DE102011118032A1 - Expressionsvektoren zur verbesserten Proteinsekretion - Google Patents

Expressionsvektoren zur verbesserten Proteinsekretion Download PDF

Info

Publication number
DE102011118032A1
DE102011118032A1 DE102011118032A DE102011118032A DE102011118032A1 DE 102011118032 A1 DE102011118032 A1 DE 102011118032A1 DE 102011118032 A DE102011118032 A DE 102011118032A DE 102011118032 A DE102011118032 A DE 102011118032A DE 102011118032 A1 DE102011118032 A1 DE 102011118032A1
Authority
DE
Germany
Prior art keywords
acid sequence
amino acid
seq
protein
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011118032A
Other languages
English (en)
Inventor
Christian Degering
Thorsten Eggert
Stefan Evers
Dr. Maurer Karl-Heinz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE102011118032A priority Critical patent/DE102011118032A1/de
Priority to CN201280026365.0A priority patent/CN103649310A/zh
Priority to DK16178440.0T priority patent/DK3118310T3/da
Priority to EP12723512.5A priority patent/EP2714902B1/de
Priority to ES12723512.5T priority patent/ES2606553T3/es
Priority to DK12723512.5T priority patent/DK2714902T3/en
Priority to KR1020137034520A priority patent/KR101956142B1/ko
Priority to US14/122,562 priority patent/US9803183B2/en
Priority to DK18212311.7T priority patent/DK3527661T3/da
Priority to CA2835746A priority patent/CA2835746A1/en
Priority to RU2013158458A priority patent/RU2661790C2/ru
Priority to PCT/EP2012/059901 priority patent/WO2012163855A1/de
Priority to EP16178440.0A priority patent/EP3118310B1/de
Priority to EP18212311.7A priority patent/EP3527661B1/de
Priority to PL12723512T priority patent/PL2714902T3/pl
Priority to JP2014513143A priority patent/JP6324309B2/ja
Priority to BR112013030846A priority patent/BR112013030846A2/pt
Priority to ES16178440T priority patent/ES2763577T3/es
Priority to CN201710933102.2A priority patent/CN107574177B/zh
Priority to MX2013013616A priority patent/MX340485B/es
Priority to MX2016008931A priority patent/MX363519B/es
Publication of DE102011118032A1 publication Critical patent/DE102011118032A1/de
Priority to MX2019003360A priority patent/MX2019003360A/es
Priority to JP2017052565A priority patent/JP6522030B2/ja
Priority to US15/712,652 priority patent/US10494622B2/en
Priority to US16/700,322 priority patent/US11046961B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • C12N15/625DNA sequences coding for fusion proteins containing a sequence coding for a signal sequence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Die Sekretion eines Proteins aus einer Wirtszelle soll verbessert werden, um die Produktausbeute an Protein in einer Fermentation zu steigern. Dies gelingt durch einen Expressionsvektor umfassend a) eine Promotorsequenz und b) eine Nukleinsäuresequenz, die für ein Protein codiert, wobei das Protein ein Signalpeptid und eine weitere Aminosäuresequenz umfasst und das Signalpeptid eine Aminosäuresequenz umfasst, die zu der in SEQ ID NO. 2 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 4 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 6 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist, oder das Signalpeptid eine Aminosäuresequenz umfasst, die zu mindestens einer dieser Sequenzen strukturhomolog ist.

Description

  • Die Erfindung liegt auf dem Gebiet der Biotechnologie, insbesondere der mikrobiellen Proteinsynthese. Die Erfindung betrifft insbesondere Expressionsvektoren zur Herstellung von Proteinen und schlägt ferner Wirtszellen vor, die derartige Expressionsvektoren enthalten. Die Erfindung betrifft ferner Verfahren und Verwendungen derartiger Expressionsvektoren und Wirtszellen zur Proteinherstellung.
  • Für die Herstellung von Proteinen können Wirtszellen, insbesondere Mikroorganismen, eingesetzt werden, die die Gene der interessierenden Proteine exprimieren. Das Gen eines Proteins von Interesse (Transgen) wird in der Regel in die Wirtszellen derart eingebracht, dass es von diesen exprimiert wird. Häufig liegt es auf einem so genannten Expressionsvektor zusammen mit einer oder mehreren Promotorsequenzen (Promotoren) vor, wodurch die Genexpression ermöglicht wird.
  • Für die großtechnische, biotechnologische Produktion werden die betreffenden Wirtszellen in Fermentern kultiviert, die den Stoffwechseleigenschaften der Zellen entsprechend ausgestaltet sind. Während der Kultivierung verstoffwechseln die Wirtszellen das angebotene Substrat und bilden das gewünschte Produkt, das nach Beendigung der Fermentation üblicherweise von den Produktionsorganismen abgetrennt wird und aus dem Fermenterbrei und/oder dem Fermentationsmedium aufgereinigt und/oder aufkonzentriert wird.
  • Es ist grundsätzlich wünschenswert, eine möglichst hohe Produktausbeute in der Fermentation zu erhalten. Die Produktausbeute ist dabei abhängig von mehreren Faktoren, beispielsweise bilden die Wirtszellen neben dem eigentlich gewünschten Produkt üblicherweise eine Vielzahl weiterer Substanzen, an denen in der Regel kein Interesse besteht. Weiter hängt die Expression eines Transgens und damit die Produktausbeute wesentlich von dem verwendeten Expressionssystem ab. Beispielsweise offenbart die internationale Patentanmeldung WO 91/02792 die verbesserte fermentative Produktion einer alkalischen Protease aus Bacillus lentus in einem optimierten Bacillus licheniformis-Stamm unter der Kontrolle genregulatorischer Sequenzen aus Bacillus licheniformis, insbesondere des Bacillus licheniformis-Promotors.
  • Vorzugsweise werden für die industrielle Produktion von Proteinen, beispielsweise hydrolytischen Enzymen, solche Wirtszellen eingesetzt, die in der Lage sind große Mengen des Proteins in den Kulturüberstand zu sezernieren, was einen aufwändigen Zellaufschluss, der bei der intrazellulären Produktion notwendig ist, überflüssig macht. Hierfür werden vorzugsweise solche Wirtszellen, beispielsweise Bacillus-Spezies, eingesetzt, die sich mit kostengünstigen Nährmedien in effizienten Hochzelldichte-Fermentationen kultivieren lassen und in der Lage sind, mehrere Gramm pro Liter des Zielproteins in den Kulturüberstand zu sezernieren. Üblicherweise wird das zu sezernierende Protein von Expressionsvektoren exprimiert, die in die Wirtszelle eingebracht worden sind und für das zu sezernierende Protein codieren. Das exprimierte Protein umfasst üblicherweise ein Signalpeptid (Signalsequenz), die dessen Export aus der Wirtszelle bewirkt. Das Signalpeptid ist üblicherweise Teil der in der Wirtszelle translatierten Polypeptidkette, es kann von dem Protein aber posttranslational noch innerhalb oder außerhalb der Wirtszelle abgespalten werden.
  • Gerade für diese extrazelluläre Produktion von heterologen Proteinen gibt es allerdings zahlreiche Engpässe und einen dementsprechend hohen Bedarf, die Abläufe der Sekretion zu optimieren. Einer dieser Engpässe ist die Auswahl eines Signalpeptids, das einen effizienten Export des Zielproteins aus der Wirtszelle erlaubt. Signalpeptide können grundsätzlich neu kombiniert werden mit Proteinen, insbesondere Enzymen. Beispielsweise wird in der Veröffentlichung von Brockmeier et al. (J. Mol. Biol. 362, S. 393–402 (2006)) die Strategie des Screenings einer Signalpeptid-Bibliothek am Beispiel einer Cutinase beschrieben. Jedoch bewirkt nicht jedes Signalpeptid auch einen ausreichenden Export des Proteins unter Fermentationsbedingungen, insbesondere industriellen bzw. großtechnischen Fermentationsbedingungen.
  • Aufgabe der Erfindung ist es daher, die Sekretion eines Proteins aus einer Wirtszelle zu verbessern und dadurch die Produktausbeute an Protein in einer Fermentation zu steigern.
  • Gegenstand der Erfindung ist ein Expressionsvektor umfassend
    • a) eine Promotorsequenz und
    • b) eine Nukleinsäuresequenz, die für ein Protein codiert, wobei das Protein ein Signalpeptid und eine weitere Aminosäuresequenz umfasst und das Signalpeptid eine Aminosäuresequenz umfasst, die zu der in SEQ ID NO. 2 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 4 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 6 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist, oder das Signalpeptid eine Aminosäuresequenz umfasst, die zu mindestens einer dieser Sequenzen strukturhomolog ist.
  • Überraschenderweise wurde gefunden, dass durch einen Expressionsvektor, der für ein Protein mit einem derartigen Signalpeptid codiert, eine verbesserte Sekretion des Proteins aus einer Wirtszelle erreicht wird, die den Expressionsvektor beinhaltet und die Nukleinsäuresequenz b) exprimiert. Hierdurch ist es in bevorzugten Ausgestaltungen der Erfindung möglich, die Produktausbeute an Protein in einer Fermentation zu steigern.
  • Ein Expressionsvektor ist eine Nukleinsäuresequenz, die bewirkt, dass das Protein in einer Wirtszelle, insbesondere einem Mikroorganismus, exprimiert werden kann. Er umfasst die genetische Information, also diejenige Nukleinsäuresequenz (Gen) b), die für das Protein codiert.
  • Die Expression einer Nukleinsäuresequenz ist dessen Übersetzung in das bzw. die von dieser Sequenz codierte(n) Genprodukt(e), also in ein Polypeptid (Protein) bzw. in mehrere Polypeptide (Proteine). Die Begriffe Polypeptid und Protein werden in der vorliegenden Anmeldung synonym verwendet. Im Sinne der vorliegenden Erfindung bezeichnet Expression folglich die Biosynthese von Ribonucleinsäure (RNA) und Proteinen aus den genetischen Informationen. In der Regel umfasst die Expression die Transkription, also die Synthese einer Boten(„messenger”)-Ribonukleinsäure (mRNA) anhand der DNA(Desoxyribonukleinsäure)-Sequenz des Gens und deren Translation in die entsprechende Polypeptidkette, die gegebenenfalls noch post-translational modifiziert werden kann. Das Exprimieren eines Proteins beschreibt folglich die Biosynthese desselben aus den genetischen Informationen, die erfindungsgemäß auf dem Expressionsvektor bereitgestellt werden.
  • Vektoren sind aus Nukleinsäuren, vorzugsweise Desoxyribonukleinsäure (DNA) bestehende genetische Elemente und sind dem Fachmann auf dem Gebiet der Biotechnologie bekannt. Sie sind insbesondere bei der Verwendung in Bakterien spezielle Plasmide, also zirkulare genetische Elemente. Zu den Vektoren können beispielsweise solche gehören, die sich von bakteriellen Plasmiden, von Viren oder von Bacteriophagen ableiten, oder überwiegend synthetische Vektoren oder Plasmide mit Elementen verschiedenster Herkunft. Mit den weiteren jeweils vorhandenen genetischen Elementen vermögen Vektoren sich in Wirtszellen, in die sie vorzugsweise durch Transformation eingebracht wurden, über mehrere Generationen hinweg als stabile Einheiten zu etablieren. Es ist dabei im Sinne der Erfindung unerheblich, ob sie sich extrachomosomal als eigene Einheiten etablieren oder in ein Chromosom bzw. chromosomale DNA integrieren. Welches der zahlreichen Systeme gewählt wird, hängt vom Einzelfall ab. Ausschlaggebend können beispielsweise die erreichbare Kopienzahl, die zur Verfügung stehenden Selektionssysteme, darunter vor allem die Antibiotikaresistenzen, oder die Kultivierbarkeit der zur Aufnahme der Vektoren befähigten Wirtszellen sein.
  • Expressionsvektoren können ferner durch Änderungen der Kulturbedingungen wie beispielsweise die Zelldichte oder die Zugabe von bestimmten Verbindungen regulierbar sein. Ein Beispiel für eine solche Verbindung ist das Galactose-Derivat Isopropyl-β-D-thiogalactopyranosid (IPTG), welches als Aktivator des bakteriellen Lactose-Operons (lac-Operons) verwendet wird.
  • Ein Expressionsvektor umfasst ferner mindestens eine Nukleinsäuresequenz, vorzugsweise DNA, mit einer Steuerungsfunktion für die Expression der für das Protein codierenden Nukleinsäuresequenz b) (eine sog. genregulatorische Sequenz). Eine genregulatorische Sequenz ist hierbei jede Nukleinsäuresequenz, deren Anwesenheit in der jeweiligen Wirtszelle die Transkriptionshäufigkeit der Nukleinsäuresequenz b) beeinflusst, vorzugsweise erhöht, die für das Protein codiert. Vorzugsweise handelt es sich um eine Promotor-Sequenz, da eine derartige Sequenz für die Expression der Nukleinsäuresequenz b) wesentlich ist. Ein erfindungsgemäßer Expressionsvektor kann aber auch noch weitere genregulatorische Sequenzen umfassen, beispielsweise eine oder mehrere Enhancer-Sequenzen. Ein Expressionsvektor im Rahmen der Erfindung umfasst folglich mindestens eine funktionelle Einheit aus der Nukleinsäuresequenz b) und einem Promotor (Expressionskassette). Sie kann, muss jedoch nicht notwendigerweise, als physische Einheit vorliegen. Der Promotor bewirkt die Expression der Nukleinsäuresequenz b) in der Wirtszelle. Ein Expressionsvektor kann im Rahmen der vorliegenden Erfindung auch auf die reine Expressionskassette aus Promotor und zu exprimierender Nukleinsäuresequenz b) beschränkt sein, wobei diese Expressionskassette extrachromosomal oder auch chromosomal integriert vorliegen kann. Derartige Ausgestaltungen erfindungsgemäßer Expressionsvektoren stellen jeweils eine gesonderte Ausführungsform der Erfindung dar.
  • Das Vorhandensein von mindestens einem Promotor ist für einen erfindungsgemäßen Expressionsvektor folglich wesentlich. Unter einem Promotor wird demnach eine DNA-Sequenz verstanden, die die regulierte Expression eines Gens ermöglicht. Natürlicherweise ist eine Promotorsequenz ein Bestandteil eines Gens und liegt oftmals an dessen 5'-Ende und somit vor dem RNA-kodierenden Bereich. Vorzugsweise liegt die Promotorsequenz in einem erfindungsgemäßen Expressionsvektor 5'-wärts von der für das Protein codierenden Nuleinsäuresequenz b). Die wichtigste Eigenschaft eines Promotors ist die spezifische Wechselwirkung mit mindestens einem DNA-bindenden Protein bzw. Polypeptid, welches den Start der Transkription des Gens durch eine RNA-Polymerase vermittelt und als Transkriptionsfaktor bezeichnet wird. Häufig sind mehrere Transkriptionsfaktoren und/oder weitere Proteine am Start der Transkription durch eine RNA-Polymerase beteiligt. Ein Promotor ist demnach vorzugsweise eine DNA-Sequenz mit Promotoraktivität, d. h. eine DNA-Sequenz, an die mindestens ein Transkriptionsfaktor zur Initiation der Transkription eines Gens zumindest transient bindet. Die Stärke eines Promotors ist messbar über die Transkriptionshäufigkeit des exprimierten Gens, also über die Anzahl der pro Zeiteinheit erzeugten RNA-Moleküle, insbesondere mRNA-Moleküle.
  • Bevorzugt liegen die Promotorsequenz (a) und die Nukleinsäuresequenz (b) hintereinander auf dem Expressionsvektor vor. Weiter bevorzugt befindet sich die Promotorsequenz (a) vor der Nukleinsäuresequenz (b) auf dem Nukleinsäuremolekül (in 5' → 3'-Orientierung). Ebenfalls bevorzugt befinden sich zwischen den beiden Nukleinsäuresequenzen (a) und (b) keine Nukleinsäuresequenzen, die die Transkriptionshäufigkeit der für das Protein codierenden Nukleinsäuresequenz (b) vermindern. Alle vorstehenden Angaben beziehen sich auf denjenigen DNA-Strang, der die für das Protein codierende Nukleinsäuresequenz (b) beinhaltet (den codierenden Strang) und nicht auf den zugehörigen codogenen DNA-Strang. Ausgehend von der für das Protein codierenden Nukleinsäuresequenz (b) befindet sich die Promotorsequenz (a) folglich vorzugsweise weiter stromaufwärts, d. h. in 5'-Richtung, auf diesem DNA-Strang.
  • Die Nukleinsäuresequenz b) codiert für das zu sezernierende Protein. Hierbei handelt es sich um dasjenige Protein, das mit Hilfe eines erfindungsgemäßen Expressionsvektors hergestellt werden soll (Zielprotein).
  • Das von der Nukleinsäuresequenz b) codierte Protein umfasst ein Signalpeptid mit einer Aminosäuresequenz, die zu der in SEQ ID NO. 2 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 4 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 6 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist. Es wurde festgestellt, dass derartige Signalpeptide eine effiziente Sekretion des sie enthaltenden Proteins, insbesondere rekombinanten Proteins, bewirken. Zunehmend bevorzugt umfasst das Signalpeptid eine Aminosäuresequenz, die zu der in SEQ ID NO. 2 angegebenen Aminosäuresequenz zu mindestens 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch ist, oder die zu der in SEQ ID NO. 4 angegebenen Aminosäuresequenz zu mindestens 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch ist, oder die zu der in SEQ ID NO. 6 angegebenen Aminosäuresequenz zu mindestens 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch ist. Besonders bevorzugt weist das Signalpeptid eine Aminosäuresequenz auf, die zu der in SEQ ID NO. 2 angegebenen Aminosäuresequenz zu mindestens 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch ist, oder die zu der in SEQ ID NO. 4 angegebenen Aminosäuresequenz zu mindestens 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch ist, oder die zu der in SEQ ID NO. 6 angegebenen Aminosäuresequenz zu mindestens 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch ist.
  • Ganz besonders bevorzugt sind jeweils die zu 100% identischen Sequenzen, so dass ein entsprechend bevorzugter Expressionsvektor dadurch gekennzeichnet ist, dass das von der Nukleinsäuresequenz b) codierte Signalpeptid eine Aminosäuresequenz gemäß SEQ ID NO. 2, SEQ ID NO. 4 oder SEQ ID NO. 6 aufweist. Für derartige Signalpeptide codierende, besonders bevorzugte Nukleinsäuresequenzen sind in SEQ ID NO. 1, SEQ ID NO. 3 und SEQ ID NO. 5 angegeben.
  • Ferner ist es möglich, anstelle der genannten Signalpeptide, die eine Sekretion des Proteins ermöglichen, zu diesen Sequenzen strukturhomologe Sequenzen zu verwenden. Unter einer strukturhomologen Sequenz wird eine Aminosäuresequenz verstanden, deren Aminosäureabfolge eine vergleichbare räumliche Faltung aufweist wie ein Signalpeptid mit der Aminosäuresequenz gemäß SEQ ID NO. 2, SEQ ID NO. 4 oder SEQ ID NO. 6. Diese räumliche Faltung bewirkt, dass sie von der Wirtszelle als sekretorische Signalsequenz erkannt wird und folglich das die strukturhomologe Signalsequenz enthaltende Protein aus der Wirtszelle ausgeschleust wird. Vorzugsweise erfolgt eine Wechselwirkung mit dem von der Wirtszelle verwendeten Translokationssystem. Die strukturhomologe Aminosäuresequenz bindet daher vorzugsweise unmittelbar oder mittelbar an mindestens eine Komponente des Translokationssystems der Wirtszelle. Unter unmittelbarer Bindung wird eine direkte Interaktion verstanden, unter mittelbarer Bindung wird verstanden, dass die Interaktion über eine oder mehrere weitere Komponenten, insbesondere Proteine oder andere Moleküle, erfolgen kann, die als Adapter fungieren und dementsprechend eine Brückenfunktion haben zwischen der strukturhomologen Aminosäuresequenz und einer Komponente des Translokationssystems der Wirtszelle.
  • Die Bestimmung der Identität von Nukleinsäure- oder Aminosäuresequenzen erfolgt durch einen Sequenzvergleich. Solch ein Vergleich erfolgt dadurch, dass ähnliche Abfolgen in den Nukleotidsequenzen oder Aminosäuresequenzen einander zugeordnet werden. Dieser Sequenzvergleich erfolgt vorzugsweise basierend auf dem im Stand der Technik etablierten und üblicherweise genutzten BLAST-Algorithmus (vgl. beispielsweise Altschul, S. F., Gish, W., Miller, W. Myers, E. W. & Lipman, D. J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215: 403–410, und Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs"; Nucleic Acids Res., 25, S. 3389–3402) und geschieht prinzipiell dadurch, dass ähnliche Abfolgen von Nukleotiden oder Aminosäuren in den Nukleinsäure- bzw. Aminosäuresequenzen einander zugeordnet werden. Eine tabellarische Zuordnung der betreffenden Positionen wird als Alignment bezeichnet. Ein weiterer im Stand der Technik verfügbarer Algorithmus ist der FASTA-Algorithmus. Sequenzvergleiche (Alignments), insbesondere multiple Sequenzvergleiche, werden üblicherweise mit Computerprogrammen erstellt. Häufig genutzt werden beispielsweise die Clustal-Serie (vgl. beispielsweise Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497–3500), T-Coffee (vgl. beispielsweise Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217) oder Programme, die auf diesen Programmen bzw. Algorithmen basieren. Im Rahmen der vorliegenden Erfindung werden Sequenzvergleiche und Alignments bevorzugt mit dem Computer-Programm Vector NTI® Suite 10.3 (Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, Kalifornien, USA) mit den vorgegebenen Standard(Default)-Parametern erstellt.
  • Solch ein Vergleich erlaubt eine Aussage über die Ähnlichkeit der verglichenen Sequenzen zueinander. Sie wird üblicherweise in Prozent Identität, das heißt dem Anteil der identischen Nukleotide oder Aminosäurereste an denselben bzw. in einem Alignment einander entsprechenden Positionen, angegeben. Der weiter gefasste Begriff der Homologie bezieht bei Aminosäuresequenzen konservierte Aminosäure-Austausche in die Betrachtung mit ein, also Aminosäuren mit ähnlichen Eigenschaften, da diese innerhalb des Proteins meist ähnliche Aktivitäten bzw. Funktionen ausüben. Daher kann die Ähnlichkeit der verglichenen Sequenzen auch Prozent Homologie oder Prozent Ähnlichkeit angegeben sein. Identitäts- und/oder Homologieangaben können über ganze Polypeptide oder Gene oder nur über einzelne Bereiche getroffen werden. Homologe bzw. identische Bereiche von verschiedenen Nukleinsäure- oder Aminosäuresequenzen sind daher durch Übereinstimmungen in den Sequenzen definiert. Sie weisen oftmals gleiche oder ähnliche Funktionen auf. Sie können klein sein und nur wenige Nukleotide bzw. Aminosäuren umfassen. Oftmals üben solche kleinen Bereiche für die Gesamtaktivität des Proteins essentielle Funktionen aus. Es kann daher sinnvoll sein, Sequenzübereinstimmungen nur auf einzelne, gegebenenfalls kleine Bereiche zu beziehen. Soweit nicht anders angegeben beziehen sich Identitäts- bzw. Homologieangaben in der vorliegenden Anmeldung aber auf die Gesamtlänge der jeweils angegebenen Nukleinsäure- oder Aminosäuresäuresequenz.
  • Das von der Nukleinsäuresequenz b) codierte Protein umfasst ferner eine weitere Aminosäuresequenz. Bei dieser Aminosäuresequenz handelt es sich folglich um die eigentliche Aminosäuresequenz des Proteins ohne Signalpeptid. Vorzugsweise handelt es sich um die Aminosäuresequenz einen reifen Proteins. Unter einem reifen Protein wird dessen fertig prozessierte Form verstanden, da es möglich ist, dass von einem zugehörigen Gen eine immature Form codiert wird, die nach der Translation noch zur reifen Form prozessiert wird. Beispielsweise können immature Formen des Proteins Signal- und/oder Propeptide oder Elongationen am N-Terminus und/oder C-Terminus umfassen, die in der reifen Form nicht mehr vorhanden sind. Beispielsweise umfassen immature Formen von Proteasen, insbesondere Subtilasen und hierunter vor allem Subtilisine, ein Signalpeptid sowie ein Propeptid, die in der reifen (maturen) Form der Protease nicht mehr vorhanden sind. Alternativ handelt es sich bei der weiteren Aminosäuresequenz um die Aminosäuresequenz eines unreifen Proteins, welche ein Propeptid umfasst. Eine derartige Ausgestaltung kommt insbesondere auch für Proteasen, insbesondere Subtilasen und hierunter vor allem Subtilisine in Betracht. In besonders bevorzugten Ausgestaltungen umfasst die weitere Aminosäuresequenz kein weiteres Signalpeptid. Bei derartigen erfindungsgemäßen Ausgestaltungen bewirkt folglich nur das erfindungsgemäße Signalpeptid die Sektretion des Proteins aus einer Wirtszelle.
  • Besonders bevorzugt umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz eines Enzyms, insbesondere einer Protease, Amylase, Cellulase, Hemicellulase, Mannanase, Tannase, Xylanase, Xanthanase, Xyloglucanase, β-Glucosidase, einem Pektin-spaltenden Enzym, Carrageenase, Perhydrolase, Oxidase, Oxidoreduktase oder einer Lipase, insbesondere ein Enzym wie nachstehend angegeben. Ganz besonders bevorzugt umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease und hierunter eines Subtilisins.
  • Beispielsweise kann eines der nachstehend genannten Enzyme mit einem erfindungsgemäßen Expressionsvektor vorteilhaft hergestellt werden.
  • Unter den Proteasen sind Subtilisine bevorzugt. Beispiele hierfür sind die Subtilisine BPN' und Carlsberg, die Protease PB92, die Subtilisine 147 und 309, die Alkalische Protease aus Bacillus lentus, Subtilisin DY und die den Subtilasen, nicht mehr jedoch den Subtilisinen im engeren Sinne zuzuordnenden Enzyme Thermitase, Proteinase K und die Proteasen TW3 und TW7. Subtilisin Carlsberg ist in weiterentwickelter Form unter dem Handelsnamen Alcalase® von der Firma Novozymes A/S, Bagsværd, Dänemark, erhältlich. Die Subtilisine 147 und 309 werden unter den Handelsnamen Esperase®, beziehungsweise Savinase® von der Firma Novozymes vertrieben. Von der Protease aus Bacillus lentus DSM 5483 leiten sich die unter der Bezeichnung BLAP® geführten Protease-Varianten ab. Weitere bevorzugte Proteasen sind ferner beispielsweise die unter der Bezeichnung PUR geführten Enzyme. Weitere Proteasen sind ferner die unter den Handelsnamen Durazym®, Relase®, Everlase®, Nafizym®, Natalase®, Kannase® und Ovozyme® von der Firma Novozymes, die unter den Handelsnamen, Purafect®, Purafect® OxP, Purafect® Prime, Excellase® und Properase® von der Firma Genencor, das unter dem Handelsnamen Protosol® von der Firma Advanced Biochemicals Ltd., Thane, Indien, das unter dem Handelsnamen Wuxi® von der Firma Wuxi Snyder Bioproducts Ltd., China, die unter den Handelsnamen Proleather® und Protease P® von der Firma Amano Pharmaceuticals Ltd., Nagoya, Japan, und das unter der Bezeichnung Proteinase K-16 von der Firma Kao Corp., Tokyo, Japan, erhältlichen Enzyme. Bevorzugt sind ferner auch die Proteasen aus Bacillus gibsonii und Bacillus pumilus, die offenbart sind in den internationalen Patentanmeldungen WO2008/086916 und WO2007/131656 .
  • Beispiele für Amylasen sind die α-Amylasen aus Bacillus licheniformis, aus Bacillus amyloliquefaciens oder aus Bacillus stearothermophilus sowie insbesondere auch deren für den Einsatz in Wasch- oder Reinigungsmitteln verbesserte Weiterentwicklungen. Das Enzym aus Bacillus licheniformis ist von dem Unternehmen Novozymes unter dem Namen Termamyl® und von dem Unternehmen Danisco/Genencor unter dem Namen Purastar®ST erhältlich. Weiterentwicklungsprodukte dieser α-Amylase sind von dem Unternehmen Novozymes unter den Handelsnamen Duramyl® und Termamyl®ultra, von dem Unternehmen Danisco/Genencor unter dem Namen Purastar®OxAm und von dem Unternehmen Daiwa Seiko Inc., Tokyo, Japan, als Keistase® erhältlich. Die α-Amylase von Bacillus amyloliquefaciens wird von dem Unternehmen Novozymes unter dem Namen BAN® vertrieben, und abgeleitete Varianten von der α-Amylase aus Bacillus stearothermophilus unter den Namen BSG® und Novamyl®, ebenfalls von dem Unternehmen Novozymes. Des Weiteren sind die α-Amylase aus Bacillus sp. A 7-7 (DSM 12368) und die Cyclodextrin-Glucanotransferase (CGTase) aus Bacillus agaradherens (DSM 9948) zu nennen. Ebenso sind Fusionsprodukte aller genannten Moleküle einsetzbar. Darüber hinaus sind die unter den Handelsnamen Fungamyl® von dem Unternehmen Novozymes erhältlichen Weiterentwicklungen der α-Amylase aus Aspergillus niger und A. oryzae geeignet. Weitere vorteilhafte Handelsprodukte sind beispielsweise die Amylase Powerase® von dem Unternehmen Danisco/Genencor und die Amylasen Amylase-LT®, Stainzyme® und Stainzyme plus®, letztere von dem Unternehmen Novozymes. Auch durch Punktmutationen erhältliche Varianten dieser Enzyme können erfindungsgemäß hergestellt werden. Weitere bevorzugte Amylasen sind offenbart in den internationalen Offenlegungsschriften WO 00/60060 , WO 03/002711 , WO 03/054177 und WO07/079938 , auf deren Offenbarung daher ausdrücklich verwiesen wird bzw. deren diesbezüglicher Offenbarungsgehalt daher ausdrücklich in die vorliegende Patentanmeldung mit einbezogen wird. Erfindungsgemäß herzustellende Amylasen sind ferner vorzugsweise α-Amylasen.
  • Beispiele für Lipasen oder Cutinasen sind die ursprünglich aus Humicola lanuginosa (Thermomyces lanuginosus) erhältlichen, beziehungsweise weiterentwickelten Lipasen, insbesondere solche mit dem Aminosäureaustausch D96L. Sie werden beispielsweise von der Firma Novozymes unter den Handelsnamen Lipolase®, Lipolase®Ultra, LipoPrime®, Lipozyme® und Lipex® vertrieben. Des Weiteren sind beispielsweise die Cutinasen herstellbar, die ursprünglich aus Fusarium solani pisi und Humicola insolens isoliert worden sind. Von der Firma Danisco/Genencor sind beispielsweise die Lipasen beziehungsweise Cutinasen herstellbar, deren Ausgangsenzyme ursprünglich aus Pseudomonas mendocina und Fusarium solanii isoliert worden sind. Als weitere wichtige Handelsprodukte sind die ursprünglich von der Firma Gist-Brocades (inzwischen Danisco/Genencor) vertriebenen Präparationen M1 Lipase® und Lipomax® und die von der Firma Meito Sangyo KK, Japan, unter den Namen Lipase MY-30®, Lipase OF® und Lipase PL® vertriebenen Enzyme zu erwähnen, ferner das Produkt Lumafast® von der Firma Danisco/Genencor.
  • Beispiele für Cellulasen (Endoglucanasen, EG) umfassen Sequenzen der pilzlichen, Endoglucanase(EG)-reichen Cellulase-Präparation beziehungsweise deren Weiterentwicklungen, die von dem Unternehmen Novozymes unter dem Handelsnamen Celluzyme® angeboten wird. Die ebenfalls von dem Unternehmen Novozymes erhältlichen Produkte Endolase® und Carezyme® basieren auf der 50 kD-EG, beziehungsweise der 43 kD-EG aus Humicola insolens DSM 1800. Weitere herstellbare Handelsprodukte dieses Unternehmens sind Cellusoft®, Renozyme® und Celluclean®. Weiterhin herstellbar sind beispielsweise Cellulasen, die von dem Unternehmen AB Enzymes, Finnland, unter den Handelsnamen Ecostone® und Biotouch® erhältlich sind, und die zumindest zum Teil auf der 20 kD-EG aus Melanocarpus basieren. Weitere Cellulasen von dem Unternehmen AB Enzymes sind Econase® und Ecopulp®. Weitere geeignete Cellulasen sind aus Bacillus sp. CBS 670.93 und CBS 669.93, wobei die aus Bacillus sp. CBS 670.93 von dem Unternehmen Danisco/Genencor unter dem Handelsnamen Puradax® erhältlich ist. Weitere herstellbare Handelsprodukte des Unternehmens Danisco/Genencor sind „Genencor detergent cellulase L” und IndiAge®Neutra.
  • Auch durch Punktmutationen erhältliche Varianten dieser Enzyme können erfindungsgemäß hergestellt werden. Besonders bevorzugte Cellulasen sind Thielavia terrestris Cellulasevarianten, die in der internationalen Offenlegungsschrift WO 98/12307 offenbart sind, Cellulasen aus Melanocarpus, insbesondere Melanocarpus albomyces, die in der internationalen Offenlegungsschrift WO 97/14804 offenbart sind, Cellulasen vom EGIII-Typ aus Trichoderma reesei, die in der europäischen Patentanmeldung EP 1 305 432 offenbart sind bzw. hieraus erhältliche Varianten, insbesondere diejenigen, die offenbart sind in den europäischen Patentanmeldungen EP 1240525 und EP 1305432 , sowie Cellulasen, die offenbart sind in den internationalen Offenlegungsschriften WO 1992006165 , WO 96/29397 und WO 02/099091 . Auf deren jeweilige Offenbarung wird daher ausdrücklich verwiesen bzw. deren diesbezüglicher Offenbarungsgehalt wird daher ausdrücklich in die vorliegende Patentanmeldung mit einbezogen.
  • Ferner können weitere Enzyme hergestellt werden, die unter dem Begriff Hemicellulasen zusammengefasst werden. Hierzu gehören beispielsweise Mannanasen, Xanthanlyasen, Xanthanasen, Xyloglucanasen, Xylanasen, Pullulanasen, Pektin-spaltende Enzyme und β-Glucanasen. Die aus Bacillus subtilis gewonnene β-Glucanase ist unter dem Namen Cereflo® von der Firma Novozymes erhältlich. Erfindungsgemäß besonders bevorzugte Hemicellulasen sind Mannanasen, welche beispielsweise unter den Handelsnamen Mannaway® von dem Unternehmen Novozymes oder Purabrite® von dem Unternehmen Genencor vertrieben werden. Zu den Pektin-spaltenden Enzymen werden im Rahmen der vorliegenden Erfindung ebenfalls Enzyme gezählt mit den Bezeichnungen Pektinase, Pektatlyase, Pektinesterase, Pektindemethoxylase, Pektinmethoxylase, Pektinmethylesterase, Pektase, Pektinmethylesterase, Pektinoesterase, Pektinpektylhydrolase, Pektindepolymerase, Endopolygalacturonase, Pektolase, Pektinhydrolase, Pektin-Polygalacturonase, Endo-Polygalacturonase, Poly-α-1,4-Galacturanid Glycanohydrolase, Endogalacturonase, Endo-D-galacturonase, Galacturan 1,4-α-Galacturonidase, Exopolygalacturonase, Poly(galacturonat) Hydrolase, Exo-D-Galacturonase, Exo-D-Galacturonanase, Exopoly-D-Galacturonase, Exo-poly-α-Galacturonosidase, Exopolygalacturonosidase oder Exopolygalacturanosidase. Beispiele für diesbezüglich geeignete Enzyme sind beispielsweise unter den Namen Gamanase®, Pektinex AR®, X-Pect® oder Pectaway® von dem Unternehmen Novozymes, unter dem Namen Rohapect UF®, Rohapect TPL®, Rohapect PTE100®, Rohapect MPE®, Rohapect MA plus HC, Rohapect DA12L®, Rohapect 10L®, Rohapect B1L® von dem Unternehmen AB Enzymes und unter dem Namen Pyrolase® von dem Unternehmen Diversa Corp., San Diego, CA, USA erhältlich.
  • Ferner können auch Oxidoreduktasen, beispielsweise Oxidasen, Oxygenasen, Katalasen, Peroxidasen, wie Halo-, Chloro-, Bromo-, Lignin-, Glucose- oder Manganperoxidasen, Dioxygenasen oder Laccasen (Phenoloxidasen, Polyphenoloxidasen) hergestellt werden. Als geeignete Handelsprodukte sind Denilite®1 und 2 der Firma Novozymes zu nennen. Weitere Enzyme sind in den internationalen Patentanmeldungen WO 98/45398 , WO 2005/056782 , WO 2004/058961 sowie WO 2005/124012 offenbart.
  • In einer weiteren Ausführungsform der Erfindung ist die weitere Aminosäuresequenz nicht natürlicherweise zusammen mit dem Signalpeptid in einer Polypeptidkette in einem Mikroorganismus vorhanden. Folglich handelt es sich bei dem von der Nukleinsäuresequenz b) codierten Protein um ein rekombinantes Protein. Nicht natürlicherweise vorhanden bedeutet daher, dass die beiden Aminosäuresequenzen keine Bestandteile eines eigenen Proteins des Mikroorganismus sind. Ein Protein, welches das Signalpeptid und die weitere Aminosäuresequenz umfasst, kann folglich in dem Mikroorganismus nicht von einer Nukleinsäuresequenz exprimiert werden, die Teil der chromosomalen DNA des Mikroorganismus in seiner Wildtyp-Form ist. Ein derartiges Protein und/oder die hierfür jeweils codierende Nukleinsäuresequenz ist folglich in der Wildtyp-Form des Mikroorganismus nicht vorhanden und/oder kann aus der Wildtyp-Form des Mikroorganismus nicht isoliert werden. Beide Sequenzen – Signalpeptid und weitere Aminosäuresequenz – müssen in einer Wildtyp-Form eines Mikroorganismus daher zwei unterschiedlichen Polypeptidketten zugeordnet sein, sofern sie überhaupt beide in der Wildtyp-Form eines Mikroorganismus vorhanden sind bzw. sein können. Im Rahmen dieser Ausgestaltung der Erfindung wurden daher Signalpeptid und weitere Aminosäuresequenz bzw. die für sie codierenden Nukleinsäuren mit Hilfe gentechnischer Verfahren neu kombiniert, und diese Kombination von Signalpeptid und weiterer Aminosäuresequenz existiert in der Natur nicht. In der Wildtyp-Form eines Mikroorganismus ist eine derartige Verknüpfung von dem Signalpeptid mit der weiteren Aminosäuresequenz folglich nicht vorhanden, und zwar weder auf DNA- noch auf Proteinebene. Das Signalpeptid wie auch die weitere Aminosäuresequenz bzw. die hierfür jeweils codierenden Nukleinsäuresequenzen können aber jeweils natürlichen Ursprungs sein, jedoch existiert deren Kombination in der Natur nicht. Signalpeptid und weitere Aminosäuresequenz selbst können aber aus dem gleichen Mikroorganismus oder auch aus verschiedenen Mikroorganismen stammen.
  • In einer bevorzugten Ausführungsform ist eine erfindungsgemäße Nukleinsäure dadurch gekennzeichnet, dass sie eine nicht natürliche Nukleinsäure ist. Nicht natürlich bedeutet, dass eine erfindungsgemäße Nukleinsäure nicht aus einem in der Natur vorkommenden Organismus in seiner Wildtyp-Form Isoliert werden kann. Insbesondere und bezogen auf Wildtyp-Bakterien ist eine erfindungsgemäße Nukleinsäure daher keine bakterieneigene Nukleinsäure.
  • Bevorzugt stammen die Sequenzen (a) und (b) nicht von demselben bzw. denselben Organsimen, insbesondere Bakterien, sondern stammen von unterschiedlichen Organismen, insbesondere Bakterien. Unterschiedliche Bakterien sind beispielsweise Bakterien, die unterschiedlichen Stämmen oder Arten oder Gattungen angehören.
  • In einer weiteren Ausführungsform der Erfindung ist der Expressionsvektor dadurch gekennzeichnet, dass das Signalpeptid N-terminal von der weiteren Aminosäuresequenz in dem von der Nukleinsäuresequenz b) codierten Protein angeordnet ist. Das von der Nukleinsäuresequenz b) codierte Protein weist daher folgende Struktur auf: N-Terminus – Signalpeptid – (optionale zusätzliche Aminosäuresequenz) – weitere Aminosäuresequenz – C-Terminus. Eine derartige Struktur des zu exprimierenden Proteins hat sich als besonders vorteilhaft herausgestellt.
  • In einer weiteren Ausführungsform der Erfindung ist der Expressionsvektor dadurch gekennzeichnet, dass das von der Nukleinsäuresequenz b) codierte Protein ferner eine Verbindungssequenz umfasst, die zwischen dem Signalpeptid und der weiteren Aminosäuresequenz des Proteins angeordnet ist. Das von der Nukleinsäuresequenz b) codierte Protein weist daher folgende Struktur auf: N-Terminus – Signalpeptid – Verbindungssequenz (auch „Kupplung” oder „Spacer”) – weitere Aminosäuresequenz – C-Terminus. Eine derartige Struktur des zu exprimierenden Proteins hat sich ebenfalls als besonders vorteilhaft herausgestellt. Vorzugsweise weist die Verbindungssequenz eine Länge zwischen 1 und 50 Aminosäuren, zwischen 2 und 25 Aminosäuren, zwischen 2 und 15 Aminosäuren, zwischen 3 und 10 Aminosäuren und besonders bevorzugt zwischen 3 und 5 Aminosäuren auf. Ein Beispiel für eine besonders bevorzugte Verbindungssequenz ist die Aminosäureabfolge Alanin, Glutaminsäure und Phenylalanin (vom N- zum C-Terminus).
  • In einer weiteren Ausführungsform der Erfindung ist der Expressionsvektor dadurch gekennzeichnet, dass die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease umfasst, wobei die Aminosäuresequenz der Protease mindestens zu 80% identisch zu SEQ ID NO. 7 ist. Bevorzugt ist die Aminosäuresequenz der Protease mindestens zu 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch zu SEQ ID NO. 7.
  • Alternativ umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease, die mindestens zu 80% identisch zu SEQ ID NO. 8 ist. Bevorzugt ist die Aminosäuresequenz der Protease zu mindestens 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch zu SEQ ID NO. 8.
  • Alternativ umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease, die mindestens zu 80% identisch zu SEQ ID NO. 9 ist. Bevorzugt ist die Aminosäuresequenz der Protease zu mindestens 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt zu 100% identisch zu SEQ ID NO. 9.
  • Alternativ umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease, die mindestens zu 80% identisch zu SEQ ID NO. 10 ist und an Position 99 in der Zählung gemäß SEQ ID NO. 10 die Aminosäure Glutaminsäure (E) oder Asparaginsäure (D) aufweist. Bevorzugt ist die Aminosäuresequenz der Protease zu mindestens 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt identisch zu SEQ ID NO. 10 in den Positionen 1 bis 98 und 100 bis 269 in der Zählung gemäß SEQ ID NO. 10.
  • Alternativ umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease, die mindestens zu 80% identisch zu SEQ ID NO. 10 ist und an Position 99 in der Zählung gemäß SEQ ID NO. 10 die Aminosäure Glutaminsäure (E) oder Asparaginsäure (D) aufweist und ferner in der Zählung gemäß SEQ ID NO. 10 mindestens eine der folgenden Aminosäuren aufweist:
    • (a) Threonin an Position 3 (3T),
    • (b) Isoleucin an Position 4 (4I),
    • (c) Alanin, Threonin oder Arginin an Position 61 (61A, 61T oder 61R),
    • (d) Asparaginsäure oder Glutaminsäure an Position 154 (154D oder 154E),
    • (e) Prolin an Position 188 (188P),
    • (f) Methionin an Position 193 (193M),
    • (g) Isoleucin an Position 199 (199I),
    • (h) Asparaginsäure, Glutaminsäure oder Glycin an Position 211 (211D, 211E oder 211G),
    • (i) Kombinationen der Aminosäuren (a) bis (h).
  • Bevorzugt ist die Aminosäuresequenz dieser Protease zu mindestens 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% und ganz besonders bevorzugt identisch zu SEQ ID NO. 10 in allen nicht veränderten oder nicht für eine Veränderung vorgesehenen Positionen. Ganz besonders bevorzugt umfasst die weitere Aminosäuresequenz des Proteins daher die Aminosäuresequenz einer Protease, die eine gegenüber SEQ ID NO. 10 in mindestens zwei Positionen veränderte Aminosäuresequenz aufweist, wobei die erste Veränderung in der Zählung gemäß SEQ ID NO. 10 Glutaminsäure an Position 99 ist und die zweite Veränderung in der Zählung gemäß SEQ ID NO. 10 ausgewählt ist aus der Gruppe bestehend aus:
    • (a) Threonin an Position 3 (3T),
    • (b) Isoleucin an Position 4 (4I),
    • (c) Alanin, Threonin oder Arginin an Position 61 (61A, 61T oder 61R),
    • (d) Asparaginsäure oder Glutaminsäure an Position 154 (154D oder 154E),
    • (e) Prolin an Position 188 (188P),
    • (f) Methionin an Position 193 (193M),
    • (g) Isoleucin an Position 199 (199I),
    • (h) Asparaginsäure, Glutaminsäure oder Glycin an Position 211 (211D, 211E oder 211G),
    • (i) Kombinationen der Aminosäuren (a) bis (h).
  • Ebenfalls ganz besonders bevorzugt umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease, die eine gegenüber SEQ ID NO. 10 in mindestens zwei Positionen veränderte Aminosäuresequenz aufweist, wobei die erste Veränderung in der Zählung gemäß SEQ ID NO. 10 Asparaginsäure an Position 99 ist und die zweite Veränderung in der Zählung gemäß SEQ ID NO. 10 ausgewählt ist aus der Gruppe bestehend aus:
    • (a) Threonin an Position 3 (3T),
    • (b) Isoleucin an Position 4 (4I),
    • (c) Alanin, Threonin oder Arginin an Position 61 (61A, 61T oder 61R),
    • (d) Asparaginsäure oder Glutaminsäure an Position 154 (154D oder 154E),
    • (e) Prolin an Position 188 (188P),
    • (f) Methionin an Position 193 (193M),
    • (g) Isoleucin an Position 199 (199I),
    • (h) Asparaginsäure, Glutaminsäure oder Glycin an Position 211 (211D, 211E oder 211G),
    • (i) Kombinationen der Aminosäuren (a) bis (h).
  • Es wurde festgestellt, dass auch die vorstehend genannten Proteasen mit erfindungsgemäßen Expressionsvektoren besonders vorteilhaft hergestellt werden können. Für derartige Ausführungsformen der Erfindung hat sich herausgestellt, dass sich mit solchen Kombinationen von Signalpeptiden und Subtilisinen besonders gute Produktausbeuten in einer Fermentation erzielen lassen. Angegeben sind diesbezüglich die Aminosäuresequenzen der reifen Proteasen, also der fertig prozessierten Produkte. In einem erfindungsgemäßen Expressionsvektor können diesbezüglich auch weitere Sequenzen der immaturen Protease, insbesondere beispielsweise Propeptide, mit umfasst sein. In einem solchen Fall umfasst die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz der Protease und des Propeptids. Eine weitere Ausgestaltung der Erfindung ist folglich dadurch gekennzeichnet, dass die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease, insbesondere einer Protease wie vorstehend beschrieben, nebst einem bzw. ihrem Propeptid umfasst.
  • Generell gilt, dass die weitere Aminosäuresequenz des Proteins nicht lediglich die Aminosäuresequenz eines reifen Proteins umfassen muss; vielmehr können weitere Aminosäuresequenzen wie beispielsweise Propeptide von dieser Aminosäuresequenz mit umfasst sein. Dies gilt nicht nur für Proteasen, sondern für alle Proteine, insbesondere auch alle anderen Arten von Enzymen.
  • Erfindungsgemäße Nukleinsäuren und Expressionsvektoren können über an sich bekannte Verfahren zur Veränderung von Nukleinsäuren erzeugt werden. Solche sind beispielsweise in einschlägigen Handbüchern wie dem von Fritsch, Sambrook und Maniatis, „Molecular cloning: a laboratory manual", Cold Spring Harbour Laboratory Press, New York, 1989, dargestellt und dem Fachmann auf dem Gebiet der Biotechnologie geläufig. Beispiele für solche Verfahren sind die chemische Synthese oder die Polymerase-Kettenreaktion (PCR), optional in Verbindung mit weiteren molekularbiologischen und/oder chemischen bzw. biochemischen Standardmethoden.
  • Mit allen genannten Erfindungsgegenständen und Ausführungsformen sind als weitere Erfindungsgegenstände nicht menschliche Wirtszellen, die erfindungsgemäße Vektoren beinhalten, Herstellungsverfahren, in denen entsprechende Wirtszellen eingesetzt werden sowie Verwendungen entsprechender Vektoren oder Wirtszellen verbunden. Daher betreffen die vorstehenden Ausführungen diese Erfindungsgegenstände entsprechend.
  • Ein weiterer Gegenstand der Erfindung ist eine nicht menschliche Wirtszelle, die einen erfindungsgemäßen Expressionsvektor beinhaltet. Ein erfindungsgemäßer Expressionsvektor wird bevorzugt in die Wirtszelle eingebracht durch deren Transformation. Erfindungsgemäß bevorzugt erfolgt dieses dadurch, dass in einen Mikroorganismus ein erfindungsgemäßer Vektor transformiert wird, der dann eine erfindungsgemäße Wirtszelle darstellt. Alternativ können auch einzelne Komponenten, d. h. Nukleinsäure-Teile bzw. -Fragmente, beispielsweise die Komponenten (a) und/oder (b) eines erfindungsgemäßen Vektors, derart in eine Wirtszelle eingebracht werden, dass die dann resultierende Wirtszelle einen erfindungsgemäßen Vektor enthält. Dieses Vorgehen eignet sich besonders dann, wenn die Wirtszelle bereits einen oder mehrere Bestandteile eines erfindungsgemäßen Vektors enthält und die weiteren Bestandteile dann entsprechend ergänzt werden. Verfahren zur Transformation von Zellen sind im Stand der Technik etabliert und dem Fachmann hinlänglich bekannt. Als Wirtszellen eignen sich prinzipiell alle Zellen, das heißt prokaryotische oder eukaryotische Zellen. Bevorzugt sind solche Wirtszellen, die sich genetisch vorteilhaft handhaben lassen, was beispielsweise die Transformation mit dem Vektor und dessen stabile Etablierung angeht, beispielsweise einzellige Pilze oder Bakterien. Ferner zeichnen sich bevorzugte Wirtszellen durch eine gute mikrobiologische und biotechnologische Handhabbarkeit aus. Das betrifft beispielsweise leichte Kultivierbarkeit, hohe Wachstumsraten, geringe Anforderungen an Fermentationsmedien und gute Produktions- und Sekretionsraten für Fremdproteine. Häufig müssen aus der Fülle an verschiedenen im Stand der Technik zur Verfügung stehenden Systemen die optimalen Expressionssysteme für den Einzelfall experimentell ermittelt werden.
  • Weitere bevorzugte Ausführungsformen stellen solche Wirtszellen dar, die aufgrund genetischer Regulationselemente, die beispielsweise auf dem Vektor zur Verfügung gestellt werden, aber auch von vornherein in diesen Zellen vorhanden sein können, in ihrer Aktivität regulierbar sind. Beispielsweise durch kontrollierte Zugabe von chemischen Verbindungen, die als Aktivatoren dienen, durch Änderung der Kultivierungsbedingungen oder bei Erreichen einer bestimmten Zelldichte können diese zur Expression angeregt werden. Dies ermöglicht eine wirtschaftliche Produktion der Proteine.
  • Bevorzugte Wirtszellen sind prokaryontische oder bakterielle Zellen. Bakterien zeichnen sich durch kurze Generationszeiten und geringe Ansprüche an die Kultivierungsbedingungen aus. Dadurch können kostengünstige Verfahren etabliert werden. Zudem verfügt der Fachmann bei Bakterien in der Fermentationstechnik über einen reichhaltigen Erfahrungsschatz. Für eine spezielle Produktion können aus verschiedensten, im Einzelfall experimentell zu ermittelnden Gründen wie Nährstoffquellen, Produktbildungsrate, Zeitbedarf usw., gramnegative oder grampositive Bakterien geeignet sein.
  • Bei gramnegativen Bakterien wie beispielsweise Escherichia coli wird eine Vielzahl von Polypeptiden in den periplasmatischen Raum sezerniert, also in das Kompartiment zwischen den beiden die Zellen einschließenden Membranen. Dies kann für spezielle Anwendungen vorteilhaft sein. Ferner können auch gramnegative Bakterien so ausgestaltet werden, dass sie die exprimierten Polypeptide nicht nur in den periplasmatischen Raum, sondern in das das Bakterium umgebende Medium ausschleusen. Grampositive Bakterien wie beispielsweise Bacilli oder Actinomyceten oder andere Vertreter der Actinomycetales besitzen demgegenüber keine äußere Membran, so dass sezernierte Proteine sogleich in das die Bakterien umgebende Medium, in der Regel das Nährmedium, abgegeben werden, aus welchem sich die exprimierten Polypeptide aufreinigen lassen. Sie können aus dem Medium direkt isoliert oder weiter prozessiert werden. Zudem sind grampositive Bakterien mit den meisten Herkunftsorganismen für technisch wichtige Enzyme verwandt oder identisch und bilden meist selbst vergleichbare Enzyme, so dass sie über eine ähnliche Codon-Usage verfügen und ihr Protein-Syntheseapparat naturgemäß entsprechend ausgerichtet ist.
  • Unter Codon-Usage wird die Übersetzung des genetischen Codes in Aminosäuren verstanden, d. h. welche Nukleotidfolge (Triplett oder Basentriplett) für welche Aminosäure bzw. für welche Funktion, beispielsweise Beginn und Ende des zu translatierenden Bereichs, Bindungsstellen für verschiedene Proteine, usw., kodiert. So besitzt jeder Organismus, insbesondere jeder Produktionsstamm eine bestimmte Codon-Usage. Es kann zu Engpässen in der Proteinbiosynthese kommen, wenn die auf der transgenen Nukleinsäure liegenden Codons in der Wirtszelle einer vergleichsweise geringen Zahl von beladenen tRNAs gegenüberstehen. Synonyme Codons codieren dagegen für dieselben Aminosäuren und können in Abhängigkeit vom Wirt besser translatiert werden. Dieses gegebenenfalls notwendige Umschreiben hängt somit von der Wahl des Expressionssystems ab. Insbesondere bei Proben aus unbekannten, eventuell nicht kultivierbaren Organismen kann eine entsprechende Anpassung notwendig sein.
  • Die vorliegende Erfindung ist prinzipiell auf alle Mikroorganismen, insbesondere auf alle fermentierbaren Mikroorganismen, besonders bevorzugt auf solche der Gattung Bacillus, anwendbar und führt dazu, dass sich durch den Einsatz solcher Mikroorganismen als Produktionsorganismen eine erhöhte Produktausbeute in einer Fermentation verwirklichen lässt. Solche Mikroorganismen stellen bevorzugte Wirtszellen im Sinne der Erfindung dar.
  • In einer weiteren Ausführungsform der Erfindung ist die Wirtszelle daher dadurch gekennzeichnet, dass sie ein Bakterium ist, bevorzugt eines, das ausgewählt ist aus der Gruppe der Gattungen von Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebakterium, Arthrobacter, Streptomyces, Stenotrophomonas und Pseudomonas, weiter bevorzugt eines, das ausgewählt ist aus der Gruppe von Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausii, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor und Stenotrophomonas maltophilia. Ganz besonders bevorzugt ist Bacillus licheniformis.
  • Die Wirtszelle kann aber auch eine eukaryontische Zelle sein, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt. Einen weiteren Gegenstand der Erfindung stellt daher eine Wirtszelle dar, die dadurch gekennzeichnet ist, dass sie einen Zellkern besitzt.
  • Im Gegensatz zu prokaryontischen Zellen sind eukaryontische Zellen in der Lage, das gebildete Protein posttranslational zu modifizieren. Beispiele dafür sind Pilze wie Actinomyceten oder Hefen wie Saccharomyces oder Kluyveromyces. Dies kann beispielsweise dann besonders vorteilhaft sein, wenn die Proteine im Zusammenhang mit ihrer Synthese spezifische Modifikationen erfahren sollen, die derartige Systeme ermöglichen. Zu den Modifikationen, die eukaryontische Systeme besonders im Zusammenhang mit der Proteinsynthese durchführen, gehören beispielsweise die Bindung niedermolekularer Verbindungen wie Membrananker oder Oligosaccharide. Derartige Oligosaccharid-Modifikationen können beispielsweise zur Senkung der Allergenizität eines exprimierten Proteins wünschenswert sein. Auch eine Coexpression mit den natürlicherweise von derartigen Zellen gebildeten Enzymen, wie beispielsweise Cellulasen, kann vorteilhaft sein. Ferner können sich beispielsweise thermophile pilzliche Expressionssysteme besonders zur Expression temperaturbeständiger Varianten eignen.
  • Als Produkte, die während der Fermentation gebildet werden, werden im Rahmen der Erfindung Proteine betrachtet, die von der Nukleinsäuresequenz (b) codiert werden, insbesondere solche, wie sie vorstehend beschrieben sind. Bevorzugt handelt es sich hierbei daher um Enzyme, besonders bevorzugt um Proteasen und ganz besonders bevorzugt um Subtilisine.
  • Die Wirtszellen können ferner hinsichtlich ihrer Anforderungen an die Kulturbedingungen verändert sein, andere oder zusätzliche Selektionsmarker aufweisen oder andere oder zusätzliche Proteine exprimieren. Es kann sich insbesondere um solche Wirtszellen handeln, die mehrere Proteine oder Enzyme exprimieren. Bevorzugt sezernieren sie diese in das die Wirtszellen umgebende Medium.
  • Die erfindungsgemäßen Wirtszellen werden in an sich bekannter Weise kultiviert und fermentiert, beispielsweise in diskontinuierlichen oder kontinuierlichen Systemen. Im ersten Fall wird ein geeignetes Nährmedium mit den Wirtszellen beimpft und das Produkt nach einem experimentell zu ermittelnden Zeitraum aus dem Medium geerntet. Kontinuierliche Fermentationen zeichnen sich durch Erreichen eines Fließgleichgewichts aus, in dem über einen vergleichsweise langen Zeitraum Zellen teilweise absterben aber auch nachwachsen und gleichzeitig Produkt aus dem Medium entnommen werden kann.
  • Erfindungsgemäße Wirtszellen werden bevorzugt verwendet, um Proteine herzustellen, die von der Nukleinsäuresequenz (b) codiert werden. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung eines Proteins umfassend
    • a) Kultivieren einer erfindungsgemäßen Wirtszelle
    • b) Isolieren des Proteins aus dem Kulturmedium oder aus der Wirtszelle.
  • Dieser Erfindungsgegenstand umfasst bevorzugt Fermentationsverfahren. Fermentationsverfahren sind an sich aus dem Stand der Technik bekannt und stellen den eigentlichen großtechnischen Produktionsschritt dar, in der Regel gefolgt von einer geeigneten Aufreinigungsmethode des hergestellten Produktes, beispielsweise des Proteins. Alle Fermentationsverfahren, die auf einem entsprechenden Verfahren zur Herstellung eines Proteins beruhen, stellen Ausführungsformen dieses Erfindungsgegenstandes dar.
  • Hierbei müssen die jeweils optimalen Bedingungen für die Herstellungsverfahren, insbesondere die optimalen Kulturbedingungen für die benutzten Wirtszellen, nach dem Wissen des Fachmanns experimentell ermittelt werden, beispielsweise hinsichtlich Fermentationsvolumen und/oder Medienzusammensetzung und/oder Sauerstoffversorgung und/oder Rührergeschwindigkeit.
  • Fermentationsverfahren, die dadurch gekennzeichnet sind, dass die Fermentation über eine Zulaufstrategie durchgeführt wird, kommen insbesondere in Betracht. Hierbei werden die Medienbestandteile, die durch die fortlaufende Kultivierung verbraucht werden, zugefüttert; man spricht auch von einer Zufütterungsstrategie. Hierdurch können beträchtliche Steigerungen sowohl in der Zelldichte als auch in der Zellmasse bzw. Trockenmasse und/oder vor allem der Aktivität des interessierenden Proteins, vorzugsweise Enzyms, erreicht werden.
  • Ferner kann die Fermentation auch so gestaltet werden, dass unerwünschte Stoffwechselprodukte herausgefiltert oder durch Zugabe von Puffer oder jeweils passende Gegenionen neutralisiert werden.
  • Das hergestellte Protein kann aus dem Fermentationsmedium geerntet werden. Ein solches Fermentationsverfahren ist gegenüber einer Isolation des Polypeptids aus der Wirtszelle, d. h. einer Produktaufbereitung aus der Zellmasse (Trockenmasse) vorteilhaft. Erfindungsgemäß werden mit den Signalpeptiden diesbezüglich geeignete Sekretionsmarker zur Verfügung gestellt.
  • Alle vorstehend ausgeführten Sachverhalte können zu Verfahren kombiniert werden, um Proteine herzustellen. Es ist diesbezüglich eine Vielzahl von Kombinationsmöglichkeiten von Verfahrensschritten denkbar. Das optimale Verfahren muss für jeden konkreten Einzelfall ermittelt werden.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung eines erfindungsgemäßen Expressionsvektors oder einer erfindungsgemäßen Wirtszelle zur Herstellung eines Proteins.
  • Alle Sachverhalte, Gegenstände und Ausführungsformen, die vorstehend bereits beschrieben sind, sind auch auf diese Erfindungsgegenstände anwendbar. Daher wird an dieser Stelle ausdrücklich auf die Offenbarung an entsprechender Stelle verwiesen mit dem Hinweis, dass diese Offenbarung auch für die erfindungsgemäßen Verwendungen gilt (Verwendung des Vektors bzw. der Wirtszelle).
  • Beispiele:
  • Alle molekularbiologischen Arbeitsschritte folgen Standardmethoden, wie sie beispielsweise in dem Handbuch von Fritsch, Sambrook und Maniatis „Molecular cloning: a laboratory manual", Cold Spring Harbour Laboratory Press, New York, 1989, oder vergleichbaren einschlägigen Werken angegeben sind. Enzyme und Baukästen (Kits) wurden nach den Angaben der jeweiligen Hersteller eingesetzt.
  • Beispiel 1: Herstellung erfindungsgemäßer Expressionsvektoren
  • Das Plasmid pBSMuL3 (Brockmeier et al., 2006) wurde durch SacI-Restriktion und anschließende Religation um den E. coli-Anteil verkürzt. Das resultierende Plasmid, pBSMuL5 (vgl. 1) diente als Vektor zur Klonierung der Proteasen inklusive Propeptid in die Schnittstellen EcoRI und BamHI. Dazu wurden die Gene der Protease gemäß SEQ ID NO. 8 mit den Primern gemäß SEQ ID NO. 11 und SEQ ID NO. 12, und der alkalischen Protease gemäß SEQ ID NO. 9 mit den Primern gemäß SEQ ID NO. 13 und SEQ ID NO. 14 amplifiziert. Die resultierenden Plasmide dienten als Vektoren zur Klonierung der Signalpeptide in die Schnittstellen HindIII und EcoRI. Das DNA-Fragment des Kontroll-Signalpeptids SubC (B. licheniformis, NCBI („National Center for Biotechnology Information”) Zugriffsnummer („Accession Number”): X91260.1) als „Benchmark” wurde mit Hilfe der Primer gemäß SEQ ID NO. 15 und SEQ ID NO. 16 amplifiziert und jeweils in die HindIII und EcoRI-Schnittstellen der Plasmide kloniert, so dass Plasmide mit einer Nukleinsäuresequenz b) entstanden, die für ein Protein mit dem Signalpeptid SubC in Verbindung mit einer Protease gemäß SEQ ID NO. 8 (Plasmid 1) bzw. SEQ ID NO. 9 (Plasmid 2) codieren. Diese Plasmide dienten nachfolgend als Kontrolle bzw. „Benchmark”. Das DNA-Fragment des Signalpeptids gemäß SEQ ID NO. 2 wurde mit Hilfe der Primer gemäß SEQ ID NO. 19 und SEQ ID NO. 20, das DNA-Fragment des Signalpeptids gemäß SEQ ID NO. 4 mit den Primern gemäß SEQ ID NO. 17 und SEQ ID NO. 18, und das DNA-Fragment des Signalpeptids gemäß SEQ ID NO. 6 mit den Primern gemäß SEQ ID NO. 21 und SEQ ID NO. 22 amplifiziert. Während die DNA-Fragmente der Signalpeptide gemäß SEQ ID NO. 2 und 4 jeweils in den Vektor kloniert wurden, der für eine Protease gemäß SEQ ID NO. 8 codiert (Plasmide 3 und 4), wurde das DNA-Fragment des Signalpeptids gemäß SEQ ID NO. 6 in den Vektor eingefügt, der für eine Protease gemäß SEQ ID NO. 9 codiert (Plasmid 5). Klonierungsbedingt wurde dabei zwischen der DNA-Sequenz des jeweiligen Signalpeptids und der DNA-Sequenz des Propeptids der jeweiligen Protease eine Sequenz von 9 Nukleotiden eingeführt, die für die Aminosäurefolge AEF kodiert (vgl. 1). Diese so genannte Verbindungssequenz beinhaltet die Erkennungssequenz der Restriktionsendonuklease EcoRI. Alle als Primer verwendeten Oligonukleotide sind in nachfolgender Tabelle 1 aufgelistet: Tabelle 1:
    Figure 00200001
    Figure 00210001
  • Beispiel 2: Expression der Proteine
  • Ein Bacillus licheniformis-Stamm wurden mit den Plasmiden 1 bis 5 transformiert, um die verschiedenen Protease-Produktionsstämme zu erhalten. Für die Inokulation von Kulturen wurden Einzelkolonien von Agarplatten verwendet, die über Nacht (ÜN) inkubiert wurden. Für die quantitative Bestimmung der Sekretionseffizienz wurden die Einzelkolonien direkt von den Agarplatten in Deepwell-MTP (Mikrotiterplatte; 96 Kavitäten mit je 1 ml selektiven LB-Medium) überführt. Dabei wurde jede Einzelkolonie parallel in mindestens zwei Kavitäten überführt, um eine Doppel- oder Dreifach-Bestimmung durch die Mehrfach-Anzucht des jeweiligen Klons zu erhalten. Für das Beimpfen der Deepwell-MTP wurden ausschließlich Klone verwendet, die über Nacht bei 37°C inkubiert wurden. Nach der Anzucht für 20 h bei 37°C im Mikrotiterplattenschüttler (Timix 5, Firma Edmund-Bühler, Hechingen) wurden alle Klone auf LB-Agarplatten repliziert und anschließend die Zellen mittels Zentrifugation sedimentiert (4000 UpM, 20 min, 4°C). Alle folgenden Pipettierschritte wurden mit Hilfe von Mehrkanalpipetten (Eppendorf, Hamburg) durchgeführt, wobei der „reverse pipetting”-Modus verwendet wurde und keine Volumina kleiner als 15 μl pipettiert wurden. Es wurde jeweils das kleinste Volumen in der MTP vorgelegt und die größeren Volumina dazu gegeben und die MTP bei jedem Verdünnungsschritt 10 Sekunden im Spektralphotometer „Spektramax 250” (Molecular Devices, Sunnyvale, USA) gemischt. Für die Erstellung der entsprechenden Verdünnungen wurde der Kulturüberstand per Mehrkanalpipette abgenommen und in Mikrotiterplatten (96 Kavitäten, F-Boden, glasklar, Firma Greiner Bio-One, Frickenhausen) überführt.
  • Anschließend wurde die proteolytische Aktivität in den Kulturüberständen bzw. Verdünnungen über die Freisetzung des Chromophors para-Nitroanilin (pNA) aus dem Substrat suc-L-Ala-L-Ala-L-Pro-L-Phe-p-Nitroanilid (suc-AAPF-pNA) bestimmt. Die Protease spaltet das Substrat und setzt pNA frei. Die Freisetzung des pNA verursacht eine Zunahme der Extinktion bei 410 nm, deren zeitlicher Verlauf ein Maß für die enzymatische Aktivität ist (vgl. Del Mar et al., Anal. Biochem., 99: 316–320, 1979).
  • Für die Ermittlung der Sekretionseffizienz der verschiedenen Stämme wurde in jeder MTP-Anzucht ein internes Kontroll-Konstrukt Plasmid 1 bzw. Plasmid 2) mit angezogen. Die im Kulturüberstand ermittelte proteolytische Aktivität des Stammes mit dem Kontroll-Konstrukt wurde als 100% definiert.
  • Die Stämme mit den erfindungsgemäßen Plasmiden 3 und 4 erreichten verglichen mit der Kontrolle, die das Plasmid 1 enthielt, eine um 194% +/– 48 bzw. 230% +/– 38 erhöhte Proteaseaktivität (vgl. 2).
  • Der Stamm mit dem erfindungsgemäßen Plasmid 5 erreichte verglichen mit der Kontrolle, die das Plasmid 2 enthielt, eine um 44% +/– 10 erhöhte Proteaseaktivität (vgl. 3).
  • Beschreibung der Figuren
  • 1: Schema der Klonierungsstrategie im Bacillus-Expressionsvektor pBSMul5 (modifiziert nach Brockmeier et al., 2006). (A) Die DNA-Fragmente der Signalpeptide wurden am N-Terminus mit einer HindIII-Restriktionsschnittstelle, einer standardisierten Ribosomenbindestelle (RBS), gefolgt von einer Spacer-Region und dem standardisierten Startcodon für Methionin amplifiziert. Zwischen Signalpeptid und N-Terminus der zu sezernierenden Protease wurde eine Kupplung mit einem Alanin an der „+1”-Position und der EcoRI-Restriktionsschnittstelle angefügt. (B) Bacillus-Vektor pBSMul5 mit dem HpaII-Promotor, dem jeweiligen Sekretionstarget (kloniert über EcoRI und BamHI) sowie der Kanamycin-Resistenz-Kassette und dem Replikationsprotein repB für Bacillus.
  • 2: Relative Proteaseaktivität im Kulturüberstand von Bacillus licheniformis mit der Protease gemäß SEQ ID NO. 8 und drei verschiedenen Signalpeptiden in pBSMul5. Die proteolytische Aktivität von dem Konstrukt Plasmid 1 wurde als 100% definiert (Kontrolle). Die Werte wurden in mindestens zwei voneinander unabhängigen Anzuchten ermittelt. Die Fehlerbalken geben die Standardabweichung an.
  • 3: Relative Proteaseaktivität im Kulturüberstand von Bacillus licheniformis mit der Protease gemäß SEQ ID NO. 9 und zwei verschiedenen Signalpeptiden in pBSMul5. Die proteolytische Aktivität von dem Konstrukt Plasmid 2 wurde als 100% definiert (Kontrolle). Die Werte wurden in mindestens zwei voneinander unabhängigen Anzuchten ermittelt. Die Fehlerbalken geben die Standardabweichung an.
  • Es folgt ein Sequenzprotokoll nach WIPO St. 25. Dieses kann von der amtlichen Veröffentlichungsplattform des DPMA heruntergeladen werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 91/02792 [0004]
    • WO 2008/086916 [0026]
    • WO 2007/131656 [0026]
    • WO 00/60060 [0027]
    • WO 03/002711 [0027]
    • WO 03/054177 [0027]
    • WO 07/079938 [0027]
    • WO 98/12307 [0030]
    • WO 97/14804 [0030]
    • EP 1305432 [0030, 0030]
    • EP 1240525 [0030]
    • WO 1992006165 [0030]
    • WO 96/29397 [0030]
    • WO 02/099091 [0030]
    • WO 98/45398 [0032]
    • WO 2005/056782 [0032]
    • WO 2004/058961 [0032]
    • WO 2005/124012 [0032]
  • Zitierte Nicht-Patentliteratur
    • Brockmeier et al. (J. Mol. Biol. 362, S. 393–402 (2006)) [0006]
    • Altschul, S. F., Gish, W., Miller, W. Myers, E. W. & Lipman, D. J. (1990) ”Basic local alignment search tool.” J. Mol. Biol. 215: 403–410 [0021]
    • Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): ”Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”; Nucleic Acids Res., 25, S. 3389–3402 [0021]
    • Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497–3500 [0021]
    • Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205–217 [0021]
    • Fritsch, Sambrook und Maniatis, „Molecular cloning: a laboratory manual”, Cold Spring Harbour Laboratory Press, New York, 1989 [0047]
    • Fritsch, Sambrook und Maniatis „Molecular cloning: a laboratory manual”, Cold Spring Harbour Laboratory Press, New York, 1989 [0070]
    • Brockmeier et al., 2006 [0071]
    • Del Mar et al., Anal. Biochem., 99: 316–320, 1979 [0073]
    • Brockmeier et al., 2006 [0077]

Claims (10)

  1. Expressionsvektor umfassend a) eine Promotorsequenz und b) eine Nukleinsäuresequenz, die für ein Protein codiert, wobei das Protein ein Signalpeptid und eine weitere Aminosäuresequenz umfasst und das Signalpeptid eine Aminosäuresequenz umfasst, die zu der in SEQ ID NO. 2 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 4 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist oder zu der in SEQ ID NO. 6 angegebenen Aminosäuresequenz zu mindestens 80% identisch ist, oder das Signalpeptid eine Aminosäuresequenz umfasst, die zu mindestens einer dieser Sequenzen strukturhomolog ist.
  2. Expressionsvektor nach Anspruch 1, dadurch gekennzeichnet, dass das von der Nukleinsäuresequenz b) codierte Signalpeptid eine Aminosäuresequenz gemäß SEQ ID NO. 2, SEQ ID NO. 4 oder SEQ ID NO. 6 aufweist.
  3. Expressionsvektor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz eines Enzyms umfasst, insbesondere einer Protease, Amylase, Cellulase, Hemicellulase, Mannanase, Tannase, Xylanase, Xanthanase, Xyloglucanase, β-Glucosidase, Pektin-spaltendes Enzym, Carrageenase, Perhydrolase, Oxidase, Oxidoreduktase oder einer Lipase.
  4. Expressionsvektor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Signalpeptid N-terminal von der weiteren Aminosäuresequenz in dem von der Nukleinsäuresequenz b) codierten Protein angeordnet ist.
  5. Expressionsvektor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das von der Nukleinsäuresequenz b) codierte Protein ferner eine Verbindungssequenz umfasst, die zwischen dem Signalpeptid und der weiteren Aminosäuresequenz des Proteins angeordnet ist, insbesondere wobei die Verbindungssequenz eine Länge zwischen 1 und 50 Aminosäuren aufweist.
  6. Expressionsvektor nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die weitere Aminosäuresequenz des Proteins die Aminosäuresequenz einer Protease umfasst, wobei die Aminosäuresequenz der Protease mindestens zu 80% identisch zu SEQ ID NO. 7 ist, oder mindestens zu 80% identisch zu SEQ ID NO. 8 ist, oder mindestens zu 80% identisch zu SEQ ID NO. 9 ist, oder mindestens zu 80% identisch zu SEQ ID NO. 10 ist und an Position 99 in der Zählung gemäß SEQ ID NO. 10 die Aminosäure Glutaminsäure (E) oder Asparaginsäure (D) aufweist, oder mindestens zu 80% identisch zu SEQ ID NO. 10 ist und an Position 99 in der Zählung gemäß SEQ ID NO. 10 die Aminosäure Glutaminsäure (E) oder Asparaginsäure (D) aufweist und ferner in der Zählung gemäß SEQ ID NO. 10 mindestens eine der folgenden Aminosäuren aufweist: (a) Threonin an Position 3 (3T), (b) Isoleucin an Position 4 (4I), (c) Alanin, Threonin oder Arginin an Position 61 (61A, 61T oder 61R), (d) Asparaginsäure oder Glutaminsäure an Position 154 (154D oder 154E), (e) Prolin an Position 188 (188P), (f) Methionin an Position 193 (193M), (g) Isoleucin an Position 199 (199I), (h) Asparaginsäure, Glutaminsäure oder Glycin an Position 211 (211D, 211E oder 211G), (i) Kombinationen der Aminosäuren (a) bis (h).
  7. Nicht menschliche Wirtszelle enthaltend einen Expressionsvektor gemäß einem der Ansprüche 1 bis 6.
  8. Wirtszelle nach Anspruch 7, dadurch gekennzeichnet, dass sie ein Bakterium ist, bevorzugt eines, das ausgewählt ist aus der Gruppe der Gattungen von Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebakterium, Arthrobacter, Streptomyces, Stenotrophomonas und Pseudomonas, weiter bevorzugt eines, das ausgewählt ist aus der Gruppe von Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausii, Bacillus halodurans, Bacillus pumilus, Staphylococcus carnosus, Corynebacterium glutamicum, Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor und Stenotrophomonas maltophilia, insbesondere Bacillus licheniformis.
  9. Verfahren zur Herstellung eines Proteins umfassend die Verfahrensschritte (a) Kultivieren einer Wirtszelle gemäß einem der Ansprüche 7 oder 8 (b) Isolieren des Proteins aus dem Kulturmedium oder aus der Wirtszelle.
  10. Verwendung eines Expressionsvektors gemäß einem der Ansprüche 1 bis 6 oder einer Wirtszelle gemäß einem der Ansprüche 7 oder 8 zur Herstellung eines Proteins.
DE102011118032A 2011-05-31 2011-05-31 Expressionsvektoren zur verbesserten Proteinsekretion Withdrawn DE102011118032A1 (de)

Priority Applications (25)

Application Number Priority Date Filing Date Title
DE102011118032A DE102011118032A1 (de) 2011-05-31 2011-05-31 Expressionsvektoren zur verbesserten Proteinsekretion
EP18212311.7A EP3527661B1 (de) 2011-05-31 2012-05-25 Expressionsvektoren zur verbesserten proteinsekretion
PL12723512T PL2714902T3 (pl) 2011-05-31 2012-05-25 Wektory ekspresyjne do polepszonej sekrecji białka
DK16178440.0T DK3118310T3 (da) 2011-05-31 2012-05-25 Ekspressionsvektorer til forbedret proteinsekretion
JP2014513143A JP6324309B2 (ja) 2011-05-31 2012-05-25 改良されたタンパク質分泌のための発現ベクター
DK12723512.5T DK2714902T3 (en) 2011-05-31 2012-05-25 EXPRESSION VECTORS FOR IMPROVING protein secretion
KR1020137034520A KR101956142B1 (ko) 2011-05-31 2012-05-25 단백질 분비 향상을 위한 발현 벡터
US14/122,562 US9803183B2 (en) 2011-05-31 2012-05-25 Expression vectors for an improved protein secretion
DK18212311.7T DK3527661T3 (da) 2011-05-31 2012-05-25 Ekspressionsvektorer til forbedret proteinsekretion
CA2835746A CA2835746A1 (en) 2011-05-31 2012-05-25 Expression vectors for an improved protein secretion
RU2013158458A RU2661790C2 (ru) 2011-05-31 2012-05-25 Экспрессионные векторы для улучшенной секреции белка
PCT/EP2012/059901 WO2012163855A1 (de) 2011-05-31 2012-05-25 Expressionsvektoren zur verbesserten proteinsekretion
EP16178440.0A EP3118310B1 (de) 2011-05-31 2012-05-25 Expressionsvektoren zur verbesserten proteinsekretion
CN201280026365.0A CN103649310A (zh) 2011-05-31 2012-05-25 用于改善的蛋白质分泌的表达载体
EP12723512.5A EP2714902B1 (de) 2011-05-31 2012-05-25 Expressionsvektoren zur verbesserten proteinsekretion
ES12723512.5T ES2606553T3 (es) 2011-05-31 2012-05-25 Vectores de expresión para una secreción de proteína mejorada
BR112013030846A BR112013030846A2 (pt) 2011-05-31 2012-05-25 vetor de expressão, célula hospedeira não humana, método para a fabricação de uma proteína e uso de um vetor de expressão
ES16178440T ES2763577T3 (es) 2011-05-31 2012-05-25 Vectores de expresión para secreción mejorada de proteína
CN201710933102.2A CN107574177B (zh) 2011-05-31 2012-05-25 用于改善的蛋白质分泌的表达载体
MX2013013616A MX340485B (es) 2011-05-31 2012-05-25 Vectores de expresion para una secrecion de proteina mejorada.
MX2016008931A MX363519B (es) 2011-05-31 2012-05-25 Vectores de expresión para una secreción de proteína mejorada.
MX2019003360A MX2019003360A (es) 2011-05-31 2013-11-21 Vectores de expresion para una secrecion de proteina mejorada.
JP2017052565A JP6522030B2 (ja) 2011-05-31 2017-03-17 改良されたタンパク質分泌のための発現ベクター
US15/712,652 US10494622B2 (en) 2011-05-31 2017-09-22 Expression vectors with promoter and nucleic acid
US16/700,322 US11046961B2 (en) 2011-05-31 2019-12-02 Expression vectors with promoter and nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011118032A DE102011118032A1 (de) 2011-05-31 2011-05-31 Expressionsvektoren zur verbesserten Proteinsekretion

Publications (1)

Publication Number Publication Date
DE102011118032A1 true DE102011118032A1 (de) 2012-12-06

Family

ID=46149497

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011118032A Withdrawn DE102011118032A1 (de) 2011-05-31 2011-05-31 Expressionsvektoren zur verbesserten Proteinsekretion

Country Status (14)

Country Link
US (3) US9803183B2 (de)
EP (3) EP3118310B1 (de)
JP (2) JP6324309B2 (de)
KR (1) KR101956142B1 (de)
CN (2) CN103649310A (de)
BR (1) BR112013030846A2 (de)
CA (1) CA2835746A1 (de)
DE (1) DE102011118032A1 (de)
DK (3) DK2714902T3 (de)
ES (2) ES2606553T3 (de)
MX (3) MX340485B (de)
PL (1) PL2714902T3 (de)
RU (1) RU2661790C2 (de)
WO (1) WO2012163855A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011242A1 (en) 2016-07-14 2018-01-18 Basf Se Fermentation medium comprising chelating agent
WO2019091822A1 (en) 2017-11-09 2019-05-16 Basf Se Coatings of enzyme particles comprising organic white pigments
EP4218992A2 (de) 2015-12-09 2023-08-02 Basf Se Verfahren zur reinigung eines proteins aus fermentierungsfeststoffen unter desorptionsbedingungen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118032A1 (de) * 2011-05-31 2012-12-06 Henkel Ag & Co. Kgaa Expressionsvektoren zur verbesserten Proteinsekretion
US10731111B2 (en) 2015-11-25 2020-08-04 Conopco, Inc. Liquid laundry detergent composition
EP3717643A1 (de) 2017-11-29 2020-10-07 Danisco US Inc. Subtilisin-varianten mit verbesserter stabilität
US20230028935A1 (en) 2018-11-28 2023-01-26 Danisco Us Inc Subtilisin variants having improved stability
RU2747627C1 (ru) * 2020-05-18 2021-05-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Рекомбинантная плазмида pUSB2-AmQ, обеспечивающая синтез белка альфа-амилазы Bacillus amyloliquefaciens, и штамм Bacillus subtilis/pUSB2-AmQ - продуцент белка альфа-амилазы Bacillus amyloliquefaciens

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002792A1 (en) 1989-08-25 1991-03-07 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1992006165A1 (en) 1991-06-11 1992-04-16 Genencor International, Inc. Detergent compositions containing cellulase compositions deficient in cbh i type components
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997014804A1 (en) 1995-10-17 1997-04-24 Röhn Enzyme Finland OY Cellulases, the genes encoding them and uses thereof
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998045398A1 (de) 1997-04-04 1998-10-15 Henkel Kommanditgesellschaft Auf Aktien Aktivatoren für persauerstoffverbindungen in wasch- und reinigungsmitteln
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
EP1240525A2 (de) 1999-12-23 2002-09-18 PHARMACIA & UPJOHN COMPANY Natriumkanalen als ziele für amyloid beta
WO2002099091A2 (en) 2001-06-06 2002-12-12 Novozymes A/S Endo-beta-1,4-glucanase from bacillus
WO2003002711A2 (de) 2001-06-29 2003-01-09 Henkel Kommanditgesellschaft Auf Aktien EINE NEUE GRUPPE VON α-AMYLASEN SOWIE EIN VERFAHREN ZUR IDENTIFIZIERUNG UND GEWINNUNG NEUER α-AMYLASEN
EP1305432A2 (de) 2000-08-04 2003-05-02 Genencor International, Inc. Mutierte trichoderma reesei egiii cellulasen, dafür kodierende dna und verfahren zu deren herstellung
WO2003054177A2 (de) 2001-12-21 2003-07-03 Henkel Kommanditgesellschaft Auf Aktien Neue glykosylhydrolasen
WO2004058961A1 (de) 2002-12-20 2004-07-15 Henkel Kommanditgesellschaft Auf Aktien Subtilisin-varianten, bei denen die perhydrolase-aktivität erhöht wurde
WO2004111224A1 (en) * 2003-06-19 2004-12-23 Novozymes A/S Improved proteases and methods for producing them
WO2005056782A2 (en) 2003-12-03 2005-06-23 Genencor International, Inc. Perhydrolase
WO2005124012A1 (de) 2004-06-18 2005-12-29 Henkel Kommanditgesellschaft Auf Aktien Neues enzymatisches bleichsystem
WO2007079938A2 (de) 2005-12-28 2007-07-19 Henkel Ag & Co. Kgaa Wasch- oder reinigungsmittel mit spezieller amylase
WO2007131656A1 (de) 2006-05-11 2007-11-22 Henkel Ag & Co. Kgaa Subtilisin aus bacillus pumilus und wasch- und reinigungsmittel enthaltend dieses neue subtilisin
WO2008086916A1 (de) 2007-01-16 2008-07-24 Henkel Ag & Co. Kgaa Neue alkalische protease aus bacillus gibsonii und wasch- und reinigungsmittel enthaltend diese neue alkalische protease
US20090275104A1 (en) * 2004-01-09 2009-11-05 Novozymes A/S Bacillus licheniformis chromosone
WO2011015327A1 (de) * 2009-08-03 2011-02-10 C-Lecta Gmbh Verfahren zur herstellung von nukleasen eines gram-negativen bakteriums unter nutzung eines gram-positiven expressionswirtes

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340735A (en) * 1991-05-29 1994-08-23 Cognis, Inc. Bacillus lentus alkaline protease variants with increased stability
DK82893D0 (da) * 1993-07-08 1993-07-08 Novo Nordisk As Peptid
US20030049619A1 (en) * 2001-03-21 2003-03-13 Simon Delagrave Methods for the synthesis of polynucleotides and combinatorial libraries of polynucleotides
DE10162727A1 (de) * 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14391) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
CN1926431A (zh) * 2004-01-09 2007-03-07 诺维信股份有限公司 地衣芽孢杆菌染色体
EP2013339B1 (de) * 2006-04-20 2013-09-11 Novozymes A/S Savinase-varianten mit verbesserter waschleistung gegen eiflecken
WO2008066931A2 (en) * 2006-11-29 2008-06-05 Novozymes, Inc. Bacillus licheniformis chromosome
DE102007049830A1 (de) * 2007-10-16 2009-04-23 Henkel Ag & Co. Kgaa Neue Proteinvarianten durch zirkulare Permutation
DE102009029513A1 (de) * 2009-09-16 2011-03-24 Henkel Ag & Co. Kgaa Lagerstabiles flüssiges Wasch- oder Reinigungsmittel enthaltend Proteasen
DE102011007313A1 (de) 2011-04-13 2012-10-18 Henkel Ag & Co. Kgaa Expressionsverfahren
DE102011118032A1 (de) * 2011-05-31 2012-12-06 Henkel Ag & Co. Kgaa Expressionsvektoren zur verbesserten Proteinsekretion
DE102012201297A1 (de) 2012-01-31 2013-08-01 Basf Se Expressionsverfahren

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002792A1 (en) 1989-08-25 1991-03-07 Henkel Research Corporation Alkaline proteolytic enzyme and method of production
WO1992006165A1 (en) 1991-06-11 1992-04-16 Genencor International, Inc. Detergent compositions containing cellulase compositions deficient in cbh i type components
WO1996029397A1 (en) 1995-03-17 1996-09-26 Novo Nordisk A/S Novel endoglucanases
WO1997014804A1 (en) 1995-10-17 1997-04-24 Röhn Enzyme Finland OY Cellulases, the genes encoding them and uses thereof
WO1998012307A1 (en) 1996-09-17 1998-03-26 Novo Nordisk A/S Cellulase variants
WO1998045398A1 (de) 1997-04-04 1998-10-15 Henkel Kommanditgesellschaft Auf Aktien Aktivatoren für persauerstoffverbindungen in wasch- und reinigungsmitteln
WO2000060060A2 (en) 1999-03-31 2000-10-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
EP1240525A2 (de) 1999-12-23 2002-09-18 PHARMACIA & UPJOHN COMPANY Natriumkanalen als ziele für amyloid beta
EP1305432A2 (de) 2000-08-04 2003-05-02 Genencor International, Inc. Mutierte trichoderma reesei egiii cellulasen, dafür kodierende dna und verfahren zu deren herstellung
WO2002099091A2 (en) 2001-06-06 2002-12-12 Novozymes A/S Endo-beta-1,4-glucanase from bacillus
WO2003002711A2 (de) 2001-06-29 2003-01-09 Henkel Kommanditgesellschaft Auf Aktien EINE NEUE GRUPPE VON α-AMYLASEN SOWIE EIN VERFAHREN ZUR IDENTIFIZIERUNG UND GEWINNUNG NEUER α-AMYLASEN
WO2003054177A2 (de) 2001-12-21 2003-07-03 Henkel Kommanditgesellschaft Auf Aktien Neue glykosylhydrolasen
WO2004058961A1 (de) 2002-12-20 2004-07-15 Henkel Kommanditgesellschaft Auf Aktien Subtilisin-varianten, bei denen die perhydrolase-aktivität erhöht wurde
WO2004111224A1 (en) * 2003-06-19 2004-12-23 Novozymes A/S Improved proteases and methods for producing them
WO2005056782A2 (en) 2003-12-03 2005-06-23 Genencor International, Inc. Perhydrolase
US20090275104A1 (en) * 2004-01-09 2009-11-05 Novozymes A/S Bacillus licheniformis chromosone
WO2005124012A1 (de) 2004-06-18 2005-12-29 Henkel Kommanditgesellschaft Auf Aktien Neues enzymatisches bleichsystem
WO2007079938A2 (de) 2005-12-28 2007-07-19 Henkel Ag & Co. Kgaa Wasch- oder reinigungsmittel mit spezieller amylase
WO2007131656A1 (de) 2006-05-11 2007-11-22 Henkel Ag & Co. Kgaa Subtilisin aus bacillus pumilus und wasch- und reinigungsmittel enthaltend dieses neue subtilisin
WO2008086916A1 (de) 2007-01-16 2008-07-24 Henkel Ag & Co. Kgaa Neue alkalische protease aus bacillus gibsonii und wasch- und reinigungsmittel enthaltend diese neue alkalische protease
WO2011015327A1 (de) * 2009-08-03 2011-02-10 C-Lecta Gmbh Verfahren zur herstellung von nukleasen eines gram-negativen bakteriums unter nutzung eines gram-positiven expressionswirtes

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Altschul, S. F., Gish, W., Miller, W. Myers, E. W. & Lipman, D. J. (1990) "Basic local alignment search tool." J. Mol. Biol. 215: 403-410
Altschul, Stephan F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Hheng Zhang, Webb Miller, and David J. Lipman (1997): "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs"; Nucleic Acids Res., 25, S. 3389-3402
Brockmeier et al. (J. Mol. Biol. 362, S. 393-402 (2006))
Brockmeier et al., 2006
Brockmeier, U. [u. a.]: Systematic screening of all signal peptides form Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria. In: J. Mol. Biol., 2006, Vol. 2006, S. 393-402 mit Suppl. Mat., Tab. 2 *
Chenna et al. (2003): Multiple sequence alignment with the Clustal series of programs. Nucleic Acid Research 31, 3497-3500
Degering, Ch. [u. a.]: Optimization of protease secretion in Bacillus subtili and Bacillus licheniformis by screening of homologous and heterologous signal peptides. In. Appl. Environ. Microbiol., 2010, Vol. 76, S. 6370-6376 *
Degering, Ch.: Optimierung heterologer Proteinsekretion in Bacillus unter Verwendung wirtsfremder und künstlicher Signalpeptide. Dissertation, Universität Düsseldorf, 2010 *
Del Mar et al., Anal. Biochem., 99: 316-320, 1979
Fritsch, Sambrook und Maniatis "Molecular cloning: a laboratory manual", Cold Spring Harbour Laboratory Press, New York, 1989
Fritsch, Sambrook und Maniatis, "Molecular cloning: a laboratory manual", Cold Spring Harbour Laboratory Press, New York, 1989
Notredame et al. (2000): T-Coffee: A novel method for multiple sequence alignments. J. Mol. Biol. 302, 205-217

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4218992A2 (de) 2015-12-09 2023-08-02 Basf Se Verfahren zur reinigung eines proteins aus fermentierungsfeststoffen unter desorptionsbedingungen
WO2018011242A1 (en) 2016-07-14 2018-01-18 Basf Se Fermentation medium comprising chelating agent
WO2019091822A1 (en) 2017-11-09 2019-05-16 Basf Se Coatings of enzyme particles comprising organic white pigments

Also Published As

Publication number Publication date
JP6522030B2 (ja) 2019-05-29
BR112013030846A2 (pt) 2016-11-29
EP3118310B1 (de) 2019-09-25
JP6324309B2 (ja) 2018-05-16
US11046961B2 (en) 2021-06-29
RU2013158458A (ru) 2015-07-10
KR101956142B1 (ko) 2019-03-11
MX340485B (es) 2016-07-08
ES2763577T3 (es) 2020-05-29
US20140356929A1 (en) 2014-12-04
JP2017127317A (ja) 2017-07-27
MX363519B (es) 2019-03-26
US20180073005A1 (en) 2018-03-15
EP2714902A1 (de) 2014-04-09
US10494622B2 (en) 2019-12-03
KR20140034866A (ko) 2014-03-20
RU2661790C2 (ru) 2018-07-19
DK3118310T3 (da) 2019-12-16
CN107574177A (zh) 2018-01-12
DK2714902T3 (en) 2017-01-09
DK3527661T3 (da) 2022-03-07
WO2012163855A1 (de) 2012-12-06
CA2835746A1 (en) 2012-12-06
PL2714902T3 (pl) 2017-02-28
US20200095564A1 (en) 2020-03-26
EP3527661B1 (de) 2021-12-01
MX2013013616A (es) 2014-01-08
JP2014519327A (ja) 2014-08-14
MX2019003360A (es) 2019-07-04
EP3118310A1 (de) 2017-01-18
ES2606553T3 (es) 2017-03-24
US9803183B2 (en) 2017-10-31
EP3527661A1 (de) 2019-08-21
CN103649310A (zh) 2014-03-19
CN107574177B (zh) 2022-01-11
EP2714902B1 (de) 2016-09-14

Similar Documents

Publication Publication Date Title
EP2714902B1 (de) Expressionsvektoren zur verbesserten proteinsekretion
EP2809816B9 (de) Expressionsverfahren
JP2017079768A (ja) 発現方法
EP2340306B1 (de) Expressionsverstärkte nukleinsäuren
DE102017215015A1 (de) Verfahren zur verbesserten Expression von Enzymen

Legal Events

Date Code Title Description
R123 Application deemed withdrawn due to non-payment of filing fee
R409 Internal rectification of the legal status completed
R409 Internal rectification of the legal status completed
R163 Identified publications notified
R081 Change of applicant/patentee

Owner name: BASF SE, DE

Free format text: FORMER OWNER: HENKEL AG & CO. KGAA, 40589 DUESSELDORF, DE

Effective date: 20130508

R082 Change of representative
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee