DE102016104318B3 - Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks - Google Patents

Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks Download PDF

Info

Publication number
DE102016104318B3
DE102016104318B3 DE102016104318.4A DE102016104318A DE102016104318B3 DE 102016104318 B3 DE102016104318 B3 DE 102016104318B3 DE 102016104318 A DE102016104318 A DE 102016104318A DE 102016104318 B3 DE102016104318 B3 DE 102016104318B3
Authority
DE
Germany
Prior art keywords
axis
contour
orientation
processing
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102016104318.4A
Other languages
English (en)
Inventor
Tobias Hagenlocher
Thomas Kieweler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Laser und Systemtechnik GmbH
Original Assignee
Trumpf Laser und Systemtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser und Systemtechnik GmbH filed Critical Trumpf Laser und Systemtechnik GmbH
Priority to DE102016104318.4A priority Critical patent/DE102016104318B3/de
Priority to CN201780028745.0A priority patent/CN109070354B/zh
Priority to EP17712039.1A priority patent/EP3426445B1/de
Priority to JP2018545845A priority patent/JP6913102B2/ja
Priority to KR1020187029116A priority patent/KR102226226B1/ko
Priority to PCT/EP2017/055325 priority patent/WO2017153408A1/de
Application granted granted Critical
Publication of DE102016104318B3 publication Critical patent/DE102016104318B3/de
Priority to US16/124,975 priority patent/US11167372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/705Beam measuring device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • B23Q17/2275Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece of a tool-axis relative to a workpiece-axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45041Laser cutting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50057Compensation error by probing test, machined piece, post or pre process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50252Replace, change tool with tracer head, probe, feeler

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Robotics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

In einem Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse (S) einer Strahlbearbeitungsmaschine von einer räumlichen Soll-Ausrichtung (S0) der Strahlachse (S) werden Konturabschnitte (KA1, KB2) mit einem Bearbeitungsstrahl (5) in ein Testwerkstück (31) von zwei Seiten geschnitten, wobei die Konturabschnitte (KA1, KB2) zu einer Soll-Ausrichtung einer zu kalibrierenden Rotationsachse (B, C) parallel verlaufen. Die Konturabschnitte (KA1, KA2) werden mit einem Messmittel von einer Seite zur Ermittlung der räumlichen Lage der Konturabschnitte (KA1, KB1) detektiert, insbesondere angetastet, und die Abweichung der räumlichen Ausrichtung der Strahlachse (S) der Strahlbearbeitungsmaschine von der räumlichen Soll-Ausrichtung (S0) wird basierend auf den räumlichen Lagen der Konturabschnitte (KA1, KB1) bestimmt.

Description

  • Die vorliegende Erfindung betrifft ein Mehrachsensystem zur Positionierung einer Strahlachse einer Strahlbearbeitungsmaschine, insbesondere ein 5-Achs-Lasersystem für die Materialbearbeitung. Ferner betrifft die Erfindung ein Verfahren zur Nullpunkteinstellung von Drehachsen eines derartigen Mehrachsensystems.
  • In strahlbasierten, insbesondere laserbasierten, Werkzeugmaschinen ist ein exaktes Positionieren einer Strahlachse (z. B. Laserstrahlachse oder Elektronenstrahlachse) grundlegend für die Umsetzung der präzisen Bearbeitung von Werkstücken mit dem sich entlang der Strahlachse auf das Werkstück ausbreitenden Bearbeitungsstrahl. Allgemein weisen Werkzeugmaschinen hierzu Translationssysteme und Drehsysteme auf, die ein genaues Positionieren und Ausrichten des Bearbeitungsstrahls bezüglich des zu bearbeitenden Werkstücks erlauben. Beispielsweise werden in sogenannten 5-Achs-Lasersystemen drei orthogonale Translationsbewegungen und zwei Drehbewegungen für die Strahlachse bereitgestellt. Ferner können entsprechend Translations- und Drehbewegungen für das gehaltene Werkstück vorgesehen werden.
  • Bei Inbetriebnahme einer Werkzeugmaschine erfolgt üblicherweise eine Anfangseinstellung der Positioniersysteme und des Strahlengangs, wobei die Anfangseinstellung beispielsweise an die verschiedenen (z. B. laserstrahlführenden) Strahlführungskomponenten wie Bearbeitungsoptiken angepasst werden. Bei entsprechender Justierung der Werkzeugmaschine entspricht dann eine räumliche Ausrichtung einer Strahlachse der Werkzeugmaschine der gewünschten räumlichen Ausrichtung (Soll-Ausrichtung) der Strahlachse. Entsprechende Steuerungsparameter für die verschiedenen Verstellmechanismen wie Schrittmotoren und Antriebsscheiben, hierin auch als Bearbeitungsparameter bezeichnet, werden in der Steuerungsvorrichtung, beispielsweise in einer NC-Steuerung, hinterlegt. Da während des Betriebs der Werkzeugmaschine Fehlstellungen eintreten können, kann eine Nachjustierung der Bearbeitungsparameter erforderlich werden. Fehlstellungen gehen beispielsweise auf eine Kollision einer Bearbeitungsoptik mit dem Werkstück zurück.
  • DE 10 2007 063 627 A1 offenbart ein Verfahren zur Bestimmung der Düsenmittigkeit. In dem Verfahren wird zunächst mit dem Düsenkörper und anschließend mit dem Laserstrahl ein Rahmen angetastet. Durch Vergleichen der Werte kann die Lage des Laserstrahls relativ zur Öffnung der Düse bestimmt werden. Ferner offenbart JP 6328281 das Schneiden eines runden Lochs, welches anschließend mit der Düse zur Bestimmung der Düsenmittigkeit angetastet wird.
  • DE 10 2007 037 683 B3 offenbart ein Verfahren zum Ermitteln der Lage einer Kante eines Werkstücks, wobei ein Messtaster eines Sensorkörpers die Kante des Werkstücks antastet und die Lager der Kante durch Erfassen der Berührung der Kante durch den Messtaster ermittelt wird.
  • Ferner offenbart DE 10 2013 217 126 A1 ein Verfahren zum Feststellen von Abweichungen einer Ist-Lage eines Laserbearbeitungskopfes von einer Soll-Lage. Dabei werden mindestens zwei Bearbeitungslagen eines Laserbearbeitungskopfes, in denen ein vom Laserbearbeitungskopf ausgesandter Laserstrahl auf die gleiche Soll-Position des Werkstück gerichtet ist, verwendet. Von einer der Bearbeitungslagen aus wird eine Durchtrittsöffnung in das Werkstück eingebracht. In anderen Bearbeitungslagen wird dann Strahlung detektiert, die von der Wechselwirkung zwischen dem Laserstrahl und dem Werkstück erzeugt wird, wenn Ist-Lage und Soll-Lage voneinander abweichen.
  • Einem Aspekt dieser Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Strahlbearbeitungsmaschine anzugeben, dass eine zumindest teilautomatisierte Einstellung von Drehachsen erlaubt.
  • Zumindest eine dieser Aufgaben wird gelöst durch ein Verfahren nach Anspruch 1 und durch eine Strahlbearbeitungsmaschine nach Anspruch 11. Weiterbildungen sind in den Unteransprüchen angegeben.
  • In einem Aspekt umfasst ein Verfahren die Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von einer räumlichen Soll-Ausrichtung der Strahlachse, wobei die Strahlbearbeitungsmaschine eine zu kalibrierende Rotationsachse und ein Messmittel aufweist, die folgenden Schritte: Schneiden von Konturabschnitten mit einem Bearbeitungsstrahl in ein Testwerkstück von zwei Seiten, wobei die Konturabschnitte zu einer Soll-Ausrichtung der zu kalibrierenden Rotationsachse parallel verlaufen, Detektieren der Konturabschnitte mit dem Messmittel von einer Seite des Testwerkstücks zur Ermittlung der räumlichen Lage der Konturabschnitte und und Bestimmen der Abweichung der räumlichen Ausrichtung der Strahlachse der Strahlbearbeitungsmaschine von der räumlichen Soll-Ausrichtung basierend auf den räumlichen Lagen der Konturabschnitte im Vergleich zu Soll-Lagewerten, die einem Schneiden bei einer Soll-Ausrichtung zugeordnet sind.
  • In einem weiteren Aspekt betrifft ein Verfahren die Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von einer räumlichen Soll-Ausrichtung der Strahlachse eine Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks mit einem entlang der Strahlachse geführten Bearbeitungsstrahl. Die Strahlbearbeitungsmaschine ist insbesondere zum Halten eines plattenartigen Testwerkstücks mit zwei durch im Wesentlichen eine gemeinsame Flächennormalenausrichtung definierten Oberflächen ausgebildet und umfasst mindestens eine Translationsachse zur Herstellung einer Translationsbewegung zwischen dem Testwerkstück und der Strahlachse, mindestens eine Rotationsachse mit einem Drehbereich von mindestens 180° zur Ausrichtung der Strahlachse in Winkelstellungen um eine Soll-Ausrichtung der mindestens einen Rotationsachse und ein Messelement. Das Verfahren weist die folgenden Schritte auf:
    • – Bereitstellen des Testwerkstücks in einer Halteposition, in der die Soll-Ausrichtung der Strahlachse in einer ersten Winkelstellung und einer dazu um 180° gedrehten zweiten Winkelstellung jeweils entlang der Flächennormalenausrichtung zur Bearbeitung des Testwerkstücks ausgerichtet werden kann,
    • – Positionieren der Strahlachse in einer ersten Lage, in der die Soll-Ausrichtung der Strahlachse in der ersten Winkelstellung ist und der Bearbeitungsstrahl auf eine der Oberflächen gerichtet ist,
    • – Durchführen eines ersten Konturschnitts mit dem Bearbeitungsstrahl mit einem zur Soll-Ausrichtung der Rotationsachse parallel verlaufenden Vorderseitenkonturabschnitt,
    • – Positionieren der Strahlachse in einer zweiten Lage, in der die Soll-Ausrichtung der Strahlachse in der zweiten Winkelstellung ist und der Bearbeitungsstrahl auf die andere der Oberflächen gerichtet ist,
    • – Durchführen eines zweiten Konturschnitts mit dem Bearbeitungsstrahls mit einem zur Soll-Ausrichtung der Rotationsachse und damit zum Vorderseitenkonturabschnitt parallel verlaufenden Rückseitenkonturabschnitt,
    • – Formen mindestens einer an den Vorderseitenkonturabschnitt und/oder an den Rückseitenkonturab schnitt angrenzenden Aussparung im Werkstück,
    • – Antasten des Vorderseitenkonturabschnitts und des Rückseitenkonturabschnitt mit dem Messelement mit der gleichen Winkelstellung zur Ermittlung der räumlichen Lage des Vorderseitenkonturabschnitts und der räumlichen Lage des Rückseitenkonturabschnitts und
    • – Ableiten der Abweichung der räumlichen Ausrichtung der Strahlachse der Strahlbearbeitungsmaschine von der räumlichen Soll-Ausrichtung basierend auf der räumlichen Lage des Vorderseitenkonturabschnitts und der räumlichen Lage des Rückseitenkonturabschnitts.
  • In einem weiteren Aspekt weist eine Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks eine Werkstückhalterung zum Positionieren eines Werkstücks, insbesondere eines Testwerkstücks, und ein Strahlführungssystem zum Bereitstellen eines entlang einer Strahlachse geführten Bearbeitungsstrahls auf. Die Strahlbearbeitungsmaschine weist mindestens eine Translationsachse zur Herstellung einer Translationsbewegung zwischen dem Testwerkstück und der Strahlachse und mindestens eine Rotationsachse mit einem Drehbereich von mindestens 180° zur Ausrichtung der Strahlachse in Winkelstellungen um eine Soll-Ausrichtung der mindestens einen Rotationsachse auf. Ferner weist die Strahlbearbeitungsmaschine ein Messelement zum Antasten einer Schnittkante und eine Steuerungsvorrichtung zum Durchführen der zuvor erläuterten Verfahren auf.
  • Hierin werden Konzepte offenbart, die es erlauben, zumindest teilweise Aspekte aus dem Stand der Technik zu verbessern. Insbesondere ergeben sich weitere Merkmale und deren Zweckmäßigkeiten aus der folgenden Beschreibung von Ausführungsformen anhand der Figuren. Von den Figuren zeigen:
  • 1 eine schematische räumliche Darstellung eines Koordinatensystems eines 5-NC-Achsensystems für Werkzeugmaschinen,
  • 2 eine schematische Seitenansicht eines beispielhaften Strahlengangs in einem Strahlzuführungssystem mit einem Bearbeitungskopf,
  • 3 ein schematisches Flussdiagramm zur Verdeutlichung eines beispielhaften Ablaufs einer BC-Korrektur gemäß den hierin offenbarten Konzepten,
  • 4 eine 3D-Ansicht einer beispielhaften Messdüse,
  • 5 eine schematische Darstellung zur Verdeutlichung eines beispielhaften Schneidvorgangs mit einer Werkzeugmaschine,
  • 6A–C schematische Darstellungen zur Verdeutlichung von Fehlverläufen der Strahlachse,
  • 7 eine schematische Darstellung zur Verdeutlichung eines beispielhaften Vorderseitenschneidvorgangs,
  • 8 eine schematische Darstellung zur Verdeutlichung eines beispielhaften Rückseitenschneidvorgangs,
  • 9 eine schematische Darstellung zur Verdeutlichung eines beispielhaften Antastvorgangs,
  • 10A10C schematische Darstellungen von beispielhaften Schneidkonturen und
  • 11 eine schematische Darstellung von beispielhaften Schneidkonturen mit mindestens zwei Paaren von gegenüberliegenden Konturabschnitten.
  • Hierin beschriebene Aspekte basieren zum Teil auf der Erkenntnis, dass insbesondere mithilfe einer zumindest minimal schneidfähigen Messdüse Kinematiksetuparbeiten in Strahlbearbeitungsmaschine (z. B. laserbasierten Werkzeugmaschinen) teilautomatisiert werden können. Dies betrifft insbesondere die Kalibration der B-Achse und/oder der C-Achse und die Düsenmittigkeitsbestimmung.
  • Ferner beruht das hierin offenbarte Konzept darauf, dass durch eine rechnerische und/oder Messverfahren-bedingte Egalisierung des koaxialen Offsets zwischen Strahl und Messdüse ein exaktes Vermessen von Testschnittverläufen, z. B. Kanten eines Test-Rechtecks, ermöglicht werden kann. So wurde erkannt, dass derartige Konzepte ein Bestimmen eines eventuell vorliegenden Kinematikfehlers unter Ausnutzung von Achsredundanzen ermöglichen können. Bestimmte Kinematikfehler können bei Bedarf im Rahmen einer numerischen Ansteuerung korrigiert werden.
  • Das hierin beschriebene Vorgehen bezieht sich insbesondere auf eine Werkzeugmaschine, die über fünf numerisch ansteuerbare (NC-)Achsen verfügt, wobei die Integration weiterer NC-Achsen allgemein möglich ist. Die Werkstückbearbeitung erfolgt beispielsweise mit einem entlang eines gewünschten Schnittverlaufs geführten Laserstrahl.
  • Üblicherweise wird die Geometrie der Kinematik von 5-Achs-Lasermaschinen mathematisch in der Maschinensteuerung hinterlegt. Insbesondere werden Abweichungen vom Ideal als Versatzmaße des Fokuspunkts, der hierein auch als TCP (Tool Center Point) bezeichnet wird, hinterlegt. Dies kann beispielsweise basierend auf Nullstellung(en) einer oder mehrerer Orientierungsachsen für die in der Steuerung hinterlegte(n) Transformation(en) zwischen dem Werkstückbezugssystem und dem Maschinenbezugssystem erfolgen.
  • Die hierin offenbarten Konzepte können beispielsweise teilautomatisierte Einstellprozeduren zur Bestimmung der Versatzmaße und der Kalibrierung der Orientierungsachsen ermöglichen, um die genaue Position des TCPs im Raum zu ermitteln und zu gewährleisten. Basierend auf den vorgeschlagenen Konzepten kann ferner die Lage des Laserstrahls zur Bearbeitungsdüse erkannt und bevorzugt eine Konzentrizität des Laserstrahls zur Bearbeitungsdüse eingestellt werden. Das Einstellprozeduren können ferner unter Verwendung von Aktoren an der Bearbeitungsoptik auch vollautomatisiert umgesetzt werden. Das kann durch Verschieben beispielsweise eines Strahlführungsrohrs als auch über die Positionierung einer Fokussierlinse innerhalb der Bearbeitungsoptik durchgeführt werden.
  • 1 zeigt zur Verdeutlichung der NC-Achsen ein Maschinenbezugssystem mit einer X-Achse für eine horizontale Fahrbewegung z. B. eines Auslegers längs zu einem Maschinenkörper, einer Y-Achse für eine horizontale Fahrbewegung z. B. eines Y-Schlittens und einer Z-Achse für eine vertikale Fahrbewegung z. B. einer Z-Pinole.
  • Ferner ist in 1 eine mögliche Schwenkbewegung einer Bearbeitungsoptik um die Y-Achse, die sogenannte B-Achse, angedeutet. Übliche Schwenkwinkel liegen im Bereich von z. B. ±135°. Des Weiteren ist in 1 eine mögliche Drehbewegung der Bearbeitungsoptik um die Z-Achse, die sogenannte C-Achse, angedeutet. Die C-Achse kann eine Einfach- oder Mehrfachrotation der Bearbeitungsoptik erlauben. Derartige Bewegungsmöglichkeiten bieten beispielsweise in der 5-Achs-Lasermaschine TruLaser Cell 7000 eine hochflexibles System zum zwei- oder dreidimensionalen Schneiden und Schweißen.
  • In der in 1 gezeigten Nullstellung der C-Achse verläuft die B-Achse entlang der Y-Achse. Im dargestellten Fall des Maschinenbezugssystem bezieht sich die Weginformation für die X-, Y- und Z-Achsen auf die Koordinaten bezüglich eines Drehpunkts 1, der im Schnittpunkt der B-Achse mit der C-Achse liegt. Beispielsweise stellt ein Winkelgetriebe die Drehungen um die B-Achse und um die C-Achse bereit.
  • Zur Vollständigkeit sind in 1 ferner beispielhaft Bewegungsachsen für ein eingespanntes Werkstück gezeigt. Eine A1-Werkstückachse erlaubt eine Drehbewegung des Werkstücks im linken Arbeitsbereich und eine A2-Werkstückachse eine Drehbewegung des Werkstücks im rechten Arbeitsbereich. Das Werkstück kann beispielsweise jeweils waagerecht oder senkrecht eingespannt werden. Beispielsweise können eine oder mehrere der Translationsachsen X, Y und Z auch durch einen Bewegung des Werkstücks umgesetzt werden.
  • 2 zeigt eine beispielhafte Umsetzung der B-Achse und der C-Achse mit zwei Winkeleinstelleinheiten (nicht gezeigt) zum Positionieren und Ausrichten einer aus einem Bearbeitungskopf 11 austretenden Strahlachse S. Man erkennt die entlang der Z-Achse verlaufende C-Achse, den Drehpunkt 1 sowie die in der Zeichenebene von links nach rechts verlaufende B-Achse. Es ist die Nullstellung der C-Achse angenommen, so dass die B-Achse wie in 1 entlang der Y-Achse verläuft. Die Nullstellung der 2 wird üblicherweise mit Winkelsteuerungsparameter (B0, C0) beschrieben, d. h. es liegt kein Drehwinkel (0°) für eine Drehung aus der Nullstellung sowohl für die B-Achse als auch die C-Achse vor.
  • Der optische Strahlengang verläuft im Idealfall entlang der C-Achse entlang einer Strahlführungseinheit 11A in eine erste Umlenkeinheit 11B. Am Drehpunkt 1 auf einem ersten Ablenkspiegel 13 wird der Strahlengang auf die B-Achse abgelenkt und tritt in eine zweite Umlenkeinheit 11C ein. An einem Punkt 2 auf einem zweiten Ablenkspiegel 15 wird der Strahlengang ein zweites Mal umgelenkt, verläuft evtl. durch abschließende Fokussierelemente und eine an der zweiten Umlenkeinheit 11C befestigten Bearbeitungsdüse 17 zu einem Fokuspunkt 3, der zuvor auch als TCP (Tool Center Point) bezeichnet wurde. Der letzte Abschnitt des Strahlengangs definiert die Strahlachse S für die Werkstückbearbeitung. Die Bearbeitungsdüse 17 kann z. B. eine Schneid-, Schweiß- oder Multifunktionsdüse für die entsprechenden Bearbeitungsmodi der Werkzeugmaschine sein.
  • Der Strahlengang wird entlang der Z/C-Achse durch einen Pfeil 5A, zwischen dem Drehpunkt 1 und dem Punkt 2 durch einen Pfeil 5B und entlang der (idealen) Strahlachse durch einen Pfeil 5C in 2 verdeutlicht. Ein ideale Justierung angenommen erfolgt die Ablenkung an den Ablenkspiegeln jeweils um 90°. Die Pfeile 5A5C verdeutlichen die Ausbreitung eines ideal entlang der Z/C-Achse eingekoppelten Laserstrahls.
  • Mithilfe einer der Winkeleinstelleinheiten ist der erste Ablenkspiegel 13 um die Z-Achse drehbar und stellt den Freiheitsgrad der C-Achse bereit, wobei der Drehpunkt 1 (die idealer Justierung angenommen) stationär bleibt. Der zweite Ablenkspiegel 15 dreht mit dem ersten Ablenkspiegel 13 mit. Er ist ebenfalls mithilfe einer der Winkeleinstelleinheiten drehbar ausgebildet, um den Freiheitsgrad der B-Achse bereitzustellen. Die idealer Justierung angenommen verbleibt der Punkt 2 bei einer Drehung nur um die B-Achse stationär.
  • In der in 2 gezeigten Nullstellung der B- und C-Achsen befindet sich der TCP 3 im Abstand Y0 entlang der Y-Achse und im Abstand Z0 entlang der Z-Achse vom Drehpunkt 1.
  • Die Antriebsmotoren der Winkeleinstelleinheiten der B- und C-Achse sind beispielsweise Motoren mit Absolutwertgebern. Diese Motoren werden üblicherweise bei Inbetriebnahme auf die Absolutposition 0° referenziert. Geht diese Referenzierung verloren, z. B. nach einer Kollision der Bearbeitungsdüse 17 mit einem Werkstück, müssen die NC-Achsen, insbesondere die B-Achse und/oder die C-Achse erneut referenziert werden.
  • Zur Bearbeitung eines Werkstückes wird der TCP 3 anhand einer vorbestimmten programmierten Bahn über das Werkstück geführt. Die Geometrie der Kinematik ist dazu mathematisch in der Steuerung hinterlegt ist, so dass für eine bestimmte Position und Orientierung des Laserstrahls im Werkstückbezugssystem die entsprechenden Achsstellungen der Antriebe im Maschinenbezugssystem rückgerechnet werden können (Transformation). Die aktuelle, die jeweilige Anlage beschreibende, Kinematik kann mithilfe eines Satz von Versatzmaßen in der Steuerung hinterlegt und bei der Transformation berücksichtigt werden.
  • Besteht die Vermutung einer Dejustage, kann die Stellung der B- und/oder C-Achse z. B. durch Abfahren einer Referenzfläche an der Bearbeitungsdüse 17 überprüft werden, beispielsweise mit einer mechanischen Messuhr zur groben Bestimmung und Ausrichtung der Orientierung der B- und C-Achse. Bei Feststellung einer Abweichung von einem Referenzwert werden die B- und/oder C-Achsen neu kalibriert. Ferner können die B- und/oder C-Achsen neu in festen zeitlichen Kontrollabständen kalibriert werden.
  • Im Folgenden wird unter Bezugnahme auf die 3 bis 9 eine beispielhafte (teil-)automatisierte B- und/oder C-Kalibration zur Einstellung der Winkelsteuerungsparameter, insbesondere der Nulllage der BC-Achsen, beschrieben. Die 10 und 11 verdeutlichen anschließend beispielhaft Schneidkonturen, die für eine B- und/oder C-Kalibration eingesetzt werden können.
  • Eine BC-Kalibration erlaubt eine Einstellung der Absolutpositionen der Antriebe für die B-Achse und die C-Achse. Die Kalibration wird beispielhaft anhand der B-Achsen-Kalibration näher erläutert. Allgemein kann das hierin vorgeschlagene Kalibrationskonzept auch auf nur eine Drehachse (z. B. die B- oder die C-Achse) angewandt werden.
  • Die BC-Kalibration umfasst einen Vorderseitenschneidvorgang (Schritt 101V in 3) und einen Rückseitenschneidvorgang (Schritt 101R), an den sich Antastvorgänge (Schritt 103), eine Auswertung (Schritt 105) sowie evtl. die Übernahme von neuen Nullpunktparametern (Schritt 107) anschließen.
  • Die Kalibration basiert auf einem Antasten (durchgeführt von einer Seite) eines zuvor an einem Testwerkstück von zwei Seiten vorgenommenen Ausschnitts. Zum Gewährleisten eines einfach zu verarbeitenden Antastmesswerts ist die Geometrie der Düse im Bereich des räumlichen Antastens ein vorgegebener Eingangsparameter. Beispielsweise kann die Bearbeitungsdüse 17 durch eine Messdüse ersetzt oder ein Messdüsenansatz auf der Bearbeitungsdüse 17 angebracht werden oder die Geometrie der Bearbeitungsdüse 17 kann entsprechend ausgeführt sein. Allgemein liegt die Geometrie der Düse/Messdüse der Datenverarbeitung als zu berücksichtigende Information vor oder kann mithilfe einer RF-ID der Düse eingelesen werden. Die Schneidvorgänge setzten insbesondere voraus, dass der Bearbeitungsstrahl die Düse nicht streift und entsprechend eine gewisse Mindeststrahlmittigkeit gegeben ist.
  • 4 zeigt eine beispielhafte Messdüse 21, die eine für den Antastvorgang günstige Geometrie aufweist. Die Messdüse 21 ist zylinderförmig ausgebildet, so dass sich eine Zylindermantelfläche 23 im gleichen radialen Abstand R entlang der Zylinderachse erstreckt. Im monierten Zustand verläuft der Bearbeitungsstrahl in einer Strahlführungsöffnung 27 durch die Messdüse 21 und die Zylinderachse bildet eine ideale Strahllage 25 (Soll-Ausrichtung). Die Zylindermantelfläche 23 erlaubt ein seitliches Antasten einer Schnittkante, wobei auch bei einer nicht-orthogonalen Ausrichtung der Messdüse zu einer Messebene beim Antasten in entgegengesetzte Richtungen im Wesentlichen immer der gleich Versatz der idealen Strahllage 25 zum Kontaktpunkt auf der Zylindermantelfläche 23 besteht. Ferner weist die Messdüse 21 eine definierte, insbesondere im Wesentlichen orthogonal zur idealen Strahllage 25 verlaufende kreisförmige Frontantastfläche 29 auf. Diese kann dazu verwendet werden, um grob die Lage des Werkstücks zu ermitteln. Ebenso ist es möglich die Werkzeuglänge zu bestimmen, wobei die Genauigkeit des Verfahrens mit dem Radius R der Messdüse abnehmen kann. Die Messdüse 21 ist schneidfähig ausgebildet, d. h. sie erlaubt es, eine Kontur in einem beispielsweise 1 mm bis 2 mm dicken Blech auszuschneiden.
  • Die Abstandsregelung basiert beispielsweise auf einer kapazitiven Messung. Die Kapazität bildet sich dabei zwischen der Schneiddüse (bzw. Messdüse) zum Werkstück aus. Die gemessene Kapazität kann von der Geometrie der Werkstückoberfläche als auch der eingesetzten Düse abhängen. Sollte die Düse gewechselt werden, wird üblicherweise eine Kennlinie aufgenommen, welche die ausgebildete Kapazität zum Abstand beschreibt. Da sich die Geometrie der Messdüse von der Schneiddüse unterscheiden, wird die Kennlinie üblicherweise mit dem aktuellen Rüstzustand neu aufgenommen. Es wird angemerkt, dass die Schneidqualität durch den Abstand zwischen Düse und Werkstück beeinflusst werden kann. Da es beim genauen Messen auf eine gute Kantenqualität ankommt, kann das Ergebnis der Kalibrierung durch eine mangelhafte Abstandsmessung nachteilig beeinflusst werden.
  • 5 verdeutlicht allgemein einen Schneidvorgang mit der Orientierung (den Bearbeitungsparametern) (B90, C0), wie er beispielsweise für den Vorderseitenschneidvorgang (Schritt 101V) der BC-Kalibration eingesetzt werden kann. Ein Testwerkstück 31 wird in die beispielsweise YZ-Ebene des in 1 gezeigten Bezugssystems in eine Werkzeugmaschine eingespannt. Oberflächen 32A, 32B des Testwerkstücks 31 sind entsprechend in die (–X)-Richtung (d. h. in Richtung einer Vorderseite 31A bzgl. des Testwerkstücks 31) und (+X)-Richtung (d. h. in Richtung einer Rückseite 31B bzgl. des Testwerkstücks 31) ausgerichtet und haben entsprechend eine Flächennormalenausrichtung entlang der X-Achse. Das Testwerkstück 31 kann z. B. ein planes Test-Blech mit einer Dicke von beispielsweise 1 mm sein, das sich mit der Messdüse 21 schneiden lässt.
  • Die Darstellung des in 5 gezeigten Schneidvorgangs verdeutlicht die Situation einer idealen Justage, d. h. korrekt eingestellte Absolutpositionen für die B-Achse und die C-Achse. Entsprechend trifft der Laserstrahl 5 orthogonal auf das Testwerkstück 31. 5 zeigt einen entsprechenden Idealstrahlengang 35, der senkrecht zu den Oberflächen 32A, 32B des plattenförmigen Testwerkstücks 31 verläuft. Auch die Strahlachse S ist orthogonal auf das Testwerkstück 31 ausgerichtet. Der Idealstrahlengang 35 gewährleistet eine Soll-Ausrichtung S0 der Strahlachse für jede Winkelstellung der B- und C-Achsen, wobei die Soll-Ausrichtung S0 nur durch die Bearbeitungsparameter für die Werkzeugorientierung gegeben ist.
  • Bei der in 5 gezeigten Nullstellung der C-Achse und der 90°-Stellung der B-Achse befindet sich der TCP 3 im Abstand Y0 entlang der Y-Achse und im Abstand X0 entlang der X-Achse vom Drehpunkt 1. Der Abstand X0 bei den vorliegenden Bearbeitungsparametern (B90, C0) entspricht dem Abstand Z0 in 2. Der TCP 3 liegt im Testwerkstück 31, so dass mit der Messdüse 21 eine Kontur in das Testwerkstück 31 geschnitten werden kann. Zur Verdeutlichung ist in 5 ein in den TCP 3 fokussierte Laserstrahl 5 schematisch angedeutet. Bei einer idealen Justierung verläuft der Strahlengang des Laserstrahls 5 gemäß den analog zu 2 eingezeichneten Pfeilen 5B, 5C entlang der B-Achse bzw. entlang der Strahlachse 35.
  • Die 6A bis 6C zeigen mögliche Fehlverläufe der Strahlachse bzgl. der in 5 gezeigten Idealjustage.
  • 6A verdeutlicht den Fall, dass beispielsweise durch Anstoßen an einem Werkstück die Winkeleinstelleinheit der C-Achse aus der ursprünglichen Nullstellung bewegt wurde. In 6A ist die neue Ausrichtung der Strahlachse bei Fehlstellung C-Achse und entsprechend verdrehte B-Achse 90° (in 6A gestrichelt und mit B' gekennzeichnet) zur ursprünglichen Ausrichtung der B-Achse in Y-Richtung (in 6A strich-punktiert dargestellt) um wenige Grad verdreht angedeutet. Der Strahlengang wie die Ablenkungen um 90° sowie der zentraler Durchgang der Strahlachse S durch die Messdüse 21 wurde durch den Stoß nicht beeinflusst, so dass TCP 3' auf einem Kreis in Richtung des Pfeils 5D um den Drehpunkt 1 um wenige Grad verdreht vom TCP 3 zum Liegen kommt. Die Soll-Ausrichtung S0 – illustriert in 6A durch den Idealstrahlengang 35 – weicht somit von der Ausrichtung der Strahlachse S durch einen Drehwinkel ab.
  • 6B verdeutlicht den Fall, dass z. B. durch einen Parallelversatz des Eingangsstrahls zur C-Achse zwar die Ablenkung an den Ablenkspiegeln 13, 15 um jeweils 90° erhalten bleibt, jedoch der Laserstrahl nicht mehr entlang der C- und B-Achse verläuft. Die Richtung und Größe des Strahlversatzes kann (als mechanische Abweichung und/oder optischer Fehler) dabei von den jeweiligen Ausrichtungen der B-Achse und der C-Achse abhängen. Dadurch ergibt sich, dass auch die Strahlachse S um einen kleinen Strahlversatz verschoben aber parallel zum Idealstrahlengang 35 verläuft. 6B zeigt einen sich ergebenden TCP 3'', der bzgl. des TCP 3 in Y-Richtung verschobenen ist. Man erkennt in 6B ferner den nicht mehr zentralen Durchgang der Strahlachse S durch die Strahlführungsöffnung 27 der Messdüse 21. Alternativ kann eine Verschiebung des Spiegels 15 oder der Fokussieroptik zu einem beispielsweise nahezu parallelen Strahlversatz der Strahlachse S führen.
  • Tritt der Eingangsstrahl nicht mehr parallel zur C-Achse ein, kann sich eine Winkelablenkung der Strahlachse S bzgl. des Idealstrahlengang 35 ergeben. Bei Rotation um die C- oder B-Achse führt dies zu einem sogenannten Strahltaumel der Strahlachse S um den Idealstrahlengang 35. In 6C sind für die Stellungen C0B90 und C0B-90 entsprechende Durchgänge der Strahlachse S durch die Messdüse 21 mit den zugehörigen TCPs 3''' zur Verdeutlichung in einer gemeinsamen Figur dargestellt.
  • Die Ermittlung derartiger Fehlstellungen der Strahlachse S und, wenn möglich, deren zumindest teilweise automatisierten Korrektur wird durch das im Folgenden beschriebene Verfahren einer BC-Kalibration näher erläutert. Dabei wird es durch eine entsprechende Einstellung von Bearbeitungsparametern und ein Ausschneiden von beiden Seiten möglich, zusätzlichen Informationsgehalt in einem Antastvorgang, der von einer Seite aus erfolgt, zu gewinnen. Der Informationsgehalt kann für eine Identifikation einer möglichen B- und/oder C-Dejustage genutzt werden, so dass eine entsprechende Korrektur der Dejustage vorgenommen werden kann.
  • Zur Erläuterung des Verfahrens zur Bestimmung einer Abweichung einer räumlichen Ausrichtung der Strahlachse S einer Strahlbearbeitungsmaschine von einer räumlichen Soll-Ausrichtung S0 der Strahlachse (Idealstrahlengang 35) gehen die folgenden 7 und 8 beispielshaft von einer Dejustage der C-Achse (analog 6A) aus. Analoge Überlegungen und Korrekturverfahren können auch für eine Dejustage z. B. der B-Achse oder einer Überlagerung von C- und B-Achse durchgeführt werden.
  • Die 7 und 8 zeigen jeweils eine Aufsicht auf die X-Y-Ebene (linke Seite der 7 bzw. rechte Seite der 8) sowie eine Seitenansicht des Testwerkstücks 31 (Z-Y-Ansicht) zur Verdeutlichung des vorgenommenen Konturschnitts (rechte Seite der 7 bzw. linke Seite der 8).
  • Vorausgesetzt wird, dass die zu korrigierende Strahlbearbeitungsmaschine zum Halten des plattenförmigen Testwerkstücks 31 ausgebildet ist. Das Testwerkstücks 31 unterteilt entsprechend den Bearbeitungsraum in eine Vorderseite 31A und eine Rückseite 31B mit zugehörigen Oberflächen 32A, 32B des Testwerkstücks 31 (siehe auch 5), die durch im Wesentlichen eine Flächennormalenausrichtung definiert sind. Die Flächennormalenausrichtung stellt für den Fall einer plattenartigen Ausbildung des Testwerkstücks 31 mit plan-parallelen Oberflächen 32A, 32B die Orientierung der Flächennormalen auf die Oberflächen 32A, 32B der Vorderseite 31A bzw. der Rückseite 31B dar.
  • Der Fachmann wird anerkennen, dass beispielsweise auch eine leichte Keilform des Werkstücks, solange dies schneidbar bleibt, verwendet werden kann, da im Prinzip auch die leichte Keilform durch eine Flächennormalenausrichtung und in diesem Fall den Keilwinkel definiert ist.
  • Die Strahlbearbeitungsmaschine weist ferner mindestens eine, beispielsweise drei, Translationsachse zur Herstellung einer 3D-Translationsbewegung zwischen dem Testwerkstück 31 und der Strahlachse S sowie mindestens eine Rotationsachse mit einem Drehbereich von mindestens 180° zur Ausrichtung der Strahlachse in Winkelstellungen um eine Soll-Ausrichtung der Rotationsachse auf (siehe auch 1). Ein zweite beispielsweise orthogonal verlaufende Rotationsachse kann ebenfalls durch die Strahlbearbeitungsmaschine bereitgestellt werden.
  • Ferner umfasst die Strahlbearbeitungsmaschine ein Messelement. Im in den 7 und 8 gezeigten Fall ist dies die Messdüse 21.
  • 7 zeigt eine gewählte Halteposition des Testwerkstücks 31, in der die Soll-Ausrichtung (S0) der Strahlachse in einer ersten Winkelstellung B90 – gezeigt in 7 – und in einer dazu um 180° gedrehten zweiten Winkelstellung B-90 – siehe 8 – jeweils entlang der Flächennormalenausrichtung zur Bearbeitung des Testwerkstücks 31 ausgerichtet werden kann. Den Anordnungen gemäß 7 und 8 liegt also eine Drehung um die B-Achse zum Einstellen der Bearbeitungsparameter (B90, C0) in 7 bzw. (B-90, C0) in 8 zugrunde.
  • Für den Vorderseitenschneidvorgang (Schritt 101V) der BC-Kalibration wird der Bearbeitungskopf 11 mit der Messdüse 21 „von oben” auf der Vorderseite 31A des Testwerkstücks 31 positioniert. Der Bearbeitungskopf 11 wird dann entsprechend mit den Bearbeitungsparametern (B90, C0) ausgerichtet, so dass die Messdüse 21 auf die Oberfläche 32A des Testwerkstücks 31 gerichtet ist und der TCP 3 im Testwerkstück 31 liegt, so dass mit der Messdüse 21 eine Kontur in das Testwerkstück 31 geschnitten werden kann. Aufgrund der Fehlstellung in der C-Achse verläuft allerdings die Strahlachse S nicht orthogonal zur Oberfläche 32A des Werkstücks 31. Während des Schneidvorgangs des Schritts 101V bleibt der Bearbeitungskopf 11 auf der Vorderseite 31A des Testwerkstücks 31 und fährt eine Kontur ab.
  • Allgemein wird somit in 7 die Strahlachse S in einer ersten Lage positioniert, in der die Soll-Ausrichtung S0 der Strahlachse S in der ersten Winkelstellung B90 ist und die Strahlachse S auf der Vorderseite 31A des Testwerkstück 31 (nicht orthogonal) auf die Oberfläche 32A gerichtet ist. Dagegen ist in 8 die Strahlachse S in einer zweiten Lage positioniert, in der die Soll-Ausrichtung S0 der Strahlachse S in der zweiten (um 180° zur ersten Winkelstellung um die B-Achse gedrehten) Winkelstellung B-90 ist und die Strahlachse S auf der Rückseite 31B des Testwerkstück 31 (nicht orthogonal) auf die Oberfläche 32B gerichtet ist.
  • In 7 ist die aufgrund der Fehlstellung der C-Achse leicht zur Soll-Ausrichtung verdrehte Ist-Ausrichtung der Strahlachse S mit durchgezogenen Linien dargestellt. Zusätzlich ist zur Verdeutlichung der Fehlstellung der Strahlachse S in 7 die Positionierung der Strahlzuführung und des Bearbeitungskopf 11 im Fall der Idealjustage mit der Soll-Ausrichtung S0 der Strahlachse S grau hinterlegt.
  • Mit der in 7 gezeigten Winkelfehlstellung wird im Schneidvorgang (Schritt 101V) eine Kontur KA mit mindestens einem zur Soll-Ausrichtung der Rotationsachse (Nullstellung) parallel verlaufenden Vorderseitenkonturabschnitt ausgeschnitten. Dieser wird dadurch erzeugt, dass während des Schneidvorgangs einer Translationsbewegung der Strahlachse S entlang der er angenommenen Soll-Ausrichtung/Nullstellung der Rotationsachse vorgenommen wird.
  • Gemäß der Ansicht der Z-Y-Ebene in 7, rechte Seite, umfasst die Kontur KA beispielsweise zwei parallel zur C-Achsen-Nullstellung, d. h. entlang der Z-Achse, verlaufende Vorderseitenkonturabschnitte KA1 und zwei parallel zur (ideal ausgerichteten) B-Achsen-Nullstellung, d. h. entlang der Y-Achse, verlaufende Vorderseitenkonturabschnitte KA2, die einen rechteckigen Ausschnitt im Testwerkstück 31 bilden.
  • Da eine Dejustage der C-Achse vorliegt, ist die Strahlachse S trotz Einstellen der in 5 verdeutlichten Bearbeitungsparametern (B90, C0) um wenige Grad gegen den Uhrzeigersinn bzgl. der Flächennormalenausrichtung des Testwerkstücks 31 verdreht, d. h. der Laserstrahl trifft nicht senkrecht auf das Testwerkstück 31. Dies bewirkt, dass die geschnittene Kontur KA in seiner Position in (+Y)-Richtung verschoben ist. 7 zeigt in der Z-Y-Ansicht die geschnittene Kontur KA als durchgezogene Linie(n). Ergänzend ist die (Soll-)Lage des Rechtecks bei Idealjustage mit gepunkteten Linien 41 angedeutet.
  • Das ausgeschnittene Rechteck stellt einen Konturschnitt mit zwei Paaren von gegenüberliegenden Vorderseitenkonturabschnitten KA1, KA2 dar, die jeweils parallel zu der idealen C- bzw. der idealen B-Achse, d. h. parallel zur Z-Achse bzw. zur Y-Achse, verlaufen. Man erkennt, dass sich die Dejustage der C-Achse nicht auf die Z-Positionen der in Y-Richtung (d. h. entlang der idealen B-Achse) verlaufenden Konturabschnitte KA2 auswirkt.
  • Der Informationsgehalt dieser einseitig erzeugten Konturabschnitte KA1, KA2 ist insofern beschränkt, als dass er es nicht erlaubt zwischen einem Strahlversatz gemäß z. B. 6B und einem Drehstellungsfehler gemäß 6A zu differenzieren.
  • Für den nachfolgenden in 8 gezeigten Rückseitenschneidvorgang (Schritt 101R in 3) wird – nach einer entsprechenden Translationsbewegung – der Bearbeitungskopf 11 mit der Messdüse 21 „von oben” auf der Rückseite 31B bzgl. des Testwerkstücks 31 positioniert und die Strahlachse S um die B-Achse um 180° gedreht, so dass die Strahlachse S auf die Oberfläche 32B des Testwerkstück 31 gerichtet ist und der TCP 3 im Testwerkstück 31 liegt. D. h., für den Schritt 101R der BC-Kalibration ist der Bearbeitungskopf mit den Bearbeitungsparametern (B90, C0) ausgerichtet. Anschließend wird mit dem aus der Messdüse 21 austretendem Bearbeitungsstrahl 5 eine (oder mehrere) Rückseitenkontur(en) KB, KB' in das Testwerkstück 31 geschnitten. Allerdings verläuft die Strahlachse aufgrund der Fehlstellung auch während des Rückseitenschneidvorgangs nicht orthogonal zur Oberfläche 32B des Werkstücks 31. Während des Schneidvorgangs des Schritts 101R verbleibt der Bearbeitungskopf auf der Rückseite 31B des Testwerkstücks 31.
  • Mit den Bearbeitungsparametern (B-90, C0) werden z. B. zwei Rechtecke als Rückseitenkonturen KB und KB' in das Testwerkstück 31 geschnitten. 8 zeigt in der Z-Y-Ansicht die geschnittenen Rechtecke KB und KB' mit strich-punktierten Linien. Ferner ist die (Soll-)Lage der Rechtecke bei vorliegender Idealjustage mit gepunkteten Linien 43 angedeutet. Aufgrund der Dejustage der C-Achse ist die Strahlachse S trotz Einstellen der Bearbeitungsparametern (B-90, C0) ebenfalls um wenige Grad gegen den Uhrzeigersinn bzgl. der Flächennormalausrichtung des Testwerkstücks 31 verdreht. Somit trifft der Laserstrahl 5 nicht senkrecht auf des Testwerkstück 31 und die geschnittenen Rechtecke KB und KB' sind in ihren Lagen in (–Y)-Richtung bzgl. der Rechtecklagen bei Idealjustage (Linien 43) verschoben.
  • Eine alternative Ausgangslage für den zweiten Schneidvorgang kann beispielsweise mit den Bearbeitungsparametern (B90, C180) eingenommen werden. Letztere Drehung um die C-Achse kann beispielsweise auch in Ausgestaltungen der Strahlbearbeitungsmaschine mit nur einer Drehachse (hier der C-Achse) zur Bereitstellung von Positionen für das Schneiden der Vorder- und Rückseitenkonturen genutzt werden.
  • Jedes der Rechtecke KB und KB' stellt einen Konturschnitt mit jeweils zwei Paaren von gegenüberliegenden Rückseitenkonturabschnitten KB1, KB2 dar, die entsprechend parallel zu der idealen C- bzw. der idealen B-Achse verlaufen. Man erkennt, dass sich die Dejustage der C-Achse wiederum nicht auf die Z-Positionen der in Y-Richtung (d. h. entlang der idealen B-Achse) verlaufenden Konturabschnitte KB2 auswirkt.
  • Einen zentralen Durchgang der Strahlachse durch die Messdüse 21 angenommen nähern sich der in Z-Richtung verlaufende oberen bzw. untere Konturabschnitte KA1, KB1 des Rechtecks KA und des Rechtecks KB symmetrisch einer Mittellinie 45 zwischen den „idealen Konturabschnitten” in (+Y)- bzw. (–Y)-Richtung an. Es wird angemerkt, dass bei einem reinen Strahlversatz in der Messdüse 21 (gemäß 6B) eine Verschiebung und keine Annäherung erfolgen würde.
  • Die Schneidvorgänge zusammenfassend wird über die Konturabschnitte ein Informationsgehalt über Drehachsen-Dejustage und/oder Strahlversatz bereitgestellt.
  • Dieser wird in den nachfolgend beschriebenen Antastvorgängen und der sich anschließenden Auswertung (Schritt 103 in 3) gewonnen, wobei die Antastvorgänge von einer Seite aus, beispielsweise mit Bearbeitungsparametern (B-90, C0) von der Rückseite 31A aus, erfolgen.
  • Die 9 zeigt wie 8 eine Seitenansicht des Testwerkstücks 31 (Z-Y-Ansicht) zur Verdeutlichung des vorgenommenen Antastens einer Kante und eine Aufsicht auf die X-Y-Ebene (rechte Seite der 8) zur Verdeutlichung der Position der Messdüse 21. In 9 sind beispielhaft eine Antastposition 47A der Messdüse 21 beim Antasten des Konturabschnitts KA1 (Darstellung mit durchgezogenen Linien) und eine Antastposition 47B der Messdüse 21 beim Antasten des Konturabschnitts KB1 (Darstellung mit gepunkteten Linien) gezeigt.
  • Zum Antasten der Kanten KA1 bzw. KB1 wird der Drehpunkt 1 in einem Antastabstand XA/XB von der Oberfläche 32B des Testwerkstücks 31 positioniert, bei dem die Messdüse 21 in den jeweiligen Ausschnitt hineinragt. Der Antastabstand XA/XB ist dabei so gewählt, dass die Messdüse 21 in das ausgeschnittene Rechteck KA, KB soweit hineinragt, dass ein seitlicher Antastvorgang immer zu einer Kontaktierung der Kanten mit der Mantelfläche 23 führt. Für die Auswertung werden z. B. die zugehörigen Y- und Z-Werte des Drehpunkts 1 festgehalten. Aufgrund der zylindrischen Form der Messdüse 21 sind die Antastvorgänge nicht von der Messdüsenform beeinflusst, da sowohl ein Antasten in (+Y)- oder (–Y)-Richtung jeweils einen gleichen gemessenen Abstand zur idealen Strahlachse (d. h. der Zylinderachse durch die Messdüse 21) einbezieht.
  • Da sich auch die Mantelfläche 23, bzw. die zugehörige Zylinderachse der Messdüse 21, unter dem Kippwinkel zur Flächennormalenausrichtung erstreckt, wirkt sich die Verkippung – wie in 9 gezeigt – derart auf den ersten Antastvorgang aus, dass die Y-Position des Konturabschnitts KA1 ein im Vergleich zum Fall der Idealjustage größerer Y-Wert des Drehpunkts 1 zugeordnet wird. D. h., der Drehpunkt 1 kann in Y-Richtung näher an die Kante KA1, in 9 bis auf den Abstand YKA1, heranfahren, als es der Fall bei der Idealjustage wäre. Ebenso kann der Drehpunkt 1 in Y-Richtung an die Kante des Konturabschnitts KB1 näher, in 9 bis auf den Abstand YKB1, heranfahren. Daraus ergibt sich ein Ist-Abstand ΔY der Konturabschnitte KA1 und KB1.
  • Im zuvor beschriebenen Antastvorgang wird die gleiche Winkelstellung wie die des Rückseitenschneidvorgangs verwendet. In diesem Zusammenhang sei vermerkt, dass zwar allgemein der Vorderseitenschneidvorgang und der Rückseitenschneidvorgang bei entsprechend invertierten Winkelstellungen erfolgt, der Antastvorgang allerdings auch mit einer davon abweichenden Winkelstellung durchgeführt werden könnte, solange beide Antastkanten mit der gleichen Stellung angetastet werden.
  • Man erkennt: Je mehr der Ist-Abstand ΔY der Konturabschnitte KA1 und KB1 vom zugeordneten Soll-Abstand abweicht, desto größer ist die Winkelabweichung der C-Achse von der Idealjustage. Ist der Ist-Abstand ΔY größer als der Soll-Abstand, handelt es sich in der Anordnung gemäß 9 um eine Verdrehung gegen den Urzeigersinn; ist der Ist-Abstand ΔY kleiner, handelt es sich um eine Verdrehung im Urzeigersinn. Aus der Verschiebungsrichtung einer gemessenen Mitte mY zwischen den Konturabschnitten KA1 und KB von der Idealmittellinie kann man auf den Strahlversatz in der Messdüse 21 schließen.
  • Allgemein kann mithilfe der bekannten Geometrie insbesondere der Messdüse 21 aus den, für die verschiedenen Konturkanten gemessenen, X- und Z-Positionen des Drehpunkts 1 auf vorzunehmende Korrekturwinkel hinsichtlich der B- und C-Achse zurückgerechnet werden. Dabei wird durch eine rechnerische Egalisierung des koaxialen Offsets zwischen Strahlachse und Messdüse ein exaktes Vermessen der Konturabschnitte ermöglicht. Das Ergebnis der Messung ermöglicht dann unter Ausnutzung der Achsredundanzen ein Bestimmen des Kinematikfehlers, der nachfolgend in der NC-Steuerung automatisch korrigiert werden kann.
  • Beispielsweise errechnet die NC-Steuerung aus den Messwerten die tatsächliche Winkelposition der B-Achse und der C-Achse und zeigt die korrigierte Achsposition auf der Bedienoberfläche an. Nach Übernahme der Werte durch den Bediener setzt die Steuerung diese Achsposition als Absolutposition, d. h. als neue „Nulllage”, für die weitere Werkstückbearbeitung an (Schritt 109 in 3). Eine genauere Bestimmung der neuen exakten „Nulllage” ist z. B. iterativ möglich. So kann ab einer erfassten Schwellwertabweichung von z. B. 0,02° eine Korrektur mehrfach durchgeführt werden, um auf eine Abweichung von z. B. kleiner 0,005° zu kommen.
  • Vorteile der hierin offenbarten Vorgehensweisen sind unter anderem die Möglichkeit zur automatisierten Bearbeitung der Testwerkstücke und zur automatisierten Vermessung im Anschluss. Ein Eingriff des Bedieners kann lediglich zum Rüsten der Messdüse und der Testwerkstücke und evtl. Korrektur der Düsenmittigkeit erforderlich sein. Die verbleibenden Schritte können automatisiert ablaufen. Dies reduziert den erforderlichen Zeitaufwand für die Überprüfung/Nachjustage der BC-Achsen, welche üblicherweise alle acht Stunden und nach jeder Kollision durchzuführen ist. Ferner kann die Fehleranfälligkeit des Messverfahrens gegenüber eine händischen Vermessung und Übernahme der Ergebnisse in die Steuerung reduziert werden.
  • Im beschriebenen Verfahren wurde eine Messdüse als Messmittel in Form eines taktilen Messelement verwendet. Der Fachmann kann leicht erkennen, dass sich das Verfahren ebenso mit weiteren insbesondere nicht taktilen Detektionsmethoden wie z. B. die Verwendung elektrischer, magnetischer, optischer oder akustischer Messmittel durchführen lässt. Dabei ist es insbesondere auch möglich ein Detektieren mit dem Laserstrahl selbst als Hilfsmittel zur Detektion zu nutzen.
  • Zwar wurden in der zuvor beschriebenen Vorgehensweise Translationsbewegungen des Bearbeitungskopfes vorgenommen, jedoch wird der Fachmann leicht erkennen, dass alternativ eine oder mehrere Translationsbewegungen ebenfalls durch eine Werkstückhalterung der Werkzeugmaschine übernommen werden können, so dass das Werkstück anstelle des Bearbeitungskopfes linear verschoben wird.
  • Ferner wurde im zuvor beschriebenen Beispiel die Korrektur anhand von zwei Rechtecken bestimmt, jedoch wird der Fachmann leicht erkennen, dass alternative Konturformen je nach Messvorgang und zugrundeliegender Strahlbearbeitungsmaschine genutzt werden können.
  • Bei Strahlbearbeitungsmaschinen mit nur einer Drehachse wird nur ein linearer Strahlabschnitt je Konturschnitt benötigt. Die 10A und 10B zeigen beispielhaft ausgeschnittene Halbkreise HA (von der Vorderseite) und HB (von der Rückseite), deren lineare Konturabschnitte entweder einen zu vermessenden, zentral angeordneten Steg ausbilden (10A) oder ein zu vermessendes Außenmaß (10B) bereitstellen.
  • In einer weiteren in 10C gezeigten Ausführungsform können sich die Halbkreise HA und HB teilweise überlappen, so dass ein Herausfahren aus den Ausschnitten, d. h. ein Bewegen der Messdüse in X-Richtung, beim Wechseln vom Antasten des Vorderseitenkonturabschnitts zum Antasten des Rückseitenkonturabschnitts nicht mehr notwendig ist.
  • Ferner können Strukturen für mehrere Drehachsen vorgesehen werden. Beispielsweise zeigt 11 zwei sich überlappende Vielecke VA und VB, die jeweils Konturabschnittpaare in zwei Raumrichtungen umfassen. Aufgrund der Überlappung ist auch hier ein Herausfahren der Messdüse 21 aus der Ebene des Testwerkstücks 21 nicht notwendig. Die Konturabschnitte können z. B. die zuvor beschriebene B- und C-Achsenkalibration ermöglichen.
  • Insbesondere mit Blick auf die in 10C und 11 gezeigten Konturbeispiele sind die Vorderseitenkontur und/oder die Rückseitenkontur nicht zwingendermaßen geschlossene Konturen, solange sich aus ihnen Konturabschnitte zum Antasten formen lassen.
  • Neben den hierin basierend auf drei Translationsachsen beschriebenen Ausführungsbeispielen des Verfahrens zur Achsenkalibrieren sind analog Verfahren mit z. B. zwei Translationsachsen möglich, falls nicht in die Kontur eingetaucht werden muss und beispielsweise optisch (z. B. mit einer Kamera koaxial zum Strahl) detektiert wird.
  • Es wird explizit betont, dass alle in der Beschreibung und/oder den Ansprüchen offenbarten Merkmale als getrennt und unabhängig voneinander zum Zweck der ursprünglichen Offenbarung ebenso wie zum Zweck des Einschränkens der beanspruchten Erfindung unabhängig von den Merkmalskombinationen in den Ausführungsformen und/oder den Ansprüchen angesehen werden sollen. Es wird explizit festgehalten, dass alle Bereichsangaben oder Angaben von Gruppen von Einheiten jeden möglichen Zwischenwert oder Untergruppe von Einheiten zum Zweck der ursprünglichen Offenbarung ebenso wie zum Zweck des Einschränkens der beanspruchten Erfindung offenbaren, insbesondere auch als Grenze einer Bereichsangabe.

Claims (16)

  1. Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse (S) einer Strahlbearbeitungsmaschine von einer räumlichen Soll-Ausrichtung (S0) der Strahlachse (S), wobei die Strahlbearbeitungsmaschine eine zu kalibrierende Rotationsachse (B, C) und ein Messmittel aufweist, wobei das Verfahren die folgenden Schritte aufweist: Schneiden von Konturabschnitten (KA1, KB2) mit einem Bearbeitungsstrahl (5) in ein Testwerkstück (31) von zwei Seiten, wobei die Konturabschnitte (KA1, KB2) zu einer Soll-Ausrichtung der zu kalibrierenden Rotationsachse (B, C) parallel verlaufen, Detektieren der Konturabschnitte (KA1, KA2) mit dem Messmittel von einer Seite des Testwerkstücks (31) zur Ermittlung der räumlichen Lage der Konturabschnitte (KA1, KB1) und Bestimmen der Abweichung der räumlichen Ausrichtung der Strahlachse (S) der Strahlbearbeitungsmaschine von der räumlichen Soll-Ausrichtung (S0) basierend auf den räumlichen Lagen der Konturabschnitte (KA1, KB1) im Vergleich zu Soll-Lagewerten die einem Schneiden bei der Soll-Ausrichtung zugeordnet sind.
  2. Verfahren nach Anspruch 1, wobei die Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks mit einem entlang der Strahlachse (S) geführten Bearbeitungsstrahl (5) und insbesondere zum Halten eines plattenartigen Testwerkstücks (31) mit zwei durch im Wesentlichen eine gemeinsame Flächennormalenausrichtung definierten Oberflächen (32A, 32B) ausgebildet ist und wobei die Strahlbearbeitungsmaschine mindestens eine Translationsachse (X, Y, Z) zur Herstellung einer Translationsbewegung zwischen dem Testwerkstück (31) und der Strahlachse (S), mindestens eine Rotationsachse (B, C) mit einem Drehbereich von mindestens 180° zur Ausrichtung der Strahlachse (S) in Winkelstellungen um eine Soll-Ausrichtung der mindestens einen Rotationsachse (B, C) und das Messmittel umfasst, wobei das Verfahren die folgenden Schritte aufweist: Bereitstellen des Testwerkstücks (31) in einer Halteposition, in der die Soll-Ausrichtung (S0) der Strahlachse (S) in einer ersten Winkelstellung (B90) und einer dazu um 180° gedrehten zweiten Winkelstellung (B-90) jeweils entlang der Flächennormalenausrichtung zur Bearbeitung des Testwerkstücks (31) ausgerichtet werden kann, Positionieren der Strahlachse (S) in einer ersten Lage, in der die Soll-Ausrichtung (S0) der Strahlachse (S) in der ersten Winkelstellung (B90) ist und der Bearbeitungsstrahl (5) auf eine der Oberflächen (32A) gerichtet ist, Durchführen eines ersten Konturschnitts (KA) mit dem Bearbeitungsstrahl (5) mit einem zur Soll-Ausrichtung der Rotationsachse (B, C) parallel verlaufenden Vorderseitenkonturabschnitt (KA1), Positionieren der Strahlachse in einer zweiten Lage, in der die Soll-Ausrichtung (S0) der Strahlachse in der zweiten Winkelstellung (B-90) ist und der Bearbeitungsstrahl (5) auf die andere der Oberflächen (32A) gerichtet ist, Durchführen eines zweiten Konturschnitts (KB) mit dem Bearbeitungsstrahls (5) mit einem zur Soll-Ausrichtung der Rotationsachse (B, C) und damit zum Vorderseitenkonturabschnitt (KA1) parallel verlaufenden Rückseitenkonturabschnitt (KB1), Formen mindestens einer an den Vorderseitenkonturabschnitt (KA1) und/oder an den Rückseitenkonturabschnitt (KB1) angrenzenden Aussparung im Werkstück (31), Detektieren des Vorderseitenkonturabschnitts (KA1) und des Rückseitenkonturabschnitt (KB1) mit dem Messmittel mit der gleichen Winkelstellung (B-90) zur Ermittlung der räumlichen Lage des Vorderseitenkonturabschnitts (KA1) und der räumlichen Lage des Rückseitenkonturabschnitts (KB1) und Ableiten der Abweichung der räumlichen Ausrichtung der Strahlachse (S) der Strahlbearbeitungsmaschine von der räumlichen Soll-Ausrichtung (S0) basierend auf der räumlichen Lage des Vorderseitenkonturabschnitts (KA1) und der räumlichen Lage des Rückseitenkonturabschnitts (KB1).
  3. Verfahren nach Anspruch 2, wobei das Detektieren des Vorderseitenkonturabschnitts (KA1) und des Rückseitenkonturabschnitt (KB1) ein Antasten mit dem Messmittel, welches im Bereich des Austritts des Bearbeitungsstrahls als Messelement (21) vorgesehen ist, umfasst.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei beim Durchühren des ersten Konturschnitts (KA) Strahlführungskomponenten der Strahlbearbeitungsmaschine auf einer durch die eine der Oberflächen (32A) abgegrenzte Vorderseite (31A) werden, beim Durchführen des zweiten Konturschnitts (KB) Strahlführungskomponenten der Strahlbearbeitungsmaschine auf einer durch die andere der Oberflächen (32B) abgegrenzte Rückseite (31B) positioniert werden und beim Detektieren die Strahlführungskomponenten entweder auf der Vorderseite (31A) oder der Rückseite (31B) positioniert werden.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ableiten der Abweichung umfasst ein Ermitteln eines Abstandsmaßes (ΔY) zwischen den Konturabschnitten und ein Bestimmen einer Differenz zwischen dem ermittelten Abstandsmaß (ΔY) und einem den Konturabschnitten (KA1, KB1) zugrunde liegenden Soll-Abstandsmaß, dem die räumliche Soll-Ausrichtung (S0) der Strahlachse (S) zugrunde liegt.
  6. Verfahren nach einem der Ansprüche 2 bis 5, wobei ferner die Abweichung der räumlichen Ausrichtung der Strahlachse (S) der Strahlbearbeitungsmaschine von der räumlichen Soll-Ausrichtung (S0) in einer Ebene bestimmt wird, die senkrecht zur Flächennormalenausrichtung und senkrecht zur Soll-Ausrichtung der Rotationsachse (B, C) ist.
  7. Verfahren nach einem der Ansprüche 2 bis 5, wobei mindestens einer der Konturschnitte (KA, KB) zur Erzeugung einer Aussparung geformt ist.
  8. Verfahren nach Anspruch 7, wobei der Vorderseitenkonturschnitt (KA) und der Rückseitenkonturschnitt (KB) geschlossene Konturen sind, die derart nebeneinander angeordnet sind, dass der Vorderseitenkonturabschnitt (KA) und der Rückseitenkonturabschnitt (KB) durch einen Steg des Testwerkstücks (31) getrennt voneinander angeordnet sind oder durch einen Steg des Testwerkstücks (31) und beidseitig angrenzende ausgeschnittene Bereiche getrennt voneinander angeordnet sind.
  9. Verfahren nach einem der Ansprüche 2 bis 6, wobei der Vorderseitenkonturschnitt (KA) und der Rückseitenkonturschnitt (KB) ineinandergreifen oder gemeinsam eine geschlossene Kontur formen, bei der der Vorderseitenkonturabschnitt (KA1) und der Rückseitenkonturabschnitt (KB1) auf gegenüber liegenden Seiten eines ausgeschnittenen Bereichs angeordnet sind.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Strahlbearbeitungsmaschine zwei Rotationsachsen (B, C) aufweist, deren Soll-Ausrichtungen zueinander orthogonal angeordnet sind und wobei Konturschnitte (KA, KB) für jede der Soll-Ausrichtungen der Rotationsachsen (B, C) ein Paar von parallelen Konturabschnitten (KA1, KB1; KA2, KB2) auf weist, die jeweils parallel zur entsprechenden Soll-Ausrichtung sind.
  11. Verfahren nach einem der vorhergehenden Ansprüche, ferner mit den Schritten Bereitstehen des Messmittels als eine Messdüse (21) oder als Messdüsenaufsatz, wobei das Messmittel im Bereich des Austritts des Bearbeitungsstrahls (5) angeordnet ist und eine geometrisch zur Strahlachse definierte Kontaktfläche (23) aufweist, und Durchführen des Detektierens durch Antasten der Konturabschnitte (KA1, KB2) mit der Kontaktfläche (23).
  12. Verfahren nach Anspruch 11, wobei die Kontaktfläche (23) in und entgegen der Rotationsrichtung der zu kalibrierenden Rotationsachse geometrisch definiert und um die Soll-Ausrichtung (S0) der Strahlachse (S) ausgebildet ist, wodurch ein identischer Abstand zur Soll-Ausrichtung (S0) gegeben ist, und mit den Schritten Bestimmen einer Mitte (mY) zwischen den Konturabschnitten (KA1, KB2) und Vergleichen der Mitte (mY) mit einer Soll-Mitte (45) zur Bestimmung eines Strahlversatzes des Bearbeitungsstrahls zur Soll-Ausrichtung (S0).
  13. Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks mit einer Werkstückhalterung zum Positionieren eines Werkstücks, einem Strahlführungssystem zum Bereitstellen eines entlang einer Strahlachse (S) geführten Bearbeitungsstrahls (5), wobei die Strahlbearbeitungsmaschine mindestens eine Translationsachse (X, Y, Z) zur Herstellung einer Translationsbewegung zwischen dem Testwerkstück (31) und der Strahlachse (S), mindestens eine Rotationsachse (B, C) mit einem Drehbereich von mindestens 180° zur Ausrichtung der Strahlachse (S) in Winkelstellungen um eine Soll-Ausrichtung der mindestens einen Rotationsachse (B, C), einem Messmittel zum Detektieren einer Schnittkante und einer Steuerungsvorrichtung zum Durchführen des Verfahrens nach einem der vorhergehenden Ansprüche.
  14. Strahlbearbeitungsmaschine nach Anspruch 13, wobei das Messmittel als Messdüse oder als Messdüsenansatz an einem Bearbeitungskopf im Bereich des Austritts des Bearbeitungsstrahls (5) anbringbar ist und eine geometrisch zur Soll-Strahlachse (S0) definierte Kontaktfläche (23) aufweist.
  15. Strahlbearbeitungsmaschine nach Anspruch 13 oder Anspruch 14, wobei das Messelement eine sich parallel zur Bearbeitungsachse (5) erstreckende Kontaktfläche (23) zum Anfahren von Kantenabschnitten (KA1, KB1) des Werkstücks (31) aufweist und die Kontaktfläche (23) eine Zylindermantelfläche ist, die sich im Abstand R um die eine Zylinderachse bildende B Soll-Strahlachse (S0) erstreckt.
  16. Strahlbearbeitungsmaschine nach einem der Ansprüche 13 bis 15, wobei das Strahlführungssystem ferner zur Bereitstellung eines Soll-Laserstrahlengangs ausgebildet ist, der sich entlang einer der Rotationsachsen (C) bis zu einem ersten Ablenkspiegel (13), entlang einer zweiten der Rotationsachsen (B) bis zu einem zweiten Ablenkspiegel (15) und anschließend entlang eines Idealstrahlengangs (35) durch eine Düse erstreckt, wobei das Strahlführungssystem mindestens ein Winkelgetriebe aufweist, das derart ausgebildet ist, dass der erste Ablenkspiegel (13) um die zweite Drehachse (C) und/oder der zweiten Ablenkspiegel (15) um die erste Drehachse (B) rotierbar sind.
DE102016104318.4A 2016-03-09 2016-03-09 Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks Active DE102016104318B3 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102016104318.4A DE102016104318B3 (de) 2016-03-09 2016-03-09 Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks
CN201780028745.0A CN109070354B (zh) 2016-03-09 2017-03-07 射束加工机的轴校准
EP17712039.1A EP3426445B1 (de) 2016-03-09 2017-03-07 Achsenkalibrieren einer strahlbearbeitungsmaschine
JP2018545845A JP6913102B2 (ja) 2016-03-09 2017-03-07 ビーム加工機械の軸較正
KR1020187029116A KR102226226B1 (ko) 2016-03-09 2017-03-07 빔 가공 기계의 축 캘리브레이션
PCT/EP2017/055325 WO2017153408A1 (de) 2016-03-09 2017-03-07 Achsenkalibrieren einer strahlbearbeitungsmaschine
US16/124,975 US11167372B2 (en) 2016-03-09 2018-09-07 Axis calibration of beam processing machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016104318.4A DE102016104318B3 (de) 2016-03-09 2016-03-09 Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks

Publications (1)

Publication Number Publication Date
DE102016104318B3 true DE102016104318B3 (de) 2017-04-13

Family

ID=58360960

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016104318.4A Active DE102016104318B3 (de) 2016-03-09 2016-03-09 Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks

Country Status (7)

Country Link
US (1) US11167372B2 (de)
EP (1) EP3426445B1 (de)
JP (1) JP6913102B2 (de)
KR (1) KR102226226B1 (de)
CN (1) CN109070354B (de)
DE (1) DE102016104318B3 (de)
WO (1) WO2017153408A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206232A1 (de) 2018-04-23 2019-10-24 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Detektieren einer Fehlstellung einer Schneidoptik einer Laserschneidmaschine, Auswerteeinrichtung und Laserschneidmaschine
CN113015595A (zh) * 2018-11-09 2021-06-22 通快激光与系统工程有限公司 用于oct测量射束调整的方法和计算机程序产品
CH718535B1 (de) * 2022-03-23 2023-03-15 Reishauer Ag Verfahren und Werkzeugmaschinensystem zur Kollisionsprüfung eines Bearbeitungsprozesses, mit Ersatzwerkstück.
CN115916451A (zh) * 2020-10-16 2023-04-04 百超激光有限公司 用于高动态实时系统的组合路径和激光加工规划的方法、控制单元和激光切割系统
US20230271276A1 (en) * 2020-10-16 2023-08-31 Bystronic Laser Ag Method, Control Unit and Laser Cutting System for Combined Path and Laser Process Planning for Highly Dynamic Real-Time Systems
US11958135B2 (en) * 2018-08-24 2024-04-16 Fanuc Corporation Machining condition adjustment device and machine learning device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8904912B2 (en) 2012-08-16 2014-12-09 Omax Corporation Control valves for waterjet systems and related devices, systems, and methods
US9720399B2 (en) 2014-01-22 2017-08-01 Omax Corporation Generating optimized tool paths and machine commands for beam cutting tools
US10500690B2 (en) * 2017-10-25 2019-12-10 United Technologies Corporation Method and apparatus for aligning a process gas jet nozzle and laser machining beam
US10859997B1 (en) * 2017-12-04 2020-12-08 Omax Corporation Numerically controlled machining
US11554461B1 (en) 2018-02-13 2023-01-17 Omax Corporation Articulating apparatus of a waterjet system and related technology
EP4127479A1 (de) 2020-03-30 2023-02-08 Hypertherm, Inc. Zylinder für eine flüssigkeitsstrahlpumpe mit multifunktionalen schnittstellenlängsenden
CN113231734A (zh) * 2021-04-23 2021-08-10 大族激光科技产业集团股份有限公司 激光光路校准方法、装置、存储介质和激光切割机
CN113579509B (zh) * 2021-07-28 2023-02-14 苏州市宏石激光技术有限公司 一种校准五轴系统tcp参数的方法
CN113459112B (zh) * 2021-09-03 2021-12-17 成都卡诺普机器人技术股份有限公司 一种机器人与外部轴协同的方法及装置
CN114918195B (zh) * 2022-05-31 2023-08-25 深圳吉阳智能科技有限公司 激光清洗控制方法、系统和可读存储介质
CN115205507B (zh) * 2022-09-15 2022-12-13 武汉普赛斯电子技术有限公司 基于图像识别的芯片定位吸取方法、设备及存储介质
CN115815791B (zh) * 2023-02-17 2023-04-21 北京金橙子科技股份有限公司 实现激光束焦点自动居中的校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328281A (ja) * 1993-05-17 1994-11-29 Amada Co Ltd レーザ加工機におけるレーザビームの芯出し方法およびその装置
DE102007037683B3 (de) * 2007-08-10 2008-11-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtungen und Verfahren zum Ermitteln der Lage einer Kante eines Werkstücks
DE102007063627A1 (de) * 2007-10-02 2009-04-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Fokuslagenbestimmung und Verfahren zur Bestimmung der Lage eines Laserstrahls relativ zu einer Öffnung, sowie Laserbearbeitungsdüse
DE102013217126A1 (de) * 2013-08-28 2015-03-05 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Feststellen von Abweichungen einer Ist-Lage eines Laserbearbeitungskopfes von einer Soll-Lage

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694139A (en) * 1984-12-03 1987-09-15 Messer Griesheim Gmbh Guidance device for a laser beam for three-dimensional machining of workpieces
JPH0763923B2 (ja) * 1989-12-15 1995-07-12 富士電機株式会社 Nc加工装置における原点補正方法
JPH0730224Y2 (ja) * 1990-10-09 1995-07-12 株式会社椿本チエイン レーザ加工機用ワーク回転装置のワーク設置台の回転軸ロック機構
JPH04339582A (ja) * 1991-05-15 1992-11-26 Toshiba Corp レーザ加工機
US5340962A (en) * 1992-08-14 1994-08-23 Lumonics Corporation Automatic control of laser beam tool positioning
US5536916A (en) * 1994-09-30 1996-07-16 Sanyo Machine Works, Ltd. Method for performing automatic alignment-adjustment of laser robot and the device
US5578229A (en) * 1994-10-18 1996-11-26 Michigan State University Method and apparatus for cutting boards using opposing convergent laser beams
DE19916081A1 (de) * 1999-04-09 2000-10-12 Arges Ges Fuer Industrieplanun Verfahren zum Kalibrieren einer Vorrichtung zur Bearbeitung von Werkstücken
JP2002001568A (ja) * 2000-06-15 2002-01-08 Amada Wasino Co Ltd Nc制御3次元レーザ加工機におけるレーザ加工ヘッドのパラメータ設定方法およびnc制御3次元レーザ加工機
AU2002327193B2 (en) * 2001-07-02 2007-08-09 Virtek Laser Systems, Inc Method of ablating an opening in a hard, non-metallic substrate
DE10150129C1 (de) * 2001-10-11 2003-04-17 Siemens Ag Verfahren zum Kalibrieren einer Laserbearbeitungsmaschine, Kalibriereinrichtung für Laserbearbeitungsmaschinen sowie Substrathalter für eine Laserbearbeitungsmaschine
US6951627B2 (en) * 2002-04-26 2005-10-04 Matsushita Electric Industrial Co., Ltd. Method of drilling holes with precision laser micromachining
US7888621B2 (en) * 2006-09-29 2011-02-15 International Paper Co. Systems and methods for automatically adjusting the operational parameters of a laser cutter in a package processing environment
GB0802944D0 (en) * 2008-02-19 2008-03-26 Rumsby Philip T Apparatus for laser processing the opposite sides of thin panels
EP2112461B1 (de) * 2008-04-24 2012-10-24 Hexagon Metrology AB Messtaster mit Stromgenerator
CN102231049B (zh) * 2011-06-29 2014-04-23 广东工业大学 一种大面积投影光刻系统及其对准方法
CN102394277A (zh) * 2011-10-19 2012-03-28 东莞宏威数码机械有限公司 激光对位设备及激光对位方法
US8938317B2 (en) * 2012-01-10 2015-01-20 Mitsubishi Electronic Research Laboratories, Inc. System and method for calibrating laser cutting machines
US9718146B2 (en) * 2013-06-03 2017-08-01 Mitsubishi Electric Research Laboratories, Inc. System and method for calibrating laser processing machines
DE102013224207B4 (de) * 2013-11-27 2016-08-18 Trumpf Laser- Und Systemtechnik Gmbh Laserbearbeitungsmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328281A (ja) * 1993-05-17 1994-11-29 Amada Co Ltd レーザ加工機におけるレーザビームの芯出し方法およびその装置
DE102007037683B3 (de) * 2007-08-10 2008-11-27 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtungen und Verfahren zum Ermitteln der Lage einer Kante eines Werkstücks
DE102007063627A1 (de) * 2007-10-02 2009-04-23 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Fokuslagenbestimmung und Verfahren zur Bestimmung der Lage eines Laserstrahls relativ zu einer Öffnung, sowie Laserbearbeitungsdüse
DE102013217126A1 (de) * 2013-08-28 2015-03-05 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Feststellen von Abweichungen einer Ist-Lage eines Laserbearbeitungskopfes von einer Soll-Lage

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018206232A1 (de) 2018-04-23 2019-10-24 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Detektieren einer Fehlstellung einer Schneidoptik einer Laserschneidmaschine, Auswerteeinrichtung und Laserschneidmaschine
WO2019206726A1 (de) 2018-04-23 2019-10-31 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum detektieren einer fehlstellung einer schneidoptik einer laserschneidmaschine, auswerteeinrichtung und laserschneidmaschine
US11958135B2 (en) * 2018-08-24 2024-04-16 Fanuc Corporation Machining condition adjustment device and machine learning device
CN113015595A (zh) * 2018-11-09 2021-06-22 通快激光与系统工程有限公司 用于oct测量射束调整的方法和计算机程序产品
US11951564B2 (en) 2018-11-09 2024-04-09 TRUMPF Laser- und Systemtechnik Gm H Method and computer program product for OCT measurement beam adjustment
CN115916451A (zh) * 2020-10-16 2023-04-04 百超激光有限公司 用于高动态实时系统的组合路径和激光加工规划的方法、控制单元和激光切割系统
US20230271276A1 (en) * 2020-10-16 2023-08-31 Bystronic Laser Ag Method, Control Unit and Laser Cutting System for Combined Path and Laser Process Planning for Highly Dynamic Real-Time Systems
CN115916451B (zh) * 2020-10-16 2024-02-20 百超激光有限公司 用于计算空间和时间分辨的、组合的设定点数据集的方法、控制单元和激光切割系统
CH718535B1 (de) * 2022-03-23 2023-03-15 Reishauer Ag Verfahren und Werkzeugmaschinensystem zur Kollisionsprüfung eines Bearbeitungsprozesses, mit Ersatzwerkstück.
WO2023180102A1 (de) * 2022-03-23 2023-09-28 Reishauer Ag Verfahren zur kollisionsprüfung eines bearbeitungsprozesses, mit ersatzwerkstück

Also Published As

Publication number Publication date
EP3426445B1 (de) 2024-05-22
JP6913102B2 (ja) 2021-08-04
US11167372B2 (en) 2021-11-09
US20190015928A1 (en) 2019-01-17
CN109070354B (zh) 2021-12-03
JP2019508254A (ja) 2019-03-28
KR20180123521A (ko) 2018-11-16
KR102226226B1 (ko) 2021-03-09
WO2017153408A1 (de) 2017-09-14
EP3426445A1 (de) 2019-01-16
CN109070354A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
DE102016104318B3 (de) Verfahren zur Bestimmung einer Abweichung einer räumlichen Ausrichtung einer Strahlachse einer Strahlbearbeitungsmaschine von deren räumlichen Soll-Ausrichtung und Strahlbearbeitungsmaschine zum Bearbeiten eines Werkstücks
DE102006030130B3 (de) Verfahren und Vorrichtung zum Bearbeiten eines Werkstücks mittels eines Energiestrahls, insbesondere Laserstrahls
DE102013008269B4 (de) Bearbeitungskopf für eine Laserbearbeitungsvorrichtung und Verfahren zur Laserbearbeitung eines Werkstücks
EP3310519B1 (de) Justageanordnung zur offline-justage mit einem scannerkopf mit integriertem strahllagesensor sowie entsprechendes justageverfahren unterverwendung einer solchen justageanordnung
DE102005021640B4 (de) Maschine zur Bearbeitung von optischen Werkstücken, insbesondere von Kunststoff-Brillengläsern
DE102005061618B4 (de) System und Verfahren zur Ausrichtungs- und Lagekontrolle eines Roboterwerkzeugs
WO1999019108A1 (de) Verfahren zur fein-und mikrobearbeitung von werkstücken mittels laserstrahlen und vorrichtung zur durchführung des verfahrens
DE102012205423A1 (de) Verfahren und Programm zum Berechnen eines Korrekturwerts für eine Werkzeugmaschine
DE102009008121A1 (de) Verfahren und Vorrichtung zum Erzeugen von transformierten Steuerdaten zum Steuern eines Werkzeugs an einer Werkzeugmaschine
DE102013018654A1 (de) Verfahren und Vorrichtung zur Detektion und zur Korrektur einer räumlichen Lage eines in einer Positionierungseinrichtung gehaltenen Werkstücks
EP1590712A1 (de) Verfahren zur steuerung von relativbewegungen eines werkzeuges gegen ein werkst ck
DE102015219141A1 (de) Verfahren und Vorrichtung zur Vermessung einer numerisch gesteuerten Werkzeugmaschine
DE102016111455A1 (de) Fokuslagebestimmung für Strahlbearbeitungsvorrichtungen
DE202012012817U1 (de) Mehrachsroboter zur Laserbearbeitung von Werkstücken
DE102016001375A1 (de) Robotersystem und Robotersteuerverfahren zum Justieren der Position einer Kühlmitteldüse
DE102018125841B4 (de) Roboter, Robotersystem und Verfahren zum Festlegen eines Koordinatensystems eines Roboters
DE102009024752B4 (de) Verfahren zum Vermessen und/oder Kalibrieren einer numerisch gesteuerten Werkzeugmaschine
EP1308239A2 (de) Werkzeugmaschine und Verfahren zur Justage der Spindelposition dieser Werkzeugmaschine
DE102004050426B4 (de) Verfahren und System zur Winkelsynchronisation
DE102012103548A1 (de) Verfahren und Vorrichtung zum Ausrichten eines Werkzeugs sowie Bearbeitungsstation und Messeinrichtung
DE102007063318B3 (de) Verfahren zum Justieren einer Profilbearbeitungsmaschine
DE102009039540A1 (de) Bearbeitungsverfahren
DE102007052999B4 (de) Verfahren zur Ansteuerung eines Laserscanners
DE4243393C2 (de) Vorrichtung und Verfahren zum elektroerosiven Schneiden
EP3255515A2 (de) Verfahren zum betreiben einer cnc-maschine

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R082 Change of representative

Representative=s name: GRAETTINGER MOEHRING VON POSCHINGER PATENTANWA, DE