DE102014012279B3 - Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, Herstellverfahren für einen und Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer und Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage - Google Patents

Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, Herstellverfahren für einen und Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer und Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage Download PDF

Info

Publication number
DE102014012279B3
DE102014012279B3 DE102014012279.4A DE102014012279A DE102014012279B3 DE 102014012279 B3 DE102014012279 B3 DE 102014012279B3 DE 102014012279 A DE102014012279 A DE 102014012279A DE 102014012279 B3 DE102014012279 B3 DE 102014012279B3
Authority
DE
Germany
Prior art keywords
manifold
heat exchanger
tube
rotation
tube bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102014012279.4A
Other languages
English (en)
Inventor
Brigitte Schlag
Uwe Schwenzow
Ulrich Rolle
Dietrich Zimmermann
Markus Grimm
Matthias Terlinde
Wolfgang Jäckering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA TDS GmbH
Original Assignee
GEA TDS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102014012279.4A priority Critical patent/DE102014012279B3/de
Application filed by GEA TDS GmbH filed Critical GEA TDS GmbH
Priority to EP15762916.3A priority patent/EP3183529B1/de
Priority to AU2015306469A priority patent/AU2015306469B2/en
Priority to PL15762916T priority patent/PL3183529T3/pl
Priority to US15/505,840 priority patent/US20170268825A1/en
Priority to PCT/EP2015/001664 priority patent/WO2016026560A1/de
Priority to MX2017002148A priority patent/MX2017002148A/es
Priority to NZ729403A priority patent/NZ729403A/en
Priority to BR112017003470A priority patent/BR112017003470A2/pt
Application granted granted Critical
Publication of DE102014012279B3 publication Critical patent/DE102014012279B3/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • F16L43/001Bends; Siphons made of metal
    • F16L43/005Return bends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • F16L43/02Bends; Siphons adapted to make use of special securing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/16Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials
    • A23L3/18Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials while they are progressively transported through the apparatus
    • A23L3/22Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating loose unpacked materials while they are progressively transported through the apparatus with transport through tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding

Abstract

Die Erfindung betrifft einen Krümmer (1) mit Kreisquerschnitt mit einem Umlenkwinkel von 180 Grad für einen Rohrbündel-Wärmeaustauscher (100) für große Produktdrücke, mit einem ersten und einem zweiten Flansch (2; 3) an jedem Eintritt (E) und Austritt (A) des Krümmers (1) sowie ein Herstellverfahren für einen und einen Rohrbündel-Wärmeaustauscher (100) mit einem solchen Krümmer (1) sowie die Verwendung eines Rohrbündel-Wärmeaustauschers (100) für große Produktdrücke mit einem solchen Krümmer (1) in einer Zerstäubungstrocknungsanlage. Es ist Aufgabe der vorliegenden Erfindung, einen Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke zu schaffen, der die notwendige Festigkeit und nachhaltige Maßhaltigkeit besitzt und sich dabei im Zuge seiner Herstellung strömungstechnisch optimieren lässt, damit die Krümmerverluste und die Neigung zu Produktablagerungen möglichst gering sind und eine gute Reinigungsfähigkeit im Durchfluss gegeben ist. Dies wird für einen Krümmer (1) unter Anderem dadurch erreicht, • dass der Krümmer (1) aus zwei, jeweils einstückigen Krümmerhälften (1.1, 1.2) besteht, • dass jede Krümmerhälfte (1.1, 1.2) an ihrem dem Flansch (2, 3) abgewandten Ende eine Verbindungsstelle (V) aufweist, • dass die Krümmerhälften (1.1, 1.2) an der zugeordneten Verbindungsstelle (V) stoffschlüssig miteinander verbunden sind, • dass der Verlauf der Durchtrittsquerschnitte jeder Krümmerhälfte (1.1, 1.2) durch rotationssymmetrische Durchtrittsöffnungen gebildet wird, von denen sich wenigstens eine einerseits vom Flansch (2, 3) und wenigstens eine andererseits von der zugeordneten Verbindungsstelle (V) in jeweils koaxialer Anordnung auf Rotationsachsen (X1.1, Y1.1; X1.2, Y1.2) erstrecken, und • dass die erste und die zweite Rotationsachse (X1.1, Y1.1) der Durchtrittsöffnungen der ersten Krümmerhälfte ...

Description

  • TECHNISCHES GEBIET
  • Die Erfindung betrifft einen Krümmer mit Kreisquerschnitt mit einem Umlenkwinkel von 180 Grad für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, mit einem Flansch an jedem Eintritt und Austritt des Krümmers, ein Herstellverfahren für einen solchen Krümmer sowie einen Rohrbündel-Wärmeaustauscher für große Produktdrücke mit einem solchen Krümmer, mit parallel angeordneten, in Reihe geschalteten Rohrbündeln, wobei Innenrohre des Rohrbündels von einem Produkt durchströmt werden, und, in Strömungsrichtung des Produkts gesehen und bezogen auf ein beliebiges Rohrbündel, ein Austritt des Rohrbündels mit einem Eintritt eines benachbarten, nachgeordneten Rohrbündels und ein Eintritt des Rohrbündels mit einem Austritt eines benachbarten, vorgeordneten Rohrbündels wechselseitig jeweils über den Krümmer mit einem Umlenkwinkel von 180 Grad fluiddurchlässig miteinander verbunden sind. Die Erfindung betrifft ferner die Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke in einer Zerstäubungstrocknungsanlage.
  • STAND DER TECHNIK
  • Die Herstellung pulverförmiger Nahrungsmittelprodukte, insbesondere Milchprodukte, wie beispielsweise leicht lösliche Nahrungsmittel für Kleinkinder, erfolgt in vielen Fällen durch Zerstäubungs- oder Sprühtrocknung in einem sog. Trocknerturm. Dort wird ein zuvor auf einen bestimmten Gehalt an Trockensubstanz in einem Verdampfer bzw. einem Eindampfer aufkonzentriertes und anschließend in einem Erhitzer auf eine definierte Temperatur angewärmtes, vornehmlich dünnflüssiges Ausgangsprodukt in einen heißen Luftstrom entweder über Scheiben oder, wie im vorliegenden bevorzugten Fall, über eine Düse, insbesondere eine Einstoffdüse, zerstäubt. Dieser Düse wird das aus dem Erhitzer austretende Ausgangsprodukt mittels einer Hochdruckkolbenpumpe, einer sog. Düsenpumpe, mit einem Druck, der bis ca. 300 bar reichen kann, zugeführt. Ein signifikanter Höhenunterschied zwischen der Düsenpumpe, die im unteren Außenbereich des Trocknerturms angeordnet ist, und der Düse, die sich im sog. Heißraum im Kopfraum des Trocknerturms befindet, wird über eine Steigleitung überbrückt, die planmäßig oder zwangsläufig auch als Heißhaltestrecke fungiert.
  • Um eine möglichst lange und hygienisch einwandfreie Lagerung des pulverförmigen Nahrungsmittelproduktes sicherzustellen, muss das Endprodukt eine gute Löslichkeit aufweisen und möglichst keimfrei sein. Die erforderliche Keimfreiheit besteht durch das Abtöten von Mikroorganismen weitestgehend für das aus dem Erhitzer austretende Ausgangsprodukt, wenn dieser mit einem geeigneten Temperatur- und Haltezeitverlauf geführt und wenn in die Betrachtung die als Heißhaltestrecke fungierende Steigleitung zur Düse einbezogen wird. Für die Herstellung von sog. „low heat pulver” ist eine Temperatur von max. 77°C, von sog. „high heat Pulver” von ca. 85°C und von sog. „ultra high heat pulver” von > 125°C erforderlich.
  • Die zwangsläufige Verweildauer des Ausgangsprodukts in der Steigleitung nach vorheriger Hochdruckbehandlung in Verbindung mit einer heißen Temperatur beeinflusst die Löslichkeit des Endprodukts in unerwünschter Weise. Darüber hinaus führt die lange Heißhaltung in der Steigleitung zu einer Denaturierung des Ausgangsprodukts. Dies bedeutet in der Regel auch Qualitätsminderung des Endprodukts. Eine diesbezügliche Denaturierung kann beispielsweise die Pulverqualität von Babyfood derart beeinflussen, dass dessen vollständige Löslichkeit nicht mehr sichergestellt ist und dadurch eine nicht hinnehmbare Klümpchenbildung auftritt.
  • Eine Verbesserung des mikrobakteriellen Status des Ausgangsprodukts vor dem Eindampfer, beispielsweise durch Entkeimung mittels Mikrofiltration, ist bekannt, sie ist aufwändig, aber verbessert den mikrobakteriellen Status des Endprodukts.
  • Die notwendige Keimfreiheit bis zum Eintritt in die Düse kann auch durch die Düsenpumpe gefährdet werden, da diese das Ausgangsprodukt mit vertretbarem technischem Aufwand nicht unter aseptischen Bedingungen fördern kann. Aseptische Förderbedingungen erfordern einen erheblichen technischen Aufwand, der in der Praxis in der Regel nicht betrieben wird. Über die Kolben der Düsenpumpe können Keime aus der Umgebungsluft in das Ausgangsprodukt eingetragen werden, sodass eine Reinfektion stattfindet. Das pulverförmige Endprodukt kann dann verkeimt sein und die Verkeimung wird unter der Einwirkung der im Endprodukt notorisch verbleibenden Restfeuchte zeitabhängig zunehmen.
  • Eine aseptische Förderung des aus dem Erhitzer austretenden flüssigen Ausgangsprodukts ist nach dem Stand der Technik in der nachfolgenden Düsenpumpe nur mit erhöhtem technischem Aufwand möglich. Zum Erreichen der notwendigen Sterilität des unter hohem Druck aus der Düsenpumpe austretenden flüssigen Ausgangsprodukts könnte eine geeignete thermische Behandlung dieses Ausgangsprodukts auf dem Weg zur Düse in einem Hochdruck-Wärmeaustauscher vorgesehen werden. Dieser Hochdruck-Wärmeaustauscher könnte unmittelbar vor der Düse angeordnet werden, wodurch die bisher notwendige Steigleitung mit ihren vorstehend beschriebenen negativen Auswirkungen entfiele. Diese Anordnung würde auch weiterhin den Betrieb einer nicht aseptisch fördernden Düsenpumpe erlauben.
  • In diesem Zusammenhang wurde bereits vorgeschlagen, den Hochdruck-Wärmeaustauscher als hinreichend druckfestes, gewendeltes Monorohr auszubilden, das zur Beheizung von außen mit Dampf beaufschlagt wird. Dieser Vorschlag ist jedoch nicht zielführend, da kein gleichmäßiger Wärmeeintrag über die Außenseite und über die gesamte Länge des Monorohres und damit keine gleiche Verweilzeit für alle Teilchen des im Monorohr strömenden Ausgangsprodukts sichergestellt ist.
  • Ein Wärmeaustauscher, der die Forderungen nach einem hinreichend gleichmäßigen Wärmeeintrag und nach einer für alle Teilchen des Ausgangsprodukts gleichen Verweilzeit erfüllt, wäre grundsätzlich ein sog. Rohrbündel-Wärmeaustauscher, der prinzipiell an die Stelle des vorgenannten Monorohres treten könnte. Eine derartige Lösung scheitert aber bislang an der Tatsache, dass derartige Rohrbündel-Wärmeaustauscher für Produktdrücke bis 300 bar bislang nicht zur Verfügung stehen.
  • Die grundsätzliche Bauweise eines Rohrbündel-Wärmeaustauschers ist beispielsweise in der DE 94 03 913 U1 beschrieben. Die DE 10 2005 059 463 A1 offenbart ebenfalls einen derartigen Rohrbündel-Wärmeaustauscher und zeigt darüber hinaus auf, wie eine Anzahl von Rohrbündeln in diesem Wärmeaustauscher parallel angeordnet und fluiddurchgängig mittels Verbindungsbogen oder Verbindungsarmaturen in Reihe geschaltet werden können. Eine diesbezügliche Anordnung zeigt 1 dieser Anmeldung (Stand der Technik).
  • Das thermisch zu behandelnde Produkt durchströmt dabei die Innenrohre. Diese selbst und ihre Einbindung in eine beiderseitige sog. Rohrträgerplatte für hohe Produktdrücke im Rahmen der vorstehend kurz umrissenen Anwendung hinreichend druckfest zu dimensionieren stellt den Fachmann auf dem Weg zu einem geeigneten Hochdruck-Rohrbündel-Wärmeaustauscher nicht vor das eigentliche Problem. Eine hinreichende Dimensionierung der Wandstärke der Innenrohre macht das eigentliche Rohrbündel für Drücke auch bis 300 bar oder sogar etwas darüber hinaus beständig.
  • Nicht verfügbar sind aber die vorstehend erwähnten Verbindungsbogen oder Verbindungsarmaturen mit Flanschen gemäß 1 der Anmeldung in für die Nahrungsmittelproduktion geeigneter Edelstahlqualität, die solche Drücke aushalten, die die relativ engen Abstände der zu verbindenden Rohrträgerplatten mit entsprechend großer Krümmung, d. h. mit relativ kleinem Krümmungsradius, überbrücken und dabei den notwendigen, durch die benachbarten Rohrträgerplatten sehr maßgenau determinierten Abstand der Flansche ebenfalls sehr maßhaltig und nachhaltig, vorzugsweise im Zehntelmillimeterbereich, darstellen. Die gängigen Wandstärken handelsüblicher Rohrbogen mit 180 Grad Umlenkung sind allenfalls für Prozessdrücke geeignet, die im unteren zweistelligen Bereich liegen.
  • Im Nachfolgenden wird für den in Rede stehenden Verbindungsbogen oder die Verbindungsarmatur mit einem aus der beschriebenen Anwendung resultierenden Umlenkwinkel von 180 Grad durchgängig der in der Strömungsmechanik gebräuchliche Begriff „Krümmer” verwendet.
  • Die Fachwelt sucht seit langem nach einer Lösung, wie die Vorteile genutzt werden können, die sich aus einer Anordnung eines geeigneten Hochdruck-Wärmeaustauschers, der unmittelbar vor oder in kurzem Abstand von der Düse im Trocknerturm angeordnet ist, ergeben würden. Die Vorteile sind signifikant und stellen sich, wie folgt, dar:
    • • Durch diesbezügliche Anordnung eines Hochdruck-Rohrbündel-Wärmeaustauschers kann bei gleicher Pulverqualität die Austrittstemperatur am Erhitzer und dementsprechend auch an der Düse um 1 bis 4°C erhöht werden.
    • • Es besteht die Aussicht, den hier vorgestellten Hochdruck-Rohrbündel-Wärmeaustauscher auch für eine UHT-Behandlung des Ausgangsprodukts bis in den aseptischen Bereich zu erweitern mit dem Ziel der Herstellung von sogenanntem „ultra high heat pulver”.
    • • Eine Erhöhung der Temperatur des an der Düse austretenden Ausgangsprodukts um 1°C hat eine Effizienzsteigerung, d. h. eine Steigerung der Mengenleistung des Trocknerturms von 2,5 bis 3% zur Folge ( (2,5–3)% / 1°C).
  • Es ist Aufgabe der vorliegenden Erfindung, einen Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke zu schaffen, der die notwendige Festigkeit und nachhaltige Maßhaltigkeit besitzt und sich dabei im Zuge seiner Herstellung strömungstechnisch optimieren lässt, damit die Krümmerverluste und die Neigung zu Produktablagerungen möglichst gering sind und eine gute Reinigungsfähigkeit im Durchfluss gegeben ist. Darüber hinaus ist es Aufgabe der Erfindung, ein Herstellverfahren für einen solchen Krümmer, einen Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer sowie eine Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage anzugeben.
  • ZUSAMMENFASSUNG DER ERFINDUNG
  • Diese Aufgabe wird durch einen Krümmer mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausführungsformen des Krümmers sind Gegenstand der Unteransprüche. Der erfindungsgemäße Krümmer findet vorteilhaft Anwendung in einem Rohrbündel-Wärmeaustauscher für große Produktdrücke nach Anspruch 18. Ein Herstellverfahren für den erfindungsgemäßen Krümmer wird mit den Merkmalen des Nebenanspruchs 13 angegeben. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Herstellverfahrens sind Gegenstand der zugeordneten Unteransprüche. Die Verwendung eines erfindungsgemäßen Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage ist Gegenstand des Anspruchs 19.
  • Ein erfindungsgemäßer Krümmer mit einem Umlenkwinkel von 180 Grad ist im gesamten Verlauf seiner Durchtrittsquerschnitte jeweils in an sich bekannter Weise in Form von Kreisquerschnitten ausgebildet, und er weist jeweils endseitig, ebenfalls in an sich bekannter Weise, einen Flansch auf. Diese Flansche werden, ebenfalls in an sich bekannter Weise, mit dem zugeordneten Rohrbündel verschraubt. Hierzu besitzen die Flansche auf einem Lochkreis verteilt angeordnete Durchgangsbohrungen für den Bolzen des jeweils verwendeten Schrauben-Verbindungsmittels. Bei letzterem kann es sich um eine Durchgangsschraube, um eine Stiftschraube oder um eine Kopfschraube handeln, wobei die jeweiligen Schraubverbindungen insgesamt so ausgestaltet sind, dass sie den in dem Hochdruck-Rohrbündel-Wärmeaustauscher auftretenden hohen Kräften mit Sicherheit gerecht werden.
  • Die Erfindung geht aus von einem Rohrbündel-Wärmeaustauscher, wie er in der DE 10 2005 059 463 A1 offenbart ist, wobei die Innenrohre hinsichtlich ihrer Wandstärke und die Einbindung der Innenrohre in die jeweilige endseitige Rohrträgerplatte so dimensioniert sind, dass die Gesamtkonstruktion Drücken bis 300 bar oder auch etwas darüber hinaus standhält. Die einzelnen Rohrbündel werden in der vorstehend beschriebenen Weise mittels der erfindungsgemäßen Krümmer miteinander verbunden.
  • Der erfinderische Grundgedanke besteht darin, dass der Krümmer aus zwei, jeweils einstückigen Krümmerhälften besteht, dass jede Krümmerhälfte an ihrem dem Flansch abgewandten Ende eine Verbindungsstelle aufweist und dass die Krümmerhälften an der zugeordneten Verbindungsstelle stoffschlüssig miteinander verbunden sind. Zur Herstellung der stoffschlüssigen Verbindung kommen vorzugsweise Schweißverfahren mit und ohne Zusatzmaterial, Reib- oder Pressschweißverfahren zur Anwendung. Die Krümmerhälften werden zweckmäßig aus Rundmaterial und aus dem Vollen durch Zerspanung hergestellt. Verfügbare und hinlänglich bekannte Zerspanungsverfahren sind Bohren, Drehen und Fräsen, die auf sogenannten mehrachsigen Bearbeitungszentren nacheinander oder auch parallel durchführt werden können. Diese Zerspanungsverfahren erlauben es, den Verlauf der Durchtrittsquerschnitte jeder Krümmerhälfte durch rotationssymmetrische Durchtrittsöffnungen herzustellen. Dabei erstreckt sich wenigstens eine einerseits vom Flansch und wenigstens eine andererseits von der zugeordneten Verbindungsstelle in jeweils koaxialer Anordnung auf Rotationsachsen. Die erste und die zweite Rotationsachse der Durchtrittsöffnungen der ersten Krümmerhälfte und die dritte und die vierte Rotationsachse der Durchtrittsöffnungen der zweiten Krümmerhälfte verlaufen in einer gemeinsamen Ebene, die für jeden Flansch eine Meridianebene darstellt. Dabei schneiden sich die erste und die zweite Rotationsachse in einem ersten Schnittpunkt und die dritte und die vierte Rotationsachse in einem zweiten Schnittpunkt. Dem ersten Schnittpunkt ist auf der ersten Rotationsachse eine durchdringende erste und auf der zweiten Rotationsachse eine durchdringende zweite Durchtrittsöffnung zugeordnet, die einander jeweils nur einseitig und nicht jeweils vollständig durchdringen. In gleicher Weise ist dem zweiten Schnittpunkt auf der dritten Rotationsachse eine durchringende dritte und auf der vierten Rotationsachse eine durchdringende vierte Durchtrittsöffnung zugeordnet, die ebenfalls einander jeweils nur einseitig durchdringen.
  • Um die Strömungsverluste im Krümmer zu minimieren und unstetige Querschnittsübergänge zu vermeiden, an denen sich Produkt ablagern und ansetzen kann, was die Reinigung im Durchfluss erschwert, sieht ein Vorschlag vor, dass an den einander durchdringenden Durchtrittsöffnungen im radial außenseitigen Verlauf des zugeordneten Durchtrittsquerschnitts der jeweiligen Krümmerhälfte eine Ausrundung mit einem äußeren Krümmungsradius und im radial innenseitigen Verlauf des zugeordneten Durchtrittsquerschnitts eine Abrundung mit einem inneren Krümmungsradius vorgesehen ist. Die Abmessungsverhältnisse werden dabei zweckmäßig so gewählt, dass zumindest die Ausrundung maschinell herstellbar ist. Die Krümmerverluste an der inneren Krümmung werden bekanntlich stark. vermindert, wenn die Ablösungen hier verringert werden. Dies erreicht man beim erfindungsgemäßen Krümmer durch einen möglichst großen inneren Krümmungsradius.
  • Wenn die einander durchdringenden Durchtrittsöffnungen jeweils kegelstumpfförmig ausgebildet sind und ihre jeweilige Verjüngung zum jeweils zugeordneten Schnittpunkt hin orientiert ist, wie dies ein anderer Vorschlag vorsieht, dann erreicht man durch den sich verjüngenden Durchtrittsquerschnitt eine Beschleunigung der Hauptströmung, damit eine Verringerung der Ablösungen an der inneren Krümmung und im Endergebnis eine Verminderung der Krümmerverluste.
  • Es ist aus der Strömungslehre bekannt, dass bei Krümmern mit gleichem Ein- und Austrittsquerschnitt eine gewisse Querschnittserweiterung im Scheitel von Nutzen ist, die zu geringeren Krümmerverlusten führt. Diesen Sachverhalt nutzt der erfindungsgemäße Krümmer dadurch, dass ein Scheitelquerschnitt der Krümmerhälfte gegenüber den dem Scheitelquerschnitt beiderseits benachbarten Durchtrittsquerschnitten erweitert ist. Diese Erweiterung und auch die Bedingung gleichen Ein- und Austrittsquerschnitts sind bei dem erfindungsgemäßen Krümmer einfach ausführbar, weil die Durchtrittsöffnungen durch die spanenden Formgebungsverfahren ohne Schwierigkeit an den gewünschten Querschnittsverlauf anpassbar sind. Damit ist es möglich, den erfindungsgemäßen Krümmer gegenüber dem sog. Standardrohrbogen bzw. dem „normalen” Krümmer strömungstechnisch zu optimieren.
  • Der Verlauf der Durchtrittsquerschnitte der jeweiligen Krümmerhälfte wird zweckmäßig durch mehr als eine rotationssymmetrische Durchtrittsöffnung, ausgehend einerseits vom Flansch und andererseits von der Verbindungsstelle, ausgebildet. In diesem Falle ist vorgesehen, dass die rotationssymmetrischen Durchtrittsöffnungen an ihrer jeweiligen Übergangsstelle zu einer benachbarten Durchtrittsöffnung durchmessergleich aneinandergereiht sind. Diese Ausführungsform weist zwar keine sprunghaften Übergänge mehr auf, sie ist jedoch strömungstechnisch mit Blick auf die Verringerung der Krümmerverluste noch weiter optimierbar, wenn die Übergangsstellen, wie dies ebenfalls vorgeschlagen wird, stetig gekrümmt ausgeführt sind.
  • Die zerspanende Herstellung der Durchtrittsquerschnitte der jeweiligen Krümmerhälfte vereinfacht sich signifikant, wenn die Rotationsachsen jeweils geradlinig verlaufen.
  • Im Endergebnis soll der erfindungsgemäße Krümmer einen Umlenkwinkel von 180 Grad aufweisen. Dieses Ziel wird grundsätzlich immer erreicht, unabhängig davon, ob die beiden Krümmerschenkel der jeweiligen Krümmerhälfte einen spitzen, einen stumpfen oder einen rechten Winkel bilden. Die strömungsgünstigste und dabei gleichzeitig am einfachsten ausführbare Form des Krümmers ergibt sich, wenn, wie dies eine vorteilhafte Ausführungsform vorsieht, sich die erste und die zweite Rotationsachse und die dritte und die vierte Rotationsachse jeweils unter einem rechten Winkel, d. h. einem Winkel von 90 Grad schneiden. Eine weitere signifikante Vereinfachung der Herstellung liegt nach einem anderen Vorschlag vor, wenn die Krümmerhälften kongruent ausgebildet sind und somit die Teilevielfalt zur Herstellung des Krümmers auf eine einzige Ausführungsform einer Krümmerhälfte reduziert ist.
  • Die stoffschlüssige Verbindung der Verbindungsstellen ist vorzugsweise eine Schweißverbindung, die wiederum vorzugsweise mehrlagig orbital ausgeführt ist.
  • Um eine nachhaltige Maßhaltigkeit des sehr genau einzuhaltenden Abstandes der Flansche des gefügten Krümmers sicherzustellen, weil Abweichungen von diesem Abstand nicht von den ebenfalls sehr maßhaltig beabstandeten, über den Krümmer zu verbindenden beiden Rohrbündeln kompensiert oder korrigiert werden können, ohne dass Undichtheiten an den gedichteten Verbindungsstellen auftreten, sieht eine vorteilhafte Ausführungsform vor, dass am Flansch jeweils eine Anschlagfläche vorgesehen ist, die in einer zu einer Stirnfläche der Verbindungsstelle parallelen Ebene orientiert ist und die um ein Schrumpfmaß gegenüber der Stirnfläche zurücksteht. Dieses Schrumpfmaß ist so bemessen, dass nach Herstellung und Abkühlung der Verbindung der beiden Krümmerhälften zum vollständigen Krümmer die beiden Anschlagflächen aneinander anliegen und somit eine unverrückbare und undeformierbare Beabstandung der beiden Flansche für deren maßliche Endbearbeitung gegeben ist.
  • Ein erfindungsgemäßes Herstellverfahren für einen Krümmer mit den vorstehend beschriebenen Merkmalen sieht vor, dass in einem ersten Herstellungsschritt die jeweilige Krümmerhälfte aus Rundmaterial und aus dem Vollen durch spanende Bearbeitung hergestellt wird, wobei eine aus rotationssymmetrischen Durchtrittsöffnungen bestehende Innenkontur und eine erste Außenkontur, die nicht mit dem Rohrbündel-Wärmeaustauscher bzw. seinen Rohrbündeln unmittelbar adaptiert ist, eine jeweilige Endkontur erhalten und eine mit dem Rohrbündel-Wärmeaustauscher bzw. seinen Rohrbündeln unmittelbar adaptierte zweite Außenkontur vorbearbeitet wird. In einem zweiten Herstellungsschritt werden alsdann die beiden Krümmerhälften zu dem Krümmer stoffschlüssig verbunden. Die stoffschlüssige Verbindung wird vorzugsweise durch ein manuelles oder maschinelles orbitales Schweißverfahren hergestellt, das ein- oder mehrlagig durchgeführt werden kann. Bei dem Schweißverfahren kann es sich auch um eine Reib- oder Pressschweißung handeln. In einem dritten Herstellungsschritt erhält die mit dem Rohrbündel-Wärmeaustauscher bzw. seinen Rohrbündeln adaptierte zweite Außenkontur jeweils eine Endkontur durch spanende Bearbeitung.
  • Es ist mit Blick auf eine nachhaltige Maßhaltigkeit des fertiggestellten Krümmers von Vorteil, wenn nach Abschluss des Schweißverfahrens oder im Zuge des mehrlagigen Schweißverfahrens wenigstens ein Spannungsfreiglühen durchgeführt wird.
  • Um eine unverrückbare und undeformierbare Beabstandung der beiden Flansche für deren maßliche Endbearbeitung sicherzustellen, sieht eine vorteilhafte Ausgestaltung des erfindungsgemäßen Herstellverfahrens vor, dass eine am Flansch jeweils vorgesehene Anschlagfläche über ein Schrumpfmaß derart positioniert ist, dass nach Fertigstellung der stoffschlüssigen Verbindung eine Anlage der Anschlagflächen aneinander infolge einer Kontraktion, die durch Abkühlung der im Zuge des Stoffschlusses erwärmten Bereiche des Krümmers bedingt ist, eine Fertigstellung der zweiten Außenkontur mit der maßgetreuen Endkontur sicherstellt.
  • Ein erfindungsgemäßer Rohrbündel-Wärmeaustauscher für große Produktdrücke besitzt in an sich bekannter Weise parallel angeordnete, in Reihe geschaltete Rohrbündel, wobei Innenrohre des Rohrbündels von einem Produkt durchströmt werden, und, in Strömungsrichtung des Produkts gesehen und bezogen auf ein beliebiges Rohrbündel, ein Austritt des Rohrbündels mit einem Eintritt eines benachbarten, nachgeordneten Rohrbündels und ein Eintritt des Rohrbündels mit einem Austritt eines benachbarten, vorgeordneten Rohrbündels wechselseitig jeweils über einen Krümmer mit einem Umlenkwinkel von 180 Grad fluiddurchlässig miteinander verbunden sind. Erfindungsgemäß ist vorgesehen, dass dabei jeweils ein Krümmer Verwendung findet, der die vorstehend beschriebenen erfindungsgemäßen Merkmale aufweist.
  • Eine erfindungsgemäße Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem Krümmer nach der Erfindung in einer Zerstäubungstrocknungsanlage sieht vor, dass der Rohrbündel-Wärmeaustauscher unmittelbar vor oder in kurzem Abstand von der Düse im Trocknerturm angeordnet ist.
  • Dadurch ergeben sich signifikante Vorteile, die sich, wie folgt, darstellen:
    • • Durch diesbezügliche Anordnung eines Hochdruck-Rohrbündel-Wärmeaustauschers kann bei gleicher Pulverqualität die Austrittstemperatur am Erhitzer und dementsprechend auch an der Düse um 1 bis 4°C erhöht werden.
    • • Eine Erhöhung der Temperatur des an der Düse austretenden Ausgangsprodukts um 1°C hat eine Effizienzsteigerung, d. h. eine Steigerung der Mengenleistung des Trocknerturms von 2,5 bis 3% zur Folge ( (2,5–3)% / 1°C).
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Einen Stand der Technik bildet
  • 1 ab, die einen Mittelschnitt durch ein sog. Rohrbündel als modularer Teil eines ggf. aus einer Vielzahl solcher Rohrbündel bestehenden Rohrbündel-Wärmeaustauschers zeigt, wobei auf jeder Seite ein hinlänglich bekannter handelsüblicher Krümmer in Form eines kreisförmigen Verbindungsbogens angeordnet ist und wobei eine erfindungsgemäße Ausgestaltung eines Krümmers in der dargestellten Funktion, aber für große Produktdrücke, und ein erfindungsgemäßes Herstellverfahren für diesen Krümmer Gegenstand der vorliegenden Erfindung sind.
  • Eine eingehendere Darstellung der Erfindung ergibt sich aus der folgenden Beschreibung und den beigefügten Figuren der Zeichnung sowie aus den Ansprüchen. Während die Erfindung in den verschiedensten Ausführungsformen realisiert ist, wird in der Zeichnung ein bevorzugtes Ausführungsbeispiel des Krümmers für große Produktdrücke nach der Erfindung dargestellt und nachfolgend hinsichtlich seiner Ausgestaltung, seines Herstellverfahrens und seiner Verwendung in einem Hochdruck-Rohrbündel-Wärmeaustauscher beschrieben. Es zeigen
  • 2 im Meridianschnitt gemäß einem in 4 mit C-D gekennzeichneten Schnittverlauf eine bevorzugte Ausführungsform einer Krümmerhälfte des Krümmers nach der Erfindung;
  • 3 in perspektivischer Darstellung die im Meridianschnitt aufgetrennte Krümmerhälfte gemäß 2;
  • 4 in perspektivischer Darstellung eine Ansicht der Krümmerhälfte gemäß 2;
  • 5 im Meridianschnitt den Krümmer nach der Erfindung, gefügt mit zwei Krümmerhälften gemäß 2;
  • 6 im Meridianschnitt und im Ausschnitt die Innenkontur der Krümmerhälfte gemäß 2 im Umlenkungsbereich und
  • 7 in perspektivischer Darstellung die im Meridianschnitt aufgetrennte Krümmerhälfte gemäß 2 im Umlenkungsbereich zwecks Darstellung der Durchdringung im Bereich der inneren Krümmung.
  • DETAILLIERTE BESCHREIBUNG
  • Ein in der Regel aus einer Vielzahl von Rohrbündeln 100.1 bis 100.n (allgemeiner Fall: 100.1, 100.2, ..., 100.i – 1, 100.i, 100.i + 1, ..., 100.n – 1, 100.n) zusammengesetzter Rohrbündel-Wärmeaustauscher 100 nach dem Stand der Technik, wobei mit 100.i ein beliebiges Rohrbündel bezeichnet wird (1; siehe auch DE 94 03 913 U1 ), besteht in seinem mittleren Teil aus einem einen Außenkanal 200* begrenzenden Außenmantel 200 mit einem, bezogen auf die Darstellungslage, linksseitig angeordneten festlagerseitigen Außenmantelflansch 200a und einem rechtsseitig angeordneten loslagerseitigen Außenmantelflansch 200b. An dem letzteren schließt sich ein von einem ersten Gehäuse 400.1 begrenzter erster Querkanal 400a* mit einem ersten Anschlussstutzen 400a und an den festlagerseitigen Außenmantelflansch 200a schließt sich ein von einem zweiten Gehäuse 400.2 begrenzter zweiter Querkanal 400b* mit einem zweiten Anschlussstutzen 400b an. Eine Anzahl von sich achsparallel zum Außenmantel 200 durch den Außenkanal 200* erstreckenden, gemeinsam einen Innenkanal 300* bildenden Innenrohre 300 mit jeweils einem Rohrinnendurchmesser Di, beispielsweise beginnend mit vier und danach auch bis neunzehn ansteigend und ggf. auch mehr an der Zahl, sind endseitig jeweils in einer festlagerseitigen Rohrträgerplatte 700 bzw. einer loslagerseitigen Rohrträgerplatte 800 (beide auch als Rohrspiegelplatte bezeichnet) abgestützt und an ihrem Rohraußendurchmesser in dieser verschweißt, wobei diese Gesamtanordnung über eine nicht näher bezeichnete Öffnung am zweiten Gehäuse 400.2 in den Außenmantel 200 eingeführt und über einen festlagerseitigen Austauscherflansch 500 mit dem zweiten Gehäuse 400.2 unter Zwischenschaltung von jeweils einer Dichtung 900, vorzugsweise einer Flachdichtung, zusammengespannt ist (Festlager 500, 700, 400.2).
  • Die beiden Gehäuse 400.1, 400.2 sind gegenüber dem jeweils benachbarten Außenmantelflansch 200b, 200a ebenfalls mit einer Dichtung 900 abgedichtet, wobei das rechtsseitig angeordnete erste Gehäuse 400.1 in Verbindung mit dem Außenmantel 200 über einen loslagerseitigen Austauscherflansch 600 unter Zwischenschaltung vorzugsweise eines O-Ringes 910 gegen das linksseitig angeordnete Festlager 500, 700, 400.2 gepresst wird. Die loslagerseitige Rohrträgerplatte 800 greift durch eine nicht näher bezeichnete Bohrung im loslagerseitigen Austauscherflansch 600 hindurch und findet gegenüber letzterem ihre Abdichtung mittels des dynamisch beanspruchten O-Ringes 910, der darüber hinaus das erste Gehäuse 400.1 statisch gegen den loslagerseitigen Austauscherflansch 600 abdichtet. Letzterer und die loslagerseitige Rohrträgerplatte 800 bilden ein sog. Loslager 600, 800, welches die Längenänderungen der in der loslagerseitigen Rohrträgerplatte 800 eingeschweißten Innenrohre 300 infolge Temperaturänderung in beiden axialen Richtungen zulässt.
  • Abhängig von der Anordnung des jeweiligen Rohrbündels 100.1 bis 100.n im Rohrbündel-Wärmeaustauscher 100 und seiner jeweiligen Beschaltung können die Innenrohre 300, bezogen auf die Darstellungslage, entweder von links nach rechts oder umgekehrt von einem Produkt P durchströmt werden, wobei die mittlere Strömungsgeschwindigkeit im Innenrohr 300 und damit im Innenkanal 200* mit v gekennzeichnet ist. Die querschnittsmäßige Auslegung erfolgt in der Regel derart, dass diese mittlere Strömungsgeschwindigkeit v auch in einem Verbindungsbogen 1000 vorliegt, der einerseits mit dem festlagerseitigen Austauscherflansch 500 und andererseits mittelbar mit einem mit der loslagerseitigen Rohrträgerplatte 800 fest verbundenen loslagerseitigen Anschlussstutzen 800d verbunden ist. Mit den beiden in der 1 nur jeweils zur Hälfte dargestellten Verbindungsbogen 1000 (sog. 180 Grad-Rohrbogen) wird ein in Rede stehendes Rohrbündel 100.i mit einem jeweils benachbarten Rohrbündel 100.i – 1 bzw. 100.i + 1 in Reihe geschaltet. Daher bildet einmal der festlagerseitige Austauscherflansch 500 einen Eintritt E für das Produkt P und der loslagerseitige Anschlussstutzen 800d beherbergt einen dazugehörenden Austritt A; beim jeweils benachbarten Rohrbündel 100.i – 1 bzw. 100.i + 1 kehren sich diese Ein- und Austrittsverhältnisse jeweils entsprechend um.
  • Der festlagerseitige Austauscherflansch 500 weist eine erste Anschlussöffnung 500a auf, die einem Nenndurchmesser DN und damit einem entsprechenden Nenndurchtrittsquerschnitt des dort angeschlossenen Verbindungsbogens 1000 entspricht und die in der Regel so bemessen ist, dass dort die der mittleren Strömungsgeschwindigkeit v im Innenrohr 300 bzw. Innenkanal 300* entsprechende Strömungsgeschwindigkeit vorliegt. In gleicher Weise ist auch eine zweite Anschlussöffnung 800a in dem loslagerseitigen Anschlussstutzen 800d bemessen, wobei sich die jeweilige Anschlussöffnung 500a bzw. 800a auf einen jeweils erweiterten ersten 500c bzw. erweiterten zweiten Durchtrittsquerschnitt 800c im Bereich zur benachbarten Rohrträgerplatte 700 bzw. 800 durch einen konischen ersten 500b bzw. konischen zweiten Übergang 800b erweitert.
  • In Abhängigkeit von der Richtung der Strömungsgeschwindigkeit v im Innenrohr 300 bzw. Innenkanal 300* strömt das zu behandelnde Produkt P entweder über die erste Anschlussöffnung 500a oder die zweite Anschlussöffnung 800a dem Rohrbündel 100.1 bis 100.n zu, sodass entweder die festlagerseitige Rohrträgerplatte 700 oder die loslagerseitige Rohrträgerplatte 800 angeströmt wird. Da in jedem Falle ein Wärmeaustausch zwischen Produkt P in den Innenrohren 300 bzw. den Innenkanälen 300* und einem Wärmeträgermedium W im Außenmantel 200 bzw. in dem Außenkanal 200* im Gegenstrom zu erfolgen hat, strömt dieses Wärmeträgermedium W entweder dem ersten Anschlussstutzen 400a oder aber dem zweiten Anschlussstutzen 400b mit einer im Außenmantel 200 vorliegenden Strömungsgeschwindigkeit c zu.
  • Ein fertiggestellter Krümmer 1 (5) besteht aus zwei, jeweils einstückigen, vorzugsweise kongruenten Krümmerhälften 1.1, 1.2 (2 bis 7) mit einem zugeordneten Flansch 2 bzw. 3, wobei jede Krümmerhälfte 1.1, 1.2 an ihrem dem Flansch 2, 3 abgewandten Ende eine Verbindungsstelle V aufweist. An der Verbindungsstelle V sind die Krümmerhälften 1.1, 1.2 stoffschlüssig miteinander verbunden. Die stoffschlüssige Verbindung ist vorzugsweise eine Schweißnaht 4, die vorzugsweise mehrlagig orbital ausgeführt ist. Jeder Flansch 2, 3 kann entweder einen Eintritt E oder einen Austritt A für ein Produkt P aufnehmen, wobei die jeweilige diesbezügliche Zuordnung von der Durchströmungsrichtung des Produkts P bestimmt ist (5).
  • Der Verlauf der Durchtrittsquerschnitte jeder Krümmerhälfte 1.1, 1.2 wird durch rotationssymmetrische Durchtrittsöffnungen gebildet, von denen sich wenigstens eine einerseits vom Flansch 2, 3 und wenigstens eine andererseits von der zugeordneten Verbindungsstelle V in jeweils koaxialer Anordnung auf Rotationsachsen X1.1, Y1.1; X1.2, Y1.2 erstrecken (2 bis 7). Im Ausführungsbeispiel sind von diesen Durchtrittsöffnungen nur eine durchdringende erste Durchtrittsöffnung 5 und eine durchdringende zweite Durchtrittsöffnung 6 in der ersten Krümmerhälfte 1.1 und eine durchdringende dritte Durchtrittsöffnung 7 und eine durchdringende vierte Durchtrittsöffnung 8 in der zweiten Krümmerhälfte 1.2 bezeichnet.
  • Die erste und die zweite Rotationsachse X1.1, Y1.1 der Durchtrittsöffnungen der ersten Krümmerhälfte 1.1 und die dritte und die vierte Rotationsachse X1.2, Y1.2 der Durchtrittsöffnungen der zweiten Krümmerhälfte 1.2 verlaufen in einer gemeinsamen Ebene, die für jeden Flansch 2, 3 eine Meridianebene M darstellt, und sie verlaufen vorzugsweise geradlinig. Dabei schneiden sich die erste und die zweite Rotationsachse X1.1, Y1.2 in einem ersten Schnittpunkt P1 und die dritte und die vierte Rotationsachse X1.2, Y1.2 in einem zweiten Schnittpunkt P2, vorzugsweise jeweils unter einem rechten Winkel, d. h. einem Winkel von 90 Grad.
  • Dem ersten Schnittpunkt P1 ist auf der ersten Rotationsachse X1.1 die durchdringende erste Durchtrittsöffnung 5 und auf der zweiten Rotationsachse Y1.1 die durchdringende zweite Durchtrittsöffnung 6 zugeordnet, die einander jeweils einseitig durchdringen. In gleicher Weise ist dem zweiten Schnittpunkt P2 auf der dritten Rotationsachse X1.2 die durchdringende dritte 7 und auf der vierten Rotationsachse Y1.2 die durchdringende vierte Durchtrittsöffnung 8 zugeordnet, die ebenfalls einander jeweils einseitig durchdringen. Die jeweils einander einseitig durchdringenden ersten bis vierten Durchtrittsöffnungen 5, 6 und 7, 8 sind vorzugsweise jeweils kegelstumpfförmig ausgebildet und ihre jeweilige Verjüngung ist zum jeweils zugeordneten Schnittpunkt P1, P2 hin orientiert.
  • An den einander durchdringenden ersten bis vierten Durchtrittsöffnungen 5, 6 und 7, 8 ist im radial außenseitigen Verlauf des zugeordneten Durchtrittsquerschnitts der jeweiligen Trümmerhälfte 1.1, 1.2 eine erste Ausrundung 16 bzw. eine zweite Ausrundung 18 mit einem äußeren Krümmungsradius R und im radial innenseitigen Verlauf des zugeordneten Durchtrittsquerschnitts eine erste Abrundung 17 bzw. eine zweite Abrundung 19 mit einem inneren Krümmungsradius r vorgesehen.
  • Die rotationssymmetrischen Durchtrittsöffnungen der jeweiligen Krümmerhälften 1.1 und 1.2 sind an ihrer jeweiligen Übergangsstelle zu einer benachbarten Durchtrittsöffnung zur Vermeidung von sprunghaften, verlustbehafteten Querschnittsübergängen durchmessergleich aneinandergereiht, wobei es weiterhin von Vorteil ist, diese Übergangsstellen stetig gekrümmt auszuführen, wie dies im Bereich der Flansche 2, 3 an einer Stelle beispielhaft vorgesehen ist.
  • Die erste und die zweite Krümmerhälfte 1.1, 1.2 setzen sich vorzugsweise aus folgenden geometrischen Grundkörpern zusammen, und zwar in der nachfolgend genannten Reihenfolge (siehe insbesondere 4 in Verbindung mit 5):
    dem kreiszylindrischen ersten Flansch 2 bzw. kreiszylindrischen zweiten Flansch 3, einem zylindrischen ersten Abschnitt 9 bzw. zylindrischen vierten Abschnitt 13, einem prismatischen zweiten Abschnitt 10 bzw. prismatischen fünften Abschnitt 14 und einem zylindrischen dritten Abschnitt 11 bzw. einem zylindrischen sechsten Abschnitt 15.
  • Am ersten Flansch 2 und am zweiten Flansch 3 ist jeweils eine Anschlagfläche 12 vorgesehen (siehe insbesondere 2 in Verbindung mit den 4 und 5), die in einer zu einer Stirnfläche B der Verbindungsstelle V parallelen Ebene orientiert ist und die um ein Schrumpfmaß a gegenüber der Stirnfläche B zurücksteht. Vor der Herstellung der Schweißnaht 4 und in der justierten Endlage der Krümmerhälften 1.1, 1.2 sind die Anschlagflächen 12 um das zweifache Schrumpfmaß a voneinander entfernt (5). Dieses zweifache Schrumpfmaß 2a ist so bemessen, dass nach Abkühlung der hergestellten Schweißnaht 4 die beiden Anschlagflächen 12 aneinander anliegen und somit eine unverrückbare und undeformierbare Beabstandung der beiden Flansche 2, 3 für deren maßliche Endbearbeitung gegeben ist.
  • 6 zeigt Einzelheiten einer Innenkontur i der Krümmerhälfte 1.1, 1.2 im jeweiligen Umlenkungsbereich der Krümmerhälfte 1.1, 1.2. Ein „normaler” Krümmer bzw. ein sog. Standardrohrbogen mit 180-Grad Umlenkung mit gleichem Ein- und Austrittsquerschnitt, der jeweils durch einen Durchmesser ∅d gekennzeichnet ist, besitzt einen äußeren Radius R2 (Ausrundung) und einen inneren Radius R1 (Abrundung), wobei sich beide durch den Durchmesser ∅d unterscheiden (Geometriebedingung R2 = R1 + ∅d). Im Unterschied zu diesem „normalen” Krümmer weist die erste Krümmerhälfte 1.1 nach der Erfindung die jeweils kegelstumpfförmig ausgebildete durchdringende erste und durchdringende zweite Durchtrittsöffnung 5, 6 auf, die einander einseitig durchdringen. In gleicher Weise gestalten sich die Geometrieverhältnisse in der zweiten Krümmerhälfte 1.2 nach der Erfindung mit den einander einseitig durchdringenden dritten und vierten Durchtrittsöffnungen 7, 8. Es ist ersichtlich, dass durch die jeweilige kegelstumpfförmige Ausgestaltung der Durchdringungsöffnungen 5 bis 8 eine jeweilige Querschnittsverjüngung zu einem jeweiligen Scheitelquerschnitt S der Krümmerhälfte 1.1, 1.2 gegeben ist, deren strömungstechnische Konsequenz bekannt ist und vorstehend bereits thematisiert wurde. Um die Bedingung gleichen Durchtrittsquerschnitts im Durchdringungsbereich der durchdringenden ersten mit der durchdringenden zweiten Durchtrittsöffnung 5, 6 bzw. der durchringenden dritten mit der durchdringenden vierten Durchtrittsöffnung 7, 8, das heißt im gesamten Scheitelbereich der jeweiligen Krümmerhälfte 1.1, 1.2, zu realisieren, wären diese im jeweiligen radial außenseitigen Verlauf des zugeordneten Durchtrittsquerschnitts mit einem Radius konstanten Durchtrittsquerschnitts R3 auszurunden und im radial innenseitigen Verlauf mit dem inneren Krümmungsradius r abzurunden.
  • Die erfindungsgemäße Ausgestaltung der Innenkontur i im Umlenkungsbereich sieht demgegenüber vor, dass der Scheitelquerschnitt S der Krümmerhälfte 1.1, 1.2 gegenüber den dem Scheitelquerschnitt S beiderseits benachbarten Durchtrittsquerschnitten erweitert ist, was durch die Darstellung in 6 verdeutlicht ist. Die kegelförmigen einander durchdringenden ersten bis vierten Durchtrittsöffnungen 5, 6 und 7, 8 werden jeweils mit dem äußeren Krümmungsradius R (R < R3), der jeweils im Schnittpunkt P1 bzw. P2 angreift, ausgerundet, was ersichtlich zu einer Erweiterung des Scheitelquerschnitts S führt, weil die erste bzw. zweite Ausrundung 16, 18 gegenüber einer durch den Radius konstanten Durchtrittsquerschnitts R3 bestimmten Innenkontur radial weiter nach außen ausgreift.
  • 7 stellt in perspektivischer Darstellung den Durchdringungsbereich der durchdringenden ersten mit der durchdringenden zweiten Durchtrittsöffnung 5, 6 bzw. der durchdringenden dritten mit der durchdringenden vierten Durchtrittsöffnung 7, 8 im radial innenseitigen Verlauf des Durchtrittsquerschnitts der jeweiligen Krümmerhälfte 1.1, 1.2 dar. Ohne die erfindungsgemäße Abrundung mit dem inneren Krümmungsradius r ergäbe sich hier eine scharfkantige Durchdringungslinie, die sich in der Meridianebene M in 6 als ein Durchdringungspunkt P3 darstellt. Eine derartig scharfkantige Durchdringungslinie würde im Krümmungsbereich des Krümmers in jedem Falle zu Ablösungen der Strömung und damit zu erhöhten Krümmerverlusten führen. Zur Verringerung dieser Verluste ist es in besonderer Weise zielführend, wenn diese Durchdringungslinie, die, wie 6 deutlich zeigt, nur teilweise und über den Umfang mit unterschiedlicher scharfkantiger Ausprägung gegeben ist, im gesamten Bereich ihrer Ausprägung mit dem inneren Krümmungsradius r abgerundet ist.
  • Ein erfindungsgemäßes Herstellverfahren für einen Krümmer 1 mit den vorstehend beschriebenen Merkmalen sieht vor, dass in einem ersten Herstellungsschritt die jeweilige Krümmerhälfte 1.1, 1.2 aus Rundmaterial und aus dem Vollen durch spanende Bearbeitung hergestellt wird, wobei eine aus rotationssymmetrischen Durchtrittsöffnungen bestehende Innenkontur i und eine erste Außenkontur a1, die nicht mit dem Rohrbündel-Wärmeaustauscher 100 bzw. dessen Rohrbündeln 100.1 bis 100.n unmittelbar adaptiert ist, eine jeweilige Endkontur erhalten und eine mit dem Rohrbündel-Wärmeaustauscher unmittelbar adaptierte zweite Außenkontur a2 vorbearbeitet wird. Die zerspanende Bearbeitung erfolgt hierbei vorzugsweise auf einem mehrachsigen Bearbeitungszentrum, auf dem der Flansch 2, 3 und die zylindrischen Abschnitte 9, 13 und 11, 15 gedreht, die prismatischen Abschnitte 10, 14 und die Anschlagflächen 12 gefräst und die den Rotationsachsen X1.1, X1.2, Y1.1, Y1.2 zugeordneten Durchtrittsöffnungen gebohrt und/oder gedreht werden.
  • In einem zweiten Herstellungsschritt werden alsdann die beiden Krümmerhälften 1.1, 1.2 zu dem Krümmer 1 stoffschlüssig verbunden. Die stoffschlüssige Verbindung wird vorzugsweise durch ein manuelles oder maschinelles orbitales Schweißverfahren hergestellt, das ein- oder mehrlagig durchgeführt werden kann.
  • In einem dritten Herstellungsschritt erhält die mit dem Rohrbündel-Wärmeaustauscher 100 bzw. dessen Rohrbündeln 100.1 bis 100.n adaptierte zweite Außenkontur a2, die zweckmäßig auch den endseitigen Teil des Eintritts E oder des Austritts A umfasst, eine Endkontur durch spanende Bearbeitung. In diese Endkontur wird zweckmäßig die Bearbeitung der vorstehend im Zusammenhang mit 1 beschriebenen ersten und zweiten Anschlussöffnung 500a, 800a, des konischen ersten und konischen zweiten Übergangs 500b, 800b und des erweiterten ersten und des erweiterten zweiten Durchtrittsquerschnitts 500c, 800c einbezogen.
  • Die Ausgestaltung des Rohrbündel-Wärmeaustauschers 100 nach 1 ist nur als ein mögliches Ausführungsbeispiel zu verstehen. Die Erfindung ist auf jedweden Rohrbündel-Wärmeaustauscher anwendbar, der für große Produktdrücke geeignet ist, bei dem Innenrohre eines Rohrbündels von einem Produkt durchströmt werden und bei dem die Rohrbündel in an sich bekannter Weise parallel angeordnet und in Reihe geschaltet sind. In einer solchen Anordnung sind, in Strömungsrichtung des Produkts gesehen und bezogen auf ein beliebiges Rohrbündel, ein Austritt des Rohrbündels mit einem Eintritt eines benachbarten, nachgeordneten Rohrbündels und ein Eintritt des Rohrbündels mit einem Austritt eines benachbarten, vorgeordneten Rohrbündels wechselseitig jeweils über einen Krümmer mit einem Umlenkwinkel von 180 Grad fluiddurchlässig miteinander verbunden. Erfindungsgemäß ist vorgesehen, dass dabei jeweils ein Krümmer Verwendung findet, der die vorstehend beschriebenen erfindungsgemäßen Merkmale aufweist.
  • Bezugszeichenliste
  • Fig. 1 (Stand der Technik)
  • 100
    Rohrbündel-Wärmeaustauscher
    100.1
    erstes Rohrbündel
    100.2
    zweites Rohrbündel
    100.i
    i-tes Rohrbündel
    100.i – 1
    dem Rohrbündel 100.i vorgeschaltetes Rohrbündel
    100.1 + 1
    dem Rohrbündel 100.i nachgeschaltetes Rohrbündel
    100.n – 1
    dem Rohrbündel 100.n vorgeschaltetes Rohrbündel
    100.n
    n-tes Rohrbündel
    200
    Außenmantel
    200*
    Außenkanal
    200a
    festlagerseitiger Außenmantelflansch
    200b
    loslagerseitiger Außenmantelflansch
    300
    Innenrohr
    300*
    Innenkanal
    400.1
    erstes Gehäuse
    400a
    erster Anschlussstutzen
    400a*
    erster Querkanal
    400.2
    zweites Gehäuse
    400b
    zweiter Anschlussstutzen
    400b*
    zweiter Querkanal
    500
    (festlagerseitiger) Austauscherflansch
    500a
    erste Anschlussöffnung
    500b
    konischer erster Übergang
    500c
    erweiterter erster Durchtrittsquerschnitt
    600
    loslagerseitiger Austauscherflansch
    700
    festlagerseitige Rohrträgerplatte (Rohrspiegelplatte)
    800
    loslagerseitige Rohrträgerplatte (Rohrspiegelplatte)
    800a
    zweite Anschlussöffnung
    800b
    konischer zweiter Übergang
    800c
    erweiterter zweiter Durchtrittsquerschnitt
    800d
    (loslagerseitiger) Anschlussstutzen
    900
    Flachdichtung
    910
    O-Ring
    1000
    Verbindungsbogen
    c
    Strömungsgeschwindigkeit im Außenmantel
    v
    mittlere Strömungsgeschwindigkeit im Innenrohr
    A
    Austritt (Abströmseite der Rohrträgerplatte 700, 800)
    Di
    Rohrinnendurchmesser (Innenrohr 300)
    DN
    Nenndurchmesser des Verbindungsbogens
    E
    Eintritt (Anströmseite der Rohrträgerplatte 700, 800)
    W
    Wärmeträgermedium, allgemein
    P
    Produkt (temperaturbehandelte Seite)

Claims (19)

  1. Krümmer mit Kreisquerschnitt mit einem Umlenkwinkel von 180 Grad für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, mit einem ersten und einem zweiten Flansch (2; 3) an jedem Eintritt (E) und Austritt (A) des Krümmers (1), dadurch gekennzeichnet, • dass der Krümmer (1) aus zwei, jeweils einstückigen Krümmerhälften (1.1, 1.2) besteht, • dass jede Krümmerhälfte (1.1, 1.2) an ihrem dem Flansch (2, 3) abgewandten Ende eine Verbindungsstelle (V) aufweist, • dass die Krümmerhälften (1.1, 1.2) an der zugeordneten Verbindungsstelle (V) stoffschlüssig miteinander verbunden sind, • dass der Verlauf der Durchtrittsquerschnitte jeder Krümmerhälfte (1.1, 1.2) durch rotationssymmetrische Durchtrittsöffnungen gebildet wird, von denen sich wenigstens eine einerseits vom Flansch (2, 3) und wenigstens eine andererseits von der zugeordneten Verbindungsstelle (V) in jeweils koaxialer Anordnung auf Rotationsachsen (X1.1, Y1.1; X1.2, Y1.2) erstrecken, • dass die erste und die zweite Rotationsachse (X1.1, Y1.1) der Durchtrittsöffnungen der ersten Krümmerhälfte (1.1) und die dritte und die vierte Rotationsachse (X1.2, Y1.2) der Durchtrittsöffnungen der zweiten Krümmerhälfte (1.2) in einer gemeinsamen Ebene verlaufen, die für jeden Flansch (2, 3) eine Meridianebene (M) darstellt, • dass sich die erste und die zweite Rotationsachse (X1.1, Y1.2) in einem ersten Schnittpunkt (P1) und die dritte und die vierte Rotationsachse (X1.2, Y1.2) in einem zweiten Schnittpunkt (P2) schneiden, • dass dem ersten Schnittpunkt (P1) auf der ersten Rotationsachse (X1.1) eine durchdringende erste (5) und auf der zweiten Rotationsachse (Y1.1) eine durchdringende zweite Durchtrittsöffnung (6) zugeordnet ist, die einander jeweils einseitig durchdringen, und • dass dem zweiten Schnittpunkt (P2) auf der dritten Rotationsachse (X1.2) eine durchdringende dritte (7) und auf der vierten Rotationsachse (Y1.2) eine durchdringende vierte Durchtrittsöffnung (8) zugeordnet ist, die einander jeweils einseitig durchdringen.
  2. Krümmer nach Anspruch 1, dadurch gekennzeichnet, dass an den einander paarweise durchdringenden ersten bis vierten Durchtrittsöffnungen (5, 6; 7, 8) im radial außenseitigen Verlauf des zugeordneten Durchtrittsquerschnitts der jeweiligen Krümmerhälfte (1.1, 1.2) eine Ausrundung mit einem äußeren Krümmungsradius (R) und im radial innenseitigen Verlauf des zugeordneten Durchtrittsquerschnitts eine Abrundung mit einem inneren Krümmungsradius (r) vorgesehen ist.
  3. Krümmer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die ersten bis vierten Durchtrittsöffnungen (5, 6; 7, 8) jeweils kegelstumpfförmig ausgebildet sind und ihre jeweilige Verjüngung zum jeweils zugeordneten Schnittpunkt (P1, P2) hin orientiert ist.
  4. Krümmer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein Scheitelquerschnitt (S) der Krümmerhälfte (1.1, 1.2) gegenüber den dem Scheitelquerschnitt (S) beiderseits benachbarten Durchtrittsquerschnitten erweitert ist.
  5. Krümmer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die rotationssymmetrischen Durchtrittsöffnungen an ihrer jeweiligen Übergangsstelle zu einer benachbarten Durchtrittsöffnung durchmessergleich aneinandergereiht sind.
  6. Krümmer nach Anspruch 5, dadurch gekennzeichnet, dass die Übergangsstellen stetig gekrümmt ausgeführt sind.
  7. Krümmer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Rotationsachsen (X1.1, Y1.1; X1.2, Y1.2) jeweils geradlinig verlaufen.
  8. Krümmer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sich die erste und die zweite Rotationsachse (X1.1, Y1.1) und die dritte und die vierte Rotationsachse (X1.2, Y1.2) jeweils unter einem Winkel von 90 Grad schneiden.
  9. Krümmer nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Krümmerhälften (1.1, 1.2) kongruent ausgebildet sind.
  10. Krümmer nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die stoffschlüssige Verbindung der Verbindungsstellen (V) eine Schweißverbindung (4) ist.
  11. Krümmer nach Anspruch 10, dadurch gekennzeichnet, dass die Schweißverbindung (4) mehrlagig orbital ausgeführt ist.
  12. Krümmer nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass am Flansch (2, 3) jeweils eine Anschlagfläche (12) vorgesehen ist, die in einer zu einer Stirnfläche (B) der Verbindungsstelle (V) parallelen Ebene orientiert ist und die um ein Schrumpfmaß (a) gegenüber der Stirnfläche (B) zurücksteht.
  13. Herstellverfahren für einen Krümmer nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, • dass in einem ersten Herstellungsschritt die jeweilige Krümmerhälfte (1.1, 1.2) aus Rundmaterial und aus dem Vollen durch spanende Bearbeitung hergestellt wird, • wobei eine aus rotationssymmetrischen Durchtrittsöffnungen bestehende Innenkontur (i) und eine erste Außenkontur (a1), die nicht mit dem Rohrbündel-Wärmeaustauscher (100) bzw. dessen Rohrbündeln (100.1 bis 100.n) unmittelbar adaptiert ist, eine jeweilige Endkontur erhalten und eine mit dem Rohrbündel-Wärmeaustauscher (100) bzw. dessen Rohrbündeln unmittelbar adaptierte zweite Außenkontur (a2) vorbearbeitet wird, • dass in einem zweiten Herstellungsschritt die beiden Krümmerhälften (1.1. 1.2) zu dem Krümmer (1) stoffschlüssig verbunden werden, und • dass in einem dritten Herstellungsschritt die mit dem Rohrbündel-Wärmeaustauscher (100) bzw. dessen Rohrbündeln adaptierte zweite Außenkontur (a2) eine Endkontur durch spanende Bearbeitung erhält.
  14. Herstellverfahren nach Anspruch 13, dadurch gekennzeichnet, dass die stoffschlüssige Verbindung der Krümmerhälften (1.1, 1.2) durch ein orbitales Schweißverfahren hergestellt wird.
  15. Herstellverfahren nach Anspruch 14, dadurch gekennzeichnet, dass das Schweißverfahren mehrlagig durchgeführt wird.
  16. Herstellverfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass nach Abschluss des Schweißverfahrens oder im Zuge des mehrlagigen Schweißverfahrens wenigstens ein Spannungsfreiglühen durchgeführt wird.
  17. Herstellverfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass eine am ersten und am zweiten Flansch (2, 3) jeweils vorgesehene Anschlagfläche (12) über ein Schrumpfmaß (a) derart positioniert ist, dass nach Fertigstellung der stoffschlüssigen Verbindung eine Anlage der Anschlagflächen (12) aneinander infolge einer Kontraktion, die durch Abkühlung der im Zuge des Stoffschlusses erwärmten Bereiche des Krümmers (1) bedingt ist, eine Fertigstellung der zweiten Außenkontur (a2) mit der maßgetreuen Endkontur sicherstellt.
  18. Rohrbündel-Wärmeaustauscher (100) für große Produktdrücke, mit parallel angeordneten, in Reihe geschalteten Rohrbündeln (100.1, 100.2, ..., 100.i – 1, 100.i, 100.i + 1, ..., 100.n – 1, 100.n), wobei Innenrohre des Rohrbündels von einem Produkt (P) durchströmt werden, und, in Strömungsrichtung des Produkts (P) gesehen und bezogen auf ein beliebiges Rohrbündel (100.i), ein Austritt (A) des Rohrbündels (100.i) mit einem Eintritt (E) eines benachbarten, nachgeordneten Rohrbündels (100.i + 1) und ein Eintritt (E) des Rohrbündels (100.i) mit einem Austritt (A) eines benachbarten, vorgeordneten Rohrbündels (100.i – 1) wechselseitig jeweils über einen Krümmer mit einem Umlenkwinkel von 180 Grad fluiddurchlässig miteinander verbunden sind, gekennzeichnet durch einen Krümmer (1) mit den Merkmalen der Ansprüche 1 bis 12.
  19. Verwendung eines Rohrbündel-Wärmeaustauschers (100) für große Produktdrücke nach Anspruch 18 in einer Zerstäubungstrocknungsanlage unmittelbar vor oder in kurzem Abstand von der Düse im Trocknerturm.
DE102014012279.4A 2014-08-22 2014-08-22 Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, Herstellverfahren für einen und Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer und Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage Active DE102014012279B3 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE102014012279.4A DE102014012279B3 (de) 2014-08-22 2014-08-22 Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, Herstellverfahren für einen und Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer und Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage
AU2015306469A AU2015306469B2 (en) 2014-08-22 2015-08-13 Manifold for a tube bundle heat exchanger for large product pressures, method for producing a tube bundle heat exchanger comprising a manifold of said type and use of a tube bundle heat exchanger for large product pressures with said type of manifold in a spray drying system
PL15762916T PL3183529T3 (pl) 2014-08-22 2015-08-13 Kolanko dla wymiennika ciepła z wiązką rur dla wysokich ciśnień produktu, sposób wytwarzania wymiennika ciepła z wiązką rur z takim kolankiem i zastosowanie wymiennika ciepła z wiązką rur dla wysokich ciśnień produktu z takim kolankiem w suszarni rozpyłowej
US15/505,840 US20170268825A1 (en) 2014-08-22 2015-08-13 Elbow for a Tube Bundle Heat Exchanger for Large Product Pressures, Method for Producing a Tube Bundle Heat Exchanger Comprising such an Elbow, and Use of a Tube Bundle Heat Exchanger for Large Product Pressures with such an Elbow in a Spray Drying System
EP15762916.3A EP3183529B1 (de) 2014-08-22 2015-08-13 Krümmer für einen rohrbündel-wärmeaustauscher für grosse produktdrücke, herstellverfahren für einen rohrbündel-wärmeaustauscher mit einem solchen krümmer und verwendung eines rohrbündel-wärmeaustauschers für grosse produktdrücke mit einem solchen krümmer in einer zerstäubungstrocknungsanlage
PCT/EP2015/001664 WO2016026560A1 (de) 2014-08-22 2015-08-13 Krümmer für einen rohrbündel-wärmeaustauscher für grosse produktdrücke, herstellverfahren für einen und rohrbündel-wärmeaustauscher mit einem solchen krümmer und verwendung eines rohrbündel-wärmeaustauschers für grosse produktdrücke mit einem solchen krümmer in einer zerstäubungstrocknungsanlage
MX2017002148A MX2017002148A (es) 2014-08-22 2015-08-13 Colector para intercambiador de calor de haz de tubos para grandes presiones de producto, metodo para producir intercambiador de calor de haz de tubos que comprende un colector de este tipo y uso de intercambiador de calor de haz de tubos para grandes presiones de producto con un colector de este tipo en instalacion de secado por pulverizacion.
NZ729403A NZ729403A (en) 2014-08-22 2015-08-13 Elbow for a tube bundle heat exchanger for large product pressures, method for producing a tube bundle heat exchanger comprising such an elbow, and use of a tube bundle heat exchanger for large product pressures with such an elbow in a spray drying system
BR112017003470A BR112017003470A2 (pt) 2014-08-22 2015-08-13 coletor para um permutador de calor de conjunto de tubo para grande compressão de produto, processo de produção para um e permutador de calor de conjunto de tubo com um tal coletor e uso de um permutador de calor de conjunto de tubo para grande compressão de produtos com um tal coletor em uma instalação de secagem por pulverização

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014012279.4A DE102014012279B3 (de) 2014-08-22 2014-08-22 Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, Herstellverfahren für einen und Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer und Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage

Publications (1)

Publication Number Publication Date
DE102014012279B3 true DE102014012279B3 (de) 2015-08-20

Family

ID=53759189

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014012279.4A Active DE102014012279B3 (de) 2014-08-22 2014-08-22 Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, Herstellverfahren für einen und Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer und Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage

Country Status (9)

Country Link
US (1) US20170268825A1 (de)
EP (1) EP3183529B1 (de)
AU (1) AU2015306469B2 (de)
BR (1) BR112017003470A2 (de)
DE (1) DE102014012279B3 (de)
MX (1) MX2017002148A (de)
NZ (1) NZ729403A (de)
PL (1) PL3183529T3 (de)
WO (1) WO2016026560A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220194A1 (de) 2016-06-23 2017-12-28 Gea Tds Gmbh Verfahren zum betrieb eines rohrbündel-wärmeaustauschers zur erhitzung eines temperatursensiblen konzentrats eines lebensmittelprodukts unter hohem druck und rohrbündel-wärmeaustauscher zur durchführung des verfahrens
WO2017220192A1 (de) 2016-06-23 2017-12-28 Gea Tds Gmbh Verfahren zum erhitzen eines konzentrats in einer anlage zum zerstäubungstrocknen und anlage zur durchführung des verfahrens
WO2018007008A1 (en) 2016-07-08 2018-01-11 Carl Zeiss Smt Gmbh Measurement system for determining a wavefront aberration
CN113182283A (zh) * 2021-05-17 2021-07-30 圣同激光设备(上海)有限公司 一种自变焦激光清洗设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3257632A1 (de) 2016-06-15 2017-12-20 Joh. Friedrich Behrens AG Druckluftnagler mit einzel- und kontaktauslösung
CN108994548A (zh) * 2018-09-19 2018-12-14 张化机(苏州)重装有限公司 90度弯头的加工工艺
TWI673131B (zh) * 2018-10-11 2019-10-01 宏瑞制程工業股份有限公司 能沿軸向自動熔焊組合不銹鋼彎管接頭的設備及工法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9403913U1 (de) * 1994-03-09 1994-05-05 Gea Finnah Gmbh Rohrbündel-Wärmetauscher
DE102005059463A1 (de) * 2005-12-13 2007-06-14 Tuchenhagen Dairy Systems Gmbh Vorrichtung zur Einflussnahme auf die Strömung im Bereich einer Rohrträgerplatte eines Rohrbündel-Wärmeaustauschers

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190910792A (en) * 1909-02-12 1909-09-02 Wilhelm Schmidt Improvements in and relating to U-bends suitable for Superheater Tubes.
US1710513A (en) * 1925-07-01 1929-04-23 Foster Wheeler Corp Return header
US1790151A (en) * 1928-02-29 1931-01-27 Struthers Wells Company Heat exchanger
US2956704A (en) * 1957-05-15 1960-10-18 Griscom Russell Co Removable tube sheet construction for heat exchangers
US3048372A (en) * 1958-03-25 1962-08-07 Jr Robert P Newton Waste water heat reclaimer
CH527389A (de) * 1970-08-13 1972-08-31 Sulzer Ag Verfahren zum Herstellen von Rohrkrümmern aus Walz- oder Schmiedestahl
NL7714208A (en) * 1977-12-21 1979-06-25 Stork Friesland Bv Spray drying of viscous food products with atomising nozzles - fed by high pressure pump and heat exchanger-spray temp. allowing material to boil as it enters drying chamber
US4323114A (en) * 1979-03-26 1982-04-06 Fansteel Inc. Cluster heat exchanger
DE3700443A1 (de) * 1986-01-11 1987-07-16 Rolf Dipl Ing Bommer Waermetauscher fuer heizkessel, insbesondere fuer brennwertkessel
JP2845888B2 (ja) * 1988-05-13 1999-01-13 三菱重工業株式会社 屈曲穴における屈曲部の丸め加工方法
SE501908C2 (sv) * 1993-10-21 1995-06-19 Tetra Laval Holdings & Finance Värmeväxlare med sammankopplade moduler
JP2002506181A (ja) * 1998-03-05 2002-02-26 スウエイジロク・カンパニー モジュール式表面取付型マニホルド
SE9804037L (sv) * 1998-11-25 2000-05-26 Tetra Laval Holdings & Finance Värmeväxlare
DE10244150A1 (de) * 2002-09-23 2004-04-08 Schmidt + Clemens Gmbh & Co. Kg Rohrabschnitt für eine Rohrschlange
DE202004002082U1 (de) * 2004-02-09 2004-04-08 Julius Cronenberg Offene Handelsgesellschaft Rohrbogen
DE102009006246B3 (de) * 2009-01-27 2010-05-20 Gea Tds Gmbh Vorrichtung zur Einflussnahme auf die Strömung im Bereich einer Rohrträgerplatte eines Rohrbündel-Wärmeaustauschers
RU2533569C2 (ru) * 2010-06-28 2014-11-20 Нода Канагата Ко., Лтд. Угловой патрубок, выполненный обработкой резанием, и способ изготовления такого углового патрубка
NO336033B1 (no) * 2011-07-12 2015-04-20 Materix As Rørkomponent med innvendig, rørformet sliteelement og framgangsmåte ved fôring av rørkomponenten med sliteelementet
EP2693097B1 (de) * 2012-08-02 2021-12-15 Phönix Armaturen-Werke Bregel GmbH Gas oder flüssigkeit führendes wechselventil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9403913U1 (de) * 1994-03-09 1994-05-05 Gea Finnah Gmbh Rohrbündel-Wärmetauscher
DE102005059463A1 (de) * 2005-12-13 2007-06-14 Tuchenhagen Dairy Systems Gmbh Vorrichtung zur Einflussnahme auf die Strömung im Bereich einer Rohrträgerplatte eines Rohrbündel-Wärmeaustauschers

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016007637B4 (de) * 2016-06-23 2020-02-20 Gea Tds Gmbh Verfahren zum Betrieb eines Rohrbündel-Wärmeaustauschers zur Erhitzung eines temperatursensiblen Konzentrats eines Lebensmittelprodukts unter hohem Druck und Rohrbündel-Wärmeaustauscher zur Durchführung des Verfahrens
WO2017220192A1 (de) 2016-06-23 2017-12-28 Gea Tds Gmbh Verfahren zum erhitzen eines konzentrats in einer anlage zum zerstäubungstrocknen und anlage zur durchführung des verfahrens
WO2017220191A1 (de) 2016-06-23 2017-12-28 Gea Tds Gmbh Verfahren zum erhitzen eines konzentrats in einer anlage zum zerstäubungstrocknen und anlage zur durchführung des verfahrens
DE102016007637A1 (de) * 2016-06-23 2017-12-28 Gea Tds Gmbh Verfahren zum Betrieb eines Rohrbündel-Wärmeaustauschers zur Erhitzung eines temperatursensiblen Konzentrats eines Lebensmittelprodukts unter hohem Druck und Rohrbündel-Wärmeaustauscher zur Durchführung des Verfahrens
JP2019520068A (ja) * 2016-06-23 2019-07-18 ゲーエーアー テーデーエス ゲーエムベーハー 噴霧乾燥の設備内で濃縮物を加熱する方法および方法を実行するための設備
WO2017220194A1 (de) 2016-06-23 2017-12-28 Gea Tds Gmbh Verfahren zum betrieb eines rohrbündel-wärmeaustauschers zur erhitzung eines temperatursensiblen konzentrats eines lebensmittelprodukts unter hohem druck und rohrbündel-wärmeaustauscher zur durchführung des verfahrens
AU2017280489B2 (en) * 2016-06-23 2020-09-24 Gea Tds Gmbh Method for heating a concentrate in an installation for spray drying and installation for performing the method
AU2017280488B2 (en) * 2016-06-23 2020-10-08 Gea Tds Gmbh Method for heating a concentrate in a system for spray drying and system for carrying out the method
AU2017280491B2 (en) * 2016-06-23 2020-10-29 Gea Tds Gmbh Method for operating a tube bundle heat exchanger for heating a temperature-sensitive concentrate of a food product under high pressure, and tube bundle heat exchanger for carrying out the method
AU2017280488C1 (en) * 2016-06-23 2021-03-18 Gea Tds Gmbh Method for heating a concentrate in a system for spray drying and system for carrying out the method
WO2018007008A1 (en) 2016-07-08 2018-01-11 Carl Zeiss Smt Gmbh Measurement system for determining a wavefront aberration
CN113182283A (zh) * 2021-05-17 2021-07-30 圣同激光设备(上海)有限公司 一种自变焦激光清洗设备
CN113182283B (zh) * 2021-05-17 2022-09-20 圣同激光设备(上海)有限公司 一种自变焦激光清洗设备

Also Published As

Publication number Publication date
PL3183529T3 (pl) 2020-03-31
EP3183529B1 (de) 2019-07-24
US20170268825A1 (en) 2017-09-21
MX2017002148A (es) 2017-05-23
NZ729403A (en) 2018-02-23
WO2016026560A1 (de) 2016-02-25
AU2015306469B2 (en) 2019-12-19
BR112017003470A2 (pt) 2017-12-05
AU2015306469A1 (en) 2017-04-06
EP3183529A1 (de) 2017-06-28

Similar Documents

Publication Publication Date Title
DE102014012279B3 (de) Krümmer für einen Rohrbündel-Wärmeaustauscher für große Produktdrücke, Herstellverfahren für einen und Rohrbündel-Wärmeaustauscher mit einem solchen Krümmer und Verwendung eines Rohrbündel-Wärmeaustauschers für große Produktdrücke mit einem solchen Krümmer in einer Zerstäubungstrocknungsanlage
DE102005059463B4 (de) Vorrichtung zur Einflussnahme auf die Strömung im Bereich einer Rohrträgerplatte eines Rohrbündel-Wärmeaustauschers
EP2524184B1 (de) Uht-anlage und verfahren zur wärmebehandlung von temperatursensiblen lebensmittelprodukten
EP1604162B1 (de) Rohrbündel-wärmeaustauscher
DE202020000985U1 (de) Hilfsvorrichtung für ein Verfahren für Schweißverbindungen zwischen Innenrohren und Rohrträgerplatten eines Rohrbündels für einen Produkt-zu-Produkt-Rohrbündel-Wärmeaustauscher
EP1363990A1 (de) Verfahren und vorrichtung zum betrieb von tanklagersystemen im festverrohrten verbund mit rohrsystemen für flüssigkeiten
EP3011248B1 (de) Vorrichtung zur einflussnahme auf den abströmbereich einer rohrträgerplatte eines rohrbündel-wärmeaustauschers
WO2012110269A1 (de) Modulares fitting
EP1701097A2 (de) Rohrverteiler, insbesondere für Heizungsanlagen
EP1561982B1 (de) Armatur
DE102009006246B3 (de) Vorrichtung zur Einflussnahme auf die Strömung im Bereich einer Rohrträgerplatte eines Rohrbündel-Wärmeaustauschers
EP2295915B1 (de) Doppelmantelrohr mit integriertem Rücklauf
DE102012014825A1 (de) Flächenwärmetauscherelement
EP1742006A1 (de) Verfahren und Anordnung zur Strömungsführung in Rohrbündel-Wärmeaustauschern zur thermischen Behandlung von Suspensionen
DE2205483A1 (de) Vorschweissflansch fuer beheizte bzw. gekuehlte doppelmantelrohre
DE4319006A1 (de) Heiz/-Kühlkörperabdichtung
EP4117849B1 (de) Herstellungsverfahren für schweissverbindungen zwischen innenrohren und rohrträgerplatten eines rohrbündels für einen produkt-zu-produkt-rohrbündel-wärmeaustauscher mittels einer hilfsvorrichtung und hilfsvorrichtung für ein solches herstellungsverfahren
DE2120952C3 (de) Hochdruck-Rückschlagventil
WO2002023078A1 (de) Flanschverbindung für hochdruck-doppelmantelrohre
EP3475642B1 (de) Verfahren zum betrieb eines rohrbündel-wärmeaustauschers zur erhitzung eines temperatursensiblen konzentrats eines lebensmittelprodukts unter hohem druck und rohrbündel-wärmeaustauscher zur durchführung des verfahrens
DE3010013A1 (de) Verfahren zur waermebehandlung, insbesondere ultrahocherhitzung, sowie waermetauscher zur durchfuehrung des verfahrens
EP3474683B1 (de) Verfahren zum erhitzen eines konzentrats in einer anlage zum zerstäubungstrocknen und anlage zur durchführung des verfahrens
DE616085C (de) Verbindung fuer Rohre u. dgl., bei der eine Klemmhuelse derart zwischen Druckgliedern angeordnet ist, dass ihre Enden den Druckgliedern anliegen und dass beim Schliessen er Verbindung die Klemmhuelse zusammengedrueckt und verformt wird
DE102005007556B4 (de) Verfahren und Verbindungsarmatur zur Reduzierung der Bildung von Ablagerungen an Rohrträgerplatten von Rohrbündel-Wärmeaustauschern
AT506703B1 (de) Modulares wärmetauschersystem

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R018 Grant decision by examination section/examining division
R020 Patent grant now final