DE102012107766B4 - Fehlererkennung für eine Serienschaltung elektrischer Lasten - Google Patents

Fehlererkennung für eine Serienschaltung elektrischer Lasten Download PDF

Info

Publication number
DE102012107766B4
DE102012107766B4 DE102012107766.5A DE102012107766A DE102012107766B4 DE 102012107766 B4 DE102012107766 B4 DE 102012107766B4 DE 102012107766 A DE102012107766 A DE 102012107766A DE 102012107766 B4 DE102012107766 B4 DE 102012107766B4
Authority
DE
Germany
Prior art keywords
circuit
fraction
voltage
led
nominal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102012107766.5A
Other languages
English (en)
Other versions
DE102012107766A1 (de
Inventor
Fabrizio Cortigiani
Andrea Logiudice
Andreas Eder
Giovanni Capodivacca
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/221,562 external-priority patent/US8860427B2/en
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of DE102012107766A1 publication Critical patent/DE102012107766A1/de
Application granted granted Critical
Publication of DE102012107766B4 publication Critical patent/DE102012107766B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/58Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving end of life detection of LEDs

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

Vorrichtung zur Erkennung von Fehlfunktionen in einer Beleuchtungseinheit, die eine Vielzahl von in Serie geschalteter Leuchtdioden (LD1, LD2, ..., LDN) aufweist; die Vorrichtung umfasst:
einen ersten, einen zweiten und einen dritten Schaltungsknoten (A; C; B), die eine Schnittstelle zu der Beleuchtungseinheit bilden, so dass die Spannung (VAC), welche die Vielzahl von Leuchtdioden (LD1, LD2, ..., LDN) versorgt, zwischen dem ersten und dem zweiten Schaltungsknoten (A; C) anliegt und ein erster Bruchteil der Versorgungsspannung (VBC) zwischen dem dritten und dem zweiten Schaltungsknoten (B; C) anliegt;
eine Auswerteeinheit, die mit dem ersten, dem zweiten und dem dritten Schaltungsknoten (A; B; C) verbunden und dazu ausgebildet ist, auszuwerten, ob der erste Bruchteil der Versorgungsspannung (VBC) innerhalb eines vordefinierten Toleranzbereichs (ΔV) um einen Sollwert liegt, der definiert ist als zweiter Bruchteil der Versorgungsspannung (knominal· VAC), wobei der zweite Bruchteil (knominal·VAC) derart voreingestellt ist, dass der Sollwert im Wesentlichen gleich jener Spannung ist, welche zwischen dritten und zweiten Schaltungsknoten anliegt, wenn die Beleuchtungseinheit ausschließlich funktionsfähige LEDs umfasst; und
eine Schaltungsanordnung, die dazu ausgebildet ist, wenn eine defekte Leuchtdiode detektiert wurde, den voreingestellten zweiten Bruchteil (VSC) zu aktualisieren, sodass der zweite Bruchteil (knominal· VAC) wieder dem ersten Bruchteil (VBC) der Versorgungsspannung entspricht, und die weiter dazu ausgebildet ist, einen Zähler zu erhöhen, der die Anzahl der defekten Leuchtdioden zählt.

Description

  • Die Erfindung betrifft das Gebiet der Fehlerdetektion wie z.B. die Erkennung von Kurzschlüssen, oder unerwünschten Leerläufen bei elektrischen Lasten, insbesondere die Detektion von Fehlfunktionen von Leuchtdioden (LEDs), die innerhalb einer Kette von in Serie geschalteten Leuchtdioden angeordnet sind.
  • In der Publikation DE 10 2010 002 707 A1 ist eine Schaltung zur Erkennung von Fehlfunktionen in einer Serienschaltung von Leuchtdioden beschrieben. Diese Schaltung wird weiter unten noch näher diskutiert. Die Publikation DE 10 2007 001 501 A1 betrifft eine Fahrzeugscheinwerfervorrichtung mit einem Array aus LEDs und einer dazugehörigen Ansteuerschaltung. Auch die Publikation US 2007/0096746 A1 betrifft eine Ansteuerung für ein Array von LEDs.
  • Beleuchtungseinheiten (z. B. Leuchtmittel), welche als strahlende Elemente Leuchtdioden (LEDs) umfassen, können üblicherweise nicht einfach mit einer Spannungsversorgung verbunden werden, sondern müssen mit Hilfe spezieller Treiberschaltungen (oder Regelschaltungen) angesteuert werden, die die LEDs mit einem definierten Laststrom vorsorgen, um eine gewünschte Strahlungsleistung (Strahlungsfluss) zu gewährleisten. Da eine einzelne LED nur eine geringe Durchlassspannung (von ungefähr 1,5 V bei infraroten GaAs-LEDs bis hin zu 4 V für violette und ultraviolette InGaN-LEDs) im Vergleich zu den üblichen Versorgungsspannungen (z. B. 12 V, 24 V oder 42 V in Automobilanwendungen) aufweist, werden mehrere LEDs in Serie zu sogenannten LED-Ketten geschaltet.
  • In vielen Anwendungen ist eine in den Treiberschaltungen (oder Regelschaltungen) integrierte Fehlerkennung wünschenswert, welche die Erkennung einzelner defekter LEDs innerhalb einer mit einer Treiberschaltung verbundenen LED-Kette ermöglicht. Eine LED kann als Zweipol betrachtet werden. Eine fehlerhafte LED äußert sich entweder durch einen Kurzschluss oder einen Leerlauf zwischen den beiden Anschlüssen des Zweipols. Wenn eine LED einer LED-Kette aufgrund eines Fehlers einen Leerlauf bildet, kann dies einfach detektiert, da die fehlerhafte LED den Stromfluss durch die ganze LED-Kette unterbricht. Wenn eine LED einer LED-Kette aufgrund eines Fehlers einen Kurzschluss bildet, emittiert nur die fehlerhafte LED kein Licht mehr, was in machen Applikationen unproblematisch sein kann. Viele Anwendungen erfordern jedoch, dass die abgestrahlte Leistung innerhalb eines schmalen Bereichs bleibt.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine Schaltungsanordnung zur Verfügung zu stellen, welche dazu geeignet ist, fehlerhafte Leuchtdioden innerhalb von Leuchtdioden-Ketten zu erkennen, was sowohl die Erkennung von Kurzschlüssen in einzelnen Leuchtdioden umfasst.
  • Diese Aufgabe wird durch eine Vorrichtung gemäß Anspruch 1 sowie ein Verfahren gemäß Anspruch 15 gelöst. Unterschiedliche Ausführungsformen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Es wird eine Vorrichtung zum Erkennen von Fehlfunktionen in einer Beleuchtungseinheit, die eine Vielzahl in Serie geschalteter Leuchtdioden umfasst, beschrieben. Die Schaltung umfasst einen ersten, einen zweiten und einen dritten Schaltungsknoten, die zusammen eine Schnittstelle zu der Beleuchtungseinrichtung bilden, so dass die Spannung, welche die Vielzahl von Leuchtdioden versorgt, zwischen dem ersten und dem zweiten Schaltungsknoten anliegt sowie ein erster Bruchteil der Versorgungsspannung zwischen dem dritten und dem zweiten Schaltungsknoten anliegt. Die Schaltung umfasst des Weiteren eine Auswerteeinheit, die mit dem ersten, dem zweiten und dem dritten Schaltungsknoten gekoppelt ist, und die dazu ausgebildet ist, zu prüfen, ob die Spannung, die am dritten Schaltungsknoten anliegt, innerhalb eines vordefinierten Toleranzbereichs um einen nominellen Wert liegt. Dieser nominelle Wert ist definiert als zweiter Bruchteil der Versorgungsspannung, der zwischen dem ersten und dem zweiten Schaltungsknoten anliegt. Des Weiteren wird der zweite Bruchteil derart voreingestellt, dass der nominelle Wert im Wesentlichen gleich der Spannung an dem dritten Schaltungsknoten ist, wenn die Beleuchtungseinrichtung nur fehlerlose Leuchtdioden enthält. Die Vorrichtung weist weiter eine Schaltungsanordnung auf, die dazu ausgebildet ist, den voreingestellten zweiten Bruchteil zu aktualisieren, wenn eine defekte Leuchtdiode detektiert wurde. Als Folge davon entspricht der zweite Bruchteil wieder dem ersten Bruchteil der Versorgungsspannung. Des Weiteren wird ein Zähler zu erhöht, der die Anzahl der defekten Leuchtdioden zählt.
  • Die vorliegende Erfindung wird im Folgenden anhand von Abbildungen näher erläutert. In den Abbildungen zeigen
    • 1 ein nicht beanspruchtes Beispiel mit einem Spannungsteiler, der den Sollwert festlegt;
    • 2 ein Beispiel der vorliegenden Erfindung mit einem Spannungsteiler, der eine Vielzahl von Zwischen-Abgriffen und einen Multiplexer zur Auswahl eines geeigneten Zwischenabgriffs aufweist, um den Sollwert einzustellen; und
    • 3 ein weiteres Beispiel der Erfindung mit einem Analog-Digital-Wandler und einer Recheneinheit (Arithmetik-Logik-Einheit, ALU) zum Prüfen der Beleuchtungseinheit.
  • In den Abbildungen bezeichnen gleiche Bezugszeichen gleiche oder ähnliche Komponenten bzw. Signale mit gleicher oder ähnlicher Bedeutung.
  • In vielen Anwendungen ist eine in den Treiberschaltungen integrierte Fehlererkennung wünschenswert, welche einer Detektion fehlerhafter LEDs innerhalb einer mit einer Treiberschaltung verbundenen LED-Kette ermöglicht. Eine fehlerhafte LED äußert sich entweder als Leerlauf oder als Kurzschluss zwischen den zwei Anschlüssen der fehlerhaften LED. Wenn eine LED innerhalb einer LED-Kette aufgrund eines Fehlers einen Leerlauf bildet, unterbricht die fehlerhafte LED den Strom für die gesamte LED-Kette, was in einfacher Weise detektiert werden kann wie z. B. durch eine Überwachung des Laststroms durch die LED-Kette. Wenn eine LED aufgrund eines Fehlers einen Kurzschluss bildet, hört lediglich die defekte LED auf, Strahlung zu emittieren, und der Spannungsabfall über der gesamten LED-Kette vermindert sich um die Durchlassspannung einer einzelnen LED. Ein Kurschluss kann also dadurch detektiert werden, dass der Spannungsabfall über der gesamten LED-Kette überwacht wird. Wenn dieser Spannungsabfall unter einen vorgegebenen konstanten Schwellwert fällt, kann daraus geschlossen werden, dass eine LED aufgrund eines Defekt einen Kurzschluss bildet.
  • Ein grundsätzliches Problem bei diesem Konzept der Kurzschluss-Fehlererkennung ist, dass der Spannungsabfall über der LED-Kette nicht allein aufgrund eines Kurzschlusses einer einzelnen LED sinken kann, sondern auch aufgrund von temperaturbedingten Schwankungen sowie Alterungseffekten. Daher ist es möglich, dass ein Fehler erkannt wird, obwohl sämtliche Leuchtdioden in Ordnung sind oder umgekehrt, dass ein Fehler nicht erkannt wird trotz einer fehlerhaften Leuchtdiode. Dieses Problem tritt insbesondere in Anwendungen mit großen zulässigen Temperaturbereichen auf, wie z. B. im Automobilbereich, wo Glühlampen zunehmend durch LED-basierte Beleuchtungseinheiten ersetzt werden.
  • In der Publikation DE 10 2010 002 707 A1 wird eine Schaltung zur Erkennung von Fehlfunktionen in einer Serienschaltung von Leuchtdioden vorgeschlagen. Die aus dieser Publikation bekannte Schaltung kann jedoch fehlerhafte LEDs nicht zuverlässig detektieren, wenn die Anzahl von LEDs in einer Kette von LEDs über einer bestimmten maximalen Anzahl liegt. Damit ist die Anzahl von LEDs in einer LED-Kette beschränkt. Die maximale Anzahl hängt von der statistischen Varianz (die im Wesentlichen durch produktionsbedingte Toleranzen bestimmt wird) der Flussspannungen der Leuchtdioden ab, welche die LED-Kette bilden.
  • In der Folge wird eine Schaltungsanordnung zur Erkennung von Fehlfunktionen in Beleuchtungseinheiten vorgeschlagen, die eine Vielzahl von in Serie geschalteten Leuchtdioden aufweist (d.h. Beleuchtungseinheiten mit einer LED-Kette). 1 zeigt eine Schaltung, die einen ersten Schaltungsknoten A, und einen zweiten Schaltungsknoten C und einen dritten Schaltungsknoten B aufweist. Diese Schaltungsknoten A, B, C bilden eine Schnittstelle zur einer Beleuchtungseinheit, derart, dass ein Spannungsabfall VAC über einer Kette von Leuchtdioden LD1, LD2, ..., LDN zwischen den Knoten A und C anliegt und ein Bruchteil VBC des Spannungsabfalls VAC zwischen den Knoten B und C anliegt. Das heißt, die LED-Kette LD1, LD2, ... LDN hat einen Mittelabgriff, der mit dem Schaltungsknoten B verbunden ist. Das Verhältnis knominal zwischen der Teilspannung VBC und dem Spannungsabfall VAC über der LED-Kette ist (ungefähr) k nominal = m/N ,
    Figure DE102012107766B4_0001
    wobei N die Anzahl der LED in der Kette und m die Anzahl der LEDs zwischen dem Mittelabgriff der LED-Kette (Knoten B) und dem Schaltungsknoten C ist. Das Verhältnis knominal ist daher ein vordefinierter Wert, der abhängig von dem physikalischen Aufbau der LED-Kette ist.
  • Die Schaltung aus 1 umfasst weiter eine Auswerteeinheit, welche mit den Schaltungsknoten A, B und C gekoppelt ist. Die Auswerteeinheit ist dazu ausgebildet, zu prüfen, ob das elektrische Potential VB an dem dritten Schaltungsknoten B sich innerhalb eines vordefinierten Toleranzbereichs um den Nennwert knominal·VAC befindet. Wie bereits erwähnt ist der Nennwert knominal·VAC definiert als Bruchteil knomional=m/N der Potentialdifferenz VAC zwischen den Schaltungsknoten A und C.
  • Durch Verwendung eines vordefinierten Bruchteils knominal·VAC der Spannung VAC über der LED-Kette als Kriterium anstatt der Verwendung eines festen Spannungsschwellwertes für die Beurteilung, ob die LED-Kette eine fehlerhafte LED aufweist, wird die Fehlererkennung zuverlässiger und robuster gegen Variationen der Durchlassspannungen der einzelnen LEDs, wobei diese Variationen unter Anderem aufgrund von Temperaturschwankungen oder Alterungseffekten auftreten können.
  • Wie in dem Beispiel aus 1 dargestellt, kann die Auswerteeinheit einen Spannungsteiler umfassen, der mit den Schaltungsknoten A und C verbunden und dazu ausgebildet ist, an einem Zwischenabgriff S den oben erwähnten vordefinierten Bruchteil VSC=knominal·VAC der Potentialdifferenz VAC zwischen den Schaltungsknoten A und C bereitzustellen. D.h., der Spannungsteiler stellt den Spannungsbruchteil VSC zur Verfügung, der ungefähr gleich dem Spannungsbruchteil VBC ist, welcher von der LED-Kette erzeugt wird für den Fall, dass alle LED der Kette funktionieren.
  • Im Falle eines Kurzschlusses zwischen dem Anodenanschluss und dem Kathodenanschluss von zumindest einer LED der LED-Kette ändert sich das tatsächliche Verhältnis k=VBC/VAC entweder zu k = m/ ( N 1 ) ,  sodass k > k nominal
    Figure DE102012107766B4_0002
    in jenen Fällen, in denen die fehlerhafte LED zwischen den Schaltungsknoten A und B liegt oder zu k = ( m 1 ) / ( N 1 ) ,  sodass k < k nominal
    Figure DE102012107766B4_0003
    in jenen Fällen, in denen die fehlerhafte LED zwischen den Schaltungsknoten B und C liegt. Durch Auswerten der oben genannten Ungleichungen ist sogar eine Lokalisierung der defekten LEDs möglich. Dies kann insbesondere dann sinnvoll sein, wenn eine Beleuchtungseinheit zwei räumlich getrennte LED-Kettenabschnitte abweist, die in Serie zueinander geschaltet sind, wobei der Schaltungsknoten B die Beleuchtungseinheit zwischen diesen beiden Kettenabschnitten kontaktiert. So wird es möglich, eine fehlerhafte LED in dem ersten oder dem zweiten Kettenabschnitt zu lokalisieren.
  • Durch Überprüfen, ob der Spannungsbruchteil VBC = k-VAC ungefähr gleich der Spannung VSC = knominal·VAC ist, kann die Integrität der LED-Kette (bzw. der LED-Kettenabschnitte) getestet werden. In der Praxis bedeutet „ungefähr gleich“, dass die Spannung VBC = k·VAC innerhalb eines gewissen Toleranzbereichs ΔV um die Spannung VSC = knominal .VAC liegt, wie z. B. VBC ∈ [VSC-ΔV, VSC+ΔV], was gleichbedeutend ist mit k [knominal-Δk, knominal+Δk] für den Fall, dass nur die Verhältnisse der Spannungen betrachtet werden (wobei ΔV = Δk-VAC ist).
  • Der oben beschriebene Vergleich zwischen den Spannungen VBC und VSC kann z. B. durch die Verwendung eines Fenster-Komparators implementiert werden, der ein verhältnismäßig „schmales“ Fenster im Vergleich zu dem Absolutwert des Spannungsbruchteils VBC (oder VSC) aufweist. In dem Beispiel aus 1 ist der Fensterkomparator durch die zwei Komparatoren K1 und K2 verwirklicht, wobei jeder eine Hysterese von ΔV aufweist, sowie durch ein ODER-Gatter G1 , welches die Ausgangssignale der Komparatoren K1 und K2 verknüpft. Der Ausgang des ODER-Gatters G1 zeigt an, ob eine fehlerhafte LED in der LED-Kette detektiert wurde oder ob die LED-Kette voll funktionsfähig ist.
  • In dem Beispiel aus 1 umfasst der resistive Spannungsteiler die gleiche Anzahl von Widerständen wie LEDs in der Beleuchtungseinheit vorhanden sind. Jedoch gibt es keine Notwendigkeit für eine bestimmte Anzahl von Widerständen, solange das Soll-Teilungsverhältnis knominal passend eingestellt werden kann. Das gleiche Ergebnis kann auch durch einen resistiven Spannungsteiler erreicht werden, der ein (digitales oder analoges) Potentiometer aufweist.
  • Wie oben bereits erwähnt muss das Fenster des Fenster-Komparators verhältnismäßig schmal sein, da die Flussspannung einer einzelnen LED nicht sonderlich hoch ist (z. B. VLED ungefähr 3,2 Volt). Wenn das Fenster jedoch zu schmal ausgelegt wird, kann die Spannung VBC das „erlaubte“ Intervall [VSC-ΔV, VSC+ΔV] aufgrund von Temperaturdrifteffekten verlassen, wodurch irrtümlicherweise eine Fehlfunktion signalisiert wird. Eine minimale Breite des Fensters ist aufgrund dieses Effekts notwendig.
  • Des Weiteren ist zu Bedenken, dass die Flussspannung jeder einzelnen LED aufgrund unvermeidbarer Toleranzen (Unsicherheiten) im Produktionsprozess variieren kann. Daher ist die tatsächliche Flussspannung VLED jeder einzelnen LED mit einer Standardabweichung ΔVLED behaftet (entspricht einer Varianz ΔVLED 2). Unter Berücksichtigung der Fehlerfortpflanzung für statistische Fehler berechnet sich die resultierende Standartabweichung ΔVAC des Spannungsabfalls VAC über einer LED-Kette mit einer Anzahl von N LEDs wie folgt: Δ V AC = N Δ V LED ,
    Figure DE102012107766B4_0004
    und V AC = N V LED ± N Δ V LED .
    Figure DE102012107766B4_0005
  • Folglich ist die Spannung VBC am Mittelabgriff B der LED-Kette (unter der Annahme, dass die Anzahl der LEDs zwischen dem Anschluss C und dem Mittelangriff N/2 beträgt): V BC = ( N/ 2 ) V LED ± N/ 2 Δ V LED ,
    Figure DE102012107766B4_0006
    wohingegen die Spannung VSC am Ausgangsanschluss S des Spannungsteilers VAC/2 beträgt. Das heißt: V SC = ( N/ 2 ) V LED ± ( 1 2 ) N Δ V LED .
    Figure DE102012107766B4_0007
  • Ähnliche Überlegungen wie die obigen können für die Spannungsdifferenz VBS = VBC - VSC gemacht werden, welche den Fenster-Komparator zugeführt wird. Die Differenzspannung VBS kann wie folgt berechnet werden: V BS = V BC V SC = 0 ± ( 1 2 ) N Δ V LED .
    Figure DE102012107766B4_0008
  • Der Fenster-Komparator implementiert die Ungleichung |VBS|<VTH (wobei der Schwellwert VTH der halben Fensterbreite entspricht). Daraus kann schlussgefolgert werden, dass V TH > | N Δ V LED / 2 | .
    Figure DE102012107766B4_0009
  • Andernfalls könnte eine Fehlfunktion irrtümlicher Weise detektiert werden aufgrund der Toleranzen der Flussspannung VLED.
  • Wenn eine LED zwischen dem Anschluss A und dem Mittelabgriff B kurzgeschlossen ist, dann ergibt sich für die Spannungsdifferenz VBS=VBC-VSC (wobei N durch N-1 im Ausdruck für VSC substituiert wird): V BS = V BC V SC = V LED / 2 ± ( 1 / 2 ) N 1 Δ V LED .
    Figure DE102012107766B4_0010
  • Um eine Fehlfunktion korrekt zu erkennen, muss die durch den Fenster-Komparator implementierte Ungleichung folgende Bedingung erfüllen V TH < V LED / 2 N 1 Δ V LED / 2.
    Figure DE102012107766B4_0011
  • Für eine korrekte Erkennung einer kurzgeschlossenen LED muss der Komparator die oben aufgeführten Ungleichungen (1) und (2) erfüllen. Diese Ungleichungen gelten solange N<NMAX, wobei der Vergleich der rechten Seiten der Ungleichungen (1) und (2) folgendes ergibt: V LED = { N MAX + N MAX 1 } Δ V LED 2 N MAX Δ V LED ,
    Figure DE102012107766B4_0012
    und N MAX = ( 1 4 ) ( V LED / Δ V LED ) 2
    Figure DE102012107766B4_0013
  • Für eine Flussspannung VLED=3,2 Volt und eine Standardabweichung ΔVLED=0,5 Volt (entspricht z. B. der Spezifikation der OSRAM Golden DRAGON Plus LED) kann schlussgefolgert werden, dass die Anzahl der LEDs in der LED-Kette gleich oder kleiner sein muss als NMAX=10.
  • Die obigen Überlegungen zeigen, dass die Schaltung aus 1 zum Detektieren kurzgeschlossener LEDs für LED-Ketten mit einer hohen Anzahl von LEDs nicht korrekt funktioniert. Folglich besteht ein Bedarf an einer Schaltung zum Detektieren von Fehlfunktionen in einer Beleuchtungseinrichtung, die eine Vielzahl (z. B. mehr als 10) von Leuchtdioden umfasst.
  • In dem Beispiel aus 2 wurde der resistive Spannungsteiler aus 1, der ein festes Teilungsverhältnis m/N aufweist, ersetzt durch ein Digitalpotentiometer, das eine Serienschaltung von Widerständen R1 , R2 ,..., RK mit jeweils gleichen Widerstandswerten umfasst (wobei z.B. k=256). Dabei sind die Schaltungsknoten zwischen jeweils zwei benachbarten Widerständen mit einem Multiplexer MUX verbunden. D.h. der Multiplexer MUX stellt, nach Maßgabe eines (z.B. 8 Bit-) Steuersignals CTRL, eine Verbindung zu einem auswählbarem Schaltungsknoten zwischen zwei benachbarten Widerständen her, um so das nominelle Teilungsverhältnis knominal einzustellen. Im Fall eines 8 Bit-Digitalpotentiometers kann das Verhältnis in Schritten von 1/255 (ungefähr 0,39%) des Gesamtwiderstandswertes (Summe aller Widerstände Ri, i=1, 2, ... K) eingestellt werden.
  • Die Verwendung eines Digitalpotentiometers ermöglicht das Einstellen des nominalen Verhältnisses knominal auf einen derartigen Wert (anstatt knominal = m/N), dass das Potenzial VB (oder die Spannung VBC) an dem Mittelabgriff der LED-Kette und das Potenzial VS (oder die Spannung VSC) an dem Ausgang des Multiplexers MUX ungefähr gleich ist. In anderen Worten, die Spannungsdifferenz VBS, die dem Komparator zugeführt wird, wird auf 0 abgeglichen, wodurch die Auswirkung der Produktionstoleranzen („Produktion .......“) kompensiert wird. Dies kann am Ende der Produktion geschehen, zum Beispiel durch Messen der Differenzspannung VBS für eine fehlerlose LED-Kette und eine anfängliche Multiplexereinstellung knominal (z.B. knominal = m/N), durch Bestimmen eines geeigneten Steuersignals CTRL, welches an den Multiplexer MUX angelegt werden muss, so dass die Spannungsdifferenz VBS=VBC-VSC null wird, und durch Speichern (z.B. in einem nichtflüchtigen Speicher) dieser Einstellung, so dass sie später während des Betriebs verwendet werden kann. Abhängig von den tatsächlichen Flussspannungen der einzelnen LED's in der Kette kann das während des Betriebs tatsächlich verwendete Teilerverhältnis knominal von dem anfänglichen Wert m/N abweichen aufgrund des oben erwähnten Nullabgleichs. Statt des Nullabgleichs am Ende der Produktion oder zusätzlich zu diesen kann die Spannungsdifferenz bei jedem Einschalten der Schaltung gemessen werden. Der Fenster-Komparator muss eine Spannungsänderung von ± 0,5·(VLED-ΔVLED) detektieren, d.h. die Schwellwerte des Komparators sind ± 0,5·(VLED-ΔVLED)-VLSB, wobei VLSB jene Spannung ist, die dem niedrigsten Bit entspricht (least significant bit, LSB, d.h. VAC/256).
  • Es sei angemerkt, dass der Digitalpotentiometer mit den Puffern B1 und B2 auch als Digital-Analog-Wandler (DAC) angesehen werden kann, welchem als Referenzspannung die Spannung VAC zugeführt ist und der eine analoge Ausgangsspannung VSC erzeugt nach Maßgabe eines digitalen Eingangssignals CTRL. Selbstverständlich kann jeder beliebige DAC-Typ anstatt des Digitalpotentiometers verwendet werden. Eine Volldigitalimplementierung wird später unter Bezugnahme auf 3 erläutert.
  • Um nicht nur Kurzschluss-Defekte sonder auch Leerlauf-Defekte erkennen zu können, können die Beispiele aus den 1 bzw. 2 eine Schaltung aufweisen zu Detektion, ob der Laststrom durch die Beleuchtungseinheit einen bestimmten nominalen Wert überschreitet oder nicht. In den dargestellten Beispielen wird ein Strommesssignal VC mit Hilfe eines Shunt-Widerstands Rsense bereitgestellt, der in Serie zu der Beleuchtungseinrichtung geschaltet ist oder der, als Alternative, in der Beleuchtungseinheit integriert sein kann. Jedoch können auch andere Methoden zur Strommessung verwendet werden. Im Falle, dass der Laststrom der Beleuchtungseinheit mit Hilfe eines MOSFETs geschaltet wird, kann auch eine Sense-FET-Anordnung verwendet werden, um ein Strommesssignal zu erzeugen. In manchen Anwendungen kann ein den Laststrom repräsentierendes Signal direkt an der Stromquelle, welche den Strom für die Beleuchtungseinheit zur Verfügung stellt, abgegriffen werden (vgl. Stromquelle Q in den 1 und 2).
  • In dem in 2 gezeigten Beispiel wird das Strommesssignal mit einem Schwellwert unter Verwendung eines Komparators K3 verglichen, wobei der Schwellwert durch die Hysterese des Komparators K3 bestimmt wird. Der Ausgang OOPEN des Komparators K3 zeigt an (durch einen entsprechenden Logikpegel „High“), ob das Strommesssignal VC unterhalb des Schwellwerts liegt, was bedeutet, dass kein Strom durch die Beleuchtungseinheit fließt, was wiederum auf einen Leerlauf-Defekt einer LED hinweist.
  • Um eine fehlerhafte Detektion eines Kurzschlusses zu vermeiden, kann der Ausgang des Fensterkomparators (umfassend K1 , K2 und G1 ) mit dem Ausgang OOPEN, der einen Leerlauf signalisiert, mit Hilfe eines weiteren Gatters G2 verknüpft werden, so dass der Ausgang des Fensterkomparators nur dann an einen Ausgangsanschluss OSHORT durchgeschaltet wird, wenn der Komparator K3 nicht einen Leerlauf signalisiert. In den dargestellten Beispielen ist das Gatter G2 ein UND-Gatter mit einem invertiertem Eingang. Jedoch können ohne Weiteres auch andere Typen von Gattern verwendet werden, um die gleiche Funktionalität zu implementieren. Des Weiteren können unterschiedliche Logikpegel („High“ oder „Low“) verwendet werden, um defekte LEDs anzuzeigen.
  • Ein weiteres Beispiel der vorliegenden Erfindung ist in 3 dargestellt. Dieses Beispiel stellt eine voll digitale Implementierung der Detektion fehlerhafter LEDs einer LED-Kette dar. Es verwendet zumindest einen Analog-Digital-Konverter ADC sowie eine Recheneinheit ALU (Arithmetik-Logik-Einheit), welche z.B. in einem Mikrokontroller oder einem digitalen Signalprozessor (DSP) integriert sein kann. In dem Beispiel aus 3 ist die Funktion des Fensterkomparators (vgl. 1, Komponenten K1 , K2 , G1 ) in der Recheneinheit ALU digital implementiert. Daher werden die elektrischen Potentiale VA, VB und VC an den Schaltungsknoten A, B bzw. C digitalisiert. Die Digitalisierung kann dabei mit Hilfe dreier Analog-Digital-Konverter parallel vorgenommen werden oder, als Alternative, mit Hilfe eines Multiplexers MUX', der sequentiell den Analog-Digital-Konverter ADC mit den Schaltungsknoten A, B bzw. C verbindet. Der Multiplexer MUX' sowie der Analog-Digital-Konverter ADC können ebenfalls durch die Recheneinheit ALU gesteuert werden. Der Recheneinheit ALU werden digitale Werte zugeführt, welche die elektrischen Potentiale VA, VB sowie VC repräsentieren, und ist darauf programmiert, den Spannungsabfall VAC über der LED-Kette zu berechnen, nämlich V AC = V A V C ,
    Figure DE102012107766B4_0014
    sowie den Spannungsbruchteil VBC an einem Mittenabgriff der LED-Kette V BC = V B V C .
    Figure DE102012107766B4_0015
  • Nachdem die Spannungswerte VAC sowie VBC berechnet worden sind, kann der aktuelle Wert VBC mit dem nominellen Wert knominal .VAC verglichen werden, wie dies bereits oben unter Bezugnahme auf das Beispiel ais 2 erläutert wurde, wobei der Faktor knominal anfangs auf den Wert VBC/VAC gesetzt wird, so dass - im Falle einer fehlerlosen LED-Kette - die tatsächlichen Werte der Spannungen VBC und VSC = knominal▪VAC gleich sind und die Differenz VBS=VBC-VSC null ergibt.
  • Vor dem Nullabgleich kann der Faktor knominal auf den Angangswert knominal=m/N gesetzt werden, wobei N der gesamten Anzahl der in Serie geschalteten LEDs in der LED-Kette entspricht und m die Zahl jener LEDs ist, welche zwischen die Schaltungsknoten B und C geschaltet sind. Daraus folgend kann der Faktor knominal „abgesimmt“ werden wie oben bereits unter Bezugnahme auf 2 erläutert. Analog zu dem Beispiel aus 2 kann der Digitalwert, der das Potenzial VC repräsentiert, als Strommesssignal verwendet werden. Folglich kann der das Potenzial VC repräsentierende Digitalwert verwendet werden, um zu prüfen, ob ein „Leerlauf-Fehler“ (open circuit defect) in einer der LEDs vorliegt, was dann der Fall ist, wenn VC nicht einen vorgegebenen Schwellwert VTH überschreitet.
  • Ein beispielhafter Algorithmus, der von der Recheneinheit ALU ausgeführt werden kann, ist im Folgenden dargestellt:
    • wenn VC > VTH, dann
      • berechne VAC und VBC;
      • berechne VSC = m·VAC/N;
      • wenn VBC < (VSC-ΔV) oder VBC > (VSC+ΔV), dann
        • signalisiere Kurzschluss;
    • andernfalls
      • signalisiere Leerlauf.
  • Für einen Fachmann ist erkennbar, dass der obige Algorithmus auf unterschiedliche Weise abgeändert werden kann, ohne dessen eigentliche Funktion zu verändern. Abhängig von der verwendeten Hardware (z. B. der Recheneinheit ALU) kann die optimale Implementierung aufgrund spezieller Anforderungen der Hardware variieren. Eine alternative Implementierung des obigen Algorithmus könnte z.B. wie folgt aussehen:
    • wenn VC > VTH, dann
      • berechne VAC und VBC;
      • berechne k = VBC/VAC;
      • berechne knominal = m/N;
      • wenn k < (knominal-Δk) oder k > (knominal+Δk), dann
        • signalisiere Kurzschluss;
    • andernfalls
      • signalisiere Leerlauf.
  • Die oben beschriebe Schaltung zur Fehlererkennung kann kombiniert werden mit einer Treiberschaltung, die dazu ausgebildet ist, die Beleuchtungseinheit mit einem bestimmten Laststrom-Sollwert zu versorgen. Eine Stromquelle Q, wie sie z.B. in den 2 und 3 dargestellt ist, kann als Teil der Treiberschaltung angesehen werden. Um die Schaltung zur Fehlererkennung von der Beleuchtungseinheit zu entkoppeln, können Puffer B1 und B2 (Impedanzwandler) mit einer hohen Eingangsimpedanz verwendet werden, um zu vermeiden, dass ein Teil des Laststroms über den Spannungsteiler aus der 2 abfließt. Sofern jedoch der Gesamtwiderstand des Spannungsteilers hoch genug ist, können die Puffer auch weggelassen und durch eine direkte Verbindung zwischen dem Spannungsteiler und der Beleuchtungseinrichtung ersetzt werden. Puffer können auch eingangsseitig mit dem Analog-Digital-Wandler verbunden werden (vgl. das Beispiel aus 3), wenn die Eingangsimpedanz des Analog-Digital-Wandlers nicht hoch genug ist.
  • Nachdem eine kurzgeschlossene LED detektiert wurde, wird das Verhältnis knominal reinitialisiert, so dass die Differenzspannung VBS wieder auf Null abgeglichen wird, um in der Lage zu sein, zu detektieren, wann eine zweite LED in Form eines Kurzschlusses ausfällt. Gleichzeitig ein Zählerwert inkrementiert, um die Anzahl der fehlerhaften (kurzgeschlossenen) LED's in der LED-Kette zu zählen. Das zählen der fehlerhaften LED's ermöglicht die Feststellung, wann die Beleuchtungseinrichtung mit der LED-Kette ausgetauscht werden muss, weil zu viele LED's ausgefallen sind und die verbleibende Intensität zu gering ist.

Claims (16)

  1. Vorrichtung zur Erkennung von Fehlfunktionen in einer Beleuchtungseinheit, die eine Vielzahl von in Serie geschalteter Leuchtdioden (LD1, LD2, ..., LDN) aufweist; die Vorrichtung umfasst: einen ersten, einen zweiten und einen dritten Schaltungsknoten (A; C; B), die eine Schnittstelle zu der Beleuchtungseinheit bilden, so dass die Spannung (VAC), welche die Vielzahl von Leuchtdioden (LD1, LD2, ..., LDN) versorgt, zwischen dem ersten und dem zweiten Schaltungsknoten (A; C) anliegt und ein erster Bruchteil der Versorgungsspannung (VBC) zwischen dem dritten und dem zweiten Schaltungsknoten (B; C) anliegt; eine Auswerteeinheit, die mit dem ersten, dem zweiten und dem dritten Schaltungsknoten (A; B; C) verbunden und dazu ausgebildet ist, auszuwerten, ob der erste Bruchteil der Versorgungsspannung (VBC) innerhalb eines vordefinierten Toleranzbereichs (ΔV) um einen Sollwert liegt, der definiert ist als zweiter Bruchteil der Versorgungsspannung (knominal· VAC), wobei der zweite Bruchteil (knominal·VAC) derart voreingestellt ist, dass der Sollwert im Wesentlichen gleich jener Spannung ist, welche zwischen dritten und zweiten Schaltungsknoten anliegt, wenn die Beleuchtungseinheit ausschließlich funktionsfähige LEDs umfasst; und eine Schaltungsanordnung, die dazu ausgebildet ist, wenn eine defekte Leuchtdiode detektiert wurde, den voreingestellten zweiten Bruchteil (VSC) zu aktualisieren, sodass der zweite Bruchteil (knominal· VAC) wieder dem ersten Bruchteil (VBC) der Versorgungsspannung entspricht, und die weiter dazu ausgebildet ist, einen Zähler zu erhöhen, der die Anzahl der defekten Leuchtdioden zählt.
  2. Vorrichtung gemäß Anspruch 1, wobei die Auswerteeinheit eine Messschaltung (RSENSE) aufweist, die dazu ausgebildet ist, ein Signal (Vc) bereitzustellen, welches den Laststrom repräsentiert, der durch die Beleuchtungseinheit fließt.
  3. Vorrichtung gemäß Anspruch 2, wobei die Auswerteschaltung einen Komparator (K3) aufweist, der dazu ausgebildet ist, abhängig vom den Laststrom repräsentierenden Signal (Vc) ein erstes Ausgangssignal (OOPEN) zur Verfügung zu stellen, das anzeigt, ob in der Beleuchtungseinheit ein Leerlauf-Defekt vorliegt.
  4. Vorrichtung gemäß einem der Ansprüche 1 bis 3, wobei die Auswerteeinheit einen Spannungsteiler (R1, R2, ..., Rm, Rm+1, ..., RN) aufweist, der an den ersten und den zweiten Schaltungsknoten (A; C) gekoppelt und dazu ausgebildet ist, an einem Mittelabgriff einen einstellbaren Bruchteil (knominal· VAC) der Potenzialdifferenz (VAC) zwischen dem ersten und dem zweiten Schaltungsknoten (A; C) bereitzustellen, wobei der Bruchteil so eingestellt wird, dass die Spannung (Vsc) an dem Mittelabgriff gleich jener Spannung (VBC) ist, welche zwischen dem dritten und dem zweiten Schaltungsknoten abfällt, wenn die Beleuchtungseinheit ausschließlich funktionsfähige LEDs umfasst.
  5. Vorrichtung gemäß einem der Ansprüche 1 bis 4, wobei die Auswerteeinheit einen Fensterkomparator (K1, K2) umfasst, dem als Eingangssignale das elektrische Potential (VBC) an dem dritten Schaltungsknoten (B) sowie der vordefinierte Bruchteil des Potenzialdifferenz (VAC) zwischen dem ersten und zweiten Schaltungsknoten (A; C) zugeführt sind.
  6. Vorrichtung gemäß Anspruch 5, wobei die Auswerteeinheit Folgendes aufweist: eine Messschaltung (RSENSE), die dazu ausgebildet ist, ein Signal bereitzustellen, welches den Laststrom durch die Beleuchtungseinheit repräsentiert; und einen Komparator (K3), der dazu ausgebildet ist, abhängig von dem den Laststrom repräsentierenden Signal ein erstes Ausgangssignal (OOPEN) bereitzustellen, welches anzeigt, ob die Beleuchtungseinrichtung einen Leerlaufdefekt aufweist.
  7. Vorrichtung gemäß Anspruch 6, wobei die Auswerteeinheit des Weiteren eine Logikschaltung (G1) aufweist, die dazu ausgebildet ist, ein zweites Ausgangssignal (OSHORT) bereitzustellen, welche anzeigt, ob die Beleuchtungseinrichtung einen Kurzschluss aufweist, wobei das zweite Ausgangssignal (OSHORT) das Ausgangssignal des Fensterkomparators repräsentiert für den Fall, dass das erste Ausgangssignal keinen Leerlaufdefekt anzeigt.
  8. Vorrichtung gemäß einem der Ansprüche 1 bis 7, wobei die Auswerteeinheit einen Spannungsteiler umfasst, der an den ersten und den zweiten Schaltungsknoten (A; C) gekoppelt ist; der Spannungsteiler weist auf: eine Vielzahl von Mittelabgriffen; und einen Multiplexer (MUX), der dazu ausgebildet ist einen der Mittelabgriffe nach Maßgabe eines Steuersignals (CTRL) auszuwählen und diesen mit einem Ausgang des Multiplexers (MUX) zu verbinden, wodurch ein elektrisches Potential am Ausgang des Multiplexers bereitgestellt ist, welches einen zweiten Bruchteil der Versorgungsspannung (VAC), die zwischen den ersten und den zweiten Schaltungsknoten (A; C) anliegt, bildet, wobei das Steuersignal (CTRL) derart voreingestellt wird, dass die Spannung (Vsc) am Ausgang des Multiplexers im Wesentlichen gleich der an den dritten Schaltungsknoten (B) anliegenden Spannung (VBC) ist, für den Fall, dass die Beleuchtungseinrichtung nur funktionsfähige LEDs umfasst.
  9. Vorrichtung gemäß einem der Ansprüche 1 bis 8, wobei die Auswerteeinheit einen Analog/Digital-Wandler (ADC) aufweist, der mit dem ersten, dem zweiten und dem dritten Schaltungsknoten (A; B; C) verbunden und dazu ausgebildet ist, Digitalwerte zur Verfügung zu stellen, welche den elektrischen Potentialen (VA, VB, VC), die an dem ersten, dem zweiten bzw. dem dritten Schaltungsknoten (A, B, C) anliegen, repräsentieren.
  10. Vorrichtung gemäß Anspruch 9, wobei der Analog/Digital-Wandler einen Multiplexer aufweist, wobei der Multiplexer derart mit dem Analog/Digital-Wandler (ADC) verbunden ist, dass der Multiplexer sequentiell die elektrischen Potentiale Potentialen (VA, VB, VC),dem Analog/Digital-Wandler (ADC) zuführt.
  11. Vorrichtung gemäß Anspruch 9 oder 10, wobei die Auswerteschaltung des Weiteren eine Recheneinheit (µC, DSP) umfasst, die mit dem Analog/Digital-Wandler (ADC) verbunden ist, wobei die Recheneinheit dazu ausgebildet ist, zu entscheiden, ob der Digitalwert, der den elektrischen Potential (VB) am dritten Schaltungsknoten (B) repräsentiert, größer ist als der voreingestellte zweite Bruchteil zusätzlich einer zusätzlichen Toleranz, oder geringer ist als der voreingestellte zweite Bruchteil abzüglich der zulässigen Toleranz.
  12. Vorrichtung gemäß Anspruch 11, wobei die Recheneinheit weiter dazu ausgebildet ist, einen der von dem Digital/Analog-Wandler (ADC) gewandelten Digitalwert mit einem Schwellwert zu vergleichen, wobei ein Ergebnis des Vergleichs anzeigt, ob die Beleuchtungseinrichtung einen Leerlaufdefekt aufweist.
  13. Vorrichtung gemäß Anspruch 11 oder 12, wobei die Recheneinheit weiter dazu ausgebildet ist, anzuzeigen, dass ein Kurzschluss in der Beleuchtungseinrichtung vorliegt, wenn kein Leerlaufdefekt detektiert wird und der Digitalwert, welcher dem elektrischen Potential am dritten Schaltungsknoten entspricht, um mehr als einen zulässigen Toleranzwert von dem voreingestellten zweiten Bruchteil abweicht.
  14. Vorrichtung gemäß einem der Ansprüche 1 bis 13, die weiter eine Vielzahl von in Serie geschalteten Leuchtdioden aufweist.
  15. Verfahren zum Detektierten von Fehlfunktionen in einer Beleuchtungseinrichtung, welche eine Vielzahl von Leuchtdioden umfasst, das Verfahren weist auf: Messen einer Spannung (VAC), welche die Vielzahl von Leuchtdioden versorgt; Messen eines ersten Bruchteils der Spannung (VBC) an einem Mittelabgriff der Serienschaltung von Leuchtdioden; und Beurteilen, ob der gemessene erste Bruchteil (VBC) innerhalb eines vordefinierten Toleranzbereichs um einen Sollwert (knominal VAC) liegt, der als zweiter Bruchteil (Vsc) der gemessenen Versorgungsspannung definiert ist, wobei der zweite Bruchteil (Vsc) derart eingestellt wird, dass der Sollwert im Wesentlichen der Spannung (VBC) an dem Mittelabgriff entspricht, für den Fall, dass die Beleuchtungseinrichtung nur funktionsfähige Leuchtdioden aufweist, wobei - nachdem eine kurzgeschlossene LED detektiert wurde - das Verfahren weiterhin aufweist: Aktualisieren des voreingestellten zweiten Bruchteils (Vsc), so dass dieser wieder gleich dem ersten Bruchteil (VBC) der Versorgungsspannung entspricht, der an dem Mittelabgriff der Serienschaltung von Leuchtdioden anliegt; und Erhöhen eines Zählers, der die Anzahl der defekten LEDs zählt.
  16. Verfahren gemäß Anspruch 15, wobei der voreingestellte zweite Bruchteil der gemessenen Spannung an einem Mittelabgriff eines programmierbaren Spannungsteilers abgegriffen wird, dem die gleiche Versorgungsspannung zugeführt wird, wie der Serienschaltung von Leuchtdioden.
DE102012107766.5A 2011-08-30 2012-08-23 Fehlererkennung für eine Serienschaltung elektrischer Lasten Active DE102012107766B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/221,562 2011-08-30
US13/221,562 US8860427B2 (en) 2009-04-20 2011-08-30 Failure detection for series of electrical loads

Publications (2)

Publication Number Publication Date
DE102012107766A1 DE102012107766A1 (de) 2013-02-28
DE102012107766B4 true DE102012107766B4 (de) 2019-01-31

Family

ID=47665369

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012107766.5A Active DE102012107766B4 (de) 2011-08-30 2012-08-23 Fehlererkennung für eine Serienschaltung elektrischer Lasten

Country Status (2)

Country Link
CN (1) CN102970806A (de)
DE (1) DE102012107766B4 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9772076B2 (en) 2013-09-30 2017-09-26 Osram Sylvania Inc. Cuttable flexible light engines
DE102014107947A1 (de) 2014-06-05 2015-12-17 Pintsch Bamag Antriebs- Und Verkehrstechnik Gmbh LED-Einheit mit Spannungsüberwachung, Verwendung einer solchen LED-Einheit sowie LED-Leuchte mit einer solchen LED-Einheit
US9502958B2 (en) * 2015-01-30 2016-11-22 Infineon Technologies Ag Automatic short LED detection for light emitting diode (LED) array load
CN106405364A (zh) * 2016-08-31 2017-02-15 吉林华微电子股份有限公司 具有串联测试电路的二极管寿命测试仪
TWI607673B (zh) * 2017-03-21 2017-12-01 聚積科技股份有限公司 Failure detection system and method
TWI625532B (zh) * 2017-03-21 2018-06-01 失效偵測系統及其方法
JP6594590B2 (ja) 2017-06-19 2019-10-23 三菱電機株式会社 車載用照明装置
DE102018122067A1 (de) * 2018-09-11 2020-03-12 HELLA GmbH & Co. KGaA LED-Leuchtvorrichtung mit Fehlerdetektion und Kraftfahrzeug
DE102018131270A1 (de) * 2018-12-07 2020-06-10 HELLA GmbH & Co. KGaA Verfahren zur Erkennung eines Kurzschlusses in einem Leuchtmittel eines Fahrzeugs
DE102018132077A1 (de) 2018-12-13 2020-06-18 HELLA GmbH & Co. KGaA Schaltungsanordnung und Verfahren zur Erkennung eines Kurzschlusses in einer Leuchteinheit
CN113095395A (zh) * 2021-04-07 2021-07-09 深圳市道通科技股份有限公司 汽车总线故障分析方法、装置、电子设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096746A1 (en) 2005-10-21 2007-05-03 Alcatel Transport Solution Deutschland Gmbh Monitoring device for an array of electrical units
DE102007001501A1 (de) 2006-01-12 2007-07-19 Denso Corp., Kariya Fahrzeugscheinwerfer-Vorrichtung
US20100264828A1 (en) * 2009-04-20 2010-10-21 Fabrizio Cortigiani Failure Detection for Series of Electrical Loads

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE348354T1 (de) * 2000-10-20 2007-01-15 Int Rectifier Corp Ballaststeuer-ic mit leistungsfaktorkorrektur
JP2006210219A (ja) * 2005-01-31 2006-08-10 Koito Mfg Co Ltd 車両用灯具の点灯制御回路
SI2165578T1 (sl) * 2007-06-29 2013-12-31 Enel Distribuzione S.P.A. Priprava in postopek za odkrivanje okvare na cestni svetilki

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070096746A1 (en) 2005-10-21 2007-05-03 Alcatel Transport Solution Deutschland Gmbh Monitoring device for an array of electrical units
DE102007001501A1 (de) 2006-01-12 2007-07-19 Denso Corp., Kariya Fahrzeugscheinwerfer-Vorrichtung
US20100264828A1 (en) * 2009-04-20 2010-10-21 Fabrizio Cortigiani Failure Detection for Series of Electrical Loads
DE102010002707A1 (de) 2009-04-20 2010-11-11 Infineon Technologies Ag Fehlererkennung für eine Serienschaltung elektrischer Lasten

Also Published As

Publication number Publication date
CN102970806A (zh) 2013-03-13
DE102012107766A1 (de) 2013-02-28

Similar Documents

Publication Publication Date Title
DE102012107766B4 (de) Fehlererkennung für eine Serienschaltung elektrischer Lasten
DE102010002707B4 (de) Fehlererkennung für eine Serienschaltung von Leuchtdioden
DE102007003575B4 (de) Beleuchtungssteuergerät für eine Fahrzeugbeleuchtungsvorrichtung
DE102012107882B4 (de) Treiberschaltung zum effizienten Ansteuern einer grossen Anzahl von LEDs
DE102004027676B4 (de) Verfahren und Vorrichtung zum Prüfen wenigstens eines LED-Strangs
DE102015116943B4 (de) Detektion eines einzelnen LED-Fehlers in einer LED-Kette
DE102016101549B4 (de) Automatische Leuchtdioden-Kurzschlussdetektierung für eine Last aus Leuchtdioden-Arrays
DE102008047731B4 (de) Verfahren zur Fehlererkennung in einer Beleuchtungsvorrichtung
DE10115388A1 (de) Ansteuerschaltung für ein LED-Array
EP2966939A1 (de) Led-einheit mit spannungsüberwachung, verwendung einer solchen led-einheit sowie led-leuchte mit einer solchen led-einheit
DE102008048870A1 (de) Stromerfassungsschaltung und Stromerfassungsverfahren
DE102011116231B4 (de) Beleuchtungsanordnung und Verfahren zum Erkennen eines Kurzschlusses bei Dioden
DE102016125575A1 (de) Verbesserter Schutz, verbesserte Diagnose und verbesserte Steuerung einer Leistungsverteilung und Steuereinrichtungen
DE602004003382T2 (de) Unterstromsensoranordnung und verfahren
DE102016105516B3 (de) Verfahren zur Überwachung mindestens zweier unterschiedlich langer LED-Ketten mit Hilfe programmierbarer Spannungsteiler
DE102015008109A1 (de) Vorrichtung zur Überwachung mindestens zweier LED-Ketten
DE10359196B4 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
DE102011004980A1 (de) Batteriemodul und Batterie mit redundanter Zellspannungserfassung
DE102018131803A1 (de) Verfahren zum detektieren eines defekts in einer led-kette und elektronische schaltung mit wenigstens einer led-kette
EP2645529A1 (de) Schaltungsanordnung und Verfahren zum Testen eines Leuchtdiodenzweigs einer Schaltungsanordnung
DE60302434T2 (de) Erkennung von Anhängeranwesenheit und -typ durch Stromdetektion
DE102008056211B4 (de) Verfahren und Vorrichtung zur Erkennung eines Lastausfalls zumindest einer Last, die eine Teilmenge einer Gruppe von wenigstens zwei Lasten bildet
DE102013110838B3 (de) Anordnung und Verfahren zur Überwachung mehrerer LED-Stränge sowie LED-Leuchte mit einer solchen Anordnung
DE4422992C1 (de) Verfahren zum Prüfen eines batteriebetriebenen, elektronischen Gerätes auf ausreichende Versorgungsspannung
DE102008020667A1 (de) Verfahren zur Fehlerüberwachung an einem Beleuchtungsausgang eines Kraftfahrzeuges

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H05B0037030000

Ipc: H05B0047200000

R082 Change of representative