-
ALLGEMEINER STAND DER TECHNIK
-
1. Gebiet der Erfindung
-
Die Erfindung betrifft eine Spindelstruktur, einen Elektromotor und eine Werkzeugmaschine, in denen eine Durchgangsbohrung ausgebildet ist, um den Durchfluss eines Fluids zu ermöglichen.
-
2. Beschreibung des Standes der Technik
-
Spindelstrukturen und Elektromotoren, die einen Rotor umfassen, in dem eine Durchgangsbohrung ausgebildet ist, um den Durchfluss eines Fluids, wie z. B. ein Kühlmittel, zu ermöglichen, sind bekannt (siehe zum Beispiel
Japanische Patent-Auslegeschrift Nr. H6-170690 und die
Japanische Patent-Auslegeschrift Nr. H10-146021 ).
-
In solchen Vorrichtungen wurde nach Techniken zum Beschleunigen des Durchflusses des Fluids in der Durchgangsbohrung des Rotors gesucht.
-
KURZDARSTELLUNG DER ERFINDUNG
-
Gemäß einem Aspekt der Erfindung umfasst eine Spindelstruktur einer Werkzeugmaschine ein Rotationsteil. Das Rotationsteil umfasst ein Werkzeughalteteil, das an einem Ende in einer axialen Richtung des Rotationsteils vorgesehen ist, und eine Durchgangsbohrung, die sich so durch das Rotationsteil erstreckt, dass es in der axialen Richtung an dem Ende mündet.
-
Des Weiteren umfasst die Spindelstruktur einen in der Durchgangsbohrung bereitgestellten Flügel. Wenn das Rotationsteil gedreht wird, dreht sich der Flügel zusammen mit dem Rotationsteil, um ein in der Durchgangsbohrung vorhandenes Fluid in der axialen Richtung in Richtung auf das Ende fließen zu lassen.
-
Es können mehrere Flügel so angeordnet sein, dass sie in einer Umfangsrichtung einer Wandfläche fluchten, die die Durchgangsbohrung definiert. Die Spindelstruktur kann einen Elektromotor umfassen, der einen Stator und einen Rotor umfasst, der radial an der Innenseite des Stators drehbar angeordnet ist und das Rotationsteil darstellt. Der Rotor kann die Durchgangsbohrung aufweisen.
-
Die Spindelstruktur kann eine Spindelvorrichtung umfassen, die ein Spindelgehäuse und einen Spindelrotor, der drehbar in dem Spindelgehäuse angeordnet ist und das Rotationsteil darstellt, umfasst. Der Spindelrotor kann das Ende in der axialen Richtung und die Durchgangsbohrung aufweisen. Die Spindelstruktur kann ferner ein Ringelement umfassen, das den Flügel abstützt und an der Durchgangsbohrung befestigt ist. Ein konkaves oder konvexes Teil kann an der Oberfläche des Flügels ausgebildet sein.
-
Gemäß einem weiteren Aspekt der Erfindung umfasst ein Elektromotor einen Stator und einen radial an der Innenseite des Stators drehbar angeordneten Rotor. Ein Werkzeug ist in einer axialen Richtung mit einem Ende des Rotors verbunden. Der Rotor umfasst eine Durchgangsbohrung, die sich so durch den Rotor erstreckt, dass sie in der axialen Richtung an dem Ende mündet.
-
Des Weiteren umfasst der Elektromotor einen Flügel, der in der Durchgangsbohrung vorgesehen ist. Wenn der Rotor gedreht wird, dreht der Flügel zusammen mit dem Rotor, um ein in der Durchgangsbohrung vorhandenes Fluid in der axialen Richtung zu dem Ende hin fließen zu lassen.
-
Gemäß noch einem weiteren Aspekt der Erfindung umfasst eine Werkzeugmaschine die oben erwähnte Spindelstruktur oder den oben erwähnten Elektromotor.
-
KURZE BESCHREIBNUNG DER ZEICHNUNGEN
-
Die obengenannten oder weitere Aufgaben, Merkmale und Vorteile der Erfindung werden durch die folgende ausführliche Beschreibung einer bevorzugten Ausführungsform mit Bezug auf die beigefügten Zeichnungen verdeutlicht, in denen:
-
1 eine Seitenansicht einer Spindelstruktur gemäß einer Ausführungsform der Erfindung ist, wobei ein Teil der Spindelstruktur im Querschnitt gezeigt wird;
-
2 eine vergrößerte Querschnittsansicht des Bereichs II in 1 ist;
-
3 eine vergrößerte Querschnittsansicht des Bereichs III in 1 ist;
-
4 eine perspektivische Ansicht eines in 1 gezeigten Fluiddurchflusselements ist;
-
5 eine Seitenansicht einer Spindelstruktur gemäß einer weiteren Ausführungsform der Erfindung ist, wobei ein Teil der Spindelstruktur im Querschnitt gezeigt wird;
-
6 eine Seitenansicht einer Spindelstruktur gemäß noch einer weiteren Ausführungsform der Erfindung ist, wobei ein Teil der Spindelstruktur im Querschnitt gezeigt wird.
-
7 eine Seitenansicht einer Spindelstruktur gemäß noch einer weiteren Ausführungsform der Erfindung ist, wobei ein Teil der Spindelstruktur im Querschnitt gezeigt wird;
-
8 eine perspektivische Ansicht eines Fluiddurchflusselements gemäß einer weiteren Ausführungsform der Erfindung ist; und
-
9 eine seitliche Querschnittsansicht eines Fluiddurchflusselements gemäß noch einer weiteren Ausführungsform der Erfindung ist.
-
AUSFÜHRLICHE BESCHREIBUNG
-
Nachfolgend werden Ausführungsformen der Erfindung ausführlich mit Bezug auf die Zeichnungen beschrieben. Zunächst wird eine Spindelstruktur 10 gemäß einer Ausführungsform der Erfindung mit Bezug auf die 1–3 beschrieben. Es wird angemerkt, dass in der folgenden Beschreibung eine axiale Richtung eine Richtung entlang einer Achse O in den Figuren anzeigt. Des Weiteren wird der Vereinfachung der Erklärung halber die Abwärtsrichtung in 1 als eine axiale Vorwärtsrichtung (d. h. eine Vorwärtsrichtung in axialer Richtung) bezeichnet. Des Weiteren gibt eine radiale Richtung eine radiale Richtung eines um die Achse O zentrierten Kreises an, während eine Umfangsrichtung eine Umfangsrichtung des um die Achse O zentrierten Kreises angibt.
-
Die Spindelstruktur 10 wird an einer Werkzeugmaschine (nicht gezeigt) zum Bearbeiten eines Werkstücks bereitgestellt. Die Spindelstruktur 10 umfasst einen Elektromotor 12 und eine Spindelvorrichtung 14. Der Elektromotor 12 umfasst einen Stator 16, ein Gehäuse 18 und einen Rotor 20.
-
Der Stator 16 besteht aus mehreren in der axialen Richtung gestapelten Magnetblechen und weist eine zylindrische Innenumfangsfläche 16a auf. Eine Spule 22 ist um den Stator 16 gewickelt. Das Gehäuse 18 ist an einem vorderen und einem hinteren Ende in axialer Richtung des Stators 16 befestigt. Das Gehäuse 18 definiert zusammen mit dem Stator 16 einen Innenraum S1.
-
Der Rotor 20 ist radial an einer Innenseite des Stators 16 drehbar angeordnet. Der Rotor 20 umfasst eine Drehwelle 24, die sich in der axialen Richtung erstreckt, und einen Rotorkern 26, der radial an der Außenseite der Drehwelle 24 befestigt ist.
-
Die Drehwelle 24 ist ein kreisrundes Teil, das die Achse O als ihre Mittelachse aufweist und sich linear in der axialen Richtung erstreckt. Eine Durchgangsbohrung 28 ist an einem Mittelteil der Drehwelle 24 ausgebildet. Die Durchgangsbohrung 28 erstreckt sich in der axialen Richtung durch die Drehwelle 24.
-
Der Rotorkern 26 ist ein zylindrisches Teil und so angeordnet, dass er die Drehwelle 24 umgibt. Mehrere Magnete (nicht gezeigt) sind so in den Rotorkern 26 eingebaut, dass sie in der Umfangsrichtung fluchten.
-
Die Drehwelle 24 des Rotors 20 wird drehbar durch ein Lager 30 an der axialen Vorderseite und ein Lager 32 an der axialen Hinterseite abgestützt. Die Lager 30 und 32 sind am Gehäuse montiert.
-
Ein axiales hinteres Ende der Drehwelle 24 ist mit einem Drehgelenk 34 verkoppelt. Das Drehgelenk 34 nimmt das axiale hintere Ende der Drehwelle drehbar auf. Eine Durchgangsbohrung 36 ist so im Drehgelenk 34 ausgebildet, dass sie in Fluidverbindung mit der Durchgangsbohrung 28 der Drehwelle 34 steht.
-
Ein Fluidversorgungsrohr 38 ist mit dem Drehgelenk 34 verkoppelt. Die Innenseite des Fluidversorgungsrohrs 38 steht in Fluidverbindung mit der Durchgangsbohrung 36. Das Fluidversorgungsrohr 38 ist mit einer an der Außenseite der Spindelstruktur 10 bereitgestellten Fluidversorgungsvorrichtung (nicht gezeigt) verkoppelt.
-
Die Fluidversorgungsvorrichtung führt über das Fluidversorgungsrohr 38 ein Fluid, wie ein Kühlmittel zum Kühlen des Elektromotors 12 und der Spindelvorrichtung 14, oder Druckluft zum Abblasen von während der Bearbeitung des Werkstücks erzeugten Spänen in die Durchgangsbohrung 36.
-
Der Elektromotor 12 umfasst ferner ein elektrisches Gebläse 40. Das elektrische Gebläse 40 ist an der axial hinteren Seite des Stators 16 über ein Befestigungselement 42 befestigt. Das elektrische Gebläse 40 erzeugt einen Luftstrom im Innenraum S1, um so Elemente des Elektromotors 12 zu kühlen, wie etwa den Rotor 20 und den Stator 16.
-
Die Spindelvorrichtung 14 umfasst ein Spindelgehäuse 44, eine Trägerbasis 46 und einen Spindelrotor 48. Das Spindelgehäuse 44 ist ein zylindrisches Teil und wird durch die Trägerbasis 46 abgestützt. Eine Nut 44a für den Durchgang des Kühlmittels ist an einer äußeren Umfangsfläche des Spindelgehäuses 44 ausgebildet.
-
Der Spindelrotor 48 ist radial an einer Innenseite des Spindelgehäuses 44 drehbar angeordnet. Der Spindelrotor 48 umfasst ein Spindelteil 52 und einen Werkzeughaltemechanismus 54. Das Spindelteil 52 ist ein zylindrisches Teil, das sich in der axialen Richtung erstreckt. Das Spindelteil 52 ist radial an der Innenseite des Spindelgehäuses 44 über mehrere Lager 50 drehbar abgestützt.
-
Der Werkzeughaltemechanismus 54 ist in dem Spindelteil 52 untergebracht und erstreckt sich linear in der axialen Richtung. Der Werkzeughaltemechanismus 54 umfasst an seinem axial vorderen Ende ein Werkzeughalteteil 54, und ein Werkzeug 56 zum Bearbeiten eines Werkstücks ist an dem Werkzeughalteteil 54a befestigt. Eine Durchgangsbohrung 58 ist an einem Mittelteil des Werkzeughaltemechanismus 54 ausgebildet. Die Durchgangsbohrung 58 erstreckt sich in der axialen Richtung durch den Werkzeughaltemechanismus 54, um an der Außenseite am axial vorderen Ende des Werkzeughaltemechanismus 54 zu münden.
-
Das axial vordere Ende der Drehwelle 24 des Rotors 20 ist mit einer Kupplung 60 axial von der Hinterseite verkoppelt. An einem Mittelteil der Kupplung 60 ist eine Durchgangsbohrung 28 so ausgebildet, dass sie in Fluidverbindung mit der Durchgangsbohrung 28 der Drehwelle 24 steht.
-
Andererseits ist das axial hintere Ende des Werkzeughaltemechanismus 54 des Spindelrotors 48 mit der Kupplung 60 axial von der Vorderseite verkoppelt. Die Durchgangsbohrung 58 des Werkzeughaltemechanismus 54 steht in Fluidverbindung mit der Durchgangsbohrung 62 der Kupplung 60.
-
Somit sind der Rotor 20 und der Spindelrotor 48 über die Kupplung 60 miteinander verkoppelt und drehen sich einstückig miteinander. Das heißt, das Werkzeug 56 ist über die Kupplung 60 mechanisch mit dem axial vorderen Ende des Rotors 20 und dem Spindelrotor 48 verkoppelt und wird durch eine Drehkraft des Rotors 20 gedreht, die erzeugt wird, wenn Spannung an die Spule 22 angelegt wird.
-
In dieser Ausführungsform sind mehrere Fluiddurchflusselemente 64 in der am Rotor 20 ausgebildeten Durchgangsbohrung 28 und der am Spindelrotor 48 ausgebildeten Durchgangsbohrung 58 angeordnet. Nachfolgend wird das Fluiddurchflusselement 64 gemäß dieser Ausführungsform mit Bezug auf die 4 beschrieben.
-
Jedes Fluiddurchflusselement 64 umfasst eine Mittelwelle 66, ein Ringelement 68 und mehrere Flügel 70. Die Mittelwelle 66 ist ein säulenartiges Teil, das sich in der axialen Richtung erstreckt, und ist so angeordnet, dass sie die Achse O als ihre Mittelachse aufweist.
-
Das Ringelement 68 umfasst eine Innenumfangsfläche 68a und eine der Innenumfangsfläche 68a gegenüberliegende Außenumfangsfläche 68b. Das Ringelement 68 ist radial an der Außenseite der Mittelwelle 66 so angeordnet, dass sie die Mittelwelle 66 umgibt.
-
Jeder der Flügel 70 ist eine dünne Platte, die sich in der radialen Richtung erstreckt, und ein radial inneres Ende davon ist an der Außenumfangsfläche 66a der Mittelwelle 66 befestigt, während ein radial äußeres Ende davon an der Innenumfangsfläche 68a des Ringelements 68 befestigt ist.
-
Jeder der Flügel 70 ist so angeordnet, dass er in Bezug auf eine zur Achse O orthogonalen Ebene geneigt ist. In dieser Ausführungsform sind insgesamt zehn Flügel 70 so angeordnet, dass sie in der Umfangsrichtung in im Wesentlichen gleichen Abständen fluchten.
-
Die Fluiddurchflusselemente 64 sind an einer die Durchgangsbohrungen 28, 58 definierende Wandfläche z. B. durch einen Schrumpf-Passsitz, Kühl-Passsitz oder einen Presssitz durch Einpressen befestigt. Folglich ist die Außenumfangsfläche 68b des Ringelements 68 so gegen die die Durchgangsbohrungen 28, 58 definierende Wandfläche gepresst, dass sie unbeweglich daran befestigt ist.
-
Wenn der Rotor 20 und der Spindelrotor 48 gedreht werden, dann drehen demzufolge die jeweils in den Durchgangsbohrungen 28 und 58 angeordneten Fluiddurchflusselemente 64 einstückig mit dem Rotor 20 und dem Spindelrotor 48.
-
Die Flügel 70 der Fluiddurchflusselemente 64 sind so angeordnet, dass sie ein in den Durchgangsbohrungen vorhandenes Fluid nach vorne in der axialen Richtung fließen lassen, wenn sich die Fluiddurchflusselemente 64 in einer Richtung der Umfangsrichtung drehen.
-
Als Nächstes wird eine Funktion der Spindelstruktur 10 mit Bezug auf die 1–4 beschrieben. Wenn ein Werkstück bearbeitet wird, wird eine Spannung an die Spule 22 des Elektromotors 12 angelegt, wodurch die Drehwelle 24 in eine Richtung der Umfangsrichtung gedreht wird. Die Drehkraft der Drehwelle 24 wird durch die Kupplung 60 auf den Spindelrotor 48 der Spindelvorrichtung 14 übertragen.
-
Folglich drehen sich die Drehwelle 24, die Kupplung 60 und der Spindelrotor 48 einstückig miteinander. Somit stellen in dieser Ausführungsform die Drehwelle 24, die Kupplung 60 und der Spindelrotor 48 ein Rotationsteil 72 der Spindelstruktur 10 dar.
-
Das durch den Haltemechanismus 54 gehaltene Werkzeug 56 dreht sich zusammen mit dem Spindelrotor 48, um das Werkstück W zu bearbeiten. Während des Bearbeitens des Werkstücks W führt die Fluidversorgungsvorrichtung durch das Fluidversorgungsrohr 38 ein Fluid, wie etwa ein Kühlmittel oder Druckluft, in die Durchgangsbohrung 36 des Drehgelenks 34.
-
Das in die Durchgangsbohrung 36 eingeführte Fluid läuft durch die Durchgangsbohrung 28 der Drehwelle 24, die Durchgangsbohrung 62 der Kupplung 60 und die Durchgangsbohrung 58 des Spindelrotors 48, und wird aus der Öffnung am axial vorderen Ende der Durchgangsbohrung 58 an die Außenseite abgegeben.
-
Während das Rotationsteil 72 der Spindelstruktur 10 in eine Richtung der Umfangsrichtung gedreht wird, drehen sich die mehreren in den Durchgangsbohrungen 28 und 58 angeordneten Fluiddurchflusselemente 64 einstückig mit dem Rotationsteil 72. Folglich drehen sich die Flügel 70 in der einen Richtung der Umfangsrichtung, und dadurch wird der Druck des Fluids in den Durchgangsbohrungen 28 und 58 erhöht, um das Fluid axial nach vorne in den Durchgangsbohrungen 28 und 58 fließen zu lassen, wodurch der Durchfluss des Fluids axial nach vorne beschleunigt wird.
-
Wie oben angegeben kann in dieser Ausführungsform der Druck des Fluids erhöht werden, um das Fluid axial nach vorne fließen zu lassen, indem die Flügel 70 zusammen mit dem Rotationsteil 72 der Spindelstruktur 10 gedreht werden. Demzufolge kann der Zuführdruck des von der Fluidversorgungsvorrichtung zugeführten Fluids im Vergleich zu einem Fall, in dem die Fluiddurchflusselemente 64 nicht bereitgestellt werden, niedriger eingestellt werden.
-
Der Grund dafür ist, dass selbst dann, wenn der Zuführdruck des Fluids relativ niedrig eingestellt ist, der Druck des Fluids durch Drehen der Flügel 70 erhöht werden kann, und es ist somit möglich, den Ablassdruck des aus der Öffnung am axial vorderen Ende der Durchgangsbohrung 58 abgelassenen Fluids ausreichend aufrechtzuerhalten.
-
Da der Zuführdruck des Fluids niedriger eingestellt werden kann, kann somit eine auf das Drehgelenk 34 ausgeübte Belastung reduziert werden, wodurch es möglich ist, die Lebensdauer des Drehgelenks 34 zu verlängern. Außerdem ist es auch möglich, das Fluid am Entweichen aus der Durchgangsbohrung 36 des Drehgelenks 34 zu hindern.
-
Des Weiteren sind in dieser Ausführungsform die Ringelemente 68 der Fluiddurchflusselemente 64 in Kontakt mit der die Durchgangsbohrungen 28, 58 definierenden Wandfläche. Demzufolge kann im Rotor 20 und im Spindelrotor 48 aufgestaute Wärme durch die Ringelemente 68 an die Flügel 70 und die Mittelwelle 66 geleitet werden.
-
Dann kann die Wärme wirksam durch das in den Durchgangsbohrungen 28 und 58 fließende Fluid entfernt werden. Somit funktioniert jedes Fluiddurchflusselement 64 als ein Wärmeabführelement, und es ist somit möglich, die Kühlleistung der Spindelstruktur 10 zu verbessern.
-
Es wird angemerkt, dass in der oben erwähnten Ausführungsform die Fluiddurchflusselemente 64 sowohl in der Durchgangsbohrung 28 des Rotors 20 als auch in der Durchgangsbohrung 58 des Spindelrotors 48 bereitgestellt werden. Das Fluiddurchflusselement 64 kann jedoch entweder in der Durchgangsbohrung 28 des Rotors 20 oder der Durchgangsbohrung 58 des Spindelrotors 48 bereitgestellt werden.
-
Eine solche Ausführungsform wird mit Bezug auf die 5 und 6 beschrieben. Es wird angemerkt, dass in verschiedenen nachfolgend beschriebenen Ausführungsformen den Elementen, die denjenigen in den bereits erwähnten Ausführungsformen gleichen, die gleichen Bezugsziffern zugewiesen werden und auf deren ausführliche Beschreibung verzichtet wird.
-
In einer in 5 gezeigten Spindelstruktur 10' sind die mehreren Fluiddurchflusselemente 64 nur in der Durchgangsbohrung 28 des Rotors 20 eingesetzt. Anderseits sind in einer in 6 gezeigten Spindelstruktur 10'' die mehreren Fluiddurchflusselemente 64 nur in der Durchgangsbohrung 58 des Spindelrotors 48 eingesetzt.
-
Gemäß dieser Spindelstrukturen 10' und 10'' kann der Fluiddurchfluss in den Durchgangsbohrungen 28, 58 nach axial vorne beschleunigt werden, indem die Fluiddurchflusselemente 64 zusammen mit dem Rotationsteil 72 gedreht werden.
-
Demzufolge ist es möglich, den Zuführdruck des von der Fluidversorgungsvorrichtung zugeführten Fluids niedriger einzustellen.
-
Als Nächstes wird eine Spindelstruktur 80 gemäß noch einer weiteren Ausführungsform der Erfindung mit Bezug auf die 7 beschrieben. Es wird angemerkt, dass der Vereinfachung der Erklärung halber die Abwärtsrichtung in 7 als eine axiale Vorwärtsrichtung bezeichnet wird. Die Spindelstruktur 80 umfasst den Elektromotor 12 und eine Spindelvorrichtung 82.
-
Die Spindelvorrichtung 82 umfasst ein Spindelgehäuse 84, eine Trägerbasis 86 und einen Spindelrotor 88. Das Spindelgehäuse 84 ist ein zylindrisches Teil und wird durch die Trägerbasis 86 abgestützt. Eine Nut 84a für den Durchgang des Kühlmittels ist an einer äußeren Umfangsfläche des Spindelgehäuses 84 ausgebildet.
-
Der Spindelrotor 88 ist über mehrere Lager 90 radial an einer Innenseite des Spindelgehäuses 44 drehbar angeordnet. Des Weiteren ist der Spindelrotor 88 an seiner Rückseite über ein Lager 92 durch die Trägerbasis 86 drehbar abgestützt.
-
Der Spindelrotor 88 erstreckt sich linear in der axialen Richtung und umfasst ein Werkzeughalteteil 88a an seinem axial vorderen Ende. Das Werkzeug 56 zum Bearbeiten eines Werkstücks ist am Werkzeughalteteil 88a befestigt. Eine Durchgangsbohrung 94 ist an einem Mittelteil des Spindelrotors 88 ausgebildet. Die Durchgangsbohrung 94 erstreckt sich durch den Spindelrotor 88 in die axiale Richtung und mündet an dem axial vorderen Ende des Spindelrotors 88 zur Außenseite.
-
Ein Getriebeteil 96 ist an einem Mittelteil in der axialen Richtung des Spindelrotors 88 ausgebildet. Andererseits ist ein Getriebeteil 98 an einem axial vorderen Ende der Drehwelle 24 des Elektromotors 12 ausgebildet. Das Getriebeteil 96 des Spindelrotors 88 und das Getriebeteil 98 der Drehwelle 24 greifen über eine Getriebestufe 100 ineinander ein.
-
Demzufolge wird die durch den Elektromotor 12 erzeugte Drehkraft über das Getriebeteil 98 der Drehwelle 24, die Getriebestufe 100 und das Getriebeteil 96 des Spindelrotors 88 auf den Spindelrotor 88 übertragen. Somit wird der Spindelrotor 88 durch die durch den Elektromotor 12 erzeugte Leistung gedreht. In dieser Ausführungsform stellt der Spindelrotor 88 ein Rotationsteil der Spindelstruktur 80 dar.
-
Ein axial hinteres Ende des Spindelrotors 88 ist mit einem Drehgelenk 102 verbunden. Das Drehgelenk 102 nimmt das axial hintere Ende des Spindelrotors 88 drehbar auf. Eine Durchgangsbohrung 104 ist an dem Drehgelenk 102 ausgebildet, um so in Fluidverbindung mit der Durchgangsbohrung 94 des Spindelrotors 88 zu stehen.
-
Das Fluidversorgungsrohr 38 ist mit dem Drehgelenk 102 so verbunden, dass die Innenseite des Fluidversorgungsrohrs 38 in Fluidverbindung mit der Durchgangsbohrung 104 steht. Das Fluidversorgungsrohr 38 ist mit einer außerhalb der Spindelstruktur 80 bereitgestellten Fluidversorgungsvorrichtung (nicht gezeigt) verbunden.
-
Die Fluidversorgungsvorrichtung führt über das Fluidversorgungsrohr 38 ein Fluid, wie ein Kühlmittel zum Kühlen der Spindelvorrichtung 82, oder Druckluft zum Abblasen von während der Bearbeitung des Werkstücks erzeugten Spänen, in die Durchgangsbohrung 104.
-
In dieser Ausführungsform sind mehrere wie oben beschriebene Fluiddurchflusselemente 64 in der an dem Spindelrotor 88 ausgebildeten Durchgangsbohrung 94 angeordnet. Insbesondere sind die Fluiddurchflusselemente 64 an einer die Durchgangsbohrung 94 definierende Wandfläche z. B. durch einen Schrumpf-Passsitz, Kühl-Passsitz oder einen Presssitz durch Einpressen befestigt.
-
Folglich ist die Außenumfangsfläche 68b des Ringelements 68 (4) so gegen die die Durchgangsbohrung 94 definierende Wandfläche gepresst, dass sie unbeweglich daran befestigt ist. Wenn der Spindelrotor 88 gedreht wird drehen sich deshalb die in der Durchgangsbohrung 94 angeordneten Fluiddurchflusselemente 64 einstückig mit dem Spindelrotor 88.
-
Gemäß dieser Ausführungsform kann ähnlich wie in der in 1 gezeigten Ausführungsform der Fluiddurchfluss in der Durchgangsbohrung 94 nach axial vorne durch die Flügel 70 der Fluiddurchflusselemente 64, die sich zusammen mit dem Spindelrotor 88 drehen, beschleunigt werden. Demzufolge ist es möglich, den Zuführdruck des von der Fluidversorgungsvorrichtung zugeführten Fluids zu senken.
-
Als Nächstes wird ein Fluiddurchflusselement 110 gemäß einer weiteren Ausführungsform der Erfindung mit Bezug auf die 8 beschrieben. Das Fluiddurchflusselement 110 kann anstatt des Fluiddurchflusselements 64 auf die Spindelstrukturen 10, 10', 10'' und 80 angewendet werden.
-
Das Fluiddurchflusselement 110 umfasst ein Ringelement 112 und mehrere Flügel 114. Das Ringelement 112 ist ein zylindrisches Teil, das so angeordnet ist, dass es die Achse O als seine Mittelachse aufweist. Das Ringelement 112 weist eine Innenumfangsfläche 112a und eine der Innenumfangsfläche 112a gegenüberliegende Außenumfangsfläche 112b auf.
-
Jeder der Flügel 114 erstreckt sich von der Innenumfangsfläche 112a des Ringelements 112 radial nach innen und endet in der radialen Richtung an einer Position zwischen der Innenumfangsfläche 112a und der Achse O. Somit ist in dem Fluiddurchflusselement 110 ein die Achse O umfassender Mittelbereich desselben ein Hohlraum, in dem kein Teil vorhanden ist.
-
Jeder der Flügel 114 ist so angeordnet, dass er in Bezug auf eine zur Achse O orthogonalen Ebene geneigt ist. In dieser Ausführungsform sind insgesamt zehn Flügel 114 so angeordnet, dass sie in der Umfangsrichtung in im Wesentlichen gleichen Abständen fluchten.
-
Ähnlich wie bei dem oben erwähnten Fluiddurchflusselement 64 ist das Fluiddurchflusselement 110 an einer die Durchgangsbohrung 28, 58, 94 definierende Wandfläche z. B. durch einen Schrumpf-Passsitz, Kühl-Passsitz oder einen Presssitz durch Einpressen befestigt. Folglich ist die Außenumfangsfläche 112b des Ringelements 112 so gegen die die Durchgangsbohrung 28, 58, 94 definierende Wandfläche gepresst, dass sie unbeweglich daran befestigt ist.
-
Ähnlich wie bei der erwähnten Ausführungsform sind die Flügel 114 des Fluiddurchflusselements 110 angeordnet, um ein in der Durchgangsbohrung 28, 58, 94 vorhandenes Fluid nach axial vorne fließen zu lassen, wenn das Fluiddurchflusselement 110 in eine Richtung der Umfangsrichtung gedreht wird.
-
Gemäß dem Fluiddurchflusselement 110 dieser Ausführungsform kann der Durchfluss des Fluids in der Durchgangsbohrung 28, 58, 94 durch die sich drehenden Flügel 70 nach axial vorne beschleunigt werden, während es möglich ist zu verhindern, dass sich einen Fluidwiderstand in der Durchgangsbohrung 28, 58, 94 aufgrund des Fluiddurchflusselements 110 erhöht, da der Mittelbereich des Fluiddurchflusselements 110 ein Hohlraum ist.
-
Als Nächstes wird ein Fluiddurchflusselement 64' gemäß noch einer weiteren Ausführungsform der Erfindung mit Bezug auf die 9 beschrieben. Das Fluiddurchflusselement 64 unterscheidet sich von dem oben erwähnten Fluiddurchflusselement 64 durch das Merkmal, dass es mehrere an Oberflächen der Flügel 70 ausgebildete konvexe Teile 70a umfasst.
-
Insbesondere sind die konvexen Teile 70a so ausgebildet, dass sie von axial vorderen Endflächen der Flügel 70 nach axial vorne abstehen, beziehungsweise von axial hinteren Endflächen der Flügel 70 nach axial hinten abstehen. Diese konvexen Teile 70a funktionieren als Wärmeabführlamellen und erhöhen die Oberfläche der Flügel 70, und dadurch kann eine Wärmeabführwirkung des Fluiddurchflusselements 64' verstärkt werden.
-
Es wird angemerkt, dass in der oben erwähnten Ausführungsform die mehreren Flügel 70, 114 bereitgestellt werden. Es kann jedoch auch nur ein Flügel bereitgestellt werden. In diesem Fall kann ein Beschleunigungseffekt des Fluiddurchflusses erzielt werden.
-
Des Weiteren umfasst in den oben erwähnten Ausführungsformen das Fluiddurchflusselement 64, 64', 110 das Ringelement 68, 112, und die Flügel 70, 114 sind an der Innenumfangsfläche 68a, 112a des Ringelements 68, 112 befestigt. Das Ringelement 68, 112 kann jedoch weggelassen werden, und die Flügel können direkt an der die Durchgangsbohrung 28, 58, 94 definierenden Wandfläche befestigt werden.
-
Des Weiteren kann der Flügel so bereitgestellt werden, dass er zumindest in der Umfangsrichtung relativ zu der die Durchgangsbohrung 28, 58, 94 definierenden Wandfläche unbeweglich ist. Mit anderen Worten, der Flügel kann in der axialen Richtung relativ zu der die Durchgangsbohrung 28, 58, 94 definierenden Wandfläche beweglich sein. In einem solchen Fall kann sich der Flügel zusammen mit dem Rotationsteil der Spindelstruktur drehen, wodurch eine Wirkung der Beschleunigung des Fluiddurchflusses erzielt werden kann.
-
Des Weiteren kann der Flügel eine beliebige Form aufweisen, solange sie in der Lage ist, das Fluid durch Drehen fließen zu lassen. Des Weiteren kann in der in 9 gezeigten Ausführungsform der Flügel 70 anstatt des konvexen Teils 70a ein konkaves Teil aufweisen, das von der Oberfläche des Flügels 70 nach innen ausgespart ist. In diesem Fall wird die Oberfläche des Fluiddurchflusselements 64' erhöht, wodurch eine Wärmeabführwirkung des Fluiddurchflusselements 64' verstärkt werden kann.
-
Die Erfindung wurde obenstehend durch die Ausführungsformen der Erfindung beschrieben, wobei jedoch die obengenannten Ausführungsformen die Erfindung gemäß den Ansprüchen nicht einschränken. Ausführungsformen, in denen die in den Ausführungsformen der Erfindung beschriebenen Merkmale kombiniert werden, können ebenfalls im technischen Schutzumfang der Erfindung umfasst sein, wobei jedoch nicht alle Kombinationen der Merkmale für durch Aspekte der Erfindung bereitgestellte Mittel unbedingt wesentlich sind. Des Weiteren ist es für den Fachmann ersichtlich, dass die Ausführungsformen auf verschiedene Weisen abgeändert oder verbessert werden können.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-
- JP 6-170690 [0002]
- JP 10-146021 [0002]