. Alternativ weist das Verfahren die Schritte auf: Herstellen einer Maske im Spritzgussverfahren; Anspritzen eines Grundkörpers an die Maske in einem weiteren Spritzgussschritt.
Insbesondere ist mit noch weiterem Vorteil vorgesehen, dass das Mikrolinsenarray mit dem Grundkörper und mit der Maske im Mehrkomponentenspritzgussverfahren oder im In-Mould-Verfahren hergestellt wird, so dass wenigstens ein Grundkörper an die Maske angespritzt wird oder so dass die Maske an den Grundkörper angespritzt wird. Das Herstellen der ersten Komponente und das Anspritzen der zweiten Komponente kann dabei mit besonderem Vorteil in einem einzigen Spritzgusswerkzeug erfolgen, das beispielsweise mit Schiebern zur Schaffung nachfolgender Kavitäten ausgestattet ist.
Beispielsweise weist das Mikrolinsenarray einen Grundkörper aus Glas auf, so dass der Grundkörper in einem Glas-Spritzgussverfahren hergestellt wird, so dass die Mik- rolinsenstruktur von einer Negativstruktur im Glas-Spritzgusswerkzeug abgeformt wird. Insbesondere sind niedrigschmelzende Gläser bekannt, die sich auf besondere Weise für das erfindungsgemäße Verfahren eignen. Der Vorteil ist insbesondere eine sehr hohe Oberflächenqualität des spritzgegossenen Glas-Erzeugnisses, die keine Nacharbeit erfordert.
Das Verfahren umfasst weiterhin das Einbringen der Negativstruktur in das Spritzgusswerkzeug zur Abformung der Mikrolinsenstruktur und/oder der Prismenstruktur und/oder einer Haiteanformung, wobei erfindungsgemäß die Negativstruktur im Spritzgusswerkzeug mittels einer Hochgeschwindigkeits-Diamantwerkzeug- bearbeitung oder mittels einer Laser-Schicht-Aufbautechnik hergestellt wird. Als weitere Einbringungsmethode der Negativstruktur in das Spritzgusswerkzeug besteht die Möglichkeit, die Mikrolinsenstruktur im Stereolithographieverfahren zu erstellen. Bekannt sind dabei Verfahren zum exakten Geometrieaufbau im Nanometerbereich oder Mikrometerbereich. Diese sogenannten Rapid-Prototyping-Verfahren kommen oft auch für Endprodukte zur Anwendung. Von dem derart hergestellten Mikrolinsenarray kann dann ein Galvano abgeformt werden, der dann als Werkzeugeinsatz in ein Spritzgusswerkzeug eingesetzt wird. Alternative Werkstoffe sind beispielsweise Kunststoffe, wie PMMA, PC oder dergleichen, auch ist es möglich, ein optisches Silikon zu verwenden, um den Grundkörper des Mikrolinsenarrays im Spritzgussverfahren herzustellen.
Die Erfindung richtet sich weiterhin auf ein Mikrolinsenarray, das durch das erfindungsgemäße Verfahren hergestellt wird. Insbesondere kann das Mikrolinsenarray zwei Grundkörper aufweisen, zwischen denen eine Maske angeordnet ist, wobei die Verbindung zwischen den Grundkörpern und der Maske mittels eines Mehrkomponen- tenspritzgussverfahrens oder mittels eines In-Mould-Verfahrens gebildet wird. Mit besonderem Vorteil weist der wenigstens eine Grundkörper ein Glas oder ein optisches Silikon auf. Bei der Verwendung von zwei Grundkörpern können beide aus demselben Material mit identischer Brechzahl ausgebildet werden oder es ist vorgesehen, dass beide Grundkörper aus unterschiedlichem Material mit unterschiedlicher Brechzahl gefertigt sind.
BEVORZUGTES AUSFÜHRUNGSBEISPIEL DER ERFINDUNG
Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt:
Figur 1 eine perspektivische Ansicht eines Mikrolinsenarrays mit einem einteiligen Grundkörper und mit an diesem angeformten Halteanformungen,
Figur 2 ein Mikrolinsenarray mit zwei Grundkörpern, zwischen denen eine Maske angeordnet ist, Figur 3 ein Mikrolinsenarray mit einem Grundkörper, der eine freie, von einer mathematischen Grundform abweichende Kontur aufweist,
Figur 4 eine perspektivische Ansicht eines Grundkörpers eines Mikrolinsenar- rays mit einer Mikrolinsenstruktur, die eine Wabenform aufweist,
Figur 5 eine perspektivische Ansicht eines Mikrolinsenarrays mit einer Mikrolinsenstruktur, die eine streifenförmige Mikrolinsenstruktur aufweist,
Figur 6 eine perspektivische Ansicht eines Grundkörpers eines Mikrolinsenarrays mit auf der vorderen Planseite des Grundkörpers aufgebrachten Prismenstruktur,
Figur 7 eine abgewandelte Ausführungsform eines Mikrolinsenarrays mit zwei
Grundkörpern und einer zwischen den Grundkörpern vorhandenen Maske, wobei ein erster Grundkörper eine Mikrolinsenstruktur auf einer konkaven Oberfläche aufweist, und der weitere Grundkörper weist eine Mikrolinsenstruktur auf einer konvexen Oberfläche auf,
Figur 8 eine Ansicht eines Mikrolinsenarrays mit zwei Grundkörpern und mit einer zwischen den Grundkörpern angeordneten Maske, wobei die Grundkörper konkave Flächen aufweisen, auf denen die Mikrolinsenstruktur aufgebracht ist,
Figur 9 die Ansicht eines Grundkörpers mit einer Maske vor dem Zusammenfügen des Grundkörpers mit der Maske und
Figur 10 eine Ansicht eines Mikrolinsenarrays mit einem Grundkörper und der
Maske auf einer ersten Seite des Grundkörpers, die einer zweiten Seite des Grundkörpers mit einer eingebrachten Mikrolinsenstruktur gegenüberliegend ausgebildet ist. Figur 1 zeigt ein Ausführungsbeispiel eines Mikrolinsenarrays 1 mit einem etwa quadratischen Grundkörper, und der quadratische Grundkörper besitzt eine flächige Er- streckung, und auf den Seitenflächen befinden sich Mikrolinsenstrukturen 11. Die Mik- rolinsen der Mikrolinsenstruktur 11 sind quadratisch ausgeführt, und jeder Mikrolinse der sich gegenüberliegenden Mikrolinsenstrukturen 1 ist eine jeweils gegenüberliegende Mikrolinse zugeordnet. Wird Licht von einer ersten Seite in den Grundkörper 10 des Mikrolinsenarrays 1 eingestrahlt, so ergibt sich für jedes Mikrolinsenpaar ein Strahlengang, und auf der der Lichtquelle zur Beleuchtung des Mikrolinsenarrays 1 gegenüberliegenden Seite ergibt sich eine beleuchtete Fläche mit einer im wesentlichen gleichen Lichtintensität und einer entsprechend scharfen Berandung.
Das Ausführungsbeispiel zeigt ein Mikrolinsenarray 1 mit einem Grundkörper 0, der mit einem Spritzgusswerkzeug in einem Spritzgussverfahren hergestellt wird, so dass die Mikrolinsenstruktur 11 von einer Negativstruktur im Spritzgusswerkzeug abgeformt wird. Zusätzlich weist das Mikrolinsenarray 1 Halteanformungen 12 am Grundkörper 10 auf, die in einem gemeinsamen Spritzgussschritt materialeinheitlich mit dem Grundkörper 10 hergestellt sind. Durch das erfindungsgemäße Spritzgussverfahren zur Herstellung des Grundkörpers ergeben sich die Vorteile weiterer möglicher Strukturmerkmale am Grundkörper 10, die beispielhaft als Haltanfomungen 12 ausgebildet sind, und die auch weitere Anformungen darstellen können, um insbesondere auch andere Funktionen zu erfüllen.
Figur 2 zeigt eine weiterführende Ausgestaltung eines Mikrolinsenarrays 1 mit zwei Grundkörpern 10, die über zwei Planflächen gegeneinander zur Anlage gebracht sind. Zwischen den beiden Grundkörpern 10 befindet sich eine Maske 14, und auf den äußeren Seitenflächen der beiden Grundkörper 10 sind Mikrolinsenstrukturen 11 eingebracht. Die Maske 10 kann in an sich bekannter Weise Mikrodias umfassen, die bei einer Durchleuchtung des Mikrolinsenarrays 1 beispielsweise das entstehende Lichtfeld konturieren. Die Lage des Mikrodias muss nicht zwingend mittig sein, diese ist vielmehr von der optischen Ausführung abhängig und somit variabel. Figur 3 zeigt ein weiteres Ausführungsbeispiel eines Mikrolinsenarrays 1 mit beispielhaft auf einer Seitenfläche des Grundkörpers 10 eingebrachter Mikrolinsenstruktur 11 , und der Grundkörper 10 besitzt eine freie Kontur 15, die beispielsweise nicht an eine mathematische Grundform angepasst ist. Das Ausführungsbeispiel zeigt, dass bei einer Herstellung des Mikrolinsenarrays mittels eines Spritzgussverfahrens mit einem Spritzgusswerkzeug freie Konturen 15 möglich sind, ohne dass beispielsweise bei einem Substrat-Auftragsverfahren die Herstellung der Mikrolinsenarrays an vorgegebene Substratformate gebunden ist, insbesondere können mittels des Spritzgussverfahrens auch gebogene oder frei gekrümmte Flächen als Trägerflächen für ein Mikro- linsenarray 1 genutzt werden.
Figur 4 stellt in einer perspektivischen Ansicht ein Ausführungsbeispiel eines Mikrolinsenarrays 1 mit einem Grundkörper 10 dar, und auf den Seitenflächen des flächig ausgebildeten Grundkörpers 10 sind Mikrolinsenstrukturen 11 eingebracht, die eine Wabenstruktur aufweisen.
Figur 5 zeigt ein Ausführungsbeispiel eines Mikrolinsenarrays 1 in einer perspektivischen Ansicht, in der die Mikrolinsenstruktur nach Art einer Streifenoptik ausgebildet ist, und die Mikrolinsen bilden beispielsweise halbkreisförmige Zylinderlinsen.
Die Ausführungsbeispiele in den Figuren 4 und 5 zeigen die Flexibilität bei der Herstellung von Mikrolinsenarrays 1 mittels eines Spritzgussverfahrens, da das Spritzgusswerkzeug mit einer entsprechenden Bearbeitung mit beliebigen Formen herstellbar ist. Beispielsweise müssen die Mikrolinsen der Mikrolinsenstruktur 11 über der flächigen Erstreckung des Grundkörpers 10 nicht alle zueinander gleiche geometrische Ausgestaltungen aufweisen, und beispielsweise können Mikrolinsen im Randbereich der Mikrolinsenstruktur 11 eine andere sphärische Ausgestaltung aufweisen als im Mittenbereich. Auch die Streifenoptik kann so ausgestaltet sein, dass sich die geometrische Gestalt der Zylinderlinsen über der Höhe des Grundkörpers 10 ändert.
Figur 6 zeigt ein weiteres Ausführungsbeispiel eines Mikrolinsenarrays 1 mit einer Prismenstruktur 13 auf einer ersten Seite und mit einer Mikrolinsenstruktur 11 auf ei- ner gegenüberliegenden Seite des Grundkörpers 10. Die Prismenstruktur 13 befindet sich auf einer Lichteinstrahlseite 16, und die Prismenstruktur 13 kann eine Kollimati- onsoptik zwischen einer Lichtquelle und dem Mikrolinsenarray 1 ersetzen. Auch dieses Ausführungsbeispiel zeigt die Flexibilität bei der Herstellung des Mikrolinsenarrays 1 , da das Werkzeug zum Spritzguss mit einer Negativstruktur hergestellt werden kann, an der die Prismenstruktur 13 abgeformt werden kann.
Figur 7 zeigt ein abgewandeltes Ausführungsbeispiel des Mikrolinsenarrays 1 aus Figur 2, und ein erster Grundkörper 10 weist auf einer Seitenfläche eine Mikrolinsen- struktur 11 auf, wobei die Seitenfläche konkav ausgebildet ist. Die gegenüberliegende Seitenfläche weist eine konvexe Form auf, auf der die Mikrolinsenstruktur 11 aufgebracht ist.
Figur 8 zeigt ein weiteres abgewandeltes Ausführungsbeispiel des Mikrolinsenarrays 1 gemäß Figur 2, wobei beide Seitenflächen der Grundkörper 10 konkav ausgebildet sind, auf denen die Mikrolinsenstrukturen 11 aufgebracht sind.
Die weiteren Ausführungsbeispiele der Figuren 7 und 8 zeigen, dass eine hohe Flexibilität bei der Herstellung eines Mikrolinsenarrays 1 mittels eines Spritzgussverfahrens gegeben ist. Die Negativstrukturen in den Spritzgusswerkzeugen können mit Hoch- geschwindigkeits-Zerspanungswerkzeugen hergestellt werden, wodurch sehr hohe Oberflächengüten erzeugt werden können, und wobei sehr feine Strukturen bis in den unteren Mikrometerbereich erzeugt werden können.
Figur 9 zeigt einen Grundkörper 10 und eine Maske 14, und die Maske 14 mit in die Maske 14 eingebrachten Abbildungskonturen 17 wird auf eine Planfläche des Grundkörpers 10 aufgebracht, die einer Fläche mit einer Mikrolinsenstruktur 11 gegenüberliegend ausgebildet ist.
Figur 10 zeigt schließlich das Mikrolinsenarray 1 mit einem einzigen Grundkörper 10 und der auf eine Planfläche aufgebrachten Maske 14 mit der Abbildungskontur 17, und gegenüberliegend zur Anordnung der Maske 14 weist der Grundkörper 10 die Mikrolinsenstruktur 11 auf. Wird das Mikrolinsenarray 1 eingesetzt, so wird dieses von der Seite der Maske 14 bestrahlt, und das aufgestrahlte Licht durchtritt die Maske 14 durch die Öffnungen der Abbildungskonturen 17. Die gezeigten beispielhaft sechseckigen Abbildungskonturen 17 sind jeweiligen Mikrolinsen der Mikrolinsenstruktur 11 zugeordnet, und die Abbildung, die mit dem Mikrolinsenarray 1 erreicht werden kann, weist ebenfalls die Sechseckform der Abbildungskontur 17 auf.
Die Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht. Sämtliche aus den Ansprüchen, der Beschreibung oder den Zeichnungen hervorgehenden Merkmale und/oder Vorteile, einschließlich konstruktiver Einzelheiten, räumlicher Anordnungen und Verfahrensschritte, können sowohl für sich als auch in den verschiedensten Kombinationen erfindungswesentlich sein.
Bezugszeichenliste
I Mikrolinsenarray
10 Grundkörper
I I Mikrolinsenstruktur
12 Halteanformung
13 Prismenstruktur
14 Maske
15 freie Kontur
16 Lichteinstrahlseite
17 Abbildungskontur

Claims

Patentansprüche
1. Verfahren zur Herstellung eines Mikrolinsenarrays (1), aulweisend wenigstens einen lichtdurchlässigen Grundkörper (10) mit einer flächigen Erstre- ckung, wobei der Grundkörper (10) auf wenigstens einer Grundfläche eine Mikrolinsenstruktur (11) aufweist,
dadurch gekennzeichnet, dass der wenigstens eine Grundkörper (10) mit einem Spritzgusswerkzeug in einem Spritzgussverfahren hergestellt wird, sodass die Mikrolinsenstruktur (11) von einer Negativstruktur im Spritzgusswerkzeug abgeformt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass im Spritzgussverfahren wenigstens eine Halteanformung (12) am Grundkörper (10) ausgebildet wird, die in einem gemeinsamen Spritzgussschritt materialeinheitlich mit dem Grundkörper (10) hergesteilt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das
Mikroiinsenarray (1 ) eine Prismenstruktur (13) aufweist, die im Spritzgussverfahren auf einer der Mikrolinsenstruktur (11) gegenüberliegenden Grundfläche des Grundkörpers (10) durch eine Abformung von einer Negativstruktur im Spritzgusswerkzeug hergesteilt wird,
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Mikroiinsenarray (1) eine Maske (14) aufweist, die im Spritzgussverfahren hergesteilt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Mikroiinsenarray (1) mit dem Grundkörper (10) und mit der Maske (14) im Mehrkom- ponentenspritzgussverfahren oder im In-Mould-Verfahren hergestellt wird, sodass wenigstens ein Grundkörper (10) an die Maske (14) angespritzt wird oder sodass die Maske (14) an den Grundkörper (10) angespritzt wird.
6. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass das Mikrolinsenarray (1) einen Grundkörper (10) aus Glas aufweist, wobei der Grundkörper (10) in einem Glas- Spritzgussverfahren hergestellt wird, sodass die Mikrolinsenstruktur (11) von einer Negativstruktur im Glas- Spritzgusswerkzeug abgeformt wird.
7. Verfahren nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Negativstruktur zur Abformung der Mikrolinsenstruktur (11) und/oder der Prismenstruktur (13) in das Spritzgusswerkzeug mittels einer Hochgeschwind igkeits- Diamantwerkzeugbearbeitung oder mittels einer Laser-Schicht-Aufbautechnik oder durch eine Stereolithographie eingebracht wird.
8. Mikrolinsenarray (1), hergestellt mit einem Verfahren nach einem der vorgenannten Ansprüche.
9. Mikrolinsenarray (1) nach Anspruch 8, dadurch gekennzeichnet, dass zwei
Grundkörper (10) vorgesehen sind, zwischen denen eine Maske (14) angeordnet ist, wobei die Verbindung zwischen den Grundkörpern (10) und der Maske (14) mittels eines Mehrkomponentenspritzgussverfahrens oder einem In-Mould-Verfahren gebildet ist.
10. Mikrolinsenarray ( ) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der wenigstens eine Grundkörper (10) ein Glas, ein optisches Silikon oder ein Kunststoffmaterial aufweist.
PCT/EP2016/079907 2015-12-14 2016-12-06 Verfahren zur herstellung eines mikrolinsenarrays WO2017102443A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015121691.4A DE102015121691A1 (de) 2015-12-14 2015-12-14 Verfahren zur Herstellung eines Mikrolinsenarrays
DE102015121691.4 2015-12-14

Publications (1)

Publication Number Publication Date
WO2017102443A1 true WO2017102443A1 (de) 2017-06-22

Family

ID=57570237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/079907 WO2017102443A1 (de) 2015-12-14 2016-12-06 Verfahren zur herstellung eines mikrolinsenarrays

Country Status (2)

Country Link
DE (1) DE102015121691A1 (de)
WO (1) WO2017102443A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193064A (zh) * 2017-07-28 2017-09-22 邓杨 双面复眼透镜成像晶片及其制备工艺
DE102018116340A1 (de) 2018-07-05 2020-01-09 Webasto SE Fahrzeugdachsystem mit Lichtquelle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113554A1 (de) * 2017-06-20 2018-12-20 HELLA GmbH & Co. KGaA Verfahren zur Herstellung eines Verbundes aus einem Display und einer auf das Display aufgebrachten Optik
EP3502554A1 (de) * 2017-12-20 2019-06-26 ZKW Group GmbH Projektionseinrichtung für einen kraftfahrzeugscheinwerfer und verfahren zur herstellung einer projektionseinrichtung
DE102018107214A1 (de) * 2018-03-27 2019-10-02 HELLA GmbH & Co. KGaA Beleuchtungsvorrichtung für Fahrzeuge
KR102617541B1 (ko) 2018-11-02 2023-12-26 에스엘 주식회사 차량용 램프
DE102018129989A1 (de) * 2018-11-27 2020-05-28 Bayerische Motoren Werke Aktiengesellschaft Fahrzeugleuchte und Fahrzeug damit
DE102021002458A1 (de) 2021-05-08 2022-11-10 FEV Group GmbH Optische Vorrichtung
DE102022127905A1 (de) * 2022-10-21 2024-05-02 FEV Group GmbH Mikrolinsenarray für einen bildprojektor
DE102023000240A1 (de) 2023-01-27 2023-12-21 Mercedes-Benz Group AG Bauteil eines Fahrzeugs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201215A (ja) * 1986-02-28 1987-09-04 Nissha Printing Co Ltd 加飾成形品の製造法
JPH06278162A (ja) * 1993-03-26 1994-10-04 Sakae Riken Kogyo Kk 装飾用長尺部材およびその製法
US20020124378A1 (en) * 1997-12-26 2002-09-12 Hiroyuki Nemoto Erect image, unity magnification, resin lens array and method for manufacturing the same
US20020176172A1 (en) * 2001-05-09 2002-11-28 Hiroyuki Nemoto Resin erecting lens array and method for fabricating the same
US20120099199A1 (en) * 2010-10-22 2012-04-26 Sergiy Victorovich Vasylyev Retroreflective lenticular arrays
US20130021672A1 (en) * 2011-07-21 2013-01-24 Oki Data Corporation Lens array, lens unit, led head, exposure unit, image formation apparatus, reading apparatus, mold for molding lens array, and method for manufacturing lens array
DE102013212420A1 (de) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Spiegelnder, lichtdurchlässiger Formkörper und Verfahren zu seiner Herstellung
WO2015058227A1 (de) * 2013-10-25 2015-04-30 Zizala Lichtsysteme Gmbh Mikroprojektions-lichtmodul für einen kraftfahrzeugscheinwerfer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10001135A1 (de) 2000-01-13 2001-07-19 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung eines mikrostrukturierten Oberflächenreliefs durch Prägen thixotroper Schichten
US6814901B2 (en) 2001-04-20 2004-11-09 Matsushita Electric Industrial Co., Ltd. Method of manufacturing microlens array and microlens array
DE10313889B3 (de) 2003-03-27 2004-08-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einzelner Mikrolinsen oder eines Mikrolinsenarrays
DE102004038727A1 (de) * 2004-08-10 2006-02-23 Schott Ag Verfahren und Vorrichtung zum Herstellen von Hybridlinsen
DE102005003594B4 (de) * 2004-12-31 2016-02-18 Schott Ag Verfahren zur Herstellung eines optischen Bauteils, verfahrensgemäß hergestelltes Bauteil sowie derartige Bauteile umfassende Einrichtung
DE102009024894A1 (de) 2009-06-15 2010-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsdisplay und dessen Verwendung
DE102010013376B4 (de) * 2010-03-30 2023-04-20 Optoflux GmbH Trägerplatte mit einer Linse und Verfahren zum Aufbringen einer Linse auf eine Trägerplatte
DE102010030138A1 (de) 2010-06-15 2011-12-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Projektionsdisplay und Verfahren zum Anzeigen eines Gesamtbilds
DE102010027322A1 (de) * 2010-07-16 2012-01-19 Hella Kgaa Hueck & Co. Mikrooptik für angenähert transversalisotrope Aufweitung einer Scheinwerferlichtverteilung
JP5827104B2 (ja) * 2010-11-19 2015-12-02 株式会社半導体エネルギー研究所 照明装置
WO2012073604A1 (en) * 2010-12-01 2012-06-07 Panasonic Corporation Fresnel-fly's eye microlens arrays for concentrating solar cell
US20150068584A1 (en) * 2013-09-06 2015-03-12 Sandia Corporation Photovoltaic system with micro-concentrator array

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201215A (ja) * 1986-02-28 1987-09-04 Nissha Printing Co Ltd 加飾成形品の製造法
JPH06278162A (ja) * 1993-03-26 1994-10-04 Sakae Riken Kogyo Kk 装飾用長尺部材およびその製法
US20020124378A1 (en) * 1997-12-26 2002-09-12 Hiroyuki Nemoto Erect image, unity magnification, resin lens array and method for manufacturing the same
US20020176172A1 (en) * 2001-05-09 2002-11-28 Hiroyuki Nemoto Resin erecting lens array and method for fabricating the same
US20120099199A1 (en) * 2010-10-22 2012-04-26 Sergiy Victorovich Vasylyev Retroreflective lenticular arrays
US20130021672A1 (en) * 2011-07-21 2013-01-24 Oki Data Corporation Lens array, lens unit, led head, exposure unit, image formation apparatus, reading apparatus, mold for molding lens array, and method for manufacturing lens array
DE102013212420A1 (de) * 2013-06-27 2014-12-31 Robert Bosch Gmbh Spiegelnder, lichtdurchlässiger Formkörper und Verfahren zu seiner Herstellung
WO2015058227A1 (de) * 2013-10-25 2015-04-30 Zizala Lichtsysteme Gmbh Mikroprojektions-lichtmodul für einen kraftfahrzeugscheinwerfer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193064A (zh) * 2017-07-28 2017-09-22 邓杨 双面复眼透镜成像晶片及其制备工艺
DE102018116340A1 (de) 2018-07-05 2020-01-09 Webasto SE Fahrzeugdachsystem mit Lichtquelle

Also Published As

Publication number Publication date
DE102015121691A1 (de) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2017102443A1 (de) Verfahren zur herstellung eines mikrolinsenarrays
EP3499297B1 (de) Brillenglas und verfahren zu dessen herstellung
DE102009004377B4 (de) Verfahren zum Herstellen eines Brillenglases, Computerprogrammprodukt, Verwendung und Brillenglasherstellungsgerät
DE102015012980B4 (de) Verfahren zur Herstellung von Mikrostrukturen auf optischen Fasern
DE102004020363A1 (de) Verfahren zur Herstellung eines Masters, Master und Verfahren zur Herstellung von optischen Elementen sowie optischen Element
DE102006014200A1 (de) Verfahren zur Herstellung einer tief versenkten Linse sowie eine unter Verwendung dieses Verfahrens hergestellte Linse
DE102005013974A1 (de) Verfahren und Vorrichtung zur Herstellung mikro- bzw. nanostrukturierter Bauteile
EP3272489A2 (de) Verfahren und vorrichtung zum herstellen einer struktur
EP3585599B1 (de) Verfahren zum herstellen eines optischen mikrolinsenarrays und optische mikrolinsenarray
DE102013209246B4 (de) Verfahren zur Herstellung einer falschlichtunterdrückenden Struktur und Vorrichtung mit derselben
EP3162549B1 (de) Verfahren und vorrichtung zur herstellung eines optischen elements mit zumindest einem funktionalen bereich, sowie verwendung der vorrichtung
WO2022237932A1 (de) Optische vorrichtung und spritzgussverfahren zu seiner herstellung
DE60309669T2 (de) Verfahren zur herstellung einer optischen vorrichtung mittels eines replikationsverfahrens
EP0043475B1 (de) Verfahren zur Herstellung einer integrierten mikrooptischen Vorrichtung zur Verwendung mit Multimode-Lichtfasern
DE102009004379B4 (de) Verfahren zum Herstellen und Beschichten eines Brillenglases und Verwendung eines Werkstoffverarbeitungsgerätes
DE112019000576T5 (de) Formerzeugnis und Formerzeugnis-Herstellungsverfahren
DE112021002775T5 (de) Rapid Prototyping von optischen Komponenten, insbesondere von Linsen, zur Herstellung kundenspezifischer optischer Oberflächenformen
DE102017003721A1 (de) Verfahren zum Herstellen eines Mikroprojektors für ein Projektionsdisplay
EP0786326A1 (de) Verfahren und Vorrichtung zur Herstellung von optischen Linsen und optischen Linsenarrays
EP3517654B1 (de) Verfahren zur herstellung eines formeinsatzes mit (sub-)mikrostrukturen sowie werkstück mit (sub-)mikrostrukturen
DE102023001224B3 (de) Verfahren zur Herstellung einer modularen Struktur mit superhydrophoben Eigenschaften
DE102006050160A1 (de) Verfahren zur Herstellung von sphärischen optischen Linsen sowie nach diesem Verfahren hergestellte Linsen
EP3633453A1 (de) Verfahren zur herstellung von (sub-)mikrostrukturen auf gewölbten flächen eines optischen bauteils sowie optischer bauteil
DE102022109228A1 (de) Beleuchtungsvorrichtung für Fahrzeuge sowie Herstellungsverfahren
DE112012007214B4 (de) Vorrichtung zum Herstellen eines Linsenwafers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16812919

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16812919

Country of ref document: EP

Kind code of ref document: A1