DE102014101219A1 - Beleuchtungseinrichtung zur Fourier-Ptychographie - Google Patents

Beleuchtungseinrichtung zur Fourier-Ptychographie Download PDF

Info

Publication number
DE102014101219A1
DE102014101219A1 DE102014101219.4A DE102014101219A DE102014101219A1 DE 102014101219 A1 DE102014101219 A1 DE 102014101219A1 DE 102014101219 A DE102014101219 A DE 102014101219A DE 102014101219 A1 DE102014101219 A1 DE 102014101219A1
Authority
DE
Germany
Prior art keywords
lighting device
illumination
light
light source
optics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102014101219.4A
Other languages
English (en)
Inventor
Lars Stoppe
Christoph Husemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG filed Critical Carl Zeiss AG
Priority to DE102014101219.4A priority Critical patent/DE102014101219A1/de
Priority to PCT/EP2015/051924 priority patent/WO2015114093A2/de
Publication of DE102014101219A1 publication Critical patent/DE102014101219A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Es wird eine Beleuchtungseinrichtung sowie eine Mikroskopvorrichtung für eine derartige Beleuchtungseinrichtung und ein entsprechendes Verfahren bereitgestellt. Mittels einer Auswahleinrichtung (24) kann ein Teil eines Lichtes einer Lichtquelle (20) ausgewählt werden, um ein Objekt (27) aus einer gewünschten Richtung zu beleuchten.

Description

  • Die vorliegende Anmeldung betrifft eine Beleuchtungseinrichtung zur Fourier-Ptychographie, eine Mikroskopvorrichtung mit einer derartigen Beleuchtungseinrichtung sowie ein entsprechendes Verfahren.
  • Bei der mikroskopischen Untersuchung von Objekten sind für viele Anwendungen eine möglichst hohe Auflösung bzw. ein hohes Raum-Bandbreite-Produkt und/oder ein hoher Kontrast wünschenswert.
  • Eine hierzu in neuerer Zeit entwickelte Technik ist die Fourier-Ptychographie, welche in dem Artikel von Guoan Zheng, Roarke Horstmeyer and Changhuei Yang „Wide-field, high-resolution Fourier ptychographic Microscopy", Nature Photonics 2013, detailliert beschrieben ist. Bei diesem Verfahren wird ein zu mikroskopierendes Objekt nacheinander unter verschiedenen Beleuchtungsrichtungen partiell kohärent beleuchtet. Zu jeder Beleuchtungsrichtung wird das so beleuchtete Objekt mit einem Mikroskop abgebildet und aufgenommen und das so aufgenommene Bild abgespeichert. Auf diese Weise wird ein Stapel von Bildern erhalten, wobei jedem Bild eine andere Beleuchtungsrichtung zugeordnet ist. Mit diesem Stapel an Bildern wird dann mittels eines iterativen Algorithmus, zum Beispiel einem Fehler-Verringerungsalgorithmus, einem Hybrid-Input-Output-Algorithmus, und/oder einem Gerchberg-Saxton-Algorithmus, eine Phasen- und Amplitudenverteilung des Objekts errechnet. Statt dem Objekt selbst wird dabei ein Spektrum des Objekts durch den Algorithmus rekonstruiert, sodass die Phasen- und Amplitudenverteilung des Objekts durch eine weitere Fourier-Transformation erhalten werden kann.
  • Bei einer in der oben genannten Veröffentlichung verwendeten Vorrichtung zur Fourier-Ptychographie werden die verschiedenen Beleuchtungsrichtungen durch eine matrixförmige Leuchtdiodenanordnung unterhalb des Objekts realisiert, wobei ein Mikroskop das Objekt dann in Transmission abbildet. Der Arbeitsabstand zwischen der Leuchtdiodenanordnung und dem Objekt ist dabei derart gewählt, dass jede einzelne Leuchtdiode einen ausreichend hohen Kohärenzgrad aufweist. Durch das wahlweise sequentielle Anschalten einzelner Leuchtdioden können Bilder mit verschiedenen Beleuchtungsrichtungen aufgenommen werden.
  • Diese Herangehensweise zur Beleuchtung weist jedoch verschiedene Nachteile auf. So ist die Ausleuchtung verschiedener Beleuchtungsrichtungen nicht homogen, insbesondere wenn sich die Beleuchtungsrichtungen stark unterscheiden. Stark ausgelenkte Beleuchtungsrichtungen durch Leuchtdioden am Rand der Leuchtdiodenanordnung entsprechen einer größeren Entfernung der Leuchtdiode zum Objekt und führen damit zu einer verminderten Lichtleistung. Zudem sind ein für eine derartige Leuchtdiodenanordnung erforderlicher Bauraum und ein erforderlicher Abstand zwischen der Leuchtdiodenanordnung und dem Objekt relativ groß. Schließlich lässt sich eine derartige Beleuchtungstechnik nicht auf einfache Weise in bestehende Beleuchtungskonzepte klassischer Mikroskope integrieren. Insbesondere kann sie nicht als Zusatzmodul eingesetzt werden, mit dem zwischen herkömmlicher inkohärenter Beleuchtung und kohärenter Beleuchtung aus verschiedenen Richtungen umgeschaltet werden kann.
  • Es ist daher eine Aufgabe der vorliegenden Erfindung, eine Beleuchtungseinrichtung sowie eine entsprechende Mikroskopvorrichtung und entsprechende Verfahren bereitzustellen, mit welchen die oben beschriebenen Nachteile zumindest teilweise überwunden werden können und eine einfach in bestehende Mikroskopkonzepte integrierbare Möglichkeit zur Fourier-Ptychographie bereitgestellt wird.
  • Es werden eine Beleuchtungseinrichtung nach Anspruch 1 sowie ein Verfahren nach Anspruch 13 bereitgestellt. Die Unteransprüche definieren weitere Ausführungsbeispiele der Beleuchtungseinrichtung und des Verfahrens sowie eine Mikroskopvorrichtung mit einer derartigen Beleuchtungseinrichtung.
  • Erfindungsgemäß wird eine Beleuchtungseinrichtung bereitgestellt, umfassend:
    eine insbesondere monochromatische Lichtquelle,
    eine erste Teiloptik zum Lenken von Licht von der Lichtquelle auf eine Auswahleinrichtung,
    eine zweite Teiloptik zum Lenken von Licht von der Auswahleinrichtung zu einem zu beleuchtenden Objekt, wobei die Auswahleinrichtung zum sequentiellen Auswählen verschiedener Teile des Lichtes zum Beleuchten des Objekts eingerichtet ist.
  • Durch das sequentielle Auswählen verschiedener Teile des Lichtes kann auf einfache Weise eine sequentielle Beleuchtung aus verschiedenen Richtungen realisiert werden.
  • Die Auswahleinrichtung ist dabei näherungsweise in einer Ebene einer Beleuchtungspupille angeordnet, um so die Beleuchtung aus verschiedenen Richtungen ermöglichen zu können. Die Beleuchtungspupille kann dabei einer konjugierten Ebene des Objekts entsprechen. Bei manchen Ausführungsbeispielen kann die Beleuchtungspupille zudem einer Ebene eines Zwischenbildes der Lichtquelle entsprechen. Bei anderen Ausführungsbeispielen kann die Beleuchtungspupille zudem einer konjugierten Ebene der Lichtquelle entsprechen.
  • Der Begriff „näherungsweise“ berücksichtigt in diesem Zusammenhang zum Einen, dass die Beleuchtungspupille, das Zwischenbild und/oder die oben erwähnten konjugierten Ebenen bei realen Optiken nicht unbedingt exakt eben sind, sondern eine Krümmung aufweisen können. Zum Anderen kann die Auswahleinrichtung auch geringfügig aus der Beleuchtungspupille verschoben sein, ohne dass sie ihre Funktion verliert. Beispielsweise kann eine Verschiebung entlang einer optischen Achse der Beleuchtungseinrichtung um nicht mehr als 10%, bevorzugt um nicht mehr als 5%, einer Brennweite eines nächsten optischen Elements, in dessen Richtung verschoben wird, vorhanden sein.
  • Die Auswahleinrichtung kann dabei auf verschiedene Weise realisiert sein. Beispielsweise kann die Auswahleinrichtung eine in der Ebene der Beleuchtungspupille bewegliche Lochblende umfassen. Es ist jedoch ebenso eine Realisierung mittels eines LCD-Feldes oder einer Mikrospiegelanordnung, beispielsweise einer DMD-Anordnung (digital micromirror device) oder mittels eines anderen räumlichen Lichtmodulators möglich.
  • Die erste Teiloptik und die zweite Teiloptik können dabei zusammen eine herkömmliche Optik für eine herkömmliche Mikroskopbeleuchtung bilden, beispielsweise eine Optik einer Köhlerschen Beleuchtung oder eine Optik für eine kritische Beleuchtung. Somit kann ein herkömmlicher Mikroskopaufbau abgesehen von dem Hinzufügen der Auswahleinrichtung im Wesentlichen unverändert gelassen werden, was eine einfache Implementierung in bestehende Aufbauten ermöglicht.
  • Dabei wird die Lichtquelle bevorzugt auf ein vergrößertes Zwischenbild der Ebene der Beleuchtungspupille abgebildet.
  • Die Auswahleinrichtung kann bei manchen Ausführungsbeispielen zudem gleichzeitig als Aperturblende der Beleuchtungseinrichtung dienen.
  • Die Auswahleinrichtung kann bei manchen Ausführungsbeispielen deaktivierbar sein, was beispielsweise einem Auswählen des gesamten Zwischenbildes und somit einer herkömmlichen Beleuchtung entsprechen kann. Auf diese Weise kann zwischen einer Betriebsart, in welcher Beleuchtungen aus verschiedenen Richtungen verwendet werden, beispielsweise zur Fourier-Ptychographie, und einer Betriebsart mit herkömmlicher Beleuchtung, beispielsweise zur Weitfeldmikroskopie, umgeschaltet werden.
  • Die Lichtquelle kann beispielsweise eine oder mehrere Leuchtdioden, eine oder mehrere Laserlichtquellen, eine Halogenlampe kombiniert mit einem Farbfilter oder andere geeignete Lichtquellen, insbesondere monochromatische Lichtquellen, umfassen. Eine derartige Lichtquelle kann insbesondere leicht austauschbar sein.
  • Eine Beleuchtungseinrichtung gemäß derartigen Ausführungsbeispielen kann eine homogene Ausleuchtung mit zumindest nur geringer Winkelabhängigkeit bei relativ kleinem Bauraum aufweisen. Beispielsweise kann die eingangs erwähnte herkömmliche Leuchtdiodenanordnung Abmessungen in der Größenordnung 10cm × 10cm aufweisen, während eine erfindungsgemäße Beleuchtungseinrichtung eine Auswahleinrichtung der Abmessungen 2cm × 2cm oder kleiner aufweisen kann.
  • Indem eine Integration in bestehende Beleuchtungskonzepte möglich ist, können auch herkömmliche, spezialisierte Optikdesigns zur homogenen Ausleuchtung in einem großen Winkelbereich verwendet werden. Die Auswahleinrichtung kann als Zusatzmodul an- und ausschaltbar sein, bei entsprechender Ausgestaltung auch innerhalb von Sekundenbruchteilen (beispielsweise bei einer DMD-Anordnung oder einer LCD-Flüssigkristallanordnung), wodurch eine Beobachtung lebender Zellen möglich wird. Zudem kann bei Untersuchungsverfahren, bei denen die Beleuchtungsrichtung egal ist, z.B. bei der Fluoreszenzmikroskopie, eine simultane Benutzung der Auswahleinrichtung möglich. Beispielsweise kann in einem derartigen Fall eine Fluoreszenz unabhängig von der Beleuchtungsrichtung, d.h. unabhängig von einem gerade ausgewählten Teil des Lichtes, untersucht werden, während gleichzeitig die Beleuchtungsrichtung variiert wird (und dabei aufgenommene Bilder dann z.B. mittels Fourier-Ptychographie ausgewertet werden können).
  • Durch die Möglichkeit des wahlweisen Ausschaltens oder Deaktivierens der Auswahleinrichtung können bei deaktivierter Auswahleinrichtung aufgenommene Weitfeldbilder mit Phaseninformationen, welche durch Fourier-Ptychographie gewonnen werden, verknüpft werden. Bei geeigneten Auswahleinrichtungen, wie beispielsweise einer DMD-Anordnung oder eines anderen räumlichen Lichtmodulators, können neuartige strukturierte Beleuchtungen, zum Beispiel verschiedene Verteilungen von gleichzeitigen Beleuchtungsrichtungen (zum Beispiel ringförmig), verwendet werden. Mit einem geeigneten räumlichen Lichtmodulator (SLM, vom Englischen „spacial light modulator“) können zudem Aberrationen der Beleuchtungseinrichtung zumindest teilweise korrigiert werden. Zudem kann eine derartige Beleuchtungseinrichtung auch für eine Dunkelfeldbeleuchtung verwendet werden, wenn ein entsprechendes Detektionsmodul verwendet wird. Auch kann eine derartige Beleuchtungseinrichtung zur Mikroskopie mit kohärenter strukturierter Beleuchtung (im Englischen als „coherent SIM“ („structured illumination microscopy“) bezeichnet) verwendet werden.
  • Eine Untersuchungsvorrichtung, insbesondere zur Fourier-Ptychographie, kann eine derartige Beleuchtungseinrichtung sowie eine Detektionsoptik, insbesondere eine Mikroskopoptik und eine Aufnahme für ein Objekt, beispielsweise für einen Objektträger, umfassen. Die Detektionsoptik kann z.B. zur Durchführung der Fourier-Ptychographie mit einer Kamera zur Bildaufnahme gekoppelt sein. Bei einem Ausführungsbeispiel kann eine Steuerung dann die Auswahleinrichtung der Beleuchtungseinrichtung ansteuern, um das Objekt sequentiell aus verschiedenen Richtungen zu beleuchten, und die Kamera ansteuern, um entsprechende Bilder bei den verschiedenen Beleuchtungen aufzunehmen. Aus den verschiedenen Bildern kann dann ein Gesamtbild errechnet werden, beispielsweise entsprechend dem Verfahren der Fourier-Ptychographie, wie eingangs erläutert.
  • Zudem wird ein Verfahren bereitgestellt, umfassend:
    Lenken von Licht einer Lichtquelle zu einem Objekt,
    Auswählen nur eines Teiles des Lichtes der Lichtquelle zur Beleuchtung des Objekts, wobei das Auswählen zumindest näherungsweise in einer Ebene einer Beleuchtungspupille erfolgt,
    Aufnehmen eines Bildes des Objekts,
    Wiederholen des Auswählens und des Aufnehmens des Bildes für eine Vielzahl unterschiedlicher Teile des Lichtes, um eine Vielzahl von Bildern zu erzeugen, und
    Berechnen einer Gesamtbildinformation aus der Vielzahl von Bildern, beispielsweise entsprechend der Fourier-Ptychographie.
  • In einer weiteren Betriebsart kann das gesamte Zwischenbild der Lichtquelle verwendet werden, beispielsweise, um eine Weitfeldmikroskopie durchzuführen. Auch kann gleichzeitig mit dem Verfahren eine Untersuchung, welche nicht von der Beleuchtungsrichtung abhängt, durchgeführt werden, beispielsweise eine Fluoreszenzuntersuchung wie oben beschrieben. Das Verfahren kann insbesondere mit einer der oben diskutierten Vorrichtungen durchgeführt werden.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
  • 1 ein Blockdiagramm einer Mikroskopvorrichtung gemäß einem Ausführungsbeispiel,
  • 2 eine schematische Querschnittansicht einer Beleuchtungseinrichtung gemäß einem Ausführungsbeispiel,
  • 3 eine Querschnittsansicht einer Beleuchtungseinrichtung gemäß einem weiteren Ausführungsbeispiel,
  • 4 eine schematische Darstellung einer Auswahleinrichtung gemäß einem Ausführungsbeispiel,
  • 5 eine schematische Darstellung einer Auswahleinrichtung gemäß einem weiteren Ausführungsbeispiel, und
  • 6 ein Flussdiagramm zur Veranschaulichung eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens.
  • Im Folgenden werden Ausführungsbeispiele der vorliegenden Erfindung näher erläutert. Es ist zu bemerken, dass diese Ausführungsbeispiele lediglich einige Implementierungsbeispiele der vorliegenden Erfindung darstellen und die vorliegende Erfindung nicht auf diese konkreten Beispiele beschränkt ist. Beispielsweise ist die Beschreibung eines Ausführungsbeispiels mit einer Vielzahl von Elementen nicht dahingehend auszulegen, dass alle diese Elemente zur Implementierung notwendig sind. Vielmehr können bei anderen Ausführungsbeispielen manche der dargestellten Elemente weggelassen sein oder durch alternative Elemente ersetzt werden. Zusätzlich oder alternativ können auch zusätzliche Elemente bereitgestellt sein.
  • Elemente oder Merkmale verschiedener Ausführungsbeispiele können zudem miteinander kombiniert werden, sofern nichts anderes angegeben ist.
  • In 1 ist eine Mikroskopvorrichtung gemäß einem Ausführungsbeispiel schematisch dargestellt. Die Mikroskopvorrichtung des Ausführungsbeispiels der 1 kann insbesondere zur Fourier-Ptychographie verwendet werden, ist jedoch nicht hierauf beschränkt. Die Mikroskopvorrichtung der 1 umfasst eine Beleuchtungseinrichtung 15 zum Beleuchten eines zu untersuchenden Objekts 14, welches sich auf einem Träger 13, beispielsweise einem auf einem Mikroskoptisch befindlichen Objektträger, befindet. Über eine Mikroskopoptik 10 wird ein Bild eines betrachteten Bereichs des Objekts 14 auf eine Kamera 11 abgebildet, um somit ein Bild des Objekts 14 zu erfassen. Zusätzlich kann auch eine Beobachtung durch das menschliche Auge möglich sein.
  • Die Beleuchtungseinrichtung 15 umfasst eine Auswahleinrichtung 16 zu einer räumlichen Auswahl eines Teils eines Zwischenbildes einer Lichtquelle der Beleuchtungseinrichtung 15. Durch Auswahl verschiedener Teile des Zwischenbildes kann das Objekt 14 wahlweise aus verschiedenen Richtungen beleuchtet werden. Beispiele derartiger Beleuchtungseinrichtungen werden später näher erörtert. Eine Steuerung 12 ist dabei eingerichtet, die Auswahl der Teile zu steuern. Die Steuerung 12 kann dabei mittels eines entsprechend programmierten Prozessors, beispielsweise in Form eines Computers, oder auch durch fest programmierte Einrichtungen implementiert sein. Allgemein kann die Steuerung 12 durch Software, Hardware, Firmware oder Kombinationen hiervon realisiert sein.
  • Zur Fourier-Ptychographie kann dann die Steuerung 12 die Auswahleinrichtung 16 derart ansteuern, dass sequentiell verschiedene Teile des Zwischenbildes ausgewählt werden und somit sequentiell das Objekt 14 aus verschiedenen Richtungen beleuchtet wird. Für jede der Beleuchtungsrichtungen kann dann durch die Kamera 11 ein entsprechendes Bild aufgenommen werden. Ein so entstehender Stapel an Bildern kann dann ausgewertet werden, wofür entweder die Steuerung 12 als Auswertungseinrichtung oder eine separate Auswertungseinrichtung verwendet werden kann, beispielsweise ein weiterer Computer. Insbesondere kann aus dem Stapel von Bildern, wie eingangs kurz erläutert, gemäß der Fourier-Ptychographie eine Gesamtbildinformation errechnet werden. Diese Auswertung erfolgt also dann auf herkömmliche Art und Weise.
  • Bei manchen Ausführungsbeispielen verfügt die Mikroskopvorrichtung der 1 über eine weitere Betriebsart, bei welcher die Auswahleinrichtung 16 deaktiviert ist, sodass die Beleuchtungseinrichtung 15 wie eine herkömmliche Mikroskopbeleuchtung arbeiten kann. Dies kann es beispielsweise ermöglichen, die Mikroskopvorrichtung auch zur Weitfeldmikroskopie zu nutzen.
  • Ausführungsbeispiele für die Beleuchtungseinrichtung 15 werden nachfolgend unter Bezugnahme auf die 2 bis 5 näher erläutert. Es ist zu bemerken, dass die Beleuchtungseinrichtung 15 sowie die nachfolgend unter Bezugnahme auf die 2 bis 5 diskutierten Beleuchtungseinrichtungen nicht nur in der Mikroskopvorrichtung der 1, sondern auch in anderen Mikroskopvorrichtungen und auch in anderen Untersuchungsvorrichtungen ohne Mikroskopobjektiv, z.B. mit einer Detektionsoptik ohne Vergrößerung, benutzt werden können. Beispielsweise stellt die Mikroskopvorrichtung der 1 ein Lichtmikroskop dar, bei welchem die Beleuchtung des Objekts 14 und die Beobachtung von zwei gegenüberliegenden Seiten erfolgen, die Beobachtung also in Transmission erfolgt. Es sind jedoch auch andere Anordnungen, beispielsweise eine Beleuchtung aus der gleichen Richtung wie die Beobachtung, oder Dunkelfeldanordnungen, möglich.
  • In 2 ist ein Ausführungsbeispiel einer erfindungsgemäßen Beleuchtungseinrichtung zusammen mit einem auf einem Objektträger 26 befindlichen Objekt 27 schematisch dargestellt. Die Beleuchtungseinrichtung der 2 ist auf Basis einer Köhlerschen Beleuchtungseinrichtung realisiert. Die Beleuchtungseinrichtung der 2 umfasst eine Lichtquelle 20, welche beispielsweise eine oder mehrere Leuchtdioden, eine oder mehrere Laserlichtquellen, eine oder mehrere Halogenlichtquellen, insbesondere mit Farbfiltern, oder andere Lichtquellen, für die Fourier-Ptychographie insbesondere monochromatische Lichtquellen, umfasst. Über eine erste Linse 21, eine Feldblende 22 und eine zweite Linse 23, welche eine erste Teiloptik bilden, wird die Lichtquelle 20 vergrößert auf ein Zwischenbild in einer Ebene 211 abgebildet (d.h. die Ausdehnung des Zwischenbildes in der Ebene 28 ist größer als die Ausdehnung der Lichtquelle 20). Die Ebene 211 entspricht dabei einer Ebene einer Beleuchtungspupille der Beleuchtungseinrichtung der 2 sowie einer konjugierten Ebene des Objekts 27. Über eine Pupillenoptik (zweite Teiloptik), welche bei dem Ausführungsbeispiel der 2 durch eine Linse 25 realisiert ist, wird das Zwischenbild der Lichtquelle 20 dann zu dem Objekt 27 gelenkt.
  • Zu bemerken ist, dass, während in 2 Linsen 21, 23, 25 dargestellt sind, diese im Wesentlichen jeweils eine optische Komponente repräsentieren, die auch mehr als eine Linse, z.B. zwei oder mehr Linsen, und/oder auch andere optische Elemente umfassen kann.
  • Soweit bisher beschrieben entspricht der Aufbau der Beleuchtungseinrichtung der 2 einer herkömmlichen Köhlerschen Beleuchtungseinrichtung.
  • Zusätzlich zu herkömmlichen Beleuchtungseinrichtungen verfügt die Beleuchtungseinrichtung der 2 über eine Auswahleinrichtung 24, welche in der Ebene 211 des Zwischenbildes angeordnet ist und angesteuert werden kann, wahlweise einen Teil des Zwischenbildes auszuwählen. Durch diese Auswahl kann wahlweise das Objekt 27 aus verschiedenen Richtungen beleuchtet werden. Wird beispielsweise nur der Teil des Zwischenbildes entsprechend dem mit durchgezogenen Linien 210 dargestellten Strahlengang ausgewählt, entspricht dies im Wesentlichen (in der Querschnittsansicht der 2) einer senkrechten Beleuchtung des Objekts. Wird nur der dem gestrichelt dargestellten Strahlengang 28 entsprechende Teil des Zwischenbildes ausgewählt, entspricht dies in 2 einer Beleuchtung von schräg unten. Wird nur ein einem durch gepunktete Linien 29 dargestellten Strahlengang entsprechender Teil des Zwischenbildes ausgewählt, erfolgt die Beleuchtung in 2 von schräg oben. Zu bemerken ist dabei, dass es sich bei der 2 um eine Querschnittsansicht handelt und bei Ausführungsbeispielen die Auswahl des Teils des Zwischenbildes zweidimensional in der Ebene 211 erfolgen kann, wie später anhand von Beispielen unter Bezugnahme auf die 4 und 5 noch näher erläutert werden wird.
  • Zu bemerken ist, dass die Auswahleinrichtung 24 nicht exakt in der Ebene 211 angeordnet sein muss, sondern eine näherungsweise Anordnung in der Ebene 211 ausreichend sein kann, wobei sich hierdurch jedoch das nutzbare beleuchtbare Feld verringern kann. Der Begriff „näherungsweise“ berücksichtigt in diesem Zusammenhang zum Einen, dass die das Zwischenbild bei realen Optiken nicht unbedingt exakt eben ist (und somit die „Ebene“ des Zwischenbildes gekrümmt sein kann). Beispielsweise kann eine Verschiebung entlang einer optischen Achse der Beleuchtungseinrichtung der 2 (in 2 also in horizontaler Richtung) um nicht mehr als 10%, bevorzugt um nicht mehr als 5%, einer Brennweite eines nächsten optischen Elements, in dessen Richtung verschoben wird, vorhanden sein (d.h. in 2 um nicht mehr als 10% der Brennweite der Linse 23 nach links und um nicht mehr als 10% der Brennweite der Linse 25 nach rechts).
  • Die Auswahleinrichtung 24 kann dabei gleichzeitig als Aperturblende für die Beleuchtungseinrichtung dienen. Bei anderen Ausführungsbeispielen kann eine Aperturblende separat vorgesehen sein.
  • Bei manchen Ausführungsbeispielen kann die Auswahleinrichtung 24 deaktiviert werden. Deaktivieren der Auswahleinrichtung bedeutet dabei im Kontext der vorliegenden Anmeldung, dass die Auswahleinrichtung derart angesteuert wird, dass die Beleuchtungseinrichtung als konventionelle Beleuchtungseinrichtung ohne Auswahleinrichtung arbeitet. Beispielsweise kann die Auswahleinrichtung derart gesteuert werden, komplett lichtdurchlässig (oder komplett reflektierend, wenn z.B. durch Mikrospiegel eine Reflexion zu dem Objekt 27 hin erfolgt) zu sein, sie kann aus dem Strahlengang entfernt werden oder sie kann derart angesteuert werden, dass ihre Funktion der Funktion einer herkömmlichen Aperturblende entspricht, die beispielsweise alle in 2 eingezeichneten Strahlengänge 28, 29 und 210 passieren lässt und nur Streulicht abschattet. Dies kann insbesondere dann vorteilhaft sein, wenn keine separate Aperturblende bereitgestellt ist.
  • Ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Beleuchtungseinrichtung ist in 3 dargestellt. Das Ausführungsbeispiel der 3 basiert auf einer Beleuchtungseinrichtung zur kritischen Beleuchtung. Im Gegensatz zu dem Ausführungsbeispiel der 2 sind hier nur zwei Linsen 31, 34 bereitgestellt. Bei dem Ausführungsbeispiel der 3 ist eine durch eine Lampenhalterung 311 gehaltene Lichtquelle 30 bereitgestellt, welche entsprechend der Lichtquelle 20 der 2 implementiert sein kann. Über eine erste Linse 31 (erste Teiloptik) wird Licht von der Lichtquelle 30 zu einer Beleuchtungspupille in einer Ebene 310 gelenkt. Bei dem Ausführungsbeispiel der 3 ist die Ebene 310 dabei eine konjugierte Ebene der Lichtquelle 30 sowie eines Objekts 36. Von dort wird das Licht über eine weitere Linse 34 (zweite Teiloptik) zu dem auf einem Objektträger 35 befindlichen Objekt 36 hingelenkt. Wie bereits für das Ausführungsbeispiel der 2 beschrieben können auch hier die Linsen 31, 34 im Wesentlichen jeweils eine optische Komponente repräsentieren, die auch mehr als eine Linse, z.B. zwei oder mehr Linsen, und/oder auch andere optische Elemente umfassen kann.
  • In der Ebene 310 ist eine Auswahleinrichtung 33 angeordnet, welche wie die Auswahleinrichtung 24 der 2 eingerichtet ist, wahlweise einen Teil der Beleuchtungspupille in der Ebene 310 auszuwählen, womit eine Beleuchtung des Objekts 36 aus verschiedenen Richtungen realisiert werden kann. Beispielsweise kann ein einem durch gestrichelte Linien 37 dargestellten Strahlengang entsprechender Teil der Beleuchtungspupille in der Ebene 310 ausgewählt werden, was in 3 zu einer Beleuchtung von schräg oben führt. Es kann auch ein einem durch durchgezogene Linien 38 dargestellten Strahlengang entsprechender Teil der Beleuchtungspupille in der Ebene 310 ausgewählt werden, was in 3 einer senkrechten Beleuchtung entspricht. In einem anderen Fall kann ein einem durch gestrichelte Linien 39 dargestellten Strahlenbündel entsprechender Teil der Beleuchtungspupille in der Ebene 310 ausgewählt werden, was in 3 einer Beleuchtung von schräg unten entspricht. Diese drei Möglichkeiten dienen wie bei 2 nur zur Veranschaulichung, und es können auch andere Teile der Beleuchtungspupille in der Ebene 310 zusätzlich oder alternativ ausgewählt werden.
  • Modifikationen und Abwandlungen sowie die Deaktivierung der Auswahleinrichtung 24, welche unter Bezugnahme auf 2 diskutiert wurden, sind in entsprechender Weise auch auf die Beleuchtungseinrichtung der 3 und die Auswahleinrichtung 33 anwendbar. Insbesondere kann auch die Auswahleinrichtung 33 nur näherungsweise in der Ebene 310 angeordnet sein. Zudem stellen die Beleuchtungseinrichtungen der 2 und 3 lediglich Beispiele dar, und es können auch andere optische Anordnungen mit mehr oder weniger Linsen als dargestellt oder anderen zusätzlichen optischen Elementen wie beispielsweise Spiegeln verwendet werden.
  • Nunmehr werden unter Bezugnahme auf 4 und 5 Beispiele für Auswahleinrichtungen (beispielsweise für die Auswahleinrichtung 24 der 2 oder die Auswahleinrichtung 33 der 3) näher erläutert. In 4 ist als Beispiel für eine Auswahleinrichtung eine bewegliche Lochblende 40 mit einer transparenten Öffnung 42 dargestellt, welche wie durch Pfeile 41 angedeutet in der Zeichenebene (welche beispielsweise der Ebene 211 der 2 oder der Ebene 310 der 3 entsprechen kann) beweglich ist, um so einen Teil des Zwischenbildes bzw. der Beleuchtungspupille auszuwählen. Die Größe der transparenten Öffnung 42 kann in Abhängigkeit von einer gewünschten Genauigkeit einer Auswahl der Beleuchtungsrichtung und/oder in Abhängigkeit von Eigenschaften der Lichtquelle wie Kohärenz ausgewählt werden und kann bei manchen Ausführungsbeispielen einstellbar sein.
  • Zum Deaktivieren einer derart ausgestalteten Auswahleinrichtung kann die Lochblende 40 beispielsweise ganz aus dem Strahlengang entfernt werden. Bei anderen Ausführungsbeispielen kann die Größe der transparenten Öffnung 42 variabel sein, und zum Deaktivieren der Auswahleinrichtung kann die transparente Öffnung 42 beispielsweise mittig im Strahlengang angeordnet werden und soweit vergrößert werden, dass sie als herkömmliche Aperturblende fungiert, beispielsweise alle in den 2 bzw. 3 eingezeichneten Strahlengänge durchlässt und lediglich Streulicht abschattet. Während die transparente Öffnung 42 in 4 als rund dargestellt ist, sind auch andere Formen möglich.
  • Ein weiteres Ausführungsbeispiel einer Auswahleinrichtung, welche beispielsweise als Auswahleinrichtung 24 der 2 oder als Auswahleinrichtung 33 der 3 verwendbar ist, ist in 5 dargestellt. Eine Auswahleinrichtung 50 der 5 umfasst eine Vielzahl von in einer Matrix angeordneten Elementen 51, wobei die Elemente 51 einzeln wahlweise lichtdurchlässig oder lichtundurchlässig geschaltet werden können, um so eine räumliche Auswahl eines Teils des Zwischenbildes bzw. der Beleuchtungspupille zu ermöglichen. Die Anzahl an Elementen 51, d.h. die Anzahl an Zeilen und Spalten der Matrix aus 5, ist nicht als einschränkend auszulegen, und in Abhängigkeit von der Anzahl verschiedener gewünschter auswählbarer Teile des Zwischenbildes und der Größe dieser Teile können mehr oder weniger Elemente 51 als in 5 dargestellt, bereitgestellt sein. Zum Auswählen eines Teils des Zwischenbildes bzw. der Beleuchtungspupille können dann ein oder mehrere Elemente 51, welche dem gewünschten Teil entsprechen, lichtdurchlässig geschaltet werden, während die übrigen Elemente 51 lichtundurchlässig geschaltet werden. Dabei kann durch entsprechende Auswahl die Form des Teils im Wesentlichen beliebig gewählt werden.
  • Zum Deaktivieren der Auswahleinrichtung 50 der 5 können dann beispielsweise alle Elemente 51 lichtdurchlässig geschaltet werden, oder eine Anzahl von Elementen 51 können lichtdurchlässig geschaltet werden, um eine Aperturblende zu bilden, welche beispielsweise alle in 2 bzw. 3 dargestellten Strahlengänge durchlässt.
  • Für die Realisierung der Elemente 51 gibt es verschiedene Möglichkeiten. Beispielsweise kann die Auswahleinrichtung 50 eine Flüssigkristallanzeige sein, und die Elemente 51 können ansteuerbare Bildpunkte der Flüssigkeitskristallanzeige, welche wahlweise auf dunkel oder hell geschaltet werden können, sein. Bei einem anderen Ausführungsbeispiel ist die Auswahleinrichtung 50 eine digitale Mikrospiegelanordnung (DMD, vom Englischen „digital micromirror device“), und die Elemente 51 sind einzeln ansteuerbare Mikrospiegel. Bei wieder anderen Ausführungsbeispielen können andere Arten von räumlichen Lichtmodulatoren (SLM, vom Englischen „spacial light modulator“) verwendet werden.
  • Die Auswahleinrichtungen der 4 und 5 stellen lediglich Beispiele dar, und es sind auch andere Arten von Auswahleinrichtungen möglich.
  • In 6 ist ein Flussdiagramm zur Veranschaulichung eines Verfahrens gemäß einem Ausführungsbeispiel dargestellt. Das Verfahren der 6 kann beispielsweise unter Benutzung der unter Bezugnahme auf 1 bis 5 diskutierten Vorrichtungen ausgeführt werden, ist jedoch nicht hierauf beschränkt. Zu bemerken ist, dass die verschiedenen Verfahrensschritte nicht notwendigerweise in der dargestellten Reihenfolge ausgeführt werden müssen. Beispielsweise können die nachfolgend beschriebenen Schritte 60 und 61 auch in vertauschter Reihenfolge durchgeführt werden. Zudem können bei manchen Ausführungsbeispielen manche der dargestellten Schritte weggelassen sein. So sind in 6, wie nachfolgend näher erläutert, Verfahrensschritte für zwei verschiedene Betriebsarten, nämlich einer ersten Betriebsart für Durchführung einer Fourier-Ptychographie und einer zweiten Betriebsart für Durchführung einer Weitfeldmikroskopie, vorgesehen. Bei anderen Ausführungsbeispielen kann auch nur eine Betriebsart, beispielsweise die Betriebsart zur Fourier-Ptychographie, vorgesehen sein.
  • Bei 60 in 6 wird eine Lichtquelle eingeschaltet, um über eine entsprechende Optik Licht über eine Beleuchtungspupille zu einem Objekt zu lenken, beispielsweise wie unter Bezugnahme auf die 2 und 3 erläutert.
  • Bei 61 wird eine Betriebsart ausgewählt. Wird Fourier-Ptychographie als Betriebsart ausgewählt, wird das Verfahren bei 62 fortgesetzt. Wird Weitfeldmikroskopie ausgewählt, wird das Verfahren bei 66 fortgesetzt.
  • Bei 62 wird ein Teil des Lichtes der Lichtquelle, insbesondere ein Teil der Beleuchtungspupille, ausgewählt, während das restliche Licht abgeschattet wird. Hierdurch wird eine Beleuchtung eines zu untersuchenden Objekts aus der Richtung des ausgewählten Teils der Beleuchtungspupille realisiert. Bei 63 wird dann beispielsweise über einen Mikroskopaufbau ein Bild des Objekts aufgenommen (beispielsweise mittels der Kamera 11 der 1).
  • Bei 64 wird überprüft, ob alle gewünschten Bilder aufgenommen wurden, insbesondere mit Beleuchtung aus allen gewünschten Raumrichtungen. Falls dies nicht der Fall ist, wird das Verfahren bei 62 fortgesetzt, wobei nun ein anderer Teil des Lichtes ausgewählt wird, um eine Beleuchtung aus einer anderen Richtung zu realisieren. Falls ja wird bei 65 aus den aufgenommenen Bildern eine Gesamtbildinformation berechnet, beispielsweise wie in dem eingangs zitierten Artikel zur Fourier-Ptychographie beschrieben.
  • Wird hingegen bei 61 die Weitfeldmikroskopie als Betriebsart gewählt, wird bei 66 beispielsweise das gesamte Licht der Lichtquelle oder ein großer Teil des gesamten Lichtes, beispielsweise 80% oder mehr, zur Beleuchtung des Objekts genutzt und bei 67 ein entsprechendes Bild aufgenommen. Durch die Benutzung des gesamten Lichtes oder nahezu des gesamten Lichtes kann die Beleuchtung bei der Weitfeldmikroskopie inkohärenter sein als bei der Fourier-Ptychographie, bei welcher lediglich ein Teil des Lichtes, z.B. ein Teil einer Beleuchtungspupille, benutzt wird.
  • Zu bemerken ist, dass neben der Weitfeldmikroskopie und der Fourier-Ptychographie auch andere Betriebsarten möglich sind. Auch können die Beleuchtungseinrichtungen gemäß den dargestellten Ausführungsbeispielen auch in anderen Fällen verwendet werden, in welchen es wünschenswert ist, ein Objekt sequentiell aus verschiedenen Richtungen zu beleuchten. Die dargestellten Ausführungsbeispiele sind daher nicht als einschränkend auszulegen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Nicht-Patentliteratur
    • Artikel von Guoan Zheng, Roarke Horstmeyer and Changhuei Yang „Wide-field, high-resolution Fourier ptychographic Microscopy“, Nature Photonics 2013 [0003]

Claims (14)

  1. Beleuchtungseinrichtung (15), umfassend: eine Lichtquelle (20; 30) eine erste Teiloptik (21, 23; 31) zum Lenken von Licht von der Lichtquelle (20; 30) zu einer Auswahleinrichtung (16; 24; 33), wobei die Auswahleinrichtung (16; 24; 33) zumindest näherungsweise in einer Ebene (211; 310) einer Beleuchtungspupille der Beleuchtungseinrichtung (15) angeordnet ist, eine zweite Teiloptik (25; 34) zum Lenken von Licht von der Auswahleinrichtung (16; 24; 33) auf ein Objekt (14; 27; 36), wobei die Auswahleinrichtung (16; 24; 33) zum sequentiellen Auswählen verschiedener Teile des Lichtes zum Beleuchten des Objekts (14; 27; 36) eingerichtet ist.
  2. Beleuchtungseinrichtung (15) nach Anspruch 1, wobei die Auswahleinrichtung (16; 24; 33) deaktivierbar ausgestaltet ist.
  3. Beleuchtungseinrichtung (15) nach einem der Ansprüche 1 oder 2, wobei die Auswahleinrichtung (16; 24; 33) eine in einer Ebene (211; 310) bewegliche Lochblende (40) umfasst.
  4. Beleuchtungseinrichtung (15) nach einem der Ansprüche 1 oder 2, wobei die Auswahleinrichtung (16; 24; 33) eine Matrix aus einzeln aktivierbaren und deaktivierbaren Elementen (51) umfasst.
  5. Beleuchtungseinrichtung (15) nach Anspruch 4, wobei die Beleuchtungseinrichtung eine Mikrospiegelanordnung, eine Flüssigkeitskristallmatrix oder einen räumlichen Lichtmodulator umfasst.
  6. Beleuchtungseinrichtung (15) nach einem der Ansprüche 1 bis 5, wobei die Lichtquelle (20), die erste Teiloptik (21; 23) und die zweite Teiloptik (25) eine Köhlersche Beleuchtungseinrichtung bilden.
  7. Beleuchtungseinrichtung (15) nach einem der Ansprüche 1 bis 5, wobei die Lichtquelle (30), die erste Teiloptik (31) und die zweite Teiloptik (34) eine Beleuchtungseinrichtung zur Kritischen Beleuchtung bilden.
  8. Beleuchtungseinrichtung (15) nach einem der Ansprüche 1 bis 7, wobei die erste Teiloptik (21; 23; 33) eingerichtet ist, die Lichtquelle (20; 30) auf ein vergrößertes Zwischenbild abzubilden.
  9. Beleuchtungseinrichtung (15) nach einem der Ansprüche 1 bis 8, wobei die Lichtquelle (20; 30) eine monochromatische Lichtquelle ist.
  10. Untersuchungsvorrichtung, umfassend: eine Beleuchtungseinrichtung (15) nach einem der Ansprüche 1 bis 9 zur Beleuchtung eines Objekts (14; 27; 36), eine Detektionsoptik (10) mit einer Kamera (11) zum Aufnehmen eines Bildes des Objekts (14; 27; 36), und eine Steuerung (12), wobei die Steuerung (12) eingerichtet ist, die Beleuchtungseinrichtung (15) sequentiell zur Auswahl verschiedene Teile des Zwischenbildes anzusteuern und die Kamera (11) zum Aufnehmen von jeweils zugeordneten Bildern für jeden ausgewählten Teil anzusteuern.
  11. Untersuchungsvorrichtung nach Anspruch 10, weiter umfassend: eine Auswerteeinrichtung (12) zum Berechnen einer Gesamtbildinformation auf Basis der aufgenommenen Bilder des Objekts (14; 27; 36).
  12. Untersuchungsvorrichtung nach Anspruch 10 oder 11, wobei die Detektionsoptik (10) eine Mikroskopoptik umfasst.
  13. Verfahren, umfassend: Lenken von Licht einer Lichtquelle (20; 30) zu einem Objekt (14; 27; 36), Auswählen nur eines Teiles des Lichtes der Lichtquelle zur Beleuchtung des Objekts (14; 27; 36), wobei das Auswählen zumindest näherungsweise in einer Ebene einer Beleuchtungspupille erfolgt, Aufnehmen eines Bildes des beleuchteten Objekts (14; 27; 36), Wiederholen des Auswählens und des Aufnehmens des Bildes für eine Vielzahl unterschiedlicher Teile des Lichtes, um eine Vielzahl von Bildern zu erzeugen, und Berechnen einer Gesamtbildinformation aus der Vielzahl von Bildern.
  14. Verfahren nach Anspruch 13, wobei das Verfahren mit einer Untersuchungsvorrichtung nach einem der Ansprüche 10 bis 12 durchgeführt wird.
DE102014101219.4A 2014-01-31 2014-01-31 Beleuchtungseinrichtung zur Fourier-Ptychographie Ceased DE102014101219A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102014101219.4A DE102014101219A1 (de) 2014-01-31 2014-01-31 Beleuchtungseinrichtung zur Fourier-Ptychographie
PCT/EP2015/051924 WO2015114093A2 (de) 2014-01-31 2015-01-30 Beleuchtungseinrichtung insbesondere zur fourier-ptychographie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014101219.4A DE102014101219A1 (de) 2014-01-31 2014-01-31 Beleuchtungseinrichtung zur Fourier-Ptychographie

Publications (1)

Publication Number Publication Date
DE102014101219A1 true DE102014101219A1 (de) 2015-08-06

Family

ID=52434828

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014101219.4A Ceased DE102014101219A1 (de) 2014-01-31 2014-01-31 Beleuchtungseinrichtung zur Fourier-Ptychographie

Country Status (2)

Country Link
DE (1) DE102014101219A1 (de)
WO (1) WO2015114093A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109687A1 (de) 2014-07-10 2016-01-14 Carl Zeiss Ag Positionsbestimmung eines Objekts im Strahlengang einer optischen Vorrichtung
WO2016012391A1 (de) 2014-07-22 2016-01-28 Carl Zeiss Ag Verfahren und vorrichtung zum abbilden eines objekts
DE102014112242A1 (de) 2014-08-26 2016-03-03 Carl Zeiss Ag Phasenkontrast-Bildgebung
DE102014113258A1 (de) 2014-09-15 2016-03-17 Carl Zeiss Ag Verfahren zum Erzeugen eines Ergebnisbilds und optische Vorrichtung
WO2017046793A1 (en) * 2015-09-16 2017-03-23 Technion Research & Development Foundation Limited Pt ycho graph υ system
DE102015122712A1 (de) * 2015-12-23 2017-06-29 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur Bildaufnahme
WO2020201281A1 (de) 2019-04-03 2020-10-08 Carl Zeiss Jena Gmbh Vorrichtungen zum erzeugen von leuchtverteilungen mit lichtwellenleitern

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016108079A1 (de) * 2016-05-02 2017-11-02 Carl Zeiss Microscopy Gmbh Artefaktreduktion bei der winkelselektiven beleuchtung
DE102022130975A1 (de) 2022-11-23 2024-05-23 Carl Zeiss Microscopy Gmbh Lokalisierung von verschmutzungen in mikroskopiesystemen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022743A (en) * 1987-03-27 1991-06-11 The Board Of Trustees Of The Leland Stanford Junior University Scanning confocal optical microscope
US5065008A (en) * 1989-10-18 1991-11-12 Fuji Photo Film Co., Ltd. Scanning microscope and scanning mechanism for the same
ATE220465T1 (de) * 1997-10-29 2002-07-15 Calum E Macaulay Gerät und verfahren zur mikroskopie unter verwendung räumlich modulierten lichtes
JP2000250100A (ja) * 1999-03-01 2000-09-14 Mitsutoyo Corp 光学測定機用照明装置
ATE235704T1 (de) * 2000-04-26 2003-04-15 Cobra Electronic Gmbh Anordnung und verfahren zur ringförmigen beleuchtung, insbesondere zur auflichtbeleuchtung bei mikroskopen
DE20304412U1 (de) * 2003-03-19 2003-06-12 Schott Glas Steuereinheit für Mischlichtbeleuchtungen
DE202009014694U1 (de) * 2009-10-30 2010-02-25 Kratzer, Martin Elektronische Polarisationsumschaltung bei der automatischen Restschmutzanalyse zur Identifizierung von metallischen Partikeln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Artikel von Guoan Zheng, Roarke Horstmeyer and Changhuei Yang "Wide-field, high-resolution Fourier ptychographic Microscopy", Nature Photonics 2013

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109687A1 (de) 2014-07-10 2016-01-14 Carl Zeiss Ag Positionsbestimmung eines Objekts im Strahlengang einer optischen Vorrichtung
WO2016012391A1 (de) 2014-07-22 2016-01-28 Carl Zeiss Ag Verfahren und vorrichtung zum abbilden eines objekts
DE102014112242A1 (de) 2014-08-26 2016-03-03 Carl Zeiss Ag Phasenkontrast-Bildgebung
DE102014113258A1 (de) 2014-09-15 2016-03-17 Carl Zeiss Ag Verfahren zum Erzeugen eines Ergebnisbilds und optische Vorrichtung
WO2017046793A1 (en) * 2015-09-16 2017-03-23 Technion Research & Development Foundation Limited Pt ycho graph υ system
US10394011B2 (en) 2015-09-16 2019-08-27 Technion Research And Development Foundation Ltd. Ptychography system
DE102015122712A1 (de) * 2015-12-23 2017-06-29 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur Bildaufnahme
US10948705B2 (en) 2015-12-23 2021-03-16 Carl Zeiss Microscopy Gmbh Device and method for capturing images
DE102015122712B4 (de) 2015-12-23 2023-05-04 Carl Zeiss Microscopy Gmbh Vorrichtung und Verfahren zur Bildaufnahme
WO2020201281A1 (de) 2019-04-03 2020-10-08 Carl Zeiss Jena Gmbh Vorrichtungen zum erzeugen von leuchtverteilungen mit lichtwellenleitern

Also Published As

Publication number Publication date
WO2015114093A3 (de) 2015-09-24
WO2015114093A2 (de) 2015-08-06

Similar Documents

Publication Publication Date Title
DE102014101219A1 (de) Beleuchtungseinrichtung zur Fourier-Ptychographie
DE102011051042B4 (de) Abtastmikroskop und Verfahren zur lichtmikroskopischen Abbildung eines Objektes
EP3186672A2 (de) Phasenkontrast-bildgebung
DE102006031177A1 (de) Verfahren und Vorrichtung zur Erzeugung eines Bildes einer dünnen Schicht eines Objekts
DE102011077269A1 (de) Hochauflösende Lumineszenzmikroskopie
DE102017220101A1 (de) Prüfsystem unter Verwendung von maschinellem Sehen zum Erhalten eines Bilds mit erweiterter Tiefenschärfe
DE102013022538B3 (de) Verfahren zum Erstellen eines Mikroskopbildes und Mikroskopievorrichtung
EP3304165B1 (de) Anordnung und verfahren zur strahlformung und zur lichtblattmikroskopie
DE102014110302B3 (de) Verfahren und Vorrichtung zum Abbilden eines Objekts
DE112013006111T5 (de) Optische Beobachtungsvorrichtung
DE102004053730B4 (de) Verfahren und Anordnung zur Unterdrückung von Falschlicht
DE102012211462A1 (de) Verfahren zur Vorbereitung und Durchführung der Aufnahme von Bildstapeln einer Probe aus verschiedenen Orientierungswinkeln
DE102012019121A1 (de) Verfahren zur Variation des Scanfeldes eines Laser-Scanning-Mikroskops
DE102015122712A1 (de) Vorrichtung und Verfahren zur Bildaufnahme
DE102017107178B4 (de) Mikroskop mit Vorrichtung zum Erzeugen von reflexkorrigierten Abbildungen sowie Reflexkorrekturverfahren zum Korrigieren von digitalen mikroskopischen Abbildungen
DE102012223128A1 (de) Autofokusverfahren für Mikroskop und Mikroskop mit Autofokuseinrichtung
DE102017100262A1 (de) Verfahren zur Erzeugung eines dreidimensionalen Modells einer Probe in einem digitalen Mikroskop und digitales Mikroskop
DE102013108457A1 (de) Verfahren und Vorrichtung zur Beleuchtung und Messung eines Objektes
DE102006022592B4 (de) Mikroskop mit Beleuchtungseinheit
WO2016055337A1 (de) Mikroskop
DE102006022590B4 (de) Beleuchtungseinheit für ein Mikroskop
DE102014118025B4 (de) Vorrichtung zur Lichtblattmikroskopie
DE102013004963A1 (de) Mikroskop mit strukturierter Beleuchtung
DE102011000213A1 (de) Weißlicht-Interferenzmikroskop
DE112015002930T5 (de) Abbildendes optisches System, Beleuchtungsvorrichtung und Beobachtungsvorrichtung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative

Representative=s name: KRAUS & WEISERT PATENTANWAELTE PARTGMBB, DE

R016 Response to examination communication
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final