DE102016207655A1 - Fluidversorgungssystem - Google Patents

Fluidversorgungssystem Download PDF

Info

Publication number
DE102016207655A1
DE102016207655A1 DE102016207655.8A DE102016207655A DE102016207655A1 DE 102016207655 A1 DE102016207655 A1 DE 102016207655A1 DE 102016207655 A DE102016207655 A DE 102016207655A DE 102016207655 A1 DE102016207655 A1 DE 102016207655A1
Authority
DE
Germany
Prior art keywords
valve
supply system
channel
fluid
fluid supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102016207655.8A
Other languages
English (en)
Inventor
Michael Steinhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of DE102016207655A1 publication Critical patent/DE102016207655A1/de
Priority to CN201680066548.3A priority Critical patent/CN109072731B/zh
Priority to JP2018526183A priority patent/JP2018534480A/ja
Priority to PCT/EP2016/078772 priority patent/WO2017097605A1/de
Priority to EP16801763.0A priority patent/EP3387225B1/de
Priority to US16/060,023 priority patent/US10400641B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/03Mounting or connecting of lubricant purifying means relative to the machine or engine; Details of lubricant purifying means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/54Retreading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/54Retreading
    • B29D30/542Retreading using envelopes or membranes provided with sealings for curing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/72Side-walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/005Controlling temperature of lubricant
    • F01M5/007Thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0716Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides with fluid passages through the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/406Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/42Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor
    • F16K31/423Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor the actuated members consisting of multiple way valves
    • F16K31/426Actuating devices; Operating means; Releasing devices actuated by fluid by means of electrically-actuated members in the supply or discharge conduits of the fluid motor the actuated members consisting of multiple way valves the actuated valves being cylindrical sliding valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Die Erfindung betrifft ein Fluidversorgungssystem (1). Erfindungsgemäß vorgesehen ist – ein in einem Kontrollkanal (6) angeordnetes Bypassventil (7) mit einem Ventilkörper (8), der zwischen einer ersten und einer zweiten Stellung verstellbar ist, – wobei der Ventilkörper (8) den Kontrollkanal (6) in einen ersten und einen zweiten Raum (10,11) trennt und eine Leckageöffnung (12) aufweist, die den ersten Raum (10) mit dem zweiten Raum (11) verbindet, – wobei im zweiten Raum (11) ein Federelement (13) angeordnet ist, das den Ventilkörper (8) in seine zweite Stellung vorspannt, – wobei der zweite Raum (11) über einen Leckagekanal (14) mit einem Fluidreservoir (9) verbunden ist, – wobei in dem Leckagekanal (14) ein schaltbares Ventil (15) zum zumindest teilweise Öffnen/Schließen des Leckagekanals (14) angeordnet ist, – wobei eine Erfassungseinrichtung (16) und eine Steuerungseinrichtung (18) vorgesehen sind, die das Ventil (15) bei Erreichen einer vordefinierten Eigenschaft schließt und damit den Leckagekanal (14) sperrt.

Description

  • Die vorliegende Erfindung betrifft ein Fluidversorgungssystem mit einer Komponente gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft außerdem eine Brennkraftmaschine mit zumindest einem solchen Fluidversorgungssystem.
  • Aus der DE 199 43 294 A1 ist ein gattungsgemäßes Fluidversorgungssystem einer Brennkraftmaschine mit einer Filtereinrichtung und einem stromauf dieser Filtereinrichtung temperaturabhängig in den Fluidkreislauf einschaltbaren Kühler bekannt. In einem unteren und einem oberen Temperaturbereich durchströmt dabei zumindest ein überwiegender Volumenstrom den Kühler, während in einem dazwischen liegenden mittleren Temperaturbereich allenfalls ein nicht überwiegender Volumenstrom den Kühler durchströmt. Hierdurch soll die Temperatur des Fluids optimal an Betriebsbedingungen der Brennkraftmaschine angepasst werden können.
  • Aus der DE 199 02 408 A1 ist ein Automatikgetriebe für Fahrzeuge mit einem hydrodynamischen Wandler bekannt, der von einer Druckölpumpe über ein Hauptdruckventil mit Öl versorgt wird, wobei ein Wandlersicherheitsventil den Öldruck vor dem Wandler begrenzt und von der Ölzulaufleitung des Wandlers eine Schmierölleitung abzweigt, die ein Schmierventil enthält und wobei zudem ein Ölkühler vorgesehen ist. Dieser Ölkühler ist in einer Ölleitung zwischen dem Hauptdruckventil und der Abzweigung der Schmierölleitung angeordnet und besitzt einen Bypass, dessen Durchfluss gesteuert bzw. geregelt ist.
  • Fluidversorgungssysteme in Brennkraftmaschinen, beispielsweise Ölfiltermodule, werden üblicherweise mit einem Kühler ausgestattet, um im Betrieb das Fluid, insbesondere das Öl, vor Schäden wegen zu hohen Temperaturen zu bewahren. Im kalten Zustand steigt jedoch der Druckverlust des kalten Fluides aufgrund der geänderten Fließeigenschaften, weshalb üblicherweise ein mit einem Dehnstoffelement ausgestattetes Bypassventil vorgesehen wird, das bei Unterschreiten bzw. bis zum Erreichen einer vordefinierten Temperatur einen Fluidstrom am Kühler vorbeiführt und erst bei Erreichen der vordefinierten Temperatur den Fluidstrom durch den Kühler, beispielsweise den Ölkühler, leitet. Hierdurch soll auch im kalten Zustand eine ausreichende Schmierung, beispielsweise einer Brennkraftmaschine oder von Lagerstellen, erreicht werden.
  • Alternativ zu den erwähnten Dehnstoffelementen können auch sogenannte Bimetallschalter oder FGL-Schalter eingesetzt werden, wobei sämtliche temperaturabhängigen Bypassschaltungen aufgrund der verwendeten Schalter, beispielsweise der Dehnstoffelemente, vergleichsweise aufwändig und teuer sind und darüber hinaus eine gewisse Trägheit besitzen, wodurch ein schnelles Schalten unmöglich wird. Besonders Bypassventile mit sogenannten Wachsdehnstoffelementen, benötigen darüber hinaus in der Regel mindestens eine Temperaturdifferenz von 10 Kelvin, um den Arbeitshub zu erreichen.
  • Die vorliegende Erfindung beschäftigt sich daher mit dem Problem, ein verbessertes Fluidversorgungssystem mit einer Bypassschaltung anzugeben, die insbesondere konstruktiv einfach, kostengünstig und schnell schaltend ausgebildet ist.
  • Dieses Problem wird erfindungsgemäß durch den Gegenstand des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, für eine Bypassschaltung anstelle der hierfür bislang verwendeten Dehnstoffelemente nunmehr ein schaltbares Ventil, insbesondere ein Magnetventil, einzusetzen, dieses jedoch aufgrund seines vergleichsweise kleinen Arbeitshubes nicht direkt zur Schaltung eines Ventilkörpers des Bypassventils zu nutzen, sondern zum Öffnen bzw. Schließen eines Leckagekanals, der die zum Schalten des Ventilkörpers des Bypassventils erforderlichen Druckverhältnisse beeinflusst. Über das erfindungsgemäß vorgesehene Ventil wird somit kein Verstellen des Ventilkörpers selbst, sondern nur ein Beeinflussen der Druckverhältnisse bewirkt, die zum schnellen Verstellen des Ventilkörpers des Bypassventils führen. Das erfindungsgemäße Fluidversorgungssystem weist dabei eine Komponente, beispielsweise eine Filtereinrichtung zum Filtern des Fluids oder einen Kühler zum Kühlen des Fluids sowie einen diese Komponente umgehenden Bypasskanal auf. In einem Kontrollkanal ist dabei ein Bypassventil mit einem Ventilkörper angeordnet, der zumindest zwischen einer ersten und einer zweiten Stellung verstellbar ist und der in der ersten Stellung einen Fluidzufluss zur Komponente und in der zweiten Stellung einen Fluidfluss durch den Bypasskanal absperrt, oder umgekehrt. Zwischen den beiden Stellungen sind dabei selbstverständlich auch Zwischenstellungen möglich, in welchen ein Teilfluidstrom zur Komponente und ein Teilfluidstrom durch den Bypasskanal strömen. Der Ventilkörper des Bypassventils trennt dabei den Kontrollkanal in einen ersten und einen zweiten Raum und weist eine Leckageöffnung auf, die den ersten Raum mit dem zweiten Raum verbindet. Im zweiten Raum ist ein Federelement angeordnet, welches den Ventilkörper in seine zweite Stellung vorspannt, wobei der zweite Raum über einen Leckagekanal mit einem Fluidreservoir verbunden ist. In diesem Leckagekanal ist das erfindungsgemäße schaltbare Ventil, insbesondere das Magnetventil, vorgesehen, mittels welchem der Leckagekanal geöffnet bzw. geschlossen werden kann. Ebenfalls vorgesehen ist eine Erfassungseinrichtung, die eine Eigenschaft, beispielsweise eine Temperatur, des Fluids erfasst und an eine Steuerungseinrichtung übermittelt, die wiederum derart ausgebildet ist, dass sie das Ventil bei Erreichen einer vordefinierten Temperatur schließt und damit den Leckagekanal sperrt. Erfassungseinrichtung und Steuerungseinrichtung können dabei selbstverständlich auch in einem Dehnstoffelement zusammengefasst sein. Mit dem erfindungsgemäßen Fluidversorgungssystem kann somit auf konstruktiv einfache und kostengünstige Weise ein schnell schaltendes Bypassventil geschaffen werden, dessen Schaltbewegung ausschließlich von der Federkraft des Federelements, der Stellung des Ventils und dem Druck des Fluids im ersten und zweiten Raum abhängt. Im Vergleich zu einem Dehnstoffelement kann dabei das Ventil vergleichsweise schnell schalten und damit die im zweiten Raum herrschenden Druckverhältnisse schnell beeinflussen, wodurch wiederum aufgrund der beispielsweise zwischen dem ersten und dem zweiten Raum herrschenden Druckdifferenz und der Federkraft ein schnelles Schalten des Ventilkörpers und damit des Bypassventils möglich sind. Von großem Vorteil ist dabei, dass zum Sperren des Leckagekanals ein bereits sehr kleiner Ventilhub des Ventils ausreicht, der von einem solchen Ventil bewerkstelligt werden kann, da der Leckagekanal im Vergleich zum Kontrollkanal einen sehr kleinen Querschnitt besitzt. Über die vergleichsweise kleine Stellbewegung des Ventils bzw. dessen Ventilkörpers kann somit ein großer Querschnitt des Kontrollkanals über den Ventilkörper des Bypassventils geschaltet werden.
  • Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung ist das Fluidversorgungssystem als Schmierstoffversorgungssystem, insbesondere als Ölversorgungssystem, ausgebildet. Besonders bei Ölfiltermodulen ist aufgrund der Zähigkeit des Öls im kalten Zustand eine Durchleitung desselben durch einen Ölkühler unbedingt zu vermeiden, weshalb das erfindungsgemäße Bypassventil hier in vorteilhafter Weise eingesetzt werden kann, um eine schnelle und effektive Schmierung, beispielsweise der Brennkraftmaschine oder anderer Lagerstellen, sowohl in kaltem, als auch in warmem Zustand zu bewirken.
  • Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Lösung sind die Erfassungseinrichtung als Temperaturerfassungseinrichtung ausgebildet und die Steuerungseinrichtung derart, dass sie das Ventil bei Erreichen der Temperatur von T ≥ 117°C schließt. Bei einer Temperatur von T ≤ 117°C bleibt das Ventil hingegen offen, wodurch ein Leckagestrom zum Fluidreservoir, insbesondere zum Ölreservoir strömt und durch die Druckdifferenz zwischen dem ersten und dem zweiten Raum im Kontrollkanal der Ventilkörper des Bypassventils in seine erste Stellung, entgegen der Federkraft, gedrückt wird. Bei Erreichen der vordefinierten Temperatur von 117°C schließt das Ventil den Leckagekanal ab, so dass über diesen kein Fluidabfluss mehr in das Fluidreservoir erfolgen kann. Nach dem Absperren des Leckagekanals steigt der Druck im zweiten Raum an, bis dieser den Druck im ersten Raum erreicht, woraufhin lediglich noch die Federkraft des Federelements für die Verstellung des Ventilkörpers verantwortlich ist. Die beiden Drücke im ersten und zweiten Raum heben sich in diesem Fall auf. Aufgrund der Federkraft des Federelements wird der Ventilkörper des Bypassventils in seine zweite Stellung verstellt, in welcher der Bypasskanal zum Bypass geschlossen und der Fluidkanal zur Komponente geöffnet ist. In diesem Zustand wird somit der Fluidstrom über die Komponente geleitet.
  • Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Lösung ist der Ventilkörper als Ventilkolben ausgebildet, der eine mantelseitige erste Öffnung zum Bypasskanal und eine mantelseitige zweite Öffnung zur Komponente aufweist. Dies stellt lediglich eine mögliche Ausführungsform des erfindungsgemäßen Ventilkörpers dar, welche jedoch vergleichsweise einfach und kostengünstig herzustellen ist und zugleich vergleichsweise einfach die Druckverhältnisse im ersten und zweiten Raum ermöglicht. Hierzu ist beispielsweise die Leckageöffnung im Boden des Ventilkolbens angeordnet.
  • Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung ist der Ventilkolben oder der Ventilkörper selbst aus Metall oder aus Kunststoff ausgebildet, wobei eine Ausbildung aus Metall eine besonders hohe Beständigkeit auch gegenüber aggressiven Fluiden ermöglicht. Demgegenüber kann durch eine Ausbildung des Ventilkolbens/Ventilkörpers aus Kunststoff eine vergleichsweise kostengünstige Herstellung erreicht werden.
  • Bei einer vorteilhaften Weiterbildung der erfindungsgemäßen Lösung weist das Ventil ein Magnetventil, einen elektrischen Schalter, ein Bimetall und/oder ein Dehnstoffelement auf oder ist als solches ausgebildet. Besonders die Ausführungsform als Magnetventil, als Bimetall oder als elektrischer Schalter ermöglicht ein vergleichsweise schnelles Schalten und damit ein schnelles Reagieren.
  • Zweckmäßig kann die Komponente als Kühler, Getriebe oder Filtereinrichtung ausgebildet sein. Bereits diese nicht abschließende Aufzählung lässt erahnen, welch mannigfaltige Einsatzmöglichkeiten für das erfindungsgemäße Fluidversorgungssystem, insbesondere bei einer Brennkraftmaschine gegeben sind.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen.
  • Dabei zeigen, jeweils schematisch
  • 1 ein erfindungsgemäßes Fluidversorgungssystem bei einer Fluideigenschaft unterhalb einer vordefinierten Eigenschaft,
  • 2 eine Darstellung wie in 1, jedoch bei einer Eigenschaft des Fluides oberhalb der vordefinierten Eigenschaft,
  • 3 ein erfindungsgemäßes Fluidversorgungssystem mit einem anderen Ventil und bei einer Fluideigenschaft unterhalb einer vordefinierten Eigenschaft,
  • 4 eine Darstellung wie in 3, jedoch bei einer Eigenschaft des Fluides oberhalb der vordefinierten Eigenschaft.
  • Entsprechend den 1 bis 4, weist ein erfindungsgemäßes Fluidversorgungssystem 1, insbesondere einer Brennkraftmaschine 2, beispielsweise ein Schmierstoffversorgungssystem und insbesondere ein Ölversorgungssystem 3, eine Komponente 5 sowie einen diesen umgehenden Bypass 4 auf. Die Komponente 5 kann beispielsweise als Kühler, Getriebe oder Filtereinrichtung ausgebildet sein. Gemäß den 1 bis 4 sind dabei lediglich der Fluidkanal 21 zur Komponente 5 und der Bypasskanal 22 zum Bypass 4 gezeigt, so dass sich die eigentliche Komponente 5 unterhalb der dargestellten Bildebene befindet. In einem Kontrollkanal 6 ist dabei ein Bypassventil 7 mit einem Ventilkörper 8 angeordnet, der zwischen einer ersten Stellung (vergleiche 1 und 3) und einer zweiten Stellung (vergleiche 2 und 4) verstellbar ist, und der in der ersten Stellung den Fluidkanal 21 zur Komponente 5 und in der zweiten Stellung den Bypasskanal 22 absperrt. Der Kontrollkanal 6 führt dabei indirekt über eine nicht gezeigte Fluidpumpe zu einem Fluidreservoir 9.
  • Betrachtet man den Kontrollkanal 6 näher, so kann man erkennen, dass der Ventilkörper 8 den Kontrollkanal 6 in einen ersten Raum 10 und einen zweiten Raum 11 unterteilt und zugleich eine Leckageöffnung 12 aufweist, die den ersten Raum 10 mit dem zweiten Raum 11 verbindet. Im zweiten Raum 11 ist darüber hinaus ein Federelement 13 angeordnet, das den Ventilkörper 8 in seine gemäß den 2 und 4 dargestellte zweite Stellung vorspannt. Der zweite Raum 11 ist darüber hinaus über einen Leckagekanal 14 mit dem Fluidreservoir 9 verbunden, wobei in dem Leckagekanal 14 ein Ventil 15, insbesondere ein Magnetventil, zum zumindest teilweise Öffnen/Schließen des Leckagekanals 14 angeordnet ist. Gemäß den 1 und 3 ist dabei das Ventil 15 in seiner Öffnungsstellung gezeigt, in welcher der zweite Raum 11 über den Leckagekanal 14 mit dem Fluidreservoir 9, welches drucklos ist, verbunden ist. Demgegenüber zeigen die 2 und 4 das Ventil 15 in seiner geschlossenen Stellung. Generell kann dabei das Ventil 15 ein Magnetventil, einen elektrischen Schalter, ein Bimetall und/oder ein Dehnstoffelement 23 (vgl. die 3 und 4) aufweisen. Besonders die Ausführungsform als Magnetventil, als Bimetall oder als elektrischer Schalter ermöglicht ein vergleichsweise schnelles Schalten und damit ein schnelles Reagieren.
  • Darüber hinaus weist das erfindungsgemäße Fluidversorgungssystem 1 gemäß den 1 und 2 eine Erfassungseinrichtung 16, beispielsweise eine Temperaturerfassungseinrichtung mit einem Temperatursensor, auf, die/der eine Eigenschaft, insbesondere die Temperatur, des Fluides 17, beispielsweise Öl oder Schmierstoff, erfasst und an eine Steuerungseinrichtung 18 übermittelt, die wiederum derart ausgebildet ist, dass sie das Ventil 15 bei Erreichen einer vordefinierten Eigenschaft, beispielsweise einer vordefinierten Temperatur T, schließt und damit den Leckagekanal 14 sperrt. Zu diesem Zweck ist die Steuerungseinrichtung 18 selbstverständlich auch mit dem Ventil 15 verbunden.
  • Gemäß den 3 und 4 sind die Erfassungseinrichtung 16 und die Steuerungseinrichtung 18 in dem Dehnstoffelement 23 integriert bzw. durch dieses gebildet, so dass auf eine separate Erfassungseinrichtung 16 und eine separate Steuerungseinrichtung 18 verzichtet werden kann, was zu Kostenvorteilen führt.
  • In den 1 bis 4 ist die Erfassungseinrichtung 16 als Temperaturerfassungseinrichtung (Dehnstoffelement 23 erfasst auch die Temperatur) ausgebildet und erfasst demzufolge die Temperatur des Fluides 17. Die vordefinierte Temperatur T kann dabei beispielsweise bei ≥ 117°C liegen, so dass gemäß den 1 und 3 ein Zustand des erfindungsgemäßen Fluidversorgungssystems 1 bei einer Temperatur T < 117°C und gemäß den 2 und 4 bei einer Temperatur T ≥ 117°C gezeigt ist.
  • Betrachtet man den Ventilkörper 8 näher, so kann man erkennen, dass dieser als Ventilkolben ausgebildet ist, der eine mantelseitige erste Öffnung 19 und eine mantelseitige zweite Öffnung 20 aufweist, wobei je nach Schaltstellung des Ventilkörpers 8 die erste Öffnung 19 mit dem Bypasskanal 22 zum Bypass 4 fluchtet, während die zweite Öffnung 20 in der zweiten Stellung mit dem Fluidkanal 21 zur Komponente 5 fluchtet. Die Leckageöffnung 12 ist dabei in einem Boden des Ventilkörpers 8 angeordnet. Der Ventilkolben selbst kann beispielsweise aus Metall oder aus Kunststoff ausgebildet sein, wobei die Ausbildung aus Metall einen besonders hohen Widerstand gegen sämtliche Fluide 17 bietet, während eine Ausführung aus Kunststoff vergleichsweise kostengünstig hergestellt werden kann.
  • Das erfindungsgemäße Fluidversorgungssystem 1 funktioniert dabei gemäß den 1 bis 4 bei einer als Temperaturerfassungseinrichtung ausgebildeten Erfassungseinrichtung 16 wie folgt:
    Bei einer Temperatur T < 117°C stellt sich die gemäß den 1 und 3 dargestellte Situation ein, bei welcher die Temperaturerfassungseinrichtung 16 (respektive das Dehnelement 23 in 3) die Temperatur erfasst, an die Steuerungseinrichtung 18 weiterleitet und diese daraufhin das Ventil 15 geöffnet hält. Das in den Kontrollkanal 6 einströmende Fluid 17 erzeugt somit im ersten Raum 10 einen Druck P1, wobei es über die Leckageöffnung 12 in den zweiten Raum 11 strömen kann und über diesen und den geöffneten Leckagekanal 14 in das Fluidreservoir 9. Das Fluidreservoir 9 ist dabei üblicherweise drucklos, wobei jedoch ein Ventilkörper 8’ des Ventils 15 beispielsweise als Drossel ausgebildet sein kann, so dass sich im zweiten Raum 11 nicht der Umgebungsdruck einstellt, sondern lediglich ein im Hinblick auf den im ersten Raum 10 herrschenden Druck P1 reduzierter Druck P2. Zwischen dem ersten Raum 10 und dem zweiten Raum 11 stellt sich somit eine Druckdifferenz ΔP ein, die der Federkraft des Federelements 13 entgegenwirkt. Die im vorliegenden Fall von unten auf den Ventilkörper 8 einwirkende Kraft F1 bemisst sich dabei zu F1 = P1·A(Ventilkörper) – ΔP·A(Ventilkörper), wogegen sich die von oben auf den Ventilkörper 8 wirkende Kraft F2 wie folgt bemisst: F2 = ΔP·A (Ventilkörper) + F(Feder) und wobei gilt F1 > F2.
  • Hierdurch verschiebt sich der Ventilkörper 8 nach oben, bis die erste mantelseitige Öffnung 19 mit dem zu beispielsweise einer Filtereinrichtung führenden Bypasskanal 22 fluchtet und das Fluid 17 in den Bypass 4 strömen kann. Ein kleiner Leckagestrom des Fluides 17 kann auch über die Leckageöffnung 12 in den zweiten Raum 11 und über den Leckagekanal 14 in das Fluidreservoir 9 gelangen.
  • Bei Erreichen der vordefinierten Temperatur T von ≥ 117°C, schaltet das Bypassventil 7 in die gemäß den 2 und 4 dargestellte Stellung, da bei Erreichen der vordefinierten Temperatur T die Steuerungseinrichtung 18 ein entsprechendes Signal an das Ventil 15 übermittelt und dieses daraufhin den Ventilkörper 8’ in seine Schließstellung überführt und den Leckagekanal 14 sperrt. Ist das Ventil 15 als Magnetventil oder als elektrisch schaltbares Ventil ausgebildet, so erfolgt ein Öffnen und Schließen vergleichsweise schnell, während bei einem Ventil 15 mit einem Dehnelement 23 ein langsameres Öffnen/Schließen erfolgt. Im letzten Fall kann dafür auf eine separate Erfassungseinrichtung 16 und eine ebenfalls separate Steuerungseinrichtung 18 sowie die zugehörige Verkabelung verzichtet werden, da diese in diesem Fall durch das Dehnstoffelement 23 bereitgestellt werden, was Kostenvorteile bringt.
  • Da der Leckagekanal 14 im Vergleich zum Kontrollkanal 6 einen deutlich verringerten Querschnitt hat, kann hier auch ein einen lediglich geringen Ventilhub aufweisendes aber gleichzeitig schnell schaltendes Ventil 15 eingesetzt werden. Nach dem Schließen des Ventils 15 steigt der Druck P2 im zweiten Raum 11 auf den Druck P1 im ersten Raum 10, woraus ein ΔP von 0 ergibt. In diesem Fall erfolgt somit keinerlei druckabhängige Verstellung des Ventilkörpers 8 des Bypassventils 7 mehr, da die von unten auf den Ventilkörper 8 druckbedingt wirkende Kraft F1 der von oben auf den Ventilkörper 8 ausschließlich druckbedingten Kraft F2 entspricht. Trotzdem ist selbstverständlich die von oben auf den Ventilkörper 8 wirkende Kraft F2 größer als die Kraft F1, da von oben zusätzlich noch die Kraft F(Feder) des Federelements 13 auf den Ventilkörper 8 wirkt. Es gilt somit für den gemäß den 2 und 4 dargestellten Zustand: F2 > F1 mit F2 = P2·A(Ventilkörper) + F(Feder); und F1 = P1·A(Ventilkörper)
  • Mit dem erfindungsgemäßen Bypassventil 7 und dem erfindungsgemäßen Fluidversorgungssystem 1 ist eine Steuerung des Ventilkörpers 8 des Bypassventils 7 über die Federkraft F(Feder) über den Fluiddruck P1, P2 und über die Stellung des Ventilkörpers 8' des Ventils 15 möglich. Je nachdem, ob das Ventil 15 geöffnet oder geschlossen ist, kann über eine gezielte Auslegung der Federkraft F(Feder) des Federelements 13 der Ventilkörper 8 den Bypasskanal 22 zum Bypass 4 öffnen bzw. schließen.
  • Sofern das Ventil 15 als Magnetventil oder als elektrisch schaltbares Ventil ausgebildet ist, kann es selbstverständlich derart ausgestaltet sein, dass es eine sogenannte fail-safe-Funktion erfüllt, das heißt es muss bestromt werden, um in den gemäß den 1 und 3 dargestellten (Öffnungs-)zustand überführt zu werden. Stromlos verbleibt das Ventil 15 im geschlossenen Zustand, so dass das Fluid 17 bzw. das Öl immer über die Komponente 5 geleitet wird und Beschädigungen vermieden werden können.
  • Die in den 1 bis 4 dargestellte vordefinierte Temperatur T = 117°C stellt selbstverständlich lediglich eine mögliche Temperatur dar, die beispielsweise für Öl als Fluid 17 gilt. Als Erfassungsgröße können selbstverständlich auch andere Parameter dienen.
  • Mit dem erfindungsgemäßen Fluidversorgungssystem 1 ist somit ein vergleichsweise schnelles Schalten des Bypassventils 7 möglich, ohne dass hierfür eine Betätigungseinrichtung mit einem vergleichsweise großen Ventilhub erforderlich wäre, da der Ventilhub des Ventils 15 zur Steuerung des Ventilkörpers 8 im Leckagekanal 14 völlig ausreichend ist, um die Druckverhältnisse P1, P2 zu beeinflussen und dadurch das Bypassventil 7 zu steuern. Wird für das Ventil 15 ein elektrisch schaltendes oder ein Magnetventil eingesetzt, so kann im Vergleich zu Wachsdehnstoffelementen zur Steuerung des Bypassventils 7 eine deutlich schnellere Reaktionszeit des Bypassventils 7 erreicht werden. Zugleich kann dieses kostengünstiger und konstruktiv einfach ausgebildet werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 19943294 A1 [0002]
    • DE 19902408 A1 [0003]

Claims (9)

  1. Fluidversorgungssystem (1) mit einer Komponente (5), gekennzeichnet durch – ein in einem Kontrollkanal (6) angeordnetes Bypassventil (7) mit einem Ventilkörper (8), der zumindest zwischen einer ersten und einer zweiten Stellung verstellbar ist und der in der ersten Stellung einen Fluidkanal (21) zur Komponente (5) und in der zweiten Stellung einen die Komponente (5) umgehenden Bypasskanal (22) absperrt, – wobei der Ventilkörper (8) den Kontrollkanal (6) in einen ersten und einen zweiten Raum (10, 11) trennt und eine Leckageöffnung (12) aufweist, die den ersten Raum (10) mit dem zweiten Raum (11) verbindet, – wobei im zweiten Raum (11) ein Federelement (13) angeordnet ist, das den Ventilkörper (8) in seine zweite Stellung vorspannt, – wobei der zweite Raum (11) über einen Leckagekanal (14) mit einem Fluidreservoir (9) verbunden ist, – wobei in dem Leckagekanal (14) ein schaltbares Ventil (15) zum zumindest teilweise Öffnen/Schließen des Leckagekanals (14) angeordnet ist, – wobei zumindest eine Erfassungseinrichtung (16) vorgesehen ist, die eine Eigenschaft des Fluids (17) erfasst und an eine Steuerungseinrichtung (18) übermittelt, die wiederum derart ausgebildet ist, dass sie das Ventil (15) bei Erreichen einer vordefinierten Eigenschaft schließt und damit den Leckagekanal (14) sperrt.
  2. Fluidversorgungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das Fluidversorgungssystem (1) als Schmierstoffversorgungssystem, insbesondere als Ölversorgungssystem (3), ausgebildet ist.
  3. Fluidversorgungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Erfassungseinrichtung (16) als Temperaturerfassungseinrichtung ausgebildet ist und dass die Steuerungseinrichtung (18) derart ausgebildet ist, dass sie das Ventil (15) bei Erreichen der Temperatur von T ≥ 117 °C schließt.
  4. Fluidversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilkörper (8) als Ventilkolben ausgebildet ist, der eine mantelseitige erste Öffnung (19) zum Bypasskanal (22) und eine mantelseitige zweite Öffnung (20) zur Komponente (5) aufweist.
  5. Fluidversorgungssystem nach Anspruch 4, dadurch gekennzeichnet, dass die Leckageöffnung (12) in einem Boden des Ventilkolbens angeordnet ist.
  6. Fluidversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilkörper (8) aus Metall oder aus Kunststoff ausgebildet ist.
  7. Fluidversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Ventil (15) ein Magnetventil, einen elektrischen Schalter, ein Bimetall und/oder ein Dehnstoffelement aufweist.
  8. Fluidversorgungssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Komponente (5) als Kühler, Getriebe oder Filtereinrichtung ausgebildet ist.
  9. Brennkraftmaschine (2) mit einem Fluidversorgungssystem (1) nach einem der vorhergehenden Ansprüche.
DE102016207655.8A 2015-12-07 2016-05-03 Fluidversorgungssystem Withdrawn DE102016207655A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680066548.3A CN109072731B (zh) 2015-12-07 2016-11-25 流体供给系统
JP2018526183A JP2018534480A (ja) 2015-12-07 2016-11-25 流体供給システム
PCT/EP2016/078772 WO2017097605A1 (de) 2015-12-07 2016-11-25 Fluidversorgungssystem
EP16801763.0A EP3387225B1 (de) 2015-12-07 2016-11-25 Fluidversorgungssystem
US16/060,023 US10400641B2 (en) 2015-12-07 2016-11-25 Fluid supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202015009000.1 2015-12-07
DE202015009000.1U DE202015009000U1 (de) 2015-12-07 2015-12-07 Fluidversorgungssystem einer Brennkraftmaschine

Publications (1)

Publication Number Publication Date
DE102016207655A1 true DE102016207655A1 (de) 2016-08-18

Family

ID=56293072

Family Applications (2)

Application Number Title Priority Date Filing Date
DE202015009000.1U Withdrawn - After Issue DE202015009000U1 (de) 2015-12-07 2015-12-07 Fluidversorgungssystem einer Brennkraftmaschine
DE102016207655.8A Withdrawn DE102016207655A1 (de) 2015-12-07 2016-05-03 Fluidversorgungssystem

Family Applications Before (1)

Application Number Title Priority Date Filing Date
DE202015009000.1U Withdrawn - After Issue DE202015009000U1 (de) 2015-12-07 2015-12-07 Fluidversorgungssystem einer Brennkraftmaschine

Country Status (1)

Country Link
DE (2) DE202015009000U1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016113812A1 (de) * 2016-07-27 2018-02-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schmiermittelkreislauf für eine Verbrennungskraftmaschine
FR3066536A3 (fr) * 2017-05-16 2018-11-23 Renault Sas Vanne by-pass echangeur moteur

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017123664A1 (de) * 2017-10-11 2019-04-11 Man Truck & Bus Ag Ventil zum Einstellen eines Kühlfluidflusses zur Kolbenkühlung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902408A1 (de) 1999-01-22 2000-08-17 Zahnradfabrik Friedrichshafen Automatgetriebe für Fahrzeuge mit einem hydrodynamischen Wandler
DE19943294A1 (de) 1999-09-10 2001-03-15 Mahle Filtersysteme Gmbh Strömungseinrichtung innerhalb eines Ölkreislaufes eines Verbrennungsmotors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19902408A1 (de) 1999-01-22 2000-08-17 Zahnradfabrik Friedrichshafen Automatgetriebe für Fahrzeuge mit einem hydrodynamischen Wandler
DE19943294A1 (de) 1999-09-10 2001-03-15 Mahle Filtersysteme Gmbh Strömungseinrichtung innerhalb eines Ölkreislaufes eines Verbrennungsmotors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016113812A1 (de) * 2016-07-27 2018-02-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schmiermittelkreislauf für eine Verbrennungskraftmaschine
FR3066536A3 (fr) * 2017-05-16 2018-11-23 Renault Sas Vanne by-pass echangeur moteur
FR3066538A1 (fr) * 2017-05-16 2018-11-23 Renault S.A.S. Dispositif de controle de la distribution d'huile pour un moteur thermique

Also Published As

Publication number Publication date
DE202015009000U1 (de) 2016-06-09

Similar Documents

Publication Publication Date Title
EP3387225B1 (de) Fluidversorgungssystem
EP1929131B1 (de) Einrichtung zum abkoppeln des öldurchflusses durch einen kühler
EP3338014B1 (de) Ölkreislaufsystem einer brennkraftmaschine mit einem druck- und temperaturgesteuerten ventil
DE102014018123A1 (de) Parksperrenvorrichtung
EP3452705B1 (de) Fluidversorgungssystem
DE102014114590A1 (de) Hydrauliksteuervorrichtung für Hydraulikdrehmomentwandler
DE102016207655A1 (de) Fluidversorgungssystem
DE102011079850A1 (de) Hydrauliksystem zum Betätigen wenigstens eines Schaltelementes eines Getriebes
DE102008002141B4 (de) Hydraulische Schaltungsanordnung zum Betrieb eines hydrodynamischen Drehmomentwandlers
DE102012214107A1 (de) Druckbegrenzungseinrichtung für ein hydraulisches System zur Betätigung einer Kupplung
DE102010041124A1 (de) Schieberventil
DE102004034706B3 (de) Fluidfeder
DE102016124675A1 (de) Thermostatventil für eine Verbrennungskraftmaschine
DE102016205819A1 (de) Vorrichtung zu der Kühlung eines Kolbens eines Verbrennungsmotors
EP2626526B1 (de) Ventileinrichtung
DE102010047793A1 (de) Kraftfahrzeugkühlvorrichtung
DE10333236B4 (de) Steuerventil zur Steuerung eines Volumenstromes, insbesondere zur Steuerung eines Kühlmittelstromes zur Kühlung der Kupplung eines Doppelkupplungsgetriebes eines Kraftfahrzeuges
DE102015212539B4 (de) Vorrichtung zur Reduktion der Schleppmomente in einem Automatgetriebe
DE102015222745A1 (de) Ventil mit Stromregel- und Druckbegrenzungsfunktion
DE102009024698A1 (de) Schmierstoffpumpensystem
DE102019000896A1 (de) Ventileinrichtung für einen von einem Schmiermittel durchströmbaren Kreislauf eines Kraftfahrzeugs
DE102009053918A1 (de) Proportional verstellbare Druckbegrenzungs- und Nachsaugventilanordnung
DE102014226093A1 (de) Thermostatventil
DE102005039815A1 (de) Verfahren und Vorrichtung zum Betreiben eines Getriebeölkreislaufs
WO2007031047A1 (de) Ventil für kolbenkühldüsen

Legal Events

Date Code Title Description
R230 Request for early publication
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee