DE102015103883A1 - Modellvorhersagesteuersysteme und -verfahren für Brennkraftmaschinen - Google Patents

Modellvorhersagesteuersysteme und -verfahren für Brennkraftmaschinen Download PDF

Info

Publication number
DE102015103883A1
DE102015103883A1 DE102015103883.8A DE102015103883A DE102015103883A1 DE 102015103883 A1 DE102015103883 A1 DE 102015103883A1 DE 102015103883 A DE102015103883 A DE 102015103883A DE 102015103883 A1 DE102015103883 A1 DE 102015103883A1
Authority
DE
Germany
Prior art keywords
predicted
engine
torque
cost
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102015103883.8A
Other languages
English (en)
Other versions
DE102015103883B4 (de
Inventor
Ruixing Long
Gary Robert Cygan Jr.
Julian R. Verdejo
Christopher E. Whitney
Ning Jin
Alberto Bemporad
Daniele Bernardini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of DE102015103883A1 publication Critical patent/DE102015103883A1/de
Application granted granted Critical
Publication of DE102015103883B4 publication Critical patent/DE102015103883B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/02Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines
    • F02D21/04Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to oxygen-fed engines with circulation of exhaust gases in closed or semi-closed circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0235Throttle control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/22Control of the engine output torque by keeping a torque reserve, i.e. with temporarily reduced drive train or engine efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

Ein Kraftmaschinensteuerverfahren umfasst: Erzeugen eines ersten vorhergesagten Kraftmaschinenausgangsdrehmoments und einer ersten vorhergesagten Luftmasse pro Zylinder (APC) basierend auf einem Modell der Fremdzündungsmaschine und einem ersten Satz möglicher Zielwerte, die basierend auf einer Kraftmaschinendrehmomentanforderung bestimmt sind; Erzeugen eines zweiten vorhergesagten Kraftmaschinenausgangsdrehmoments und einer zweiten vorhergesagten Masse von APC basierend auf dem Modell der Fremdzündungsmaschine und einem zweiten Satz möglicher Zielwerte, die basierend auf der Kraftmaschinendrehmomentanforderung bestimmt sind; Bestimmen erster Kosten für den ersten Satz möglicher Zielwerte; Bestimmen zweiter Kosten für den zweiten Satz möglicher Zielwerte; Auswählen eines des ersten und zweiten Satzes basierend auf den ersten und zweiten Kosten; und Setzen von Zielwerten basierend auf den möglichen Zielwerten der gewählten des ersten und zweiten Satzes.

Description

  • QUERVERWEIS AUF VERWANDTE ANMELDUNGEN
  • Diese Anmeldung bezieht sich auf die Patentanmeldungen der Vereinigten Staaten Nr. 14/225,516, eingereicht am 26. März 2014, 14/225.569, eingereicht am 26. März 2014, 14/225,626, eingereicht am 26. März 2014, 14/225,817, eingereicht am 26. März 2014, 14/225,896, eingereicht am 26. März 2014, 14/225,531, eingereicht am 26. März 2014, 14/225,507, eingereicht am 26. März 2014, 14/225,806, eingereicht am 26. März 2014, 14/225,587, eingereicht am 26. März 2014, 14/225,492, eingereicht am 26. März 2014, 14/226,006, eingereicht am 26. März 2014, 14/226,121, eingereicht am 26. März 2014, 14/225,496, eingereicht am 26. März 2014, und 14/225,891, eingereicht am 26. März 2014. Die gesamten Offenbarungen der obigen Anmeldungen sind hier durch Bezugnahme mit aufgenommen.
  • GEBIET
  • Die vorliegende Offenbarung bezieht sich auf Brennkraftmaschinen und insbesondere auf Kraftmaschinensteuersysteme und Kraftmaschinensteuerverfahren für Fahrzeuge.
  • HINTERGRUND
  • Die hier gegebene Hintergrundbeschreibung dient zur allgemeinen Darstellung des Kontexts der Offenbarung. Arbeit der vorliegend genannten Erfinder in dem Umfang, in dem sie in diesem Hintergrundabschnitt beschrieben ist, sowie Aspekte der Beschreibung, die nicht auf andere Weise als Stand der Technik zum Zeitpunkt der Einreichung berechtigen, sind weder explizit noch implizit als Stand der Technik gegenüber der vorliegenden Offenbarung anerkannt.
  • Brennkraftmaschinen verbrennen ein Luft- und Kraftstoff-Gemisch in Zylindern, um Kolben anzutreiben, was Antriebsdrehmoment erzeugt. Eine Luftströmung in die Kraftmaschine wird über eine Drosselklappe reguliert. Genauer stellt die Drosselklappe den Drosselungsquerschnitt ein, was die Luftströmung in die Kraftmaschine erhöht oder verringert. Wenn die Drosselklappenfläche zunimmt, nimmt der Luftdurchsatz in die Kraftmaschine zu. Ein Kraftstoffsteuersystem stellt die Rate ein, mit der Kraftstoff eingespritzt wird, um ein gewünschtes Luft/Kraftstoff-Gemisch für die Zylinder vorzusehen und/oder einen Soll-Drehmomentausgang zu erreichen. Ein Erhöhen des Betrages an Luft und Kraftstoff, der an die Zylinder geliefert wird, erhöht die Drehmomentabgabe der Kraftmaschine.
  • In funkengezündeten Kraftmaschinen löst ein Zündfunken eine Verbrennung eines Luft/Kraftstoffgemisches aus, das an die Zylinder geliefert wird. Bei kompressionsgezündeten Kraftmaschinen verbrennt eine Kompression in den Zylindern das Luft/Kraftstoff-Gemisch, das an die Zylinder geliefert wird. Zündzeitpunkt und Luftströmung können die Primärmechanismen zum Einstellen des Drehmomentausgangs von funkengezündeten Kraftmaschinen sein, während die Kraftstoffströmung den Primärmechanismus zum Einstellen des Drehmomentausgangs von kompressionsgezündeten Kraftmaschinen darstellen kann.
  • Es sind Kraftmaschinensteuersysteme entwickelt worden, um das Kraftmaschinenausgangsdrehmoment zu steuern, um ein gewünschtes Drehmoment zu erreichen. Herkömmliche Kraftmaschinensteuersysteme steuern jedoch das Kraftmaschinenausgangsdrehmoment nicht so genau wie gewünscht. Ferner sehen herkömmliche Kraftmaschinensteuersysteme kein schnelles Ansprechen auf Steuersignale vor oder koordinieren die Kraftmaschinendrehmomentsteuerung nicht über die verschiedenen Vorrichtungen, die das Kraftmaschinenausgangsdrehmoment beeinflussen.
  • ZUSAMMENFASSUNG
  • Ein Vorhersagemodul erzeugt ein erstes vorhergesagtes Kraftmaschinenausgangsdrehmoment und eine erste vorhergesagte Masse von Luft pro Zylinder (APC) basierend auf einem Modell der fremdgezündeten Kraftmaschine und einem ersten Satz möglicher Zielwerte, die basierend auf einer Kraftmaschinendrehmomentanforderung bestimmt sind, und erzeugt ein zweites vorhergesagtes Kraftmaschinenausgangsdrehmoment und eine zweite vorhergesagte Masse von APC auf der Basis des Modells der fremdgezündeten Brennkraftmaschine und einem zweiten Satz von möglichen Zielwerten, die basierend auf der Kraftmaschinendrehmomentanforderung bestimmt sind. Ein Kosten-Modul: bestimmt erste Kosten für den ersten Satz von möglichen Zielwerten basierend auf einem ersten vorbestimmten Gewichtungswert, dem ersten vorhergesagten Kraftmaschinenausgangsdrehmoment, der Kraftmaschinendrehmomentanforderung, einem zweiten vorbestimmten Gewichtungswert und der ersten vorhergesagten Masse von APC; und bestimmt zweite Kosten für den zweiten Satz von möglichen Zielwerten basierend auf dem ersten vorbestimmten Gewichtungswert, dem zweiten vorhergesagten Kraftmaschinenausgangsdrehmoment, der Kraftmaschinendrehmomentanforderung, dem zweiten vorbestimmten Gewichtungswert und der zweiten vorhergesagten Masse von APC. Ein Auswahlmodul wählt einen der ersten und zweiten Sätze auf der Grundlage der ersten und zweiten Kosten und dies setzt Zielwerte basierend auf den möglichen Zielwerten der ausgewählten der ersten und zweiten Sätze. Ein Drosselaktormodul steuert das Öffnen einer Drosselklappe auf der Grundlage des Ersten der Zielwerte.
  • Gemäß weiterer Merkmale: ein Ladedruckaktormodul, das auf der Grundlage eines Zweiten der Zielwerte das Öffnen eines Ladedruckregelventils eines Turboladers steuert; ein Abgasrückführungs-Aktormodul (AGR-Aktormodul), das auf der Grundlage eines Dritten der Zielwerte das Öffnen eines AGR-Ventils steuert; und ein Phasensteller-Aktormodul, das auf der Grundlage eines Vierten und Fünften der Zielwerte die Einlassventil- und die Auslassventil-Phasenlageneinstellung steuert.
  • Gemäß noch weiterer Merkmale bestimmt das Kostenmodul die ersten Kosten basierend auf: einem ersten Produkt des ersten vorbestimmten Gewichtungswertes und einer Größe einer ersten Differenz zwischen dem ersten vorhergesagten Kraftmaschinenausgangsdrehmoment und der Kraftmaschinendrehmomentanforderung; und einem zweiten Produkt des zweiten vorbestimmten Gewichtungswertes und einer zweiten Differenz zwischen der ersten vorbestimmten Masse von APC und einer vorbestimmten minimalen APC. Das Kostenmodul bestimmt die zweiten Kosten basierend auf: einem dritten Produkt des ersten Gewichtungswertes und einer Größe einer dritten Differenz zwischen dem zweiten vorhergesagten Kraftmaschinenausgangsdrehmoment und der Kraftmaschinendrehmomentanforderung; und einem vierten Produkt des zweiten Gewichtungswertes und einer Größe einer vierten Differenz zwischen der zweiten vorhergesagten Masse von APC und der vorbestimmten minimalen APC.
  • Gemäß noch weiterer Merkmale bestimmt das Kostenmodul: die ersten Kosten basierend auf einer Summe der ersten und zweiten Produkte; und bestimmt die zweiten Kosten basierend auf einer Summe der dritten und vierten Produkte.
  • Gemäß weiteren Merkmalen ist der erste vorbestimmte Gewichtungswert größer als der zweite vorbestimmte Gewichtungswert.
  • Gemäß noch weiteren Merkmalen wählt das Auswahlmodul den ersten Satz, wenn die ersten Kosten kleiner als die zweiten Kosten sind, und wählt das Auswahlmodul den zweiten Satz, wenn die zweiten Kosten kleiner als die ersten Kosten sind.
  • Gemäß noch weiterer Merkmale bestimmt das Kostenmodul: die ersten Kosten ferner basierend auf einem dritten vorbestimmten Gewichtungswert, einem ersten vorhergesagten Kurbelwellenwinkel, bei dem ein vorbestimmter Prozentsatz von eingespritztem Kraftstoff verbrannt wird, einem vorbestimmten minimalen Kurbelwellenwinkel und einem vorbestimmten maximalen Kurbelwellenwinkel; und bestimmt die zweiten Kosten ferner basierend auf einem dritten vorbestimmten Gewichtungswert, einem zweiten vorhergesagten Kurbelwellenwinkel, bei dem der vorbestimmte Prozentsatz von eingespritztem Kraftstoff verbrannt wird, dem vorbestimmten minimalen Kurbelwellenwinkel und dem vorbestimmten maximalen Kurbelwellenwinkel.
  • Gemäß weiterer Merkmale erzeugt das Vorhersagemodul ferner: den ersten vorhergesagten Kurbelwellenwinkel basierend auf dem Modell der Fremdzündungskraftmaschine und dem ersten Satz möglicher Zielwerte; und erzeugt den zweiten vorhergesagten Kurbelwellenwinkel basierend auf dem Modell der Fremdzündungskraftmaschine und dem zweiten Satz möglicher Zielwerte.
  • Gemäß noch weiterer Merkmale bestimmt das Kostenmodul: die ersten Kosten ferner basierend auf einem vierten vorbestimmten Gewichtungswert, einem ersten vorhergesagten Variationskoeffizienten (COV) des angegebenen mittleren effektiven Drucks (IMEP), einem vorbestimmten minimalen COV des IMEP und einem vorbestimmten maximalen COV des IMEP; und bestimmt die zweiten Kosten ferner basierend auf dem vierten vorbestimmten Gewichtungswert, der zweiten vorhergesagten COV des IMEP, der vorbestimmten minimalen COV des IMEP und des vorbestimmten maximalen COV des IMEP.
  • Gemäß noch weiterer Merkmale erzeugt das Vorhersagemodul ferner: den ersten vorhergesagten COV des IMEP basierend auf dem Modell der Fremdzündungsmaschine und dem ersten Satz möglicher Zielwerte; und erzeugt den zweiten vorhergesagten COV des IMEP basierend auf dem Modell der Fremdzündungsmaschine und dem zweiten Satz möglicher Zielwerte.
  • Ein Kraftmaschinensteuerverfahren umfasst: ein Erzeugen eines ersten vorhergesagten Kraftmaschinenausgangsdrehmomentes und einer ersten vorhergesagten Masse von Luft pro Zylinder (APC) basierend auf einem Modell der Fremdzündungsmaschine und einem ersten Satz möglicher Zielwerte, die basierend auf der Kraftmaschinendrehmomentanforderung bestimmt sind; Erzeugen eines zweiten vorhergesagten Kraftmaschinenausgangsdrehmoments und einer zweiten vorhergesagten Masse von APC basierend auf dem Modell der Fremdzündungsmaschine und einem zweiten Satz möglicher Zielwerte, die basierend auf der Kraftmaschinendrehmomentanforderung bestimmt sind; ein Bestimmen erster Kosten für den ersten Satz möglicher Zielwerte basierend auf einem ersten vorbestimmten Gewichtungswert, dem ersten vorhergesagten Kraftmaschinenausgangsdrehmoment, der Kraftmaschinendrehmomentanforderung, einem zweiten vorbestimmten Gewichtungswert und der ersten vorhergesagten Masse von APC; Bestimmen zweiter Kosten für den zweiten Satz möglicher Zielwerte basierend auf dem ersten vorbestimmten Gewichtungswert, dem zweiten vorhergesagten Kraftmaschinenausgangsdrehmoment, der Kraftmaschinendrehmomentanforderung, dem zweiten vorbestimmten Gewichtungswert und der zweiten vorhergesagten Masse von APC; Auswählen eines des ersten und zweiten Satzes basierend auf den ersten und zweiten Kosten; Setzen von Zielwerten basierend auf den möglichen Zielwerten der gewählten des ersten und zweiten Satzes; und Steuern eines Öffnens eines Drosselventils basierend auf einem ersten der Zielwerte.
  • Gemäß weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: Steuern eines Öffnens eines Ladedruckregelventils eines Turboladers basierend auf einem zweiten der Zielwerte; Steuern eines Öffnens eines Abgasrückführungs-(AGR)-Ventils basierend auf einem dritten der Zielwerte; Steuern einer Einlass- und Auslassventilphaseneinstellung basierend auf einem vierten und fünften der Zielwerte.
  • Gemäß noch weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: ein Bestimmen der ersten Kosten basierend auf: (i) einem ersten Produkt des ersten vorbestimmten Gewichtungswertes und einer Größe einer ersten Differenz zwischen dem ersten vorhergesagten Kraftmaschinenausgangsdrehmoment und der Kraftmaschinendrehmomentanforderung; und (ii) einem zweiten Produkt des zweiten vorbestimmten Gewichtungswertes und einer zweiten Differenz zwischen der ersten vorhergesagten Masse von APC und einer vorbestimmten minimalen APC; und ein Bestimmen der zweiten Kosten basierend auf: (i) einem dritten Produkt des ersten Gewichtungswertes und einer Größe einer dritten Differenz zwischen dem zweiten vorhergesagten Kraftmaschinenausgangsdrehmoment und der Kraftmaschinendrehmomentanforderung; und (ii) einem vierten Produkt des zweiten Gewichtungswertes und einer Größe einer vierten Differenz zwischen der zweiten vorhergesagten Masse von APC und der vorbestimmten minimalen APC.
  • Gemäß noch weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: ein Bestimmen erster Kosten basierend auf einer Summe des ersten und zweiten Produktes; und ein Bestimmen zweiter Kosten basierend auf einer Summe des dritten und vierten Produktes.
  • Gemäß weiteren Merkmalen ist der erste vorbestimmte Gewichtungswert größer als der zweite vorbestimmte Gewichtungswert.
  • Gemäß noch weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: ein Auswählen des ersten Satzes, wenn die ersten Kosten kleiner als die zweiten Kosten sind; und ein Auswählen des zweiten Satzes, wenn die zweiten Kosten kleiner als die ersten Kosten sind.
  • Gemäß noch weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: ein Bestimmen der ersten Kosten ferner basierend auf einem dritten vorbestimmten Gewichtungswert, einem ersten vorhergesagten Kurbelwellenwinkel, bei dem ein vorbestimmter Prozentsatz von eingespritztem Kraftstoff verbrannt ist, einem vorbestimmten minimalen Kurbelwellenwinkel und einem vorbestimmten maximalen Kurbelwellenwinkel; und ein Bestimmen der zweiten Kosten ferner basierend auf dem dritten vorbestimmten Gewichtungswert, einem zweiten vorhergesagten Kurbelwellenwinkel, bei dem der vorbestimmte Prozentsatz von eingespritztem Kraftstoff verbrannt ist, dem vorbestimmten minimalen Kurbelwellenwinkel und dem vorbestimmten maximalen Kurbelwellenwinkel.
  • Gemäß noch weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: ein Erzeugen des ersten vorhergesagten Kurbelwellenwinkels basierend auf dem Modell der Fremdzündungsmaschine und dem ersten Satz möglicher Zielwerte; und ein Erzeugen des zweiten vorhergesagten Kurbelwellenwinkels basierend auf dem Modell der Fremdzündungsmaschine und dem zweiten Satz möglicher Zielwerte.
  • Gemäß weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: ein Bestimmen der ersten Kosten ferner basierend auf einem vierten vorbestimmten Gewichtungswert, einem ersten vorhergesagten Variationskoeffizienten (COV) des angegebenen mittleren effektiven Drucks (IMEP), einem vorbestimmten minimalen COV des IMEP und einem vorbestimmten maximalen COV des IMEP; und ein Bestimmen der zweiten Kosten ferner basierend auf dem vierten vorbestimmten Gewichtungswert, einem zweiten vorhergesagten COV des IMEP, dem vorbestimmten minimalen COV des IMEP und dem vorbestimmten maximalen COV des IMEP.
  • Gemäß noch weiterer Merkmale umfasst das Kraftmaschinensteuerverfahren ferner: ein Erzeugen des ersten vorhergesagten COV des IMEP basierend auf dem Modell der Fremdzündungsmaschine und dem ersten Satz möglicher Zielwerte; und Erzeugen des zweiten vorhergesagten COV des IMEP basierend auf dem Modell der Fremdzündungsmaschine und dem zweiten Satz möglicher Zielwerte.
  • Weitere Bereiche der Anwendbarkeit der vorliegenden Offenbarung gehen aus der ausführlichen Beschreibung, aus den Ansprüchen und aus den Zeichnungen hervor. Die ausführliche Beschreibung und die spezifischen Beispiele sind nur zu Veranschaulichungszwecken bestimmt und sollen den Schutzumfang der Offenbarung nicht einschränken.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Die vorliegende Offenbarung wird umfassender verständlich aus der ausführlichen Beschreibung und aus den beigefügten Zeichnungen, in denen:
  • 1 ein Funktionsblockschaltbild eines beispielhaften Kraftmaschinensystems gemäß der vorliegenden Offenbarung ist;
  • 2 ein Funktionsblockschaltbild eines beispielhaften Kraftmaschinensteuersystems gemäß der vorliegenden Offenbarung ist;
  • 3 ein Funktionsblockschaltbild eines beispielhaften Luftsteuermoduls gemäß der vorliegenden Offenbarung ist; und
  • 4 ein Flussdiagramm enthält, das ein beispielhaftes Verfahren zum Steuern einer Drosselklappe, einer Einlassventil- und einer Auslassventil-Phasenlageneinstellung, eines Ladedruckregelventils und eines Abgasrückführungs-Ventils (AGR-Ventils) unter Verwendung einer Modellvorhersagesteuerung gemäß der vorliegenden Offenbarung zeigt.
  • In den Zeichnungen können Bezugszeichen wiederverwendet sein, um ähnliche und/oder gleiche Elemente zu identifizieren.
  • AUSFÜHRLICHE BESCHREIBUNG
  • Ein Kraftmaschinensteuermodul (ECM) steuert die Drehmomentausgabe einer Kraftmaschine. Genauer steuert das ECM jeweils Aktoren der Kraftmaschine auf der Grundlage von Zielwerten auf der Grundlage eines angeforderten Drehmomentbetrags. Zum Beispiel steuert das ECM die Einlassnockenwellen-Phasenlageneinstellung und die Auslassnockenwellen-Phasenlageneinstellung auf der Grundlage des Ziel-Einlassphasensteller- und des Ziel-Auslassphasenstellerwinkels, eine Drosselklappe auf der Grundlage einer Ziel-Drosselklappenöffnung, ein Abgasrückführungs-Ventil (AGR-Ventil) auf der Grundlage einer Ziel-AGR-Öffnung und ein Ladedruckregelventil eines Turboladers auf der Grundlage eines Ziel-Ladedruckregelventil-Tastgrads.
  • Das ECM könnte die Zielwerte unter Verwendung mehrerer Einzeleingabe-Einzelausgabe-Controller (SISO-Controller) wie etwa Proportional-Integral-Differential-Regler bzw. -Controller (PID-Regler/-Controller) einzeln bestimmen. Allerdings können die Zielwerte so eingestellt werden, dass die Systemstabilität auf Kosten möglicher Kraftstoffverbrauchverringerungen aufrechterhalten wird, wenn mehrere SISO-Controller verwendet werden. Außerdem können die Kalibrierung und der Entwurf der einzelnen SISO-Controller kostspielig und zeitaufwendig sein.
  • Das ECM der vorliegenden Offenbarung erzeugt die Zielwerte unter Verwendung einer Modellvorhersagesteuerung (MPC). Genauer identifiziert das ECM mögliche Sätze von Zielwerten auf der Grundlage einer Kraftmaschinen-Drehmomentanforderung. Das ECM bestimmt auf der Grundlage der Zielwerte der möglichen Sätze und eines mathematischen Modells der Kraftmaschine für jeden der möglichen Sätze vorhergesagte Parameter. Beispielsweise bestimmt das ECM ein vorhergesagtes Kraftmaschinenausgangsdrehmoment und eine vorhergesagte Luft pro Zylinder (APC) für jeden der möglichen Sätze von Zielwerten. Das ECM kann für jeden möglichen Satz von Zielwerten einen oder mehrere andere vorhergesagte Parameter bestimmen.
  • Das ECM kann der Verwendung jedes der Sätze zugeordnete Kosten bestimmen. Die Kosten, die für einen möglichen Satz bestimmt sind, steigen, wenn eine Größe einer ersten Differenz zwischen dem vorhergesagten Kraftmaschinenausgangsdrehmoment, das für diesen möglichen Satz bestimmt ist, und der Kraftmaschinendrehmomentanforderung steigt, und umgekehrt. Die Kosten steigen auch, wenn eine Größe einer zweiten Differenz zwischen der vorhergesagten APC, die für diesen möglichen Satz bestimmt ist, und null zunimmt, und umgekehrt. Das ECM kann den einen der möglichen Sätze, die die geringsten Kosten aufweisen, auswählen. In verschiedenen Implementierungen kann das ECM, anstatt oder zusätzlich dazu, mögliche Sätze von Zielwerten zu identifizieren und die Kosten jedes der Sätze zu bestimmen, eine Fläche erzeugen, die die Kosten möglicher Sätze von Zielwerten repräsentiert. Daraufhin kann das ECM auf der Grundlage der Steigung der Kostenfläche denjenigen möglichen Satz, der die niedrigsten Kosten aufweist, identifizieren.
  • Auf diese Weise kann das ECM den einen der möglichen Sätze wählen, von dem vorhergesagt wurde, dass er die Kraftmaschinendrehmomentanforderung am engsten nachverfolgt, während die APC minimiert wird. Eine Minimierung der APC kann den Kraftstoffverbrauch minimieren. Das ECM legt die Zielwerte für die Steuerung der Kraftmaschinenaktoren unter Verwendung der Zielwerte des ausgewählten möglichen Satzes fest.
  • Mit Bezug nun auf 1 ist ein Funktionsblockdiagramm eines beispielhaften Kraftmaschinensystems 100 dargestellt. Das Kraftmaschinensystem 100 weist eine Kraftmaschine 102 auf, die ein Luft/Kraftstoff-Gemisch verbrennt, um Antriebsmoment für ein Fahrzeug auf Grundlage einer Fahrereingabe von einem Fahrereingabemodul 104 zu erzeugen. Die Kraftmaschine 102 kann eine Benzin-Fremdzündungs-Brennkraftmaschine sein.
  • Luft wird in einen Ansaugkrümmer 110 durch ein Drosselventil 112 gezogen. Nur beispielhaft kann das Drosselklappenventil 112 eine Ventilklappe sein, die eine drehbare Klappe aufweist. Ein Kraftmaschinensteuermodul (ECM) 114 steuert ein Drosselaktormodul 116, das ein Öffnen des Drosselventils 112 reguliert, um die in den Ansaugkrümmer 110 gezogene Menge an Luft zu steuern.
  • Luft von dem Ansaugkrümmer 110 wird in die Zylinder der Kraftmaschine 102 gezogen. Während die Kraftmaschine 102 mehrere Zylinder aufweisen kann, ist zu Veranschaulichungszwecken ein einzelner repräsentativer Zylinder 118 gezeigt. Nur beispielhaft kann die Kraftmaschine 102 2, 3, 4, 5, 6, 8, 10 und/oder 12 Zylinder aufweisen. Das ECM 114 kann ein Zylinderaktormodul 120 anweisen, einige der Zylinder selektiv abzuschalten, was die Kraftstoffwirtschaftlichkeit unter gewissen Kraftmaschinenbetriebsbedingungen verbessern kann.
  • Die Kraftmaschine 102 kann unter Verwendung eines Viertaktzyklus arbeiten. Die im Folgenden beschriebenen vier Takte können als der Ansaugtakt, der Verdichtungstakt, der Arbeitstakt und der Ausstoßtakt bezeichnet werden. Während jeder Umdrehung einer Kurbelwelle (nicht gezeigt) finden zwei der vier Takte in dem Zylinder 118 statt. Daher sind zwei Kurbelwellenumdrehungen notwendig, damit der Zylinder 118 allen vier der Takte ausgesetzt ist.
  • Während des Ansaugtakts wird Luft von dem Ansaugkrümmer 110 in den Zylinder 118 durch ein Ansaugventil 122 gezogen. Das ECM 114 steuert ein Kraftstoffaktormodul 124, das die Kraftstoffeinspritzung regelt, um ein Ziel-Luft/Kraftstoff-Verhältnis zu erzielen. Kraftstoff kann in den Ansaugkrümmer 110 an einer zentralen Stelle oder an mehreren Stellen eingespritzt werden, wie nahe dem Ansaugventil 122 von jedem der Zylinder. Bei verschiedenen Implementierungen (nicht gezeigt) kann Kraftstoff direkt in die Zylinder oder in Mischkammern, die den Zylindern zugeordnet sind, eingespritzt werden. Das Kraftstoffaktormodul 124 kann die Einspritzung von Kraftstoff in Zylinder, die deaktiviert sind, anhalten.
  • Der eingespritzte Kraftstoff mischt sich mit Luft und erzeugt ein Luft/Kraftstoff-Gemisch in dem Zylinder 118. Während des Verdichtungstaktes komprimiert ein Kolben (nicht gezeigt) in dem Zylinder 118 das Luft/Kraftstoff-Gemisch. Ein Zündfunkenaktormodul 126 setzt eine Zündkerze 128 in dem Zylinder 118 auf der Grundlage eines Signals von dem ECM 114 unter Strom, was das Luft/Kraftstoff-Gemisch zündet. Die Zeiteinstellung des Zündfunkens kann im Vergleich zu dem Zeitpunkt, zu dem der Kolben in seiner obersten Position ist, was als oberer Totpunkt (TDC) bezeichnet wird, spezifiziert werden.
  • Das Zündfunkenaktormodul 126 kann durch ein Zündzeitpunktsignal gesteuert werden, das festlegt, wie weit vor oder nach dem OT der Zündfunken erzeugt werden soll. Da die Kolbenposition direkt mit der Kurbelwellendrehung in Verbindung steht, kann ein Betrieb des Zündfunkenaktormoduls 126 mit dem Kurbelwellenwinkel synchronisiert sein. Die Erzeugung von Zündfunken kann als ein Zündereignis bezeichnet werden. Das Zündfunkenaktormodul 126 kann die Fähigkeit haben, den Zündzeitpunkt des Zündfunkens für jedes Zündereignis zu variieren. Wenn die Zündfunken-Zeiteinstellung zwischen einem letzten Zündereignis und dem nächsten Zündereignis geändert wird, kann das Zündfunkenaktormodul 126 die Zündfunken-Zeiteinstellung für ein nächstes Zündereignis variieren. Das Zündfunkenaktormodul 126 kann die Bereitstellung des Zündfunkens für deaktivierte Zylinder anhalten.
  • Während des Verbrennungstakts treibt die Verbrennung des Luft/Kraftstoff-Gemisches den Kolben weg von dem TDC, wodurch die Kurbelwelle angetrieben wird. Der Arbeitstakt kann als die Zeitdauer zwischen dem Zeitpunkt, zu dem der Kolben den TDC erreicht, und dem Zeitpunkt, zu dem der Kolben den unteren Totpunkt (BDC) erreicht, definiert werden. Während des Ausstoßtakts beginnt sich der Kolben von dem BDC wegzubewegen, wobei er die Nebenprodukte der Verbrennung durch ein Auslassventil 130 ausstößt. Die Nebenprodukte der Verbrennung werden von dem Fahrzeug über ein Abgassystem 134 ausgestoßen.
  • Das Ansaugventil 122 kann durch eine Einlassnockenwelle 140 gesteuert weden, während das Abgasventil 130 durch eine Auslassnockenwelle 142 gesteuert werden kann. Bei verschiedenen Implementierungen können mehrere Ansaugnockenwellen (einschließlich der Ansaugnockenwelle 140) mehrere Ansaugventile (einschließlich dem Ansaugventil 122) für den Zylinder 118 steuern und/oder können die Ansaugventile (einschließlich dem Ansaugventil 122) mehrerer Zylinderbänke von Zylindern (einschließlich dem Zylinder 118) steuern. In ähnlicher Weise können mehrere Abgasnockenwellen (einschließlich der Abgasnockenwelle 142) mehrere Abgasventile für den Zylinder 118 steuern und/oder können Abgasventile (einschließlich dem Abgasventil 130) für mehrere Zylinderbänke (einschließlich dem Zylinder 118) steuern. Bei verschiedenen anderen Implementierungen können das Einlassventil 122 und/oder das Auslassventil 130 durch andere Vorrichtungen als Nockenwellen wie etwa durch nockenlose Ventilaktoren gesteuert werden. Das Zylinderaktormodul 120 kann den Zylinder 118 durch Deaktivieren eines Öffnens des Ansaugventils 122 und/oder des Abgasventils 130 deaktivieren.
  • Der Zeitpunkt, zu dem das Einlassventil 122 geöffnet wird, kann in Bezug auf den Kolben-TDC durch einen Einlassnocken-Phasensteller 148 geändert werden. Der Zeitpunkt, zu dem das Auslassventil 130 geöffnet wird, kann in Bezug auf den Kolben-TDC durch einen Auslassnocken-Phasensteller 150 geändert werden. Ein Phasenstelleraktormodul 158 kann den Einlassnockenphasensteller 148 und den Auslassnockenphasensteller 150 auf Grundlage von Signalen von dem ECM 114 steuern. Wenn ein variabler Ventilhub implementiert ist (nicht gezeigt), kann er ebenfalls durch das Phasensteller-Aktormodul 158 gesteuert werden.
  • Das Kraftmaschinensystem 100 kann einen Turbolader enthalten, der eine heiße Turbine 160-1 enthält, die durch heiße Abgase, die durch das Abgassystem 134 strömen, mit Leistung versorgt wird. Außerdem enthält der Turbolader einen Kaltluftverdichter 160-2, der durch die Turbine 160-1 angetrieben wird. Der Verdichter 160-2 verdichtet Luft, die in die Drosselklappe 112 führt. Bei verschiedenen Implementierungen kann ein durch die Kurbelwelle angetriebener Lader (nicht gezeigt) Luft von der Drosselklappe 112 verdichten und die Druckluft an den Einlasskrümmer 110 liefern.
  • Ein Ladedruckregelventil 162 kann ermöglichen, dass Abgas die Turbine 160-1 umgeht, wodurch der durch den Turbolader bereitgestellte Ladedruck (der Betrag der Einlassluftverdichtung) verringert wird. Das Ladedruckaktormodul 164 kann den Ladedruck des Turboladers dadurch steuern, dass es das Öffnen des Ladedruckregelventils 162 steuert. Bei verschiedenen Implementierungen können zwei oder mehr Turbolader implementiert sein und können diese durch das Ladedruckaktormodul 164 gesteuert werden.
  • Ein Luftkühler (nicht gezeigt) kann Wärme von der Druckluftladung an ein Kühlmedium wie etwa an ein Kraftmaschinenkühlmittel oder an Luft übertragen. Ein Luftkühler, der die Druckluftladung unter Verwendung von Kraftmaschinenkühlmittel kühlt, kann als ein Zwischenkühler bezeichnet werden. Ein Luftkühler, der die Druckluftladung unter Verwendung von Luft kühlt, kann als ein Ladeluftkühler bezeichnet werden. Die Druckluftladung kann Wärme z. B. über Verdichtung und/oder von Komponenten des Abgassystems 134 empfangen. Obgleich die Turbine 160-1 und der Verdichter 160-2 zu Veranschaulichungszwecken getrennt gezeigt sind, können sie aneinander angebracht sein, was Einlassluft in nächster Nähe zu heißem Abgas anordnet.
  • Das Kraftmaschinensystem 100 kann ein Abgasrückführungs-(AGR)-Ventil 170 aufweisen, das Abgas selektiv zurück an den Ansaugkrümmer 110 lenkt. Das AGR-Ventil 170 kann stromaufwärts der Turbine 160-1 des Turboladers positioniert sein. Das AGR-Ventil 170 kann durch ein AGR-Aktormodul 172 auf der Grundlage von Signalen von dem ECM 114 gesteuert werden.
  • Unter Verwendung eines Kurbelwellenpositionssensors 180 kann eine Position der Kurbelwelle gemessen werden. Auf der Grundlage der Kurbelwellenposition kann eine Drehzahl der Kurbelwelle (eine Kraftmaschinendrehzahl) bestimmt werden. Unter Verwendung eines Kraftmaschinenkühlmitteltemperatur-Sensors (ECT-Sensors) 182 kann eine Temperatur des Kraftmaschinenkühlmittels gemessen werden. Der ECT-Sensor 182 kann in der Kraftmaschine 102 oder an anderen Stellen angeordnet sein, an denen das Kühlmittel zirkuliert wird, wie einem Kühler (nicht gezeigt).
  • Unter Verwendung eines Krümmerabsolutdruck-Sensors (MAP-Sensors) 184 kann ein Druck innerhalb des Einlasskrümmers 110 gemessen werden. Bei verschiedenen Implementierungen kann ein Kraftmaschinenunterdruck, der die Differenz zwischen Umgebungsluftdruck und dem Druck in dem Ansaugkrümmer 110 ist, gemessen werden. Unter Verwendung eines Luftmassenströmungs-Sensors (MAF-Sensors) 186 kann ein Massendurchfluss der in den Einlasskrümmer 110 strömenden Luft gemessen werden. Bei verschiedenen Implementierungen kann der MAF-Sensor 186 in einem Gehäuse angeordnet sein, das auch das Drosselklappenventil 112 aufweist.
  • Das Drosselaktormodul 116 kann die Position des Drosselklappenventils 112 unter Verwendung eines oder mehrerer Drosselpositionssensoren (TPS von engl.: ”throttle position sensor”) 190 überwachen. Unter Verwendung eines Einlasslufttemperatur-Sensors (IAT-Sensors) 192 kann eine Umgebungstemperatur der in die Kraftmaschine 102 angesaugten Luft gemessen werden. Außerdem kann das Kraftmaschinensystem 100 einen oder mehrere andere Sensoren 193 wie etwa einen Umgebungsfeuchtigkeitssensor, einen oder mehrere Klopfsensoren, einen Verdichterauslassdrucksensor und/oder einen Drosseleinlassdrucksensor, einen Ladedruckregelventil-Positionssensor, einen AGR-Positionssensor und/oder einen oder mehrere andere geeignete Sensoren enthalten. Das ECM 114 kann Signale von den Sensoren verwenden, um Steuerentscheidungen für das Kraftmaschinensystem 100 zu treffen.
  • Das ECM 114 kann mit einem Getriebesteuermodul 194 kommunizieren, um ein Schalten von Gängen in einem Getriebe (nicht gezeigt) zu koordinieren. Beispielsweise kann das ECM 114 ein Kraftmaschinendrehmoment während eines Gangschaltens reduzieren. Das ECM 114 kann mit einem Hybridsteuermodul 196 kommunizieren, um einen Betrieb der Kraftmaschine 102 und eines Elektromotors 198 zu koordinieren.
  • Der Elektromotor 198 kann auch als ein Generator dienen und kann dazu verwendet werden, elektrische Energie zur Verwendung durch elektrische Fahrzeugsysteme und/oder zur Speicherung in einer Batterie zu erzeugen. In verschiedenen Implementierungen können verschiedene Funktionen des ECM 114, des Getriebesteuermoduls 194 und des Hybridsteuermoduls 196 in einem oder in mehreren Modulen integriert sein.
  • Jedes System, das einen Kraftmaschinenparameter variiert, kann als ein Kraftmaschinenaktor bezeichnet werden. Zum Beispiel kann das Drosselaktormodul 116 das Öffnen des Drosselventils 112 einstellen, um eine Ziel-Drosselklappen-Öffnungsfläche zu erzielen. Das Zündfunkenaktormodul 126 steuert die Zündkerzen, um eine Ziel-Zündfunken-Zeiteinstellung relativ zum Kolben-TDC zu erzielen. Das Kraftstoffaktormodul 124 steuert die Kraftstoffeinspritzeinrichtungen, um Ziel-Kraftstoffbeaufschlagungsparameter zu erzielen. Das Phasensteller-Aktormodul 158 kann den Einlassnocken-Phasensteller und den Auslassnocken-Phasensteller 148 und 150 steuern, um Ziel-Einlassnocken-Phasenstellerwinkel bzw. Ziel-Auslassnocken-Phasenstellerwinkel zu erzielen. Das AGR-Aktormodul 172 kann das AGR-Ventil 170 steuern, um eine Ziel-AGR-Öffnungsfläche zu erzielen. Das Ladedruckaktormodul 164 steuert das Ladedruckregelventil 162, um eine Ziel-Ladedruckregelventil-Öffnungsfläche zu erzielen. Das Zylinderaktormodul 120 steuert die Zylinderdeaktivierung, um eine Ziel-Anzahl aktivierter oder deaktivierter Zylinder zu erzielen.
  • Das ECM 114 erzeugt die Zielwerte für die Kraftmaschinenaktoren, um zu veranlassen, dass die Kraftmaschine 102 ein Ziel-Kraftmaschinen-Ausgangsdrehmoment erzeugt. Wie im Folgenden weiter diskutiert wird, erzeugt das ECM 114 die Zielwerte für die Kraftmaschinenaktoren unter Verwendung der Modellvorhersagesteuerung.
  • Nun Bezug nehmend auf 2 ist ein funktionales Blockschaubild eines beispielhaften Kraftmaschinensteuersystems dargestellt. Eine beispielhafte Implementierung des ECM 114 enthält ein Fahrerdrehmomentmodul 202, ein Achsdrehmoment-Arbitrierungsmodul 204 und ein Vortriebsdrehmoment-Arbitrierungsmodul 206. Das ECM 114 kann ein Hybridoptimierungsmodul 208 enthalten. Außerdem enthält das ECM 114 ein Reserven/Lasten-Modul 220, ein Drehmomentanforderungsmodul 224, ein Luftsteuermodul 228, ein Zündfunkensteuermodul 232, ein Zylindersteuermodul 236 und ein Kraftstoffsteuermodul 240.
  • Das Fahrerdrehmomentmodul 202 kann auf der Grundlage einer Fahrereingabe 255 von dem Fahrereingabemodul 104 eine Fahrerdrehmomentanforderung 254 bestimmen. Die Fahrereingabe 255 kann z. B. auf einer Position eines Fahrpedals und auf einer Position eines Bremspedals beruhen. Außerdem kann die Fahrereingabe 255 auf einem Tempomat beruhen, der ein adaptives Tempomatsystem sein kann, das die Fahrzeuggeschwindigkeit variiert, um einen vorgegebenen Folgeabstand einzuhalten. Das Fahrerdrehmomentmodul 202 kann ein oder mehrere Kennfelder der Fahrpedalposition auf das Zieldrehmoment speichern und kann auf der Grundlage eines Ausgewählten der Kennfelder die Fahrerdrehmomentanforderung 254 bestimmen.
  • Ein Achsdrehmoment-Arbitrierungsmodul 204 arbitriert zwischen der Fahrerdrehmomentanforderung 254 und anderen Achsdrehmomentanforderungen 256. Das Achsendrehmoment (Drehmoment an den Rädern) kann durch verschiedene Quellen erzeugt werden, einschließlich einer Kraftmaschine und/oder einem Elektromotor. Zum Beispiel können die Achsdrehmomentanforderungen 256 eine Drehmomentverringerung enthalten, die durch ein Traktionssteuersystem angefordert wird, wenn ein positiver Radschlupf detektiert wird. Ein positiver Radschlupf findet statt, wenn ein Achsendrehmoment eine Reibung zwischen den Rädern und der Straßenoberfläche überwindet und die Räder beginnen, gegen die Straßenfläche zu rutschen. Außerdem können die Achsdrehmomentanforderungen 256 eine Drehmomenterhöhungsanforderung erhalten, um einem negativen Radschlupf entgegenzuwirken, bei dem ein Reifen des Fahrzeugs in der anderen Richtung in Bezug auf die Straßenoberfläche rutscht, da das Achsdrehmoment negativ ist.
  • Außerdem können die Achsdrehmomentanforderungen 256 Bremsmanagementanforderungen und Fahrzeugübergeschwindigkeits-Drehmomentanforderungen enthalten. Bremsmanagementanforderungen können ein Achsendrehmoment reduzieren, um sicherzustellen, dass das Achsendrehmoment die Fähigkeit der Bremsen zum Halten des Fahrzeugs, wenn das Fahrzeug gestoppt wird, nicht überschreitet. Fahrzeugübergeschwindigkeitsdrehmomentanforderungen können das Achsendrehmoment reduzieren, um zu verhindern, dass das Fahrzeug eine vorbestimmte Geschwindigkeit überschreitet. Die Achsdrehmomentanforderungen 256 können ebenfalls durch Fahrzeugstabilitätssteuersysteme erzeugt werden.
  • Das Achsdrehmoment-Arbitrierungsmodul 204 gibt auf der Grundlage der Ergebnisse der Arbitrierung zwischen den empfangenen Drehmomentanforderungen 254 und 256 eine vorhergesagte Drehmomentanforderung 257 und eine Sofortdrehmomentanforderung 258 aus. Wie im Folgenden beschrieben wird, können die vorhergesagte Drehmomentanforderung und die Sofortdrehmomentanforderung 257 und 258 von dem Achsdrehmoment-Arbitrierungsmodul 204 wahlweise durch andere Module des ECM 114 eingestellt werden, bevor sie zum Steuern der Kraftmaschinenaktoren verwendet werden.
  • Allgemein gesagt kann die Sofortdrehmomentanforderung 258 ein Betrag des aktuell gewünschten Achsdrehmoments sein, während die vorhergesagte Drehmomentanforderung 257 ein Betrag des Achsdrehmoments sein kann, das kurzfristig notwendig sein kann. Das ECM 114 steuert das Kraftmaschinensystem 100, um ein Achsdrehmoment gleich der Sofortdrehmomentanforderung 258 zu erzeugen. Allerdings können verschiedene Kombinationen von Zielwerten zu demselben Achsdrehmoment führen. Somit kann das ECM 114 die Zielwerte so einstellen, dass ein schnellerer Übergang zu der vorhergesagten Drehmomentanforderung 257 ermöglicht wird, während das Achsdrehmoment weiterhin bei der Zieldrehmomentanforderung 258 gehalten wird.
  • Bei verschiedenen Implementierungen kann die vorhergesagte Drehmomentanforderung 257 auf der Grundlage der Fahrerdrehmomentanforderung 254 eingestellt werden. Unter bestimmten Umständen, wie etwa, wenn die Fahrerdrehmomentanforderung 254 auf einer vereisten Oberfläche einen Radschlupf verursacht, kann die Sofortdrehmomentanforderung 258 auf weniger als die vorhergesagte Drehmomentanforderung 257 eingestellt werden. In diesem Fall kann ein Traktionssteuersystem (nicht gezeigt) über die Sofortdrehmomentanforderung 258 eine Verringerung anfordern, wobei das ECM 114 die Kraftmaschinendrehmomentausgabe auf die Sofortdrehmomentanforderung 258 verringert. In diesem Fall führt das ECM 114 die Reduzierung aus, so dass das Kraftmaschinensystem 100 schnell die Erzeugung der vorhergesagten Drehmomentanforderung 257 wiederaufnehmen kann, sobald der Radschlupf stoppt.
  • Allgemein gesagt kann die Differenz zwischen der Sofortdrehmomentanforderung 258 und der (allgemein höheren) vorhergesagten Drehmomentanforderung 257 als eine Drehmomentreserve bezeichnet werden. Die Drehmomentreserve kann den Betrag an zusätzlichem Drehmoment (über der Sofortdrehmomentanforderung 258) repräsentieren, das das Kraftmaschinensystem 100 mit minimaler Verzögerung zu erzeugen beginnen kann. Um das aktuelle Achsdrehmoment mit minimaler Verzögerung zu erhöhen oder zu verringern, werden schnelle Kraftmaschinenaktoren verwendet. Schnelle Kraftmaschinenaktoren sind im Gegensatz zu langsamen Kraftmaschinenaktoren definiert.
  • Allgemein gesagt können schnelle Kraftmaschinenaktoren das Achsdrehmoment schneller als langsame Kraftmaschinenaktoren ändern. Langsame Aktoren können auf Änderungen ihrer jeweiligen Zielwerte langsamer als schnelle Aktoren ansprechen. Ein langsamer Aktor kann z. B. mechanische Komponenten enthalten, die mehr Zeit erfordern, um sich in Ansprechen auf eine Änderung eines Zielwerts von einer Position zu einer anderen zu bewegen. Ein langsamer Aktor kann durch die Zeitdauer charakterisiert werden, die es dauert, damit sich das Achsdrehmoment zu ändern beginnt, wenn der langsame Aktor den geänderten Zielwert zu implementieren beginnt. Allgemein ist dieser Zeitbetrag für langsame Aktoren länger als für schnelle Aktoren. Außerdem kann es, selbst nachdem die Änderung begonnen hat, länger dauern, bis das Achsdrehmoment auf eine Änderung eines langsamen Aktors vollständig anspricht.
  • Nur beispielhaft kann das Zündfunkenaktormodul 126 ein schneller Aktor sein. Funkenzündungsmaschinen können durch Anwenden eines Zündfunkens Kraftstoffe verbrennen, einschließlich beispielsweise Benzin und Ethanol. Im Gegensatz dazu kann das Drosselaktormodul 116 ein langsamer Aktor sein.
  • Zum Beispiel kann das Zündfunkenaktormodul 126 wie oben beschrieben die Zündfunken-Zeiteinstellung für ein nächstes Zündereignis variieren, wenn die Zündfunken-Zeiteinstellung zwischen einem letzten Zündereignis und dem nächsten Zündereignis geändert wird. Im Gegensatz dazu kann es länger dauern, bis Änderungen der Drosselklappenöffnung das Kraftmaschinen-Ausgangsdrehmoment beeinflussen. Das Drosselaktormodul 116 ändert die Drosselklappenöffnung dadurch, dass es den Winkel der Klappe der Drosselklappe 112 einstellt. Somit gibt es eine mechanische Verzögerung, während sich die Drosselklappe 112 in Ansprechen auf die Änderung aus ihrer vorhergehenden Position in eine neue Position bewegt, wenn der Zielwert zum Öffnen der Drosselklappe 112 geändert wird. Außerdem unterliegen Luftströmungsänderungen auf der Grundlage der Drosselklappenöffnung Lufttransportverzögerungen in dem Einlasskrümmer 110. Ferner wird eine erhöhte Luftströmung in dem Ansaugkrümmer 110 so lange nicht als eine Zunahme des Kraftmaschinenausgangsdrehmoments realisiert, bis der Zylinder 118 zusätzliche Luft in dem nächsten Ansaugtakt aufnimmt, die zusätzliche Luft komprimiert und den Verbrennungstakt beginnt.
  • Unter Verwendung dieser Aktoren als ein Beispiel kann dadurch, dass die Drosselklappenöffnung auf einen Wert eingestellt wird, der ermöglichen würde, dass die Kraftmaschine 102 die vorhergesagte Drehmomentanforderung 257 erzeugt, eine Drehmomentreserve erzeugt werden. Währenddessen kann die Zündfunken-Zeiteinstellung auf der Grundlage der Sofortdrehmomentanforderung 258 eingestellt werden, die kleiner als die vorhergesagte Drehmomentanforderung 257 ist. Obgleich die Drosselklappenöffnung ausreichend Luftströmung erzeugt, damit die Kraftmaschine 102 die vorhergesagte Drehmomentanforderung 257 erzeugt, wird die Zündfunken-Zeiteinstellung auf der Grundlage der Sofortdrehmomentanforderung 258 nach spät verstellt (was das Drehmoment verringert). Somit wird das Kraftmaschinen-Ausgangsdrehmoment gleich der Sofortdrehmomentanforderung 258.
  • Wenn ein zusätzliches Drehmoment notwendig ist, kann die Zündfunken-Zeiteinstellung auf der Grundlage der vorhergesagten Drehmomentanforderung 257 oder eines Drehmoments zwischen der vorhergesagten Drehmomentanforderung und der Sofortdrehmomentanforderung 257 und 258 eingestellt werden. Durch das folgende Zündereignis kann das Zündfunkenaktormodul 126 die Zündfunken-Zeiteinstellung auf einen Optimalwert zurückstellen, der ermöglicht, dass die Kraftmaschine 102 das volle Kraftmaschinen-Ausgangsdrehmoment erzeugt, das erzielt werden kann, wenn die Luftströmung bereits vorhanden ist. Somit kann das Kraftmaschinen-Ausgangsdrehmoment schnell auf die vorhergesagte Drehmomentanforderung 257 erhöht werden, ohne dass Verzögerungen vom Ändern der Drosselklappenöffnung erfahren werden.
  • Das Achsdrehmoment-Arbitrierungsmodul 204 kann die vorhergesagte Drehmomentanforderung 257 und die Sofortdrehmomentanforderung 258 an ein Vortriebsdrehmoment-Arbitrierungsmodul 206 ausgeben. Bei verschiedenen Implementierungen kann das Achsdrehmoment-Arbitrierungsmodul 204 die vorhergesagte Drehmomentanforderung und die Sofortdrehmomentanforderung 257 und 258 an das Hybridoptimierungsmodul 208 ausgeben.
  • Das Hybridoptimierungsmodul 208 kann bestimmen, wie viel Drehmoment durch die Kraftmaschine 102 erzeugt werden sollte und wie viel Drehmoment durch den Elektromotor 198 erzeugt werden sollte. Daraufhin gibt das Hybridoptimierungsmodul 208 die geänderte vorhergesagte Drehmomentanforderung und die geänderte Sofortdrehmomentanforderung 259 bzw. 260 an das Vortriebsdrehmoment-Arbitrierungsmodul 206 aus. Bei verschiedenen Implementierungen kann das Hybridoptimierungsmodul 208 in dem Hybridsteuermodul 196 implementiert sein.
  • Die vorhergesagten Drehmomentanforderung und Sofort-Drehmomentanforderung, die von dem Vortriebsdrehmomentarbitrierungsmodul 206 empfangen werden, werden von einer Achsendrehmomentdomäne (Drehmoment an den Rädern) in eine Vortriebsdrehmomentdomäne (Drehmoment an der Kurbelwelle) umgesetzt. Diese Umsetzung kann vor, nach, als Teil von oder anstelle des Hybridoptimierungsmoduls 208 stattfinden.
  • Das Vortriebsdrehmoment-Arbitrierungsmodul 206 arbitriert zwischen Vortriebsdrehmomentanforderungen 290, die die umgesetzten vorhergesagten Drehmomentanforderungen und Sofortdrehmomentanforderungen enthalten. Das Vortriebsdrehmoment-Arbitrierungsmodul 206 erzeugt eine arbitrierte vorhergesagte Drehmomentanforderung 261 und eine arbitrierte Sofortdrehmomentanforderung 262. Die arbitrierten Drehmomentanforderungen 261 und 262 können durch Auswählen einer gewinnenden Anforderung aus empfangenen Drehmomentanforderungen erzeugt werden. Alternativ oder zusätzlich können die arbitrierten Drehmomentanforderungen dadurch erzeugt werden, dass eine der empfangenen Anforderungen auf der Grundlage einer oder mehrerer anderer der empfangenen Drehmomentanforderungen abgeändert wird.
  • Die Vortriebsdrehmomentanforderungen 290 können z. B. Drehmomentverringerungen für den Kraftmaschinen-Überdrehzahlschutz, Drehmomenterhöhungen zum Verhindern von Stehenbleiben und durch das Getriebesteuermodul 194 zur Anpassung an Gangschaltungen angeforderte Drehmomentverringerungen enthalten. Außerdem können sich die Vortriebsdrehmomentanforderungen 290 aus einer Kupplungskraftstoffabschaltung ergeben, die das Kraftmaschinenausgangsdrehmoment verringert, wenn der Fahrer in einem Handschaltgetriebefahrzeug das Kupplungspedal niederdrückt, um ein Hochdrehen der Kraftmaschinendrehzahl zu verhindern.
  • Außerdem können die Vortriebsdrehmomentanforderungen 290 eine Kraftmaschinenabschaltanforderung enthalten, die initiiert werden kann, wenn ein kritischer Fehler detektiert wird. Nur beispielhaft können kritische Fehler eine Detektion eines Fahrzeugdiebstahls, eines verklemmten Anlassers, Probleme einer elektronischen Drosselklappensteuerung sowie unerwartete Drehmomentzunahmen aufweisen. Bei verschiedenen Implementierungen wählt, wenn eine Kraftmaschinenabschaltanforderung vorhanden ist, die Arbitrierung die Kraftmaschinenabschaltanforderung als die gewinnende Anforderung. Wenn die Kraftmaschinenabschaltanforderung vorhanden ist, kann das Vortriebsdrehmoment-Arbitrierungsmodul 206 als die arbitrierte vorhergesagte Drehmomentanforderung und als die arbitrierte Sofortdrehmomentanforderung 261 und 262 null ausgeben.
  • Bei verschiedenen Implementierungen kann eine Kraftmaschinenabschaltanforderung die Kraftmaschine 102 separat von dem Arbitrierungsprozess einfach abschalten. Das Vortriebsdrehmomentarbitrierungsmodul 206 kann dennoch die Kraftmaschinenabschaltanforderung empfangen, so dass beispielsweise geeignete Daten zurück zu anderen Drehmomentanforderern zurückgeführt werden können. Zum Beispiel können alle anderen Drehmomentanforderungseinrichtungen informiert werden, dass sie die Arbitrierung verloren haben.
  • Das Reserven/Lasten-Modul 220 empfängt die arbitrierte vorhergesagte Drehmomentanforderung und die arbitrierte Sofortdrehmomentanforderung 261 und 262. Das Reserven/Lasten-Modul 220 kann die arbitrierte vorhergesagte Drehmomentanforderung und die arbitrierte Sofortdrehmomentanforderung 261 und 262 so einstellen, dass eine Drehmomentreserve erzeugt wird und/oder dass eine oder mehrere Lasten kompensiert werden. Daraufhin gibt das Reserven/Lasten-Modul 220 die eingestellte vorhergesagte Drehmomentanforderung und die eingestellte Sofortdrehmomentanforderung 263 und 264 an das Drehmomentanforderungsmodul 224 aus.
  • Nur beispielhaft können ein Katalysatoranspringprozess oder ein Kaltstartemissions-Verringerungsprozess eine nach spät verstellte Zündfunken-Zeiteinstellung erfordern. Somit kann das Reserven/Lasten-Modul 220 die eingestellte vorhergesagte Drehmomentanforderung 263 über die eingestellte Sofortdrehmomentanforderung 264 erhöhen, um für den Kaltstartemissions-Verringerungsprozess einen nach spät verstellten Zündfunken zu erzeugen. Bei einem anderen Beispiel können das Luft/Kraftstoff-Verhältnis der Kraftmaschine und/oder der Luftmassenstrom direkt variiert werden, wie durch diagnostische intrusive Äquivalenzverhältnisprüfung und/oder neue Kraftmaschinenspülung. Vor einem Beginn dieser Prozesse kann eine Drehmomentreserve erzeugt oder erhöht werden, um Abnahmen des Kraftmaschinenausgangsdrehmomentes schnell zu kompensieren, die aus einem Magerwerden des Luft/Kraftstoff-Gemisches während dieser Prozesse resultieren.
  • Das Reserven/Lasten-Modul 220 kann auch eine Drehmomentreserve in Erwartung einer zukünftigen Last erzeugen oder erhöhen, wie einen Betrieb der Servolenkungspumpe oder den Eingriff einer Kupplung des Klimaanlagen-(A/C)-Verdichters. Die Reserve zum Eingriff der A/C-Verdichterkupplung kann erzeugt werden, wenn der Fahrer zuerst einen Klimaanlagenbetrieb anfordert. Das Reserven/Lasten-Modul 220 kann die eingestellte vorhergesagte Drehmomentanforderung 263 erhöhen, während es die eingestellte Sofortdrehmomentanforderung 264 ungeändert lässt, um die Drehmomentreserve zu erzeugen. Wenn die A/C-Verdichterkupplung daraufhin eingerückt wird, kann das Reserven/Lasten-Modul 220 die eingestellte Sofortdrehmomentanforderung 264 um die geschätzte Last der A/C-Verdichterkupplung erhöhen.
  • Das Drehmomentanforderungsmodul 224 empfängt die eingestellte vorhergesagte Drehmomentanforderung und die eingestellte Sofortdrehmomentanforderung 263 und 264. Das Drehmomentanforderungsmodul 224 bestimmt, wie die eingestellte vorhergesagte Drehmomentanforderung und die eingestellte Sofortdrehmomentanforderung 263 und 264 erzielt werden. Das Drehmomentanforderungsmodul 224 kann kraftmaschinentypspezifisch sein. Zum Beispiel kann das Drehmomentanforderungsmodul 224 für Fremdzündungskraftmaschinen gegenüber Selbstzündungskraftmaschinen anders implementiert sein oder andere Steuerschemata verwenden.
  • Bei verschiedenen Implementierungen kann das Drehmomentanforderungsmodul 224 zwischen Modulen, die über alle Kraftmaschinentypen gemeinsam sind, und Modulen, die für den Kraftmaschinentyp spezifisch sind, eine Begrenzung definieren. Beispielsweise können Kraftmaschinentypen Funkenzündung und Kompressionszündung aufweisen. Module vor dem Drehmomentanforderungsmodul 224 wie etwa das Vortriebsdrehmoment-Arbitrierungsmodul 206 können zwischen den Kraftmaschinentypen gemeinsam sein, während das Drehmomentanforderungsmodul 224 und nachfolgende Module kraftmaschinentypspezifisch sein können.
  • Das Drehmomentanforderungsmodul 224 bestimmt auf der Grundlage der eingestellten vorhergesagten Drehmomentanforderung und der eingestellten Sofortdrehmomentanforderung 263 und 264 eine Luftdrehmomentanforderung 265. Die Luftdrehmomentanforderung 265 kann ein Bremsdrehmoment sein. Das Bremsdrehmoment kann sich auf ein Drehmoment bei der Kurbelwelle unter den aktuellen Betriebsbedingungen beziehen.
  • Auf der Grundlage der Luftdrehmomentanforderung 265 werden Zielwerte für Luftströmungssteuerungs-Kraftmaschinenaktoren bestimmt. Genauer bestimmt das Luftsteuermodul 228 auf der Grundlage der Luftdrehmomentanforderung 265 eine Ziel-Ladedruckregelventil-Öffnungsfläche 266, eine Ziel-Drosselklappen-Öffnungsfläche 267, eine Ziel-AGR-Öffnungsfläche 268, einen Ziel-Einlassnocken-Phasenstellerwinkel 269 und einen Ziel-Auslassnocken-Phasenstellerwinkel 270. Wie im Folgenden weiter diskutiert wird, bestimmt das Luftsteuermodul 228 die Ziel-Ladedruckregelventil-Öffnungsfläche 266, die Ziel-Drosselklappen-Öffnungsfläche 267, die Ziel-AGR-Öffnungsfläche 268, den Ziel-Einlassnocken-Phasenstellerwinkel 269 und den Ziel-Auslassnocken-Phasenstellerwinkel 270 unter Verwendung einer Modellvorhersagesteuerung.
  • Das Ladedruckaktormodul 164 steuert das Ladedruckregelventil 162, um die Ziel-Ladedruckregelventil-Öffnungsfläche 266 zu erzielen. Zum Beispiel kann ein erstes Umsetzungsmodul 272 die Ziel-Ladedruckregelventil-Öffnungsfläche 266 in einen Ziel-Tastgrad 274 umsetzen, der an das Ladedruckregelventil 162 angelegt werden soll, und kann das Ladedruckaktormodul 164 auf der Grundlage des Ziel-Tastgrads 274 ein Signal an das Ladedruckregelventil 162 anlegen. Bei verschiedenen Implementierungen kann das erste Umsetzungsmodul 272 die Ziel-Ladedruckregelventil-Öffnungsfläche 266 in eine Ziel-Ladedruckregelventil-Position (nicht gezeigt) umsetzen und die Ziel-Ladedruckregelventil-Position in den Ziel-Tastgrad 274 umsetzen.
  • Das Drosselaktormodul 116 steuert die Drosselklappe 112, um die Ziel-Drosselklappen-Öffnungsfläche 267 zu erzielen. Zum Beispiel kann ein zweites Umsetzungsmodul 276 die Ziel-Drosselklappen-Öffnungsfläche 267 in einen Ziel-Tastgrad 278 umsetzen, der an die Drosselklappe 112 angelegt werden soll, und kann das Drosselaktormodul 116 auf der Grundlage des Ziel-Tastgrads 278 ein Signal an die Drosselklappe 112 anlegen. Bei verschiedenen Implementierungen kann das zweite Umsetzungsmodul 276 die Ziel-Drosselklappen-Öffnungsfläche 267 in eine Ziel-Drosselklappenposition (nicht gezeigt) umsetzen und die Ziel-Drosselklappenposition in den Ziel-Tastgrad 278 umsetzen.
  • Das AGR-Aktormodul 172 steuert das AGR-Ventil 170, um die Ziel-AGR-Öffnungsfläche 268 zu erzielen. Zum Beispiel kann ein drittes Umsetzungsmodul 280 die Ziel-AGR-Öffnungsfläche 268 in einen Ziel-Tastgrad 282 umsetzen, der an das AGR-Ventil 170 angelegt werden soll, und kann das AGR-Aktormodul 172 auf der Grundlage des Ziel-Tastgrads 282 ein Signal an das AGR-Ventil 170 anlegen. Bei verschiedenen Implementierungen kann das dritte Umsetzungsmodul 280 die Ziel-AGR-Öffnungsfläche 268 in eine Ziel-AGR-Position (nicht gezeigt) umsetzen und die Ziel-AGR-Position in den Ziel-Tastgrad 282 umsetzen.
  • Das Phasensteller-Aktormodul 158 steuert den Einlassnocken-Phasensteller 148, um den Ziel-Einlassnocken-Phasenstellerwinkel 269 zu erzielen. Außerdem steuert das Phasensteller-Aktormodul 158 den Auslassnocken-Phasensteller 150, um den Ziel-Auslassnocken-Phasenstellerwinkel 270 zu erzielen. Bei verschiedenen Implementierungen kann ein viertes Umsetzungsmodul (nicht gezeigt) enthalten sein und den Ziel-Einlassnocken-Phasenstellerwinkel und den Ziel-Auslassnocken-Phasenstellerwinkel in einen Ziel-Einlasstastgrad bzw. in einen Ziel-Auslasstastgrad umsetzen. Das Phasensteller-Aktormodul 158 kann den Ziel-Einlasstastgrad und den Ziel-Auslasstastgrad an den Einlassnocken-Phasensteller und an den Auslassnocken-Phasensteller 148 bzw. 150 anlegen. Bei verschiedenen Implementierungen kann das Luftsteuermodul 228 einen Ziel-Überlappungsfaktor und einen effektiven Zielhubraum bestimmen und kann das Phasensteller-Aktormodul 158 den Einlassnocken-Phasensteller und den Auslassnocken-Phasensteller 148 und 150 steuern, um den Ziel-Überlappungsfaktor und den effektiven Zielhubraum zu erzielen.
  • Außerdem kann das Drehmomentanforderungsmodul 224 auf der Grundlage der vorhergesagten Drehmomentanforderung und der Sofortdrehmomentanforderung 263 und 264 eine Zündfunken-Drehmomentanforderung 283, eine Zylinderabschaltungs-Drehmomentanforderung 284 und eine Kraftstoff-Drehmomentanforderung 285 erzeugen. Das Zündfunkensteuermodul 232 kann auf der Grundlage der Zündfunken-Drehmomentanforderung 283 bestimmen, wie viel die Zündfunken-Zeiteinstellung von einer optimalen Zündfunken-Zeiteinstellung nach spät verstellt werden soll (was das Kraftmaschinen-Ausgangsdrehmoment verringert). Nur beispielhaft kann die Drehmomentbeziehung umgekehrt werden, um sie nach einer Ziel-Zündfunken-Zeiteinstellung 286 aufzulösen. Für eine gegebene Drehmomentanforderung (TReq) kann die Ziel-Zündfunken-Zeiteinstellung (ST) 286 auf der Grundlage von: ST = f–1(TReq, APC, I, E, AF, OT, #), 1) bestimmt werden, wobei APC eine APC ist, I ein Einlassventil-Phasenlageneinstellungswert ist, E ein Auslassventil-Phasenlageneinstellungswert ist, AF ein Luft/Kraftstoff-Verhältnis ist, OT eine Öltemperatur ist und # eine Anzahl aktivierter Zylinder ist. Diese Beziehung kann als eine Gleichung und/oder als eine Nachschlagetabelle ausgeführt sein. Das Luft/Kraftstoff-Verhältnis (AF) kann das tatsächliche Luft/Kraftstoff-Verhältnis sein, wie es durch das Kraftstoffsteuermodul 240 berichtet wird.
  • Wenn die Zündfunken-Zeiteinstellung auf die optimale Zündfunken-Zeiteinstellung eingestellt wird, kann das resultierende Drehmoment so nahe wie möglich einer minimalen Zündfunkenverstellung nach früh für bestes Drehmoment (MBT-Zündfunken-Zeiteinstellung) sein. Bestes Drehmoment bezieht sich auf das maximale Kraftmaschinen-Ausgangsdrehmoment, das für eine gegebene Luftströmung erzeugt wird, während die Zündfunken-Zeiteinstellung nach früh verstellt ist, während ein Kraftstoff, der eine höhere Oktanzahl als eine vorgegebene Oktanzahl aufweist, verwendet wird und eine stöchiometrische Kraftstoffbeaufschlagung verwendet wird. Diejenige Zündfunken-Zeiteinstellung, bei der das Beste auftritt, wird als eine MBT-Zündfunken-Zeiteinstellung bezeichnet. Zum Beispiel wegen der Kraftstoffqualität (wie etwa, wenn Kraftstoff mit einer niedrigeren Oktanzahl verwendet wird) und Umgebungsfaktoren wie etwa der Umgebungsfeuchtigkeit und Umgebungstemperatur kann sich die optimale Zündfunken-Zeiteinstellung geringfügig von der MBT-Zündfunken-Zeiteinstellung unterscheiden. Somit kann das Kraftmaschinen-Ausgangsdrehmoment bei der optimalen Zündfunken-Zeiteinstellung kleiner als MBT sein. Nur beispielhaft kann eine Tabelle optimaler Zündfunken-Zeiteinstellungen, die verschiedenen Kraftmaschinenbetriebsbedingungen entsprechen, während einer Kalibrierungsphase des Fahrzeugentwurfs bestimmt werden, wobei der Optimalwert aus einer Tabelle bestimmt wird, die auf den aktuellen Kraftmaschinenbetriebsbedingungen beruht.
  • Die Zylinderabschaltungs-Drehmomentanforderung 284 kann durch das Zylindersteuermodul 236 verwendet werden, um eine Zielanzahl zu deaktivierender Zylinder 287 zu bestimmen. Bei verschiedenen Implementierungen kann eine Zielanzahl zu aktivierender Zylinder verwendet werden. Das Zylinderaktormodul 120 aktiviert und deaktiviert wahlweise auf der Grundlage der Zielanzahl 287 die Ventile von Zylindern.
  • Außerdem kann das Zylindersteuermodul 236 das Kraftstoffsteuermodul 240 anweisen, das Bereitstellen von Kraftstoff für deaktivierte Zylinder anzuhalten, und das Zündfunkensteuermodul 232 anweisen, das Bereitstellen eines Zündfunkens für deaktivierte Zylinder anzuhalten. Das Zündfunkensteuermodul 232 kann das Bereitstellen eines Zündfunkens für einen Zylinder anhalten, wenn ein Kraftstoff/Luft-Gemisch, das bereits in dem Zylinder vorhanden ist, verbrannt worden ist.
  • Das Kraftstoffsteuermodul 240 kann auf der Grundlage der Kraftstoff-Drehmomentanforderung 285 die Menge Kraftstoff variieren, die für jeden Zylinder bereitgestellt wird. Genauer kann das Kraftstoffsteuermodul 240 auf der Grundlage der Kraftstoff-Drehmomentanforderung 285 Ziel-Kraftstoffbeaufschlagungsparameter 288 erzeugen. Die Ziel-Kraftstoffbeaufschlagungsparameter 288 können z. B. eine Zielmasse des Kraftstoffs, eine Ziel-Einspritzanfangszeiteinstellung und eine Zielanzahl der Kraftstoffeinspritzungen enthalten.
  • Während des Normalbetriebs kann das Kraftstoffsteuermodul 240 in einer Luftleitungsbetriebsart arbeiten, in der das Kraftstoffsteuermodul 240 ein stöchiometrisches Luft/Kraftstoff-Verhältnis aufrechtzuerhalten versucht, indem es die Kraftstoffbeaufschlagung auf der Grundlage der Luftströmung steuert. Zum Beispiel kann das Kraftstoffsteuermodul 240 eine Ziel-Kraftstoffmasse bestimmen, die eine stöchiometrische Verbrennung liefert, wenn sie mit einer aktuellen Masse der Luft pro Zylinder (APC) kombiniert wird.
  • 3 ist ein Funktionsblockschaltbild einer beispielhaften Implementierung des Luftsteuermoduls 228. Nun anhand von 2 und 3 kann die Luftdrehmomentanforderung 265 wie oben diskutiert ein Bremsdrehmoment sein. Ein Drehmomentumsetzungsmodul 304 setzt die Luftdrehmomentanforderung 265 von Bremsmoment in Basisdrehmoment um. Die Drehmomentanforderung, die sich aus der Umsetzung in das Basisdrehmoment ergibt, wird als eine Basis-Luftdrehmomentanforderung 308 bezeichnet.
  • Basisdrehmomente können sich auf ein Drehmoment bei der Kurbelwelle beziehen, das während des Betriebs der Kraftmaschine 102 an einem Dynamometer erzeugt wird, während die Kraftmaschine 102 warm ist und an der Kraftmaschine 102 keine Drehmomentlasten durch Zubehör wie etwa eine Lichtmaschine und den A/C-Verdichter auferlegt werden. Das Drehmoment-Umsetzungsmodul 304 kann die Luftdrehmomentanforderung 265 z. B. unter Verwendung eines Kennfelds oder einer Funktion, die die Bremsdrehmomente mit Basisdrehmomenten in Beziehung setzt, in die Basis-Luftdrehmomentanforderung 308 umsetzen. Bei verschiedenen Implementierungen kann das Drehmoment-Umsetzungsmodul 304 die Luftdrehmomentanforderung 265 in einen anderen geeigneten Drehmomenttyp wie etwa in ein angegebenes Drehmoment umsetzen. Ein angegebenes Drehmoment kann sich auf ein Drehmoment bei der Kurbelwelle beziehen, das Arbeit zuzuschreiben ist, die über Verbrennung innerhalb der Zylinder erzeugt wird.
  • Ein MPC-Modul 312 erzeugt unter Verwendung eines MPC-(Modellvorhersagesteuerungs-)Schemas die Zielwerte 266270. Das MPC-Modul 312 kann ein einzelnes Modul sein oder kann mehrere Module umfassen. Zum Beispiel kann das MPC-Modul 312 ein Sequenzbestimmungsmodul 316 enthalten. Das Sequenzbestimmungsmodul 316 bestimmt mögliche Sequenzen der Zielwerte 266270, die während N künftiger Steuerschleifen zusammen verwendet werden können.
  • Ein Vorhersagemodul 323 bestimmt auf der Grundlage eines (mathematischen) Modells 324 der Kraftmaschine 102, exogener Eingaben 328 und Rückkopplungseingaben 330 jeweils das vorhergesagte Ansprechen der Kraftmaschine 102 auf die möglichen Sequenzen der Zielwerte 266270. Genauer erzeugt das Vorhersagemodul 323 auf der Grundlage einer möglichen Sequenz der Zielwerte 266270, der exogenen Eingaben 328 und der Rückkopplungseingaben 330 unter Verwendung des Modells 324 eine Sequenz vorhergesagter Drehmomente der Kraftmaschine 102 für die N Steuerschleifen, eine Sequenz vorhergesagter APCs für die N Steuerschleifen, eine Sequenz vorhergesagter Mengen externer Verdünnung für die N Steuerschleifen, eine Sequenz vorhergesagter Mengen Restverdünnung für die N Steuerschleifen, eine Sequenz vorhergesagter Verbrennungs-Phasenlageneinstellungswerte für die N Steuerschleifen und eine Sequenz vorhergesagter Verbrennungsqualitätswerte für die N Steuerschleifen.
  • Das Modell 324 kann z. B. eine auf der Grundlage von Charakteristiken der Kraftmaschine 102 kalibrierte Funktion oder kalibriertes Kennfeld sein. Die Verdünnung kann sich auf eine Menge Abgas von einem früheren Verbrennungsereignis beziehen, das für ein Verbrennungsereignis innerhalb eines Zylinders eingeschlossen ist. Die externe Verdünnung kann sich auf Abgas beziehen, das über das AGR-Ventil 170 für ein Verbrennungsereignis bereitgestellt wird. Die Restverdünnung (auch als interne Verdünnung bezeichnet) kann sich auf Abgas, das in einem Zylinder verbleibt, und/oder auf Abgas beziehen, das nach dem Ausstoßtakt eines Verbrennungszyklus in den Zylinder zurückgetrieben wird.
  • Die Verbrennungs-Phasenlageneinstellung kann sich auf eine Kurbelwellenposition, bei der eine vorgegebene Menge eingespritzten Kraftstoffs innerhalb eines Zylinders verbrannt wird, im Vergleich zu einer vorgegebenen Kurbelwellenposition für die Verbrennung der vorgegebenen Menge von injiziertem Kraftstoff beziehen. Zum Beispiel kann die Verbrennungs-Phasenlageneinstellung hinsichtlich CA50 im Vergleich zu einem vorgegebenen CA50 ausgedrückt werden. CA50 kann sich auf einen Kurbelwellenwinkel (CA) beziehen, bei dem 50 Prozent einer Masse eingespritzten Kraftstoffs innerhalb eines Zylinders verbrannt sind. Das vorgegebene CA50 kann einem CA50 entsprechen, bei dem aus dem eingespritzten Kraftstoff eine maximale Menge Arbeit erzeugt wird, und kann in verschiedenen Implementierungen näherungsweise 8,5 – näherungsweise 10 Grad nach dem TDC (oberen Totpunkt) sein. Obgleich die Verbrennungs-Phasenlageneinstellung hinsichtlich CA50-Werten diskutiert ist, kann irgendein geeigneter Parameter verwendet werden, der die Verbrennungs-Phasenlageneinstellung angibt. Obgleich die Verbrennungsqualität als Variationskoeffizient (COV) indizierter mittlerer effektiver Druckwerte (IMEP-Werte) diskutiert ist, kann außerdem ein anderer geeigneter Parameter verwendet werden, der die Verbrennungsqualität angibt.
  • Die exogenen Eingaben 328 können Parameter enthalten, die nicht direkt von der Drosselklappe 112, von dem AGR-Ventil 170, von dem Turbolader, von dem Einlassnocken-Phasensteller 148 und von dem Auslassnocken-Phasensteller 150 beeinflusst sind. Zum Beispiel können die exogenen Eingaben 328 die Kraftmaschinendrehzahl, den Turbolader-Einlassluftdruck, die IAT und/oder einen oder mehrere andere Parameter umfassen. Die Rückkopplungseingaben 330 können z. B. eine geschätzte Drehmomentausgabe der Kraftmaschine 102, einen Auslassdruck stromabwärts der Turbine 160-1 des Turboladers, die IAT, eine APC der Kraftmaschine 102, eine geschätzte Restverdünnung, eine geschätzte externe Verdünnung und/oder einen oder mehrere andere geeignete Parameter enthalten. Die Rückkopplungseingaben 330 können unter Verwendung von Sensoren (z. B. die IAT) gemessen werden und/oder können auf der Grundlage eines oder mehrerer anderer Parameter geschätzt werden.
  • Jede der möglichen durch das Sequenzbestimmungsmodul 316 identifizierten Sequenzen enthält für jeden der Zielwerte 266270 eine Sequenz von N Werten. Mit anderen Worten, jede mögliche Sequenz enthält eine Sequenz von N Werten für die Ziel-Ladedruckregelventil-Öffnungsfläche 266, eine Sequenz von N Werten für die Ziel-Drosselklappen-Öffnungsfläche 267, eine Sequenz von N Werten für die Ziel-AGR-Öffnungsfläche 268, eine Sequenz von N Werten für den Ziel-Einlassnocken-Phasenstellerwinkel 269 und eine Sequenz von N Werten für den Ziel-Auslassnocken-Phasenstellerwinkel 270. Jeder der N Werte ist für eine Entsprechende der N künftigen Steuerschleifen. N ist eine ganze Zahl größer oder gleich eins.
  • Ein Kostenmodul 332 bestimmt für jede der möglichen Sequenzen der Zielwerte 266270 auf der Grundlage der vorhergesagten Parameter, die für eine mögliche Sequenz bestimmt worden sind, und der Ausgangsreferenzwerte 356 einen Kostenwert. Eine beispielhafte Kostenbestimmung wird im Folgenden weiter diskutiert.
  • Ein Auswahlmodul 344 wählt jeweils auf der Grundlage der Kosten der möglichen Sequenzen eine der möglichen Sequenzen der Zielwerte 266270 aus. Zum Beispiel kann das Auswahlmodul 344 die eine der möglichen Sequenzen mit den niedrigsten Kosten, während die Aktorbeschränkungen 348 und die Ausgabebeschränkungen 352 erfüllt sind, auswählen. Bei verschiedenen Implementierungen kann das Modell 324 die eine der möglichen Sequenzen mit den niedrigsten Kosten, während die Aktorbeschränkungen 348 und die Ausgabebeschränkungen 352 erfüllt sind, auswählen.
  • Bei verschiedenen Implementierungen kann bei der Kostenbestimmung eine Erfüllung der Aktorbeschränkungen 348 und der Ausgabebeschränkungen betrachtet werden. Mit anderen Worten, das Kostenmodul 332 kann die Kostenwerte ferner auf der Grundlage der Aktorbeschränkungen 348 und der Ausgabebeschränkungen 352 bestimmen. Wie im Folgenden weiter diskutiert wird, wählt das Auswahlmodul 344 auf der Grundlage dessen, wie die Kostenwerte bestimmt werden, die eine der möglichen Sequenzen aus, die vorbehaltlich der Aktorbeschränkungen 348 und der Ausgabebeschränkungen 352 die Basis-Luftdrehmomentanforderung 308 am besten erzielt, während sie die APC minimiert.
  • Das Auswahlmodul 344 kann die Zielwerte 266270 jeweils auf die Ersten der N Werte der ausgewählten möglichen Sequenz einstellen. Mit anderen Worten, das Auswahlmodul 344 kann die Ziel-Ladedruckregelventil-Öffnungsfläche 266 auf den Ersten der N Werte in der Sequenz von N Werten für die Ziel-Ladedruckregelventil-Öffnungsfläche 266 einstellen, kann die Ziel-Drosselklappen-Öffnungsfläche 267 auf den Ersten der N Werte in der Sequenz von N Werten für die Ziel-Drosselklappen-Öffnungsfläche 267 einstellen, kann die Ziel-AGR-Öffnungsfläche 268 auf den Ersten der N Werte in der Sequenz von N Werten für die Ziel-AGR-Öffnungsfläche 268 einstellen, kann den Ziel-Einlassnocken-Phasenstellerwinkel 269 auf den Ersten der N Werte in der Sequenz von N Werten für den Ziel-Einlassnocken-Phasenstellerwinkel 269 einstellen und kann den Ziel-Auslassnocken-Phasenstellerwinkel 270 auf den Ersten der N Werte in der Sequenz von N Werten für den Ziel-Auslassnocken-Phasenstellerwinkel 270 einstellen.
  • Während einer nächsten Steuerschleife identifiziert das MPC-Modul 312 mögliche Sequenzen, erzeugt es die vorhergesagten Parameter für die möglichen Sequenzen, bestimmt es die Kosten jeder der möglichen Sequenzen, wählt es eine der möglichen Sequenzen aus und stellt es Sätze der Zielwerte 266270 auf den ersten Satz der Zielwerte 266270 in der ausgewählten möglichen Sequenz ein. Dieser Prozess wird für jede Steuerschleife fortgesetzt.
  • Ein Aktorbeschränkungsmodul 360 (siehe 2) stellt für jeden der Zielwerte 266270 eine der Aktorbeschränkungen 348 ein. Mit anderen Worten, das Aktorbeschränkungsmodul 360 stellt eine Aktorbeschränkung für die Drosselklappe 112, eine Aktorbeschränkung für das AGR-Ventil 170, eine Aktorbeschränkung für das Ladedruckregelventil 162, eine Aktorbeschränkung für den Einlassnocken-Phasensteller 148 und eine Aktorbeschränkung für den Auslassnocken-Phasensteller 150 ein.
  • Die Aktorbeschränkungen 348 für jeden der Zielwerte 266270 können einen Maximalwert für einen zugeordneten Zielwert und einen Minimalwert für diesen Zielwert enthalten. Allgemein kann das Aktorbeschränkungsmodul 360 die Aktorbeschränkungen 348 auf vorgegebene Betriebsbereiche für die zugeordneten Aktoren einstellen. Genauer kann das Aktorbeschränkungsmodul 360 die Aktorbeschränkungen 348 jeweils allgemein auf vorgegebene Betriebsbereiche für die Drosselklappe 112, für das AGR-Ventil 170, für das Ladedruckregelventil 162, für den Einlassnocken-Phasensteller 148 und für den Auslassnocken-Phasensteller 150 einstellen.
  • Allerdings kann das Aktorbeschränkungsmodul 360 unter einigen Umständen wahlweise eine oder mehrere der Aktorbeschränkungen 348 einstellen. Zum Beispiel kann das Aktorbeschränkungsmodul 360 die Aktorbeschränkungen für einen gegebenen Aktor einstellen, um den Betriebsbereich für diesen Kraftmaschinenaktor einzuengen, wenn in diesem Kraftmaschinenaktor ein Fehler diagnostiziert wird. Nur als ein anderes Beispiel kann das Aktorbeschränkungsmodul 360 die Aktorbeschränkungen in der Weise einstellen, dass der Zielwert für einen gegebenen Aktor im Zeitverlauf einem vorgegebenen Plan folgt oder sich z. B. für eine Fehlerdiagnose wie etwa eine Nockenphasensteller-Fehlerdiagnose, eine Drosseldiagnose, eine AGR-Diagnose usw. um einen vorgegebenen Betrag ändert. Damit ein Zielwert im Zeitverlauf einem vorgegebenen Plan folgt oder sich um einen vorgegebenen Betrag ändert, kann das Aktorbeschränkungsmodul 360 den Minimal- und den Maximalwert auf denselben Wert einstellen. Dass der Minimal- und der Maximalwert auf denselben Wert eingestellt werden, kann erzwingen, dass der entsprechende Zielwert auf dieselben Werte wie der Minimal- und der Maximalwert eingestellt wird. Das Aktorbeschränkungsmodul 360 kann denselben Wert, auf den der Minimal- und der Maximalwert eingestellt sind, im Zeitverlauf variieren, um zu veranlassen, dass der Zielwert einem vorgegebenen Plan folgt.
  • Ein Ausgabebeschränkungsmodul 364 (siehe 2) stellt die Ausgabebeschränkungen 352 für die vorhergesagte Drehmomentausgabe der Kraftmaschine 102, für das vorhergesagte CA50, für die vorhergesagte COV des IMEP, für die vorhergesagte Restverdünnung und für die vorhergesagte externe Verdünnung ein. Die Ausgabebeschränkungen 352 für jeden der vorhergesagten Werte können einen Maximalwert für einen zugeordneten vorhergesagten Parameter und einen Minimalwert für diesen vorhergesagten Parameter enthalten. Zum Beispiel können die Ausgabebeschränkungen 352 ein minimales Drehmoment, ein maximales Drehmoment, ein minimales CA50 und ein maximales CA50, eine minimale COV des IMEP und eine maximale COV des IMEP, eine minimale Restverdünnung und eine maximale Restverdünnung und eine minimale externe Verdünnung und eine maximale externe Verdünnung enthalten.
  • Das Ausgabebeschränkungsmodul 364 kann die Ausgabebeschränkungen 352 jeweils allgemein auf vorgegebene Bereiche für die zugeordneten vorhergesagten Parameter einstellen. Allerdings kann das Ausgabebeschränkungsmodul 364 unter einigen Umständen eine oder mehrere der Ausgabebeschränkungen 352 variieren. Zum Beispiel kann das Ausgabebeschränkungsmodul 364 das maximale CA50, wie etwa, wenn innerhalb der Kraftmaschine 102 Klopfen auftritt, nach spät verstellen. Als ein anderes Beispiel kann das Ausgabebeschränkungsmodul 364 die maximale COV des IMEP unter Niederlastbedingungen wie etwa während des Kraftmaschinenleerlaufs, wo eine höhere COV des IMEP notwendig sein kann, um eine gegebene Drehmomentanforderung zu erzielen, erhöhen.
  • Ein Referenzmodul 368 (siehe 2) erzeugt jeweils die Referenzwerte 356 für die Zielwerte 266270. Die Referenzwerte 356 enthalten für jeden der Zielwerte 266270 eine Referenz. Mit anderen Worten, die Referenzwerte 356 enthalten eine Referenz-Ladedruckregelventil-Öffnungsfläche, eine Referenz-Drosselklappen-Öffnungsfläche, eine Referenz-AGR-Öffnungsfläche, einen Referenz-Einlassnocken-Phasenstellerwinkel und einen Referenz-Auslassnocken-Phasenstellerwinkel.
  • Das Referenzmodul 368 kann die Referenzwerte 356 z. B. auf der Grundlage der Luftdrehmomentanforderung 265, der Basis-Luftdrehmomentanforderung 308 und/oder eines oder mehrerer anderer geeigneter Parameter bestimmen. Die Referenzwerte 356 stellen jeweils Referenzen zum Einstellen der Zielwerte 266270 bereit. Die Referenzwerte 356 können verwendet werden, um die Kostenwerte für mögliche Sequenzen zu bestimmen. Außerdem können die Referenzwerte 356 aus einem oder mehreren anderen Gründen wie etwa durch das Sequenzbestimmungsmodul 316 zum Bestimmen möglicher Sequenzen verwendet werden.
  • Anstelle oder zusätzlich zum Erzeugen von Sequenzen möglicher Zielwerte und zum Bestimmen der Kosten jeder der Sequenzen kann das MPC-Modul 312 eine Sequenz möglicher Zielwerte mit den niedrigsten Kosten unter Verwendung konvexer Optimierungstechniken identifizieren. Zum Beispiel kann das MPC-Modul 312 die Zielwerte 266270 unter Verwendung eines Gleichungslösers der quadratischen Programmierung (QP) wie etwa eines Dantzig-QP-Gleichungslösers bestimmen. In einem anderen Beispiel kann das MPC-Modul 312 für die möglichen Sequenzen der Zielwerte 266270 eine Fläche der Kostenwerte erzeugen und auf der Grundlage des Anstiegs der Kostenfläche einen Satz möglicher Zielwerte mit den niedrigsten Kosten identifizieren. Daraufhin kann das MPC-Modul 312 diesen Satz möglicher Zielwerte testen, um zu bestimmen, ob dieser Satz möglicher Zielwerte die Aktorbeschränkungen 348 und die Ausgabebeschränkungen 352 erfüllt. Das MPC-Modul 312 wählt den Satz möglicher Zielwerte mit den niedrigsten Kosten, während die Aktorbeschränkungen 348 und die Ausgabebeschränkungen 352 erfüllt sind, aus.
  • Das Kostenmodul 332 kann die Kosten für die möglichen Sequenzen der Zielwerte 266270 auf der Grundlage von Beziehungen bestimmen zwischen: dem vorhergesagten Drehmoment und der Basis-Luftdrehmomentanforderung 308; der vorhergesagten APC und null; den möglichen Zielwerten und den jeweiligen Aktorbeschränkungen 348; den anderen vorhergesagten Parametern und den jeweiligen Ausgabebeschränkungen 352; und den möglichen Zielwerten und den jeweiligen Referenzwerten 356. Die Beziehungen können gewichtet werden, um z. B. die Wirkung zu steuern, die jede der Beziehungen auf die Kosten hat.
  • Nur beispielhaft kann das Kostenmodul 332 die Kosten (eng.: ”cost”) für eine mögliche Sequenz der Zielwerte 266270 auf der Grundlage der folgenden Gleichung bestimmen: Cost = Σ N / i=1 ρε2 + ∥wT·(TPi – BATR)∥2 + ∥wA·(APCPi – 0)∥2, wobei Kosten die Kosten für die mögliche Sequenz der Zielwerte 266270 sind, TPi das vorhergesagte Drehmoment der Kraftmaschine 102 für die i-te der N Steuerschleifen ist, BATR die Basis-Luftdrehmomentanforderung 308 ist und wT ein Gewichtungswert ist, der der Beziehung zwischen dem vorhergesagten Kraftmaschinendrehmoment und dem Referenzdrehmoment zugeordnet ist. APCPi ist eine vorhergesagte APC für die i-te der N Steuerschleifen und wA ist ein Gewichtungswert, der der Beziehung zwischen der vorhergesagten APC und null zugeordnet ist.
  • Das Kostenmodul 332 kann die Kosten (engl.: ”cost”) für eine mögliche Sequenz der Zielwerte 266270 auf der Grundlage der folgenden ausführlicheren Gleichung:
    Figure DE102015103883A1_0002
    vorbehaltlich der Aktorbeschränkungen 348 und der Ausgabebeschränkungen 352 bestimmen. Kosten sind die Kosten für die mögliche Sequenz der Zielwerte 266270, TPi ist das vorhergesagte Drehmoment der Kraftmaschine 102 für die i-te der N Steuerschleifen, BATR ist die Basis-Luftdrehmomentanforderung 308 und wT ist ein Gewichtungswert, der der Beziehung zwischen dem vorhergesagten Kraftmaschinendrehmoment und dem Referenz-Kraftmaschinendrehmoment zugeordnet ist. APCPi ist eine vorhergesagte APC für die i-te der N Steuerschleifen und wA ist ein Gewichtungswert, der der Beziehung zwischen der vorhergesagten APC und null zugeordnet ist.
  • PTTOi ist eine mögliche Ziel-Drosselklappenöffnung für die i-te der N Steuerschleifen, TORef ist die Referenz-Drosselklappenöffnung und wTV ist ein Gewichtungswert, der der Beziehung zwischen den möglichen Ziel-Drosselklappenöffnungen und der Referenz-Drosselklappenöffnung zugeordnet ist. PTWGOi ist eine mögliche Ziel-Ladedruckregelventil-Öffnung für die i-te der N Steuerschleifen, WGORef ist die Referenz-Ladedruckregelventil-Öffnung und wWG ist ein Gewichtungswert, der der Beziehung zwischen den möglichen Ziel-Ladedruckregelventil-Öffnungen und der Referenz-Ladedruckregelventil-Öffnung zugeordnet ist.
  • PTEGROi ist eine mögliche Ziel-AGR-Öffnung für die i-te der N Steuerschleifen, EGRRef ist die Referenz-AGR-Öffnung und ein wEGR ist ein Gewichtungswert, der der Beziehung zwischen den möglichen AGR-Öffnungen und der Referenz-AGR-Öffnung zugeordnet ist. PTICi ist ein möglicher Ziel-Einlassnocken-Phasenstellerwinkel für die i-te der N Steuerschleifen, ICPRef ist der Referenz-Einlassnocken-Phasenstellerwinkel und wIP ist ein Gewichtungswert, der der Beziehung zwischen dem möglichen Ziel-Einlassnocken-Phasenstellerwinkel und dem Referenz-Einlassnocken-Phasenstellerwinkel zugeordnet ist. PTECi ist ein möglicher Ziel-Auslassnocken-Phasenstellerwinkel für die i-te der N Steuerschleifen, ECPRef ist der Referenz-Auslassnocken-Phasenstellerwinkel und wEP ist ein Gewichtungswert, der der Beziehung zwischen dem möglichen Ziel-Auslassnocken-Phasenstellerwinkel und dem Referenz-Auslassnocken-Phasenstellerwinkel zugeordnet ist.
  • p ist ein Gewichtungswert, der der Erfüllung der Ausgabebeschränkungen 352 zugeordnet ist. ε ist eine Variable, die das Kostenmodul 332 auf der Grundlage dessen einstellen kann, ob die Ausgabebeschränkungen 352 erfüllt sind. Zum Beispiel kann das Kostenmodul 332 ε erhöhen, wenn ein vorgegebener Parameter (z. B. wenigstens um einen vorgegebenen Betrag) größer oder kleiner als der entsprechende Minimal- oder Maximalwert ist. Das Kostenmodul 332 kann ε auf Null einstellen, wenn alle Ausgangsbeschränkungen 352 erfüllt sind. ρ kann größer als der Gewichtungswert wT, der Gewichtungswert wA, und die anderen Gewichtungswerte (wTV, wWG, wEGR, wIP, wEP) sein, so dass die für eine mögliche Sequenz bestimmten Kosten groß sind, wenn eine oder mehrere der Ausgangsbeschränkungen 352 nicht erfüllt sind. Dies kann die Auswahl einer möglichen Sequenz verhindern helfen, wenn eine oder mehrere der Ausgabebeschränkungen 352 nicht erfüllt sind.
  • Der Gewichtungswert wT kann größer als der Gewichtungswert wA und die Gewichtungswerte wTV, wWG, wEGR, wIP und wEP sein. Wie im Folgenden diskutiert wird, hat die Beziehung zwischen dem vorhergesagten Kraftmaschinendrehmoment und der Basis-Luftdrehmomentanforderung 308 auf diese Weise eine größere Wirkung auf die Kosten und somit auf die Auswahl einer der möglichen Sequenzen. Während die Differenz zwischen dem vorhergesagten Kraftmaschinendrehmoment und der Basis-Luftdrehmomentanforderung 308 zunimmt, nehmen die Kosten zu, und umgekehrt.
  • Der Gewichtungswert wA kann kleiner als der Gewichtungswert wT und größer als die Gewichtungswerte wTV, wWG, wEGR, wIP und wEP sein. Auf diese Weise hat die Beziehung zwischen der vorhergesagten APC und null eine große Wirkung, aber weniger als die Beziehung zwischen dem vorhergesagten Kraftmaschinendrehmoment und der Basis-Luftdrehmomentanforderung 308, auf die Kosten. Während die Differenz zwischen der vorhergesagten APC und null zunimmt, nehmen die Kosten zu, und umgekehrt. Während die beispielhafte Verwendung von null gezeigt ist und diskutiert worden ist, kann anstelle von null eine vorgegebene minimale APC verwendet werden.
  • Somit hilft die Bestimmung der Kosten auf der Grundlage der Differenz zwischen der vorhergesagten APC und null sicherzustellen, dass die APC minimiert wird. Da die Kraftstoffbeaufschlagung auf der Grundlage der tatsächlichen APC gesteuert wird, verringert das Verringern der APC den Kraftstoffverbrauch, um ein Ziel-Luft/Kraftstoff-Gemisch zu erzielen. Während das Auswahlmodul 344 die eine der möglichen Sequenzen mit den niedrigsten Kosten auswählen kann, kann das Auswahlmodul 344 die eine der möglichen Sequenzen auswählen, die die Basis-Luftdrehmomentanforderung 308 am besten erzielt, während sie die APC minimiert.
  • Die Gewichtungswerte wTV, wWG, wEGR, wIP und wEP können kleiner als alle anderen Gewichtungswerte sein. Auf diese Weise können die Zielwerte 266270 während des stationären Betriebs jeweils in der Nähe der oder bei den Referenzwerten 356 ausregeln. Allerdings kann das MPC-Modul 312 die Zielwerte 266270 während des Übergangsbetriebs von den Referenzwerten 356 entfernt einstellen, um die Basis-Luftdrehmomentanforderung 308 zu erzielen, während die APC minimiert wird und die Aktorbeschränkungen 348 und die Ausgabebeschränkungen 352 erfüllt sind.
  • Im Betrieb kann das MPC-Modul 312 die Kostenwerte für die möglichen Sequenzen bestimmen. Daraufhin kann das MPC-Modul 312 die eine der möglichen Sequenzen mit den niedrigsten Kosten auswählen. Nachfolgend kann das MPC-Modul 312 bestimmen, ob die ausgewählte mögliche Sequenz die Aktorbeschränkungen 348 erfüllt. Wenn das der Fall ist, kann die mögliche Sequenz verwendet werden. Wenn das nicht der Fall ist, bestimmt das MPC-Modul 312 auf der Grundlage der ausgewählten möglichen Sequenz eine mögliche Sequenz, die die Aktorbeschränkungen 348 erfüllt und die niedrigsten Kosten besitzt. Das MPC-Modul 312 kann diejenige mögliche Sequenz verwenden, die die Aktorbeschränkungen 348 erfüllt und die niedrigsten Kosten besitzt.
  • Nun in 4 ist ein Flussdiagramm dargestellt, das ein beispielhaftes Verfahren zum Steuern der Drosselklappe 112, des Einlassnocken-Phasenstellers 148, des Auslassnocken-Phasenstellers 150, des Ladedruckregelventils 162 (und somit des Turboladers) und des AGR-Ventils 170 unter Verwendung der MPC (Modellvorhersagesteuerung) zeigt. Die Steuerung kann bei 404 beginnen, wo das Drehmomentanforderungsmodul 224 auf der Grundlage der eingestellten vorhergesagten Drehmomentanforderungen und der eingestellten Sofortdrehmomentanforderungen 263 und 264 die Luftdrehmomentanforderung 265 bestimmt.
  • Bei 408 kann das Drehmoment-Umsetzungsmodul 304 die Luftdrehmomentanforderung 265 zur Verwendung durch das MPC-Modul 312 in die Basis-Luftdrehmomentanforderung 308 oder in irgendeinen anderen geeigneten Drehmomenttyp umsetzen. Bei 412 bestimmt das Sequenzbestimmungsmodul 316 auf der Grundlage der Basis-Luftdrehmomentanforderung 308 mögliche Sequenzen der Zielwerte 266270.
  • Bei 416 bestimmt das Vorhersagemodul 323 für jede der möglichen Sequenzen von Zielwerten die vorgegebenen Parameter. Das Vorhersagemodul 323 bestimmt die vorhergesagten Parameter für die möglichen Sequenzen auf der Grundlage des Modells 324 der Kraftmaschine 102, der exogenen Eingaben 328 und der Rückkopplungseingaben 330. Genauer erzeugt das Vorhersagemodul 323 auf der Grundlage einer möglichen Sequenz der Zielwerte 266270, der exogenen Eingaben 328 und der Rückkopplungseingaben 330 unter Verwendung des Modells 324 eine Sequenz vorhergesagter Drehmomente der Kraftmaschine 102 für die N Steuerschleifen, eine Sequenz vorhergesagter APCs für die N Steuerschleifen, eine Sequenz vorhergesagter Mengen externer Verdünnung für die N Steuerschleifen, eine Sequenz vorhergesagter Mengen Restverdünnung für die N Steuerschleifen, eine Sequenz vorhergesagter Verbrennungs-Phasenlageneinstellungswerte für die N Steuerschleifen und eine Sequenz vorhergesagter Verbrennungsqualitätswerte für die N Steuerschleifen.
  • Bei 420 bestimmt das Kostenmodul 332 jeweils die Kosten (eng.: ”cost”) für die möglichen Sequenzen. Nur beispielhaft kann das Kostenmodul 332 die Kosten (engl.: Cost)) für eine mögliche Sequenz der Zielwerte 266270 wie oben diskutiert auf der Grundlage der Gleichung: Cost = Σ N / i=1 ρε2 + ∥wT·(TPi – BATR)∥2 + ∥wA·(APCPi – 0)∥2, oder auf der Grundlage der Gleichung: Cost = Σ N / i=1, ρε2 + ∥wT·(TPi – BATR)∥2 + ∥wA·(APCPi – 0)∥2 + ∥wTV·(PTTOi – TORef)∥2 + ∥wWG·(PTWGoi – EGORef)∥2 + ∥wEGR·(PTEGROi – EGRORef)∥2 + ∥wIP·(PTICPi – ICPRef)∥2 + ∥wEP·(PTECPi – ECPRef)∥2 vorbehaltlich der Aktorbeschränkungen 348 und der Ausgabebeschränkungen 352, bestimmen, wie es oben besprochen wurde.
  • Bei 424 wählt das Auswahlmodul 344 auf der Grundlage der Kosten der möglichen Sequenzen jeweils eine der möglichen Sequenzen der Zielwerte 266270 aus. Zum Beispiel kann das Auswahlmodul 344 die eine der möglichen Sequenzen mit den niedrigsten Kosten, während sie die Aktorbeschränkungen 348 und die Ausgabebeschränkungen 352 erfüllt, auswählen. Somit kann das Auswahlmodul 344 die eine der möglichen Sequenzen auswählen, die die Basis-Luftdrehmomentanforderung 308 am besten erzielt, während sie die APC minimiert und die Ausgabebeschränkungen 352 erfüllt. Anstelle oder zusätzlich zur Bestimmung möglicher Sequenzen der Zielwerte 230244 bei 412 und zur Bestimmung der Kosten jeder der Sequenzen bei 420 kann das MPC-Modul 312 wie oben diskutiert eine Sequenz möglicher Zielwerte mit den niedrigsten Kosten unter Verwendung konvexer Optimierungstechniken identifizieren.
  • Bei 425 kann das MPC-Modul 312 bestimmen, ob die ausgewählte eine der möglichen Sequenzen die Aktorbeschränkungen 348 erfüllt. Falls 425 wahr ist, kann die Steuerung bei 428 fortfahren. Falls 425 falsch ist, kann das MPC-Modul 312 bei 426 auf der Grundlage der ausgewählten möglichen Sequenz eine mögliche Sequenz bestimmen, die die Aktorbeschränkungen 348 erfüllt und die niedrigsten Kosten besitzt, und kann die Steuerung bei 428 fortfahren. Wie im Folgenden diskutiert wird, kann diejenige mögliche Sequenz verwendet werden, die die Aktorbeschränkungen 348 erfüllt und die niedrigsten Kosten besitzt.
  • Bei 428 setzt das erste Umsetzungsmodul 272 die Ziel-Ladedruckregelventil-Öffnungsfläche 266 in den Ziel-Tastgrad 274 um, der an das Ladedruckregelventil 162 angelegt werden soll, setzt das zweite Umsetzungsmodul 276 die Ziel-Drosselklappen-Öffnungsfläche 267 in den Ziel-Tastgrad 278 um, der an die Drosselklappe 112 angelegt werden Ziel. Außerdem setzt das dritte Umsetzungsmodul 280 bei 428 die Ziel-AGR-Öffnungsfläche 268 in den Ziel-Tastgrad 282 um, der an das AGR-Ventil 170 angelegt werden soll. Außerdem kann das vierte Umsetzungsmodul den Ziel-Einlassnocken-Phasenstellerwinkel und den Ziel-Auslassnocken-Phasenstellerwinkel 269 und 270 in den Ziel-Einlasstastgrad und in den Ziel-Auslasstastgrad umsetzen, die an den Einlassnocken-Phasensteller bzw. an den Auslassnocken-Phasensteller 148 bzw. 150 angelegt werden sollen.
  • Bei 432 steuert das Drosselaktormodul 116 die Drosselklappe 112, um die Ziel-Drosselklappen-Öffnungsfläche 267 zu erzielen, und steuert das Phasensteller-Aktormodul 158 den Einlassnocken-Phasensteller und den Auslassnocken-Phasensteller 148 und 150, um den Ziel-Einlassnocken-Phasenstellerwinkel und den Ziel-Auslassnocken-Phasenstellerwinkel 269 bzw. 270 zu erzielen. Zum Beispiel kann das Drosselaktormodul 116 ein Signal mit dem Ziel-Tastgrad 278 an die Drosselklappe 112 anlegen, um die Ziel-Drosselklappen-Öffnungsfläche 267 zu erzielen. Außerdem steuert das AGR-Aktormodul 172 das AGR-Ventil 170 bei 432, um die Ziel-AGR-Öffnungsfläche 268 zu erzielen, und steuert das Ladedruckaktormodul 164 das Ladedruckregelventil 162, um die Ziel-Ladedruckregelventil-Öffnungsfläche 266 zu erzielen. Zum Beispiel kann das AGR-Aktormodul 172 ein Signal mit dem Ziel-Tastgrad 282 an das AGR-Ventil 170 anlegen, um die Ziel-AGR-Öffnungsfläche 268 zu erzielen, und kann das Ladedruckaktormodul 164 ein Signal mit dem Ziel-Tastgrad 274 an das Ladedruckregelventil 162 anlegen, um die Ziel-Ladedruckregelventil-Öffnungsfläche 266 zu erzielen. Obgleich 4 nach 432 endend gezeigt ist, kann 4 eine Steuerschleife darstellen und können die Steuerschleifen mit einer vorgegebenen Rate ausgeführt werden.
  • Die vorstehende Beschreibung ist dem Wesen nach lediglich veranschaulichend und soll die Offenbarung, ihre Anwendung oder Verwendungen in keiner Weise einschränken. Die umfassenden Lehren der Offenbarung können in einer Vielzahl von Formen implementiert werden. Obgleich diese Offenbarung bestimmte Beispiele enthält, soll der wahre Umfang der Offenbarung somit nicht darauf beschränkt sein, da andere Änderungen beim Studium der Zeichnungen, der Beschreibung und der folgenden Ansprüche hervorgehen. Wie die Formulierung wenigstens eines von A, B und C hier verwendet ist, soll sie ein logisches (A oder B oder C) unter Verwendung eines nicht ausschließenden logischen ODER bedeuten. Selbstverständlich können einer oder mehrere Schritte innerhalb eines Verfahrens in einer anderen Reihenfolge (oder gleichzeitig) ausgeführt werden, ohne die Prinzipien der vorliegenden Offenbarung zu ändern.
  • In dieser Anmeldung einschließlich in den folgenden Definitionen kann der Begriff Modul durch den Begriff Schaltung ersetzt sein. Der Begriff Modul kann sich auf eine anwendungsspezifische integrierte Schaltung (ASIC); auf eine digitale, analoge oder gemischt analog/digitale diskrete Schaltung; auf eine digitale, analoge oder gemischt analog/digitale integrierte Schaltung; auf eine Kombinationslogikschaltung; auf eine feldprogrammierbare logische Anordnung (FPGA); auf einen Prozessor (gemeinsam genutzt, dediziert oder Gruppe), der Code ausführt; auf Speicher (gemeinsam genutzt, dediziert oder Gruppe), der durch einen Prozessor ausgeführten Code speichert; auf andere geeignete Hardwarekomponenten, die die beschriebene Funktionalität bereitstellen; oder auf eine Kombination einiger oder aller der Obigen wie etwa in einem Ein-Chip-System beziehen, ein Teil davon sein oder sie enthalten.
  • Der Begriff Code, wie er oben verwendet ist, kann Software, Firmware und/oder Mikrocode enthalten und kann sich auf Programme, Routinen, Funktionen, Klassen und/oder Objekte beziehen. Der Begriff gemeinsam genutzter Prozessor umfasst einen einzelnen Prozessor, der einen Teil des Codes oder allen Code von mehreren Modulen ausführt. Der Begriff Gruppenprozessor umfasst einen Prozessor, der einen Teil oder allen Code von einem oder von mehreren Modulen zusammen mit zusätzlichen Prozessoren ausführt. Der Begriff gemeinsam genutzter Speicher umfasst einen einzelnen Speicher, der einen Teil oder allen Code von mehreren Modulen speichert. Der Begriff Gruppenspeicher umfasst einen Speicher, der einen Teil oder allen Code von einem oder von mehreren Modulen zusammen mit zusätzlichen Speichern speichert. Der Begriff Speicher kann eine Teilmenge des Begriffs computerlesbares Medium sein. Der Begriff computerlesbares Medium umfasst keine vorübergehenden elektrischen und elektromagnetischen Signale, die sich durch ein Medium ausbreiten, und kann somit als konkret und nichtflüchtig angesehen werden. Nichteinschränkende Beispiele eines nicht vorübergehenden konkreten computerlesbaren Mediums enthalten nichtflüchtigen Speicher, flüchtigen Speicher, eine magnetische Ablage und eine optische Ablage.
  • Die in dieser Anmeldung beschriebenen Vorrichtungen und Verfahren können teilweise oder vollständig durch eines oder mehrere Computerprogramme implementiert werden, die durch einen oder mehrere Prozessoren ausgeführt werden. Die Computerprogramme enthalten durch einen Prozessor ausführbare Anweisungen, die in wenigstens einem nichtflüchtigen konkreten computerlesbaren Medium gespeichert sind. Die Computerprogramme können außerdem gespeicherte Daten enthalten und/oder sich auf sie stützen.

Claims (10)

  1. Maschinensteuerverfahren für ein Fahrzeug umfassend: Erzeugen eines ersten vorhergesagten Kraftmaschinenausgangsdrehmoments und einer ersten vorhergesagten Luftmasse pro Zylinder (APC) basierend auf einem Modell der Fremdzündungsmaschine und einem ersten Satz möglicher Zielwerte, die basierend auf einer Kraftmaschinendrehmomentanforderung bestimmt sind; Erzeugen eines zweiten vorhergesagten Kraftmaschinenausgangsdrehmoments und einer zweiten vorhergesagten Masse von APC basierend auf dem Modell der Fremdzündungsmaschine und einem zweiten Satz möglicher Zielwerte, die basierend auf der Kraftmaschinendrehmomentanforderung bestimmt sind; Bestimmen erster Kosten für den ersten Satz möglicher Zielwerte basierend auf einem ersten vorbestimmten Gewichtungswert, dem ersten vorhergesagten Kraftmaschinenausgangsdrehmoment, der Kraftmaschinendrehmomentanforderung, einem zweiten vorbestimmten Gewichtungswert und der ersten vorhergesagten Masse von APC; Bestimmen zweiter Kosten für den zweiten Satz möglicher Zielwerte basierend auf dem ersten vorbestimmten Gewichtungswert, dem zweiten vorhergesagten Kraftmaschinenausgangsdrehmoment, der Kraftmaschinendrehmomentanforderung, dem zweiten vorbestimmten Gewichtungswert und der zweiten vorhergesagten Masse von APC; Auswählen eines des ersten und zweiten Satzes basierend auf den ersten und zweiten Kosten; Setzen von Zielwerten basierend auf den möglichen Zielwerten der gewählten des ersten und zweiten Satzes; und Steuern eines Öffnens eines Drosselventils basierend auf einem ersten der Zielwerte.
  2. Maschinensteuerverfahren nach Anspruch 1, ferner umfassend: Steuern eines Öffnens eines Ladedruckregelventils eines Turboladers basierend auf einem zweiten der Zielwerte; Steuern eines Öffnens eines Abgasrückführungs-(AGR)-Ventils basierend auf einem dritten der Zielwerte; und Steuern einer Einlass- und Auslassventilphaseneinstellung basierend auf einem vierten und fünften der Zielwerte.
  3. Maschinensteuerverfahren nach Anspruch 1, ferner umfassend: Bestimmen der ersten Kosten basierend auf: einem ersten Produkt des ersten vorbestimmten Gewichtungswertes und einer Größe einer ersten Differenz zwischen dem ersten vorhergesagten Kraftmaschinenausgangsdrehmoment und der Kraftmaschinendrehmomentanforderung; und einem zweiten Produkt des zweiten vorbestimmten Gewichtungswertes und einer zweiten Differenz zwischen der ersten vorhergesagten Masse von APC und einer vorbestimmten minimalen APC; und Bestimmen der zweiten Kosten basierend auf: einem dritten Produkt des ersten Gewichtungswertes und einer Größe einer dritten Differenz zwischen dem zweiten vorhergesagten Kraftmaschinenausgangsdrehmoment und der Kraftmaschinendrehmomentanforderung; und einem vierten Produkt des zweiten Gewichtungswertes und einer Größe einer vierten Differenz zwischen der zweiten vorhergesagten Masse von APC und der vorbestimmten minimalen APC.
  4. Maschinensteuerverfahren nach Anspruch 3, ferner umfassend: Bestimmen der ersten Kosten basierend auf einer Summe der ersten und zweiten Produkte; und Bestimmen der zweiten Kosten basierend auf einer Summe der dritten und vierten Produkte.
  5. Maschinensteuerverfahren nach Anspruch 3, wobei der erste vorbestimmte Gewichtungswert größer als der zweite vorbestimmte Gewichtungswert ist.
  6. Maschinensteuerverfahren nach Anspruch 1, ferner umfassend: Auswählen des ersten Satzes, wenn die ersten Kosten kleiner als die zweiten Kosten sind; und Auswählen des zweiten Satzes, wenn die zweiten Kosten kleiner als die ersten Kosten sind.
  7. Maschinensteuerverfahren nach Anspruch 1, ferner umfassend: Bestimmen der ersten Kosten ferner basierend auf einem dritten vorbestimmten Gewichtungswert, einem ersten vorhergesagten Kurbelwellenwinkel, bei dem ein vorbestimmter Prozentsatz von eingespritztem Kraftstoff verbrannt ist, einem vorbestimmten minimalen Kurbelwellenwinkel und einem vorbestimmten maximalen Kurbelwellenwinkel; und Bestimmen der zweiten Kosten ferner basierend auf dem dritten vorbestimmten Gewichtungswert, einem zweiten vorhergesagten Kurbelwellenwinkel, bei dem der vorbestimmte Prozentsatz von eingespritztem Kraftstoff verbrannt ist, dem vorbestimmten minimalen Kurbelwellenwinkel und dem vorbestimmten maximalen Kurbelwellenwinkel.
  8. Maschinensteuerverfahren nach Anspruch 7, ferner umfassend: Erzeugen des ersten vorhergesagten Kurbelwellenwinkels basierend auf dem Modell der Fremdzündungsmaschine und dem ersten Satz möglicher Zielwerte; und Erzeugen des zweiten vorhergesagten Kurbelwellenwinkels basierend auf dem Modell der Fremdzündungsmaschine und dem zweiten Satz möglicher Zielwerte.
  9. Maschinensteuerverfahren nach Anspruch 1, ferner umfassend: Bestimmen der ersten Kosten ferner basierend auf einem vierten vorherbestimmten Gewichtungswert, einem ersten vorhergesagten Variationskoeffizienten (COV) des angegebenen mittleren effektiven Drucks (IMEP), einem vorbestimmten minimalen COV des IMEP und einem vorbestimmten maximalen COV des IMEP; und Bestimmen der zweiten Kosten ferner basierend auf dem vierten vorbestimmten Gewichtungswert, einem zweiten vorhergesagten COV des IMEP, dem vorbestimmten minimalen COV des IMEP und dem vorbestimmten maximalen COV des IMEP.
  10. Maschinensteuerverfahren nach Anspruch 9, ferner umfassend: Erzeugen des ersten vorhergesagten COV des IMEP basierend auf dem Modell der Fremdzündungsmaschine und dem ersten Satz möglicher Zielwerte; und Erzeugen des zweiten vorhergesagten COV des IMEP basierend auf dem Modell der Fremdzündungsmaschine und dem zweiten Satz möglicher Zielwerte.
DE102015103883.8A 2014-03-26 2015-03-17 Verfahren zur steuerung von brennkraftmaschinen Active DE102015103883B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/225,502 2014-03-26
US14/225,502 US9347381B2 (en) 2014-03-26 2014-03-26 Model predictive control systems and methods for internal combustion engines

Publications (2)

Publication Number Publication Date
DE102015103883A1 true DE102015103883A1 (de) 2015-10-01
DE102015103883B4 DE102015103883B4 (de) 2021-10-07

Family

ID=54066955

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015103883.8A Active DE102015103883B4 (de) 2014-03-26 2015-03-17 Verfahren zur steuerung von brennkraftmaschinen

Country Status (3)

Country Link
US (2) US9599053B2 (de)
CN (1) CN104948320B (de)
DE (1) DE102015103883B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121793B4 (de) 2017-09-07 2022-08-25 GM Global Technology Operations LLC Optimierung des kraftstoffverbrauchs durch luft-pro-zylinder (apc) in der mpc-basierten antriebsstrangsteuerung

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534547B2 (en) 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US9528453B2 (en) 2014-11-07 2016-12-27 GM Global Technologies Operations LLC Throttle control systems and methods based on pressure ratio
US9388754B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Artificial output reference for model predictive control
US9376965B2 (en) 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9599053B2 (en) 2014-03-26 2017-03-21 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9328671B2 (en) 2013-04-23 2016-05-03 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9388758B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Model predictive control systems and methods for future torque changes
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9382865B2 (en) 2014-03-26 2016-07-05 GM Global Technology Operations LLC Diagnostic systems and methods using model predictive control
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9784198B2 (en) 2015-02-12 2017-10-10 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9334815B2 (en) 2014-03-26 2016-05-10 GM Global Technology Operations LLC System and method for improving the response time of an engine using model predictive control
US9378594B2 (en) 2014-03-26 2016-06-28 GM Global Technology Operations LLC Fault diagnostic systems and methods for model predictive control
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9863345B2 (en) 2012-11-27 2018-01-09 GM Global Technology Operations LLC System and method for adjusting weighting values assigned to errors in target actuator values of an engine when controlling the engine using model predictive control
DE102015104100B4 (de) 2014-03-26 2019-12-24 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kraftmaschinensteuerverfahren für Getriebehochschaltungen
GB2520637A (en) * 2014-12-04 2015-05-27 Daimler Ag Controller for controlling an internal combustion engine of a vehicle, in particular a commercial vehicle
DE102016120144B4 (de) * 2015-11-03 2021-04-22 GM Global Technology Operations LLC Verfahren zum anpassen von gewichtungswerten, die fehlern der stellgliedsollwerte eines motors zugeordnet sind, wenn der motor unter verwendung von modellprädikativer steuerung gesteuert wird
DE102016206554A1 (de) * 2016-04-19 2017-10-19 Continental Automotive Gmbh Verfahren und Vorrichtung zur Einstellung des Massenstromes eines Abgasrückführventils
US9938908B2 (en) 2016-06-14 2018-04-10 GM Global Technology Operations LLC System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position
US9789876B1 (en) 2016-06-16 2017-10-17 GM Global Technology Operations LLC Axle torque control system for a motor vehicle
DE102016011069B4 (de) * 2016-09-14 2020-02-27 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
US10125712B2 (en) 2017-02-17 2018-11-13 GM Global Technology Operations LLC Torque security of MPC-based powertrain control
US10119481B2 (en) * 2017-03-22 2018-11-06 GM Global Technology Operations LLC Coordination of torque interventions in MPC-based powertrain control
US10519880B2 (en) 2017-04-13 2019-12-31 GM Global Technology Operations LLC Method to control engine using airflow actuators
US10287994B2 (en) 2017-05-12 2019-05-14 GM Global Technology Operations LLC Electronic throttle control using model predictive control
US10415491B2 (en) 2017-06-09 2019-09-17 GM Global Technology Operations LLC Use of predicted RPM in multi-variable engine control with least-square techniques
US10156197B1 (en) 2017-06-16 2018-12-18 GM Global Technology Operations LLC Model predictive control systems and methods for increasing computational efficiency
US10358140B2 (en) 2017-09-29 2019-07-23 GM Global Technology Operations LLC Linearized model based powertrain MPC
US20190145304A1 (en) * 2017-11-10 2019-05-16 GM Global Technology Operations LLC Engine coolant control systems and methods using model predictive control
US10619586B2 (en) 2018-03-27 2020-04-14 GM Global Technology Operations LLC Consolidation of constraints in model predictive control
US10661804B2 (en) 2018-04-10 2020-05-26 GM Global Technology Operations LLC Shift management in model predictive based propulsion system control
DE102018206202A1 (de) * 2018-04-23 2019-10-24 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Verbrennungsmotors
US10859159B2 (en) 2019-02-11 2020-12-08 GM Global Technology Operations LLC Model predictive control of torque converter clutch slip
US11192561B2 (en) 2019-05-21 2021-12-07 GM Global Technology Operations LLC Method for increasing control performance of model predictive control cost functions
US11312208B2 (en) 2019-08-26 2022-04-26 GM Global Technology Operations LLC Active thermal management system and method for flow control
US11008921B1 (en) 2019-11-06 2021-05-18 GM Global Technology Operations LLC Selective catalytic reduction device control
CN114592974B (zh) * 2021-02-23 2023-04-25 长城汽车股份有限公司 发动机增压系统的泄压方法、泄压装置、存储介质及车辆
US11761392B2 (en) 2021-05-17 2023-09-19 Caterpillar Inc. Method and system for engine air system control
CN114718745B (zh) * 2022-03-24 2023-03-24 东风汽车集团股份有限公司 气体流量计算方法、设备及可读存储介质
US11668259B1 (en) 2022-11-22 2023-06-06 GM Global Technology Operations LLC Port-direct injection engine methods and systems optimizing fuel economy with particulate control

Family Cites Families (160)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438437A (en) 1977-08-30 1979-03-23 Toyota Motor Corp Engine exhaust gas recycle controller
US4823266A (en) 1987-09-29 1989-04-18 Ford Motor Company Control of engine speed with automatic transmissions
JP2861225B2 (ja) 1990-03-26 1999-02-24 株式会社デンソー 車両内燃機関系の制御装置
JP2539540B2 (ja) 1990-09-19 1996-10-02 株式会社日立製作所 プロセス制御装置
US5293553A (en) 1991-02-12 1994-03-08 General Motors Corporation Software air-flow meter for an internal combustion engine
US5070846A (en) 1990-11-26 1991-12-10 General Motors Corporation Method for estimating and correcting bias errors in a software air meter
US5270935A (en) 1990-11-26 1993-12-14 General Motors Corporation Engine with prediction/estimation air flow determination
WO1992014197A1 (en) 1991-02-08 1992-08-20 Kabushiki Kaisha Toshiba Model forecasting controller
US5357932A (en) 1993-04-08 1994-10-25 Ford Motor Company Fuel control method and system for engine with variable cam timing
US5609136A (en) 1994-06-28 1997-03-11 Cummins Engine Company, Inc. Model predictive control for HPI closed-loop fuel pressure control system
JP3744036B2 (ja) 1995-10-31 2006-02-08 日産自動車株式会社 ディーゼルエンジンの燃料性状検出装置および制御装置
US5794171A (en) 1996-02-29 1998-08-11 Ford Global Technologies, Inc. Process for deriving predictive model of crankshaft rotation of a combustion engine
JP3605221B2 (ja) 1996-03-19 2004-12-22 株式会社日立製作所 内燃機関の制御装置
US6014955A (en) 1996-09-19 2000-01-18 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine using air-amount-first fuel-amount-second control method
US5775293A (en) 1996-10-01 1998-07-07 Cummins Engine Co., Inc. Electronic throttle pedal nonlinear filter
DE19712843C2 (de) 1997-03-26 2001-02-01 Siemens Ag Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine
JP3627464B2 (ja) 1997-08-28 2005-03-09 日産自動車株式会社 エンジンの制御装置
USH2182H1 (en) 1998-05-04 2007-02-06 Chevron U.S.A. Inc. Low emission, non-oxygenated fuel composition
US6571191B1 (en) 1998-10-27 2003-05-27 Cummins, Inc. Method and system for recalibration of an electronic control module
US7398762B2 (en) 2001-12-18 2008-07-15 Ford Global Technologies, Llc Vehicle control system
JP3607983B2 (ja) 1999-09-10 2005-01-05 トヨタ自動車株式会社 内燃機関の燃焼制御装置
US6532935B2 (en) 1999-11-10 2003-03-18 Daimlerchrysler Ag Method of operating an internal combustion engine
US6714852B1 (en) 2000-02-11 2004-03-30 Ford Global Technologies, Llc Observer for engine crankshaft torque
JP3687485B2 (ja) 2000-05-12 2005-08-24 日産自動車株式会社 ディーゼルエンジンの制御装置
US6460409B1 (en) 2000-05-13 2002-10-08 Ford Global Technologies, Inc. Feed-forward observer-based control for estimating cylinder air charge
DE10024269A1 (de) 2000-05-17 2001-12-20 Bosch Gmbh Robert Verfahren und Vorrichtung zur Filterung eines Signals
JP2002180860A (ja) 2000-10-02 2002-06-26 Denso Corp 車両統合制御システム
JP2002201998A (ja) 2000-11-06 2002-07-19 Denso Corp 内燃機関の制御装置
JP3904923B2 (ja) 2001-12-28 2007-04-11 本田技研工業株式会社 制御装置
WO2003016698A1 (en) 2001-08-17 2003-02-27 Tiax Llc A method of controlling combustion in a homogenous charge compression ignition engine
JP2003090250A (ja) 2001-09-18 2003-03-28 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
JP3952733B2 (ja) 2001-10-22 2007-08-01 日産自動車株式会社 ディーゼルエンジンの排気浄化制御装置
GB2388922B (en) 2002-01-31 2005-06-08 Cambridge Consultants Control system
US6698203B2 (en) 2002-03-19 2004-03-02 Cummins, Inc. System for estimating absolute boost pressure in a turbocharged internal combustion engine
US6619261B1 (en) 2002-03-21 2003-09-16 Cummins, Inc. System for controlling an operating condition of an internal combustion engine
US6704638B2 (en) 2002-06-26 2004-03-09 General Motors Corporation Torque estimator for engine RPM and torque control
WO2004027235A1 (en) 2002-09-19 2004-04-01 Detroit Diesel Corporation Method for controlling an engine with vgt and egr systems
JP2004125066A (ja) 2002-10-02 2004-04-22 Jatco Ltd 無段変速機の変速制御装置
US6928362B2 (en) 2003-06-06 2005-08-09 John Meaney System and method for real time programmability of an engine control unit
SE525427C2 (sv) 2003-06-12 2005-02-22 Volvo Lastvagnar Ab Sätt att styra omställningen av ventilerna i en förbränningsmotor med variabla ventiltider samt fordon med en dylik motor med elektroniska styrorgan för ventilstyrningen
KR100579234B1 (ko) 2003-09-09 2006-05-11 현대자동차주식회사 내연기관의 토크 제어 방법
US6840215B1 (en) 2003-09-17 2005-01-11 General Motors Corporation Engine torque control with desired state estimation
US7111593B2 (en) 2004-01-29 2006-09-26 Ford Global Technologies, Llc Engine control to compensate for fueling dynamics
DE602005000113T2 (de) 2004-01-30 2006-12-21 Nissan Motor Co., Ltd., Yokohama Vorrichtung und Verfahren zur Steuerung einer Brennkraftmaschine
US20050193739A1 (en) 2004-03-02 2005-09-08 General Electric Company Model-based control systems and methods for gas turbine engines
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7031824B2 (en) 2004-04-07 2006-04-18 General Motors Corporation Multivariable actuator control for an internal combustion engine
JP2005339241A (ja) 2004-05-27 2005-12-08 Nissan Motor Co Ltd モデル予測制御装置および車両用推奨操作量生成装置
US7021282B1 (en) 2004-12-01 2006-04-04 General Motors Corporation Coordinated engine torque control
JP4479488B2 (ja) 2004-12-01 2010-06-09 株式会社デンソー 排気発電装置
US7328577B2 (en) 2004-12-29 2008-02-12 Honeywell International Inc. Multivariable control for an engine
US7467614B2 (en) 2004-12-29 2008-12-23 Honeywell International Inc. Pedal position and/or pedal change rate for use in control of an engine
US7275374B2 (en) 2004-12-29 2007-10-02 Honeywell International Inc. Coordinated multivariable control of fuel and air in engines
US7225782B2 (en) 2005-03-03 2007-06-05 Ford Global Technologies, Llc System and method to control transitions in the number of cylinders in a hybrid vehicle
US7389773B2 (en) 2005-08-18 2008-06-24 Honeywell International Inc. Emissions sensors for fuel control in engines
US8065022B2 (en) * 2005-09-06 2011-11-22 General Electric Company Methods and systems for neural network modeling of turbine components
JP2007113563A (ja) 2005-09-26 2007-05-10 Honda Motor Co Ltd 内燃機関の制御装置
JP4466539B2 (ja) 2005-11-08 2010-05-26 トヨタ自動車株式会社 内燃機関の制御装置
US8103425B2 (en) 2005-12-23 2012-01-24 Perkins Engines Company Limited Simulation-based control for HCCI power systems
JP4339321B2 (ja) 2006-01-20 2009-10-07 本田技研工業株式会社 内燃機関の制御装置
JP4446084B2 (ja) 2006-01-24 2010-04-07 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP4583313B2 (ja) 2006-01-31 2010-11-17 株式会社デンソー 車両用制御装置
US7917275B2 (en) 2006-03-07 2011-03-29 Ford Global Technologies, Llc System and method for improved vehicle response during vehicle acceleration conditions
DE112007000998B4 (de) 2006-04-24 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Luftdurchsatzschätzverfahren und -vorrichtung für einen Verbrennungsmotor
US7941260B2 (en) 2006-05-09 2011-05-10 GM Global Technology Operations LLC Rapid engine mapping and modeling
JP4276241B2 (ja) 2006-05-11 2009-06-10 株式会社日立製作所 エンジンの制御装置
US7274986B1 (en) 2006-06-14 2007-09-25 Ford Global Technologies Llc Vehicle engine system having predictive control function
JP4067025B2 (ja) 2006-09-11 2008-03-26 いすゞ自動車株式会社 多段ターボチャージャの制御装置
US7395147B2 (en) 2006-09-13 2008-07-01 Gm Global Technology Operations, Inc. Torque control of turbocharged engine
US7433775B2 (en) 2006-11-17 2008-10-07 Gm Global Technology Operations, Inc. Engine torque control at high pressure ratio
JP4335249B2 (ja) 2006-12-04 2009-09-30 三菱電機株式会社 内燃機関の制御装置
DE102007009688A1 (de) 2007-02-28 2008-09-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines gradientenlimitierten Summen-Solldrehmoments aus einem Solldrehmoment einer Drehzahlregelung
US7813869B2 (en) 2007-03-30 2010-10-12 Caterpillar Inc Prediction based engine control system and method
JP4976901B2 (ja) 2007-04-02 2012-07-18 トヨタ自動車株式会社 エンジン特性の推定方法
US7775195B2 (en) 2007-05-03 2010-08-17 Ford Global Technologies, Llc Method for fuel vapor canister purging
JP4872789B2 (ja) 2007-05-10 2012-02-08 トヨタ自動車株式会社 車両駆動ユニットの制御装置
US7967720B2 (en) 2007-06-13 2011-06-28 Ford Global Technologies, Llc Dynamic allocation of drive torque
US8032235B2 (en) 2007-06-28 2011-10-04 Rockwell Automation Technologies, Inc. Model predictive control system and method for reduction of steady state error
US7698048B2 (en) 2007-08-01 2010-04-13 Gm Global Technology Operations, Inc. Power enrichment scheduling for coordinated torque control system
JP4251228B2 (ja) 2007-09-12 2009-04-08 トヨタ自動車株式会社 内燃機関の制御装置
JP4389990B2 (ja) 2007-10-05 2009-12-24 トヨタ自動車株式会社 車両駆動ユニットの制御装置
US7614384B2 (en) 2007-11-02 2009-11-10 Gm Global Technology Operations, Inc. Engine torque control with desired state estimation
US8116954B2 (en) 2007-11-02 2012-02-14 GM Global Technology Operations LLC RPM to torque transition control
US7980221B2 (en) 2007-11-05 2011-07-19 GM Global Technology Operations LLC Inverse torque model solution and bounding
US8073610B2 (en) 2007-11-07 2011-12-06 GM Global Technology Operations LLC Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain
JP4719784B2 (ja) 2007-11-30 2011-07-06 日立オートモティブシステムズ株式会社 エンジンの制御装置および制御方法
US7975668B2 (en) 2008-03-11 2011-07-12 GM Global Technology Operations LLC Spark timing and control during transitions between spark ignited combustion and homogenous charge compression ignition
US8255139B2 (en) 2008-05-01 2012-08-28 GM Global Technology Operations LLC Method to include fast torque actuators in the driver pedal scaling for conventional powertrains
US8050841B2 (en) 2008-05-21 2011-11-01 GM Global Technology Operations LLC Security for engine torque input air-per-cylinder calculations
JP4539764B2 (ja) 2008-06-19 2010-09-08 トヨタ自動車株式会社 内燃機関の制御装置
US8060290B2 (en) 2008-07-17 2011-11-15 Honeywell International Inc. Configurable automotive controller
US7885756B2 (en) 2008-08-28 2011-02-08 Gm Global Technologies Operations, Inc. Multi-pulse spark ignition direct injection torque based system
US8041487B2 (en) 2008-08-29 2011-10-18 GM Global Technology Operations LLC Commanded and estimated engine torque adjustment
US8181627B2 (en) 2008-09-24 2012-05-22 GM Global Technology Operations LLC Securing throttle area in a coordinated torque control system
US8560204B2 (en) 2008-11-07 2013-10-15 GM Global Technology Operations LLC Method and apparatus for arbitrating torque reserves and loads in torque-based system
EP2184472B1 (de) 2008-11-10 2012-06-20 Delphi Technologies Holding S.à.r.l. Motorsteuerungssystem und Verfahren
FR2941266B1 (fr) 2009-01-21 2011-02-11 Inst Francais Du Petrole Procede pour controler les masses de gaz enfermees dans un cylindre d'un moteur essence a distribution variable
DE112009004374B4 (de) 2009-01-26 2013-08-29 Toyota Jidosha Kabushiki Kaisha Fahrzeugsteuerungsvorrichtung
US8364376B2 (en) 2009-02-27 2013-01-29 GM Global Technology Operations LLC Torque model-based cold start diagnostic systems and methods
US8316828B2 (en) 2009-04-17 2012-11-27 GM Global Technology Operations LLC Exhaust gas recirculation diagnostic for coordinated torque control systems
US8027780B2 (en) 2009-05-01 2011-09-27 GM Global Technology Operations LLC Method and system for controlling torque during a vehicle launch condition
DE102009024544A1 (de) 2009-06-08 2010-12-30 Fev Motorentechnik Gmbh Automatisierte Bedatung eines Ottomotors
US8241177B2 (en) 2009-08-24 2012-08-14 Ford Global Technologies, Llc Methods and systems for turbocharger control
US8825243B2 (en) 2009-09-16 2014-09-02 GM Global Technology Operations LLC Predictive energy management control scheme for a vehicle including a hybrid powertrain system
US8086390B2 (en) 2009-10-30 2011-12-27 GM Global Technology Operations LLC Pumping loss reduction systems and methods
US8468821B2 (en) 2009-11-19 2013-06-25 GM Global Technology Operations LLC Dual-loop control systems and methods for a sequential turbocharger
US8615353B2 (en) 2009-11-20 2013-12-24 Cummins Inc. Driveline system impact reverberation reduction
US8550054B2 (en) * 2009-12-08 2013-10-08 GM Global Technology Operations LLC Linear tranformation engine torque control systems and methods for increasing torque requests
US8527120B2 (en) 2009-12-10 2013-09-03 GM Global Technology Operations LLC Method and apparatus for controlling a powertrain system including an engine and electro-mechanical transmission
US20110264353A1 (en) 2010-04-22 2011-10-27 Atkinson Christopher M Model-based optimized engine control
EP2561210A4 (de) 2010-04-22 2015-11-11 Int Engine Intellectual Prop Verfahren zur motoremissionskontrolle von rauch und nox
US8346447B2 (en) 2010-04-22 2013-01-01 GM Global Technology Operations LLC Feed-forward camshaft phaser control systems and methods
JP5278607B2 (ja) 2010-05-10 2013-09-04 トヨタ自動車株式会社 内燃機関の制御装置
US8760003B2 (en) 2010-08-02 2014-06-24 Denso Corporation Vehicle-use power supply control apparatus and control apparatus for controlling electric rotating machine mounted on vehicle as main engine
US8483935B2 (en) 2010-09-09 2013-07-09 GM Global Technology Operations LLC Method for controlling internal combustion engines in hybrid powertrains
JP5140138B2 (ja) 2010-11-04 2013-02-06 本田技研工業株式会社 制御装置
US9091219B2 (en) 2010-12-13 2015-07-28 GM Global Technology Operations LLC Torque control system and method for acceleration changes
EP3715207A1 (de) 2011-01-06 2020-09-30 Cummins Intellectual Properties, Inc. Wärmemanagement-überwachungssystem und -verfahren zur erwärmung und regeneration eines motorsystems
US8103428B2 (en) 2011-01-11 2012-01-24 Ford Global Technologies, Llc Method for controlling an engine
JP5598366B2 (ja) 2011-02-16 2014-10-01 三菱自動車工業株式会社 エンジンの制御装置
JP5834759B2 (ja) * 2011-02-28 2015-12-24 富士通株式会社 行列生成プログラム、方法及び装置、並びにプラント制御プログラム、方法及び装置
US8755987B2 (en) 2011-05-20 2014-06-17 GM Global Technology Operations LLC System and method for torque control in a homogeneous charge compression ignition engine
US9140206B2 (en) * 2011-05-31 2015-09-22 Mike M. Mc Donald Torque control systems and methods
JP5678835B2 (ja) 2011-08-01 2015-03-04 株式会社デンソー 内燃機関のガス供給装置
US8739766B2 (en) 2011-08-04 2014-06-03 Ford Global Technologies, Llc Method and system for fuel vapor control
US8594904B2 (en) 2011-09-23 2013-11-26 GM Global Technology Operations LLC System and method for securing engine torque requests
JP5510428B2 (ja) 2011-10-31 2014-06-04 株式会社デンソー 低圧egr装置
US9002615B2 (en) 2012-01-18 2015-04-07 General Electric Company Methods and systems for managing power of an engine
US9222426B2 (en) 2012-02-17 2015-12-29 Ford Global Technologies, Llc Transient air flow control
US8919323B2 (en) 2012-03-27 2014-12-30 GM Global Technology Operations LLC System and method for controlling engine speed
JP6003349B2 (ja) 2012-07-27 2016-10-05 トヨタ自動車株式会社 車両挙動予測装置
US9175628B2 (en) 2012-09-13 2015-11-03 GM Global Technology Operations LLC Coordinated engine torque control
US9534547B2 (en) 2012-09-13 2017-01-03 GM Global Technology Operations LLC Airflow control systems and methods
US8954257B2 (en) 2012-09-13 2015-02-10 GM Global Technology Operations LLC Coordinated torque control security systems and methods
US9309824B2 (en) * 2012-09-18 2016-04-12 GM Global Technology Operations LLC Engine control systems and methods for vehicle launch
JP5564543B2 (ja) 2012-09-25 2014-07-30 本田技研工業株式会社 内燃機関の制御装置
US9341150B2 (en) 2012-11-06 2016-05-17 GM Global Technology Operations LLC Throttle control systems and methods for reducing induction noise
US9376965B2 (en) 2013-04-23 2016-06-28 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9732688B2 (en) 2014-03-26 2017-08-15 GM Global Technology Operations LLC System and method for increasing the temperature of a catalyst when an engine is started using model predictive control
US9388758B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Model predictive control systems and methods for future torque changes
US9388754B2 (en) 2014-03-26 2016-07-12 GM Global Technology Operations LLC Artificial output reference for model predictive control
US9587573B2 (en) 2014-03-26 2017-03-07 GM Global Technology Operations LLC Catalyst light off transitions in a gasoline engine using model predictive control
US9714616B2 (en) 2014-03-26 2017-07-25 GM Global Technology Operations LLC Non-model predictive control to model predictive control transitions
US9605615B2 (en) 2015-02-12 2017-03-28 GM Global Technology Operations LLC Model Predictive control systems and methods for increasing computational efficiency
US9797318B2 (en) 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
US9429085B2 (en) 2013-04-23 2016-08-30 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9599049B2 (en) 2014-06-19 2017-03-21 GM Global Technology Operations LLC Engine speed control systems and methods
US9328671B2 (en) 2013-04-23 2016-05-03 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9920697B2 (en) 2014-03-26 2018-03-20 GM Global Technology Operations LLC Engine control systems and methods for future torque request increases
US9765703B2 (en) 2013-04-23 2017-09-19 GM Global Technology Operations LLC Airflow control systems and methods using model predictive control
US9599053B2 (en) 2014-03-26 2017-03-21 GM Global Technology Operations LLC Model predictive control systems and methods for internal combustion engines
US9382865B2 (en) 2014-03-26 2016-07-05 GM Global Technology Operations LLC Diagnostic systems and methods using model predictive control
US9541019B2 (en) 2014-03-26 2017-01-10 GM Global Technology Operations LLC Estimation systems and methods with model predictive control
US9435274B2 (en) 2014-03-26 2016-09-06 GM Global Technology Operations LLC System and method for managing the period of a control loop for controlling an engine using model predictive control
US9334815B2 (en) 2014-03-26 2016-05-10 GM Global Technology Operations LLC System and method for improving the response time of an engine using model predictive control
US9581080B2 (en) 2012-12-21 2017-02-28 Toyota Motor Engineering & Manufacturing North America, Inc. Rate-based model predictive control method for internal combustion engine air path control
US9562484B2 (en) 2012-12-21 2017-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. Rate-based contractive model predictive control method for internal combustion engine air path control
US9581981B2 (en) * 2014-03-06 2017-02-28 Mitsubishi Electric Corporation Method and apparatus for preconditioned continuation model predictive control
US8813807B1 (en) 2014-03-25 2014-08-26 Lewis Hyman, Inc. Window shade lifting apparatus
US9586573B2 (en) 2014-06-11 2017-03-07 Cummins, Inc. System and method for determining smart torque curve optimizing user performance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121793B4 (de) 2017-09-07 2022-08-25 GM Global Technology Operations LLC Optimierung des kraftstoffverbrauchs durch luft-pro-zylinder (apc) in der mpc-basierten antriebsstrangsteuerung

Also Published As

Publication number Publication date
US9347381B2 (en) 2016-05-24
US9599053B2 (en) 2017-03-21
US20150275772A1 (en) 2015-10-01
CN104948320A (zh) 2015-09-30
CN104948320B (zh) 2017-11-17
US20150275793A1 (en) 2015-10-01
DE102015103883B4 (de) 2021-10-07

Similar Documents

Publication Publication Date Title
DE102015103883B4 (de) Verfahren zur steuerung von brennkraftmaschinen
DE102015104196B4 (de) Künstliche Ausgangsreferenz für eine Modellvorhersagesteuerung
DE102015103621B4 (de) Verfahren zum Einstellen einer Drehmomentkapazität einer Maschine unter Verwendung einer Modellvorhersagesteuerung
DE102015104007B4 (de) Schätzsysteme und -verfahren mit Modellvorhersagesteuerung
DE102015104189B4 (de) Übergänge von Nicht-Modellvorhersagesteuerung zu Modellvorhersagesteuerung
DE102013217929B4 (de) Sicherungsverfahren für eine abgestimmte Drehmomentsteuerung
DE102015109569B4 (de) Verfahren zur Steuerung einer Motordrehzahl
DE102015103788B4 (de) Kraftmaschinensteuerverfahren mit Modellvorhersage für künftige Drehmomentänderungen
DE102014110695B4 (de) Kalibrierungsverfahren für Controller mit Vorhersagemodellen
DE102015104193B4 (de) Katalysatoranspringübergänge in einer Benzinkraftmaschine unter Verwendung einer Modellvorhersagesteuerung
DE102015104012A1 (de) Kraftmaschinen-Steuersysteme und Kraftmaschinen-Steuerverfahren für künftige Drehmomentanforderungszunahmen
DE102015104194A1 (de) System und Verfahren zur Erhöhung der Temperatur eines Katalysators, wenn eine Kraftmaschine gestartet wird, unter Verwendung von Modellvorhersagesteuerung
DE102018102081B4 (de) Verfahren zum ermitteln der referenzluftstrom-stellgliedpositionen für einen benzinmotor
DE102012000417A1 (de) Systeme und verfahren zur steuerung eines turboladerladedrucks für gangwechsel
DE102015103789B4 (de) Verfahren zum Verbessern der Ansprechzeit einer Kraftmaschine unter Verwendung einer Modellvorhersagesteuerung
DE102015104099B4 (de) Diagnosesysteme und Diagnoseverfahren unter Verwendung einer Modellvorhersagesteuerung
DE102011014832A1 (de) System und verfahren zum schätzen einerdrehmomentabgabe eines motors mit homogenerkompressionszündung
DE102015110021A1 (de) Systeme und Verfahren zur Drosselsteuerung bei Zylinderaktivierung und -deaktivierung
DE102012202724A1 (de) Systeme und Verfahren zur Steuerung eines Vordrosseldrucks
DE102018106059A1 (de) Verfahren zur nockenphasensteuerung in abhängigkeit von der zylinderwandtemperatur
DE102014105278B4 (de) Verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
DE102015103622B4 (de) Modellvorhersageverfahren für Brennkraftmaschinen mit Fremdzündung
DE102015104008B4 (de) Fehlerdiagnoseverfahren für Modellvorhersagesteuerung
DE102014105277B4 (de) Systeme und verfahren zur steuerung einer luftströmung unter verwendung einer steuerung mittels eines voraussagenden modells
DE102015104100B4 (de) Kraftmaschinensteuerverfahren für Getriebehochschaltungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final