-
Die vorliegende Erfindung betrifft ein Kältegerät, insbesondere ein Haushaltskältegerät wie etwa einen Kühl- oder Gefrierschrank, mit einer Verdunstungsschale zum Verdunsten von aus einer Lagerkammer des Geräts abgeleitetem Tauwasser und einer Hilfseinrichtung, die zuschaltbar ist, um bei Bedarf die Verdunstung des Tauwassers in der Verdunstungsschale zu fördern.
-
Bei jedem Öffnen einer Tür des Kältegeräts gelangt mit der Umgebungsluft auch Feuchtigkeit in die Lagerkammer eines Kältegeräts und schlägt sich dort im Laufe der Zeit an der kältesten Stelle nieder, das heißt je nach Bauart des Kältegeräts zum Beispiel unmittelbar an einem Verdampfer oder an einer durch den Verdampfer gekühlten Wand der Lagerkammer. Von dort muss die Feuchtigkeit beseitigt werden, damit sie nicht den Wärmeaustausch zwischen der Lagerkammer und dem Verdampfer und damit den Wirkungsgrad des Kältegeräts beeinträchtigt und/oder damit von dieser kältesten Stelle abfließendes Wasser nicht das Kühlgut durchnässt. Es ist daher üblicherweise unterhalb dieser kältesten Stelle eine Auffangrinne oder -schale vorgesehen, in der sich das Tauwasser sammeln kann und von wo aus es durch einen Durchgang in der wärmeisolierenden Wand des Kältegeräts zu einer Verdunstungsschale geleitet wird. Die Verdunstungsschale ist jenseits der wärmeisolierenden Wand angeordnet, um aus ihr verdunstende Feuchtigkeit frei an die Umgebung abgeben zu können. Um die Verdunstung in der Schale zu fördern, ist sie herkömmlicherweise in einem Maschinenraum des Kältegeräts auf einem Verdichter montiert, um durch dessen Abwärme beheizt zu werden.
-
Verbesserungen der Isolation und der Kälteerzeugung führen bei modernen Kältegeräten dazu, dass das Verhältnis von anfallendem Tauwasser zur am Verdichter verfügbaren Abwärme immer ungünstiger wird. Wenn jedoch das Tauwasser schneller anfällt, als es in der Verdunstungsschale verdunsten kann, dann läuft diese über, und das auslaufende Wasser kann zu Schäden am Gerät und an dessen Umgebung führen.
-
Eine Möglichkeit, die fehlende Abwärme des Verdichters zu ersetzen ist, eine elektrische Heizeinrichtung an der Verdunstungsschale anzubringen. Es liegt jedoch auf der Hand, dass der Betrieb einer solchen Heizeinrichtung, insbesondere, wenn er nicht bedarfsorientiert gesteuert erfolgt, die Gesamtenergieeffizienz des Kältegeräts beeinträchtigt und Effizienzgewinne durch verbesserte Isolation oder verbesserte Kälteerzeugung weitgehend wieder zunichte macht. Es wäre zwar an sich denkbar, einen Füllstandssensor an der Verdunstungsschale anzubringen und die Heizeinrichtung nur dann zu betreiben, wenn dieser die Überschreitung eines kritischen Wasserspiegels anzeigt. Ein solcher Füllstandssensor muss jedoch ein hohes Maß an Zuverlässigkeit aufweisen, denn wenn eine Störung des Füllstandsensors darin besteht, dass eine Überschreitung des kritischen Wasserspiegels nicht erfasst wird, droht ein Überlaufen der Verdunstungsschale mit den daraus resultierenden Folgeschäden. Führt hingegen eine Störung des Füllstandssensors dazu, dass ständig eine Überschreitung des kritischen Wasserspiegels erfasst wird, dann läuft die Heizeinrichtung pausenlos, und es wird nutzlos Energie vergeudet. Da eine solche Störung sich äußerlich nicht unmittelbar bemerkbar macht, kann es sein, dass sie lange Zeit übersehen wird und dem Benutzer erhebliche Kosten verursacht. Ein Füllstandssensor mit der für die Praxis erforderlichen Zuverlässigkeit führt jedoch zu nicht vernachlässigbaren und für den Anwender vielfach abschreckenden Kosten bei der Gerätefertigung.
-
Aus der nicht vorveröffentlichten
Deutschen Patentanmeldung 10 2011 078 321.0 geht ein Kältegerät hervor, bei dem ein Luftfeuchtesensor in einer Lagerkammer angeordnet und mit einer Steuereinheit verbunden ist. Anhand von Daten dieses Luftfeuchtesensors kann die Steuereinheit abschätzen, wie viel Kondenswasser aus der Luft der Lagerkammer sich demnächst am Verdampfer niederschlagen wird bzw. wie stark folglich in der näheren Zukunft der Zufluss an Kondenswasser zur Verdunstungsschale sein wird.
-
Aufgabe der vorliegenden Erfindung ist, eine preiswerte und zuverlässige Lösung anzugeben, mit der eine ausreichende Verdunstung von Kondenswasser sichergestellt werden kann und gleichzeitig eine gute Energieeffizienz des Kältegeräts gewahrt bleibt.
-
Die Aufgabe wird gelöst, indem bei einem Kältegerät, insbesondere einem Haushaltskältegerät, mit wenigstens einer durch eine Tür verschließbaren Lagerkammer, einer Verdunstungsschale zum Verdunsten von aus der Lagerkammer abgeleitetem Tauwasser und einer Hilfseinrichtung, die durch eine Steuereinheit steuerbar ist, um die Verdunstungsrate in der Verdunstungsschale zu erhöhen, ein mit der Steuereinheit funktionsmäßig verbundener Luftfeuchtesensor mit der Verdunstungsschale an einem gemeinsamen Luftvolumen angeordnet ist.
-
Die Verdunstungsrate, die bei gegebener Temperatur an der Verdunstungsschale erreichbar ist, hängt davon ab, wie stark die mit der Wasseroberfläche der Verdunstungsschale in Kontakt stehende Luft bereits mit Feuchtigkeit gesättigt ist. Der mit der Verdunstungsschale an einem gemeinsamen Luftvolumen angeordnete Luftfeuchtesensor ermöglicht es der Steuereinheit, diese Tatsache zu berücksichtigen und die Verdunstung mittels der Hilfseinrichtung zu fördern.
-
Vorzugsweise ist das gemeinsame Luftvolumen durch einen Maschinenraum des Kältegeräts oder einen Teil dieses Maschinenraums gebildet.
-
Der Luftfeuchtesensor kann über dem Wasserspiegel der Verdunstungsschale angeordnet sein, um auch vom Wasserspiegel selber freigesetzte Luftfeuchtigkeit erfassen und ggf. bei der Steuerung der Hilfseinrichtung berücksichtigen zu können.
-
Es kann aber auch sinnvoll sein, den Luftfeuchtesensor auf dem Weg der über die Verdunstungsschale geführten Luft stromaufwärts von der Verdunstungsschale anzubringen, um den Feuchtigkeitsgehalt der Luft vor dem Passieren der Verdunstungsschale, vorzugsweise aber nach Passieren einer Wärmequelle, erfassen zu können. So kann insbesondere beurteilt werden, wie effizient die über die Verdunstungsschale streichende Luft Feuchtigkeit aufzunehmen vermag und inwieweit womöglich die Verdunstungsschale zusätzlich beheizt werden muss, um eine zum Verhindern des Überlaufens erforderliche Verdunstungsrate zu erzielen.
-
Die Hilfseinrichtung kann diverse Komponenten umfassen. Eine Komponente ist z.B. ein in thermischen Kontakt mit der Verdunstungsschale angeordneter Verdichter. Ein solcher Verdichter ist bei vielen herkömmlichen Kältegeräten vorhanden; neuartig ist jedoch, dass gemäß der Erfindung vorzugsweise die Energieeffizienz des Verdichters durch die Steuereinheit veränderbar ist, um mit Hilfe des Verdichters die Verdunstungsrate in der Verdunstungsschale erhöhen zu können. So kann, wenn eine ausreichend niedrige Luftfeuchtigkeit erfasst wird und kein Bedarf besteht, die Verdunstungsrate zu erhöhen, der Verdichter in an sich üblicher Weise mit der besten erreichbaren Energieeffizienz betrieben werden, wohingegen bei hoher Luftfeuchtigkeit, wenn die vom energieeffizient betriebenen Verdichter freigesetzte Wärme nicht mehr ausreicht, um eine ausreichende Verdunstung zu gewährleisten, durch Herabsetzen der Energieeffizienz die Abwärmeleistung des Verdichters, mit der die Verdunstungsschale beheizt wird, heraufgesetzt werden kann.
-
Um die Energieeffizienz des Verdichters zu verändern, kommen verschiedene Möglichkeiten in Betracht. Eine Möglichkeit ist, den Volumendurchsatz des Verdichters zwischen verschiedenen nicht verschwindenden Werten zu verändern. Ist der Volumendurchsatz zu gering, dann kommen die für die Kälteerzeugung erforderlichen Druckunterschiede zwischen Ein- und Auslass des Verdichters nicht zustande, ist er zu hoch, dann leistet der Verdichter zwar viel mechanische Arbeit, wälzt aber dabei nur wenig Kältemittel um. Daher muss ein Optimum der Effizienz bei einem mittleren Volumendurchsatz des Verdichters existieren, und indem von diesem optimalen Durchsatz nach unten oder, vorzugsweise, nach oben abgewichen wird, kann der Verdichter mit verringerter Energieeffizienz betrieben werden.
-
Bei einem in an sich bekannter Weise thermostatisch, anhand von Ein- und Ausschaltgrenztemperaturen gesteuerten Verdichter kann die Energieeffizienz auch durch Verändern der Differenz zwischen Ein- und Ausschaltgrenztemperatur beeinflusst werden. Eine Veränderung dieser Differenz wirkt sich indirekt auf die Laufzeit des Verdichters und damit auf die Häufigkeit aus, mit der außerhalb einer die Lagerkammer umgebenden Isolation liegende Teile des Kältemittelkreislaufs abgekühlt werden, und beeinflusst so die Effizienz. Denkbar ist auch die Laufzeit des Verdichters direkt zu steuern, um die Energieeffizienz zu verändern.
-
Alternativ oder ergänzend kann als Hilfseinrichtung eine elektrische Heizeinrichtung vorgesehen sein. Deren Bereitstellung und Einbau verursacht zwar zusätzliche Kosten, doch kann die von ihr erzeugte Wärme mit geringeren Verlusten als die Abwärme des Verdichters der Verdunstungsschale zugeführt werden, sodass letztlich eine höhere Gesamtenergieeffizienz des Kältegeräts erreichbar ist.
-
Ein besonders günstiges Verhältnis von Energieaufwand zur damit erreichten Verbesserung der Verdunstungsleistung ist mit einem Ventilator als Hilfseinrichtung erreichbar.
-
Wenn die Hilfseinrichtung mehrere der oben aufgezählten verdunstungsunterstützenden Komponenten wie effizienzvervänderbaren Verdichter, Heizeinrichtung und Ventilator umfasst, dann kann zweckmäßigerweise vorgesehen sein, dass die Steuereinheit eine erste dieser Komponenten in die Verdunstungsrate erhöhender Weise betreibt, wenn ein erster Grenzwert der Luftfeuchtigkeit überschritten ist, und eine zweite Komponente in die Verdunstungsrate erhöhender Weise betreibt, wenn ein vom ersten Grenzwert verschiedener zweiter Grenzwert der Luftfeuchtigkeit überschritten ist. Für eine Komponente, die die Verdunstungsleistung bei geringem Energieeinsatz wirksam erhöht, wird man den Grenzwert zweckmäßigerweise niedriger festlegen als für eine andere, nur im Notfall zu betreibende Komponente.
-
Daher ist vorzugsweise die erste Komponente ein Ventilator, und der erste Grenzwert ist niedriger als der zweite. Die zweite Komponente kann der Verdichter sein.
-
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Aus dieser Beschreibung und den Figuren gehen auch Merkmale der Ausführungsbeispiele hervor, die nicht in den Ansprüchen erwähnt sind. Solche Merkmale können auch in anderen als den hier spezifisch offenbarten Kombinationen auftreten. Die Tatsache, dass mehrere solche Merkmale in einem gleichen Satz oder in einer anderen Art von Textzusammenhang miteinander erwähnt sind, rechtfertigt daher nicht den Schluss, dass sie nur in der spezifisch offenbarten Kombination auftreten können; stattdessen ist grundsätzlich davon auszugehen, dass von mehreren solchen Merkmalen auch einzelne weggelassen oder abgewandelt werden können, sofern dies die Funktionsfähigkeit der Erfindung nicht in Frage stellt. Es zeigen:
-
1 einen schematischen Schnitt durch ein Haushaltskältegerät, an dem die vorliegende Erfindung anwendbar ist;
-
2 ein Flussdiagramm eines Verfahrens der Steuereinheit des Kältegeräts aus 1;
-
3 ein Flussdiagramm eines Teils des Arbeitsverfahrens aus 2 gemäß einer ersten Ausgestaltung;
-
4 denselben Teil des Arbeitsverfahrens wie 3 gemäß einer zweiten Ausgestaltung; und
-
5 denselben Teil des Arbeitsverfahrens gemäß einer dritten Ausgestaltung.
-
Das in 1 gezeigte Haushaltskältegerät, hier ein Kühlschrank, hat in fachüblicher Weise ein wärmeisolierendes Gehäuse mit einem Korpus 1 und einer außerhalb der Schnittebene der Figur liegenden Tür, die zusammen mit dem Korpus 1 eine Lagerkammer 3 begrenzt. Die Lagerkammer 3 ist hier durch einen an ihrer Rückwand zwischen einem Innenbehälter des Korpus 1 und einer diesen umgebenden isolierenden Schaumstoffschicht angeordneten Coldwall-Verdampfer 4 gekühlt, doch dürfte für den Fachmann unmittelbar einsichtig sein, dass die im Folgenden erläuterten Besonderheiten der Erfindung auch in Verbindung mit beliebigen anderen Typen von Verdampfern, insbesondere einem Nofrost-Verdampfer, anwendbar sind. Denkbar ist auch die Anbindung auf ein automatisch abtauendes, insbesondere ein Nofrost-, Gefriergerät, da dieses zumindest in einer Abtauphase seines Verdampfers ebenfalls Tauwasser abgibt.
-
Der Verdampfer 4 ist Teil einer Kältemaschine, die ferner eine in einem aus dem Korpus 1 ausgesparten Maschinenraum 5 untergebrachten Verdichter 6 sowie einen in 1 nicht dargestellten Verflüssiger umfasst, der beispielsweise außen an der Rückwand des Korpus 1 oder auch im Maschinenraum 5 untergebracht sein kann.
-
Bei dem hier betrachteten Coldwall-Kältegerät erstreckt sich am Fuße der durch den Verdampfer 4 gekühlten Rückwand der Lagerkammer 3 eine Auffangrinne 7 für Kondenswasser, das sich an dem vom Verdampfer 4 gekühlten Bereich des Innenbehälters niederschlägt und daran abwärts fließt. Eine Rohrleitung 8 führt vom tiefsten Punkt der Auffangrinne 7 durch die isolierende Schaumstoffschicht hindurch zu einer Verdunstungsschale 9, die auf einem Gehäuse des Verdichters 6 montiert ist, um durch Abwärme des Verdichters 6 beheizt zu werden. Eine elektrische Heizeinrichtung 10 ist hier in Form einer sich im Innern der Verdunstungsschale 9 erstreckenden Widerstands-Heizschleife dargestellt; sie könnte auch beispielsweise in Form einer Folienheizung an einer Außenwand 11 der Verdunstungsschale 9 angebracht sein, wobei in diesem Fall außen um die Außenwand 11 herum noch eine Isolationsschicht vorgesehen sein kann, um sicherzustellen, dass die Heizeinrichtung 10 ihre Wärme im Wesentlichen in die Verdunstungsschale 9 hinein abgibt.
-
Um die Verdunstung von Tauwasser in der Verdunstungsschale 9 zu fördern, kann anstelle der Heizeinrichtung 10 oder zusätzlich zu dieser noch ein Ventilator 12 in dem Maschinenraum 5 so angeordnet sein, dass er einen Luftstrom über dem Wasserspiegel der Verdunstungsschale 9 antreiben kann.
-
Heizeinrichtung 10, Verdichter 6 und Ventilator 12 sind gesteuert durch eine elektronische Steuereinheit 13, die hier der Einfachheit halber in dem Maschinenraum 5 dargestellt ist, die aber in der Praxis weitgehend beliebig am Kältegerät und insbesondere benachbart zu einem – hier nicht dargestellten – Bedienfeld angeordnet sein kann. Die Steuereinheit 13 ist verbunden mit einem an der Lagerkammer 3 angeordneten Temperatursensor 14 sowie mit einem im Maschinenraum 5 angeordneten Luftfeuchtesensor 15. Der Luftfeuchtesensor 15 kann wie in 1 gezeigt über dem Wasserspiegel der Verdunstungsschale 9 angebracht sein, um die Abgabe von Feuchtigkeit durch die Verdunstungsschale jederzeit zu überwachen. Es kommt aber auch eine Anbringung stromaufwärts von der Verdunstungsschale 9 auf dem Weg der über die Verdunstungsschale 9 geführten Luft in Betracht, um die Wasseraufnahmefähigkeit der über den Wasserspiegel der Verdunstungsschale 9 streichenden Luft genau abschätzen zu können. Insbesondere kann der Luftfeuchtesensor, wie in 1 gestrichelt dargestellt und mit Bezugszeichen 15’ bezeichnet, an einem Ort angebracht sein, den die vom Ventilator 12 umgewälzte, in 1 durch Pfeile symbolisierte Luft nach Vorwärmen am Unterteil des Verdichters 6 erreicht.
-
Einer elementaren Ausgestaltung der Erfindung zufolge sind die Steuerung des Verdichterbetriebs und die Steuerung von Hilfseinrichtungen wie Heizeinrichtung 10 und Ventilator 12, die in der Lage sind, die Verdunstungsrate in der Verdunstungsschale 9 zu erhöhen, zwei getrennte Prozesse, die anstatt von derselben Steuereinheit 13 auch von zwei getrennten, nicht miteinander kommunizierenden Steuereinheiten ausgeführt werden könnten. In diesem Falle beruht die Steuerung der Hilfseinrichtungen einfach darin, wie in dem Flussdiagramm der 2 gezeigt, die vom Sensor 15 erfasste Luftfeuchte zu überwachen und anhand dieser den Ventilator 12 und die Heizeinrichtung 10 zu schalten.
-
In Schritt S1 des Verfahrens aus 2 wird die vom Sensor 15 gemessene Luftfeuchte ϕ mit einem ersten, niedrigen Grenzwert ϕ1 verglichen. Steigt die Luftfeuchte ϕ über ϕ1, dann wird der Ventilator 12 eingeschaltet (S2), fällt sie unter diesen Wert, wird er ausgeschaltet (S3), bei konstanter Luftfeuchte ϕ bleibt der Betriebszustand des Ventilators 12 unverändert. Wenn der Ventilator 12 eingeschaltet ist, die Luftfeuchte also über ϕ1 beträgt, dann wird in Schritt S4 mit einem zweiten, höheren Grenzwert fi2 verglichen. Steigt die Luftfeuchte über ϕ2, wird die Heizeinrichtung 10 eingeschaltet (S5), fällt sie unter diesen Wert, wird die Heizeinrichtung 10 ausgeschaltet (S6), und bei gleichbleibender Luftfeuchte ϕ bleibt auch der Betriebszustand der Heizeinrichtung 10 unverändert.
-
Einer ersten Weiterentwicklung des Verfahrens zufolge kann der Betriebszustand des Ventilators 12 auch mit dem des Verdichters 6 verknüpft sein, insbesondere dahingehend, dass der Ventilator 12 gleichzeitig mit dem Verdichter 6 oder geringfügig gegen diesen zeitversetzt ein- und ausgeschaltet wird, und der Betriebszustand des Ventilators nur bei ausgeschaltetem Verdichter 6 in der in 2 gezeigten Weise von der Luftfeuchte ϕ gesteuert wird.
-
Wenn der Verdichter 6 zwischen unterschiedlich effizienten Betriebsmodi umschaltbar ist, kann die Heizeinrichtung 10 entfallen, und stattdessen wird der Verdichter 6 zwischen einem hoch effizienten Betriebsmodus, falls die Luftfeuchte ϕ < ϕ2 ist, und einem mindereffizienten Betriebsmodus bei Luftfeuchte ϕ > ϕ2 umgeschaltet. Verschiedene Möglichkeiten, unterschiedlich effiziente Betriebsmodi des Verdichters 6 zu implementieren, werden anhand der 3 bis 5 erläutert.
-
Die Effizienz der Kälteerzeugung hängt ab von der Leistung bzw. dem Volumendurchsatz des Verdichters 6, bzw., was bei einem drehangetriebenen Verdichter praktisch gleichbedeutend ist, von dessen Drehzahl. Ist die Drehzahl zu niedrig, dann werden die für eine ausreichende Kühlleistung benötigten Druckdifferenzen im Kältemittelkreis nicht erreicht; ist sie zu hoch, dann führt ein starker Unterdruck im Verdampfer 4 zu Verdampfertemperaturen, die niedriger sind nötig und deren Aufrechterhaltung unnötig viel Energie erfordert, während gleichzeitig die mit jeder Umdrehung des Verdichters beförderte Menge an Kältemittel abnimmt. Zwischen beiden Extremen liegt daher ein idealer Drehzahl- bzw. Leistungsbereich, in dem der Verdichter 6 seine höchste Effizienz erreicht.
-
Der Schritt S4, mit dem das Verfahren der 3 einsetzt, ist derselbe, wie in 2 dargestellt. Wenn die Luftfeuchte über ϕ2 liegt, legt die Steuereinheit 13 in Schritt S11 für den Betrieb des Verdichters 6 eine hohe Drehzahl, oberhalb des idealen Drehzahlbereichs, anderenfalls in Schritt S12 eine niedrige Drehzahl im idealen Bereich fest.
-
Im nachfolgenden Schritt S13 wird überprüft, ob die vom Temperatursensor 14 erfasste Temperatur T der Lagerkammer 3 über einer Einschaltschwelle Tmax liegt. Wenn ja, wird der Verdichter mit der zuvor in S12 oder S13 festgelegten Drehzahl eingeschaltet (S14), und das Verfahren kehrt zu Schritt S4 zurück. Anderenfalls verzweigt es zu Schritt S15, wo die Temperatur T mit einer Ausschaltschwelle Tmin verglichen wird. Ist diese unterschritten, dann wird der Verdichter 6 wieder ausgeschaltet (S16), anderenfalls kehrt das Verfahren unmittelbar zu Schritt S4 zurück, ohne den Betriebszustand des Verdichters 6 zu ändern.
-
Die Abwärme, die der Verdichter 6 an die Verdunstungsschale 9 abgibt, rührt zum Teil aus Reibungsverlusten, zum Teil aus adiabatischer Erwärmung des Kältemittels im Verdichter 6 her. Die Reibungsverluste sind im Wesentlichen zur Drehzahl proportional; der Massendurchsatz des Kältemittels, und damit die tatsächlich nutzbare Kühlleistung, wächst bei hohen Drehzahlen nur schwächer als linear mit der Drehzahl, da der ansaugbare Massenstrom begrenzt ist durch die Menge des Kältemittels, das im Verdampfer 4 laufend verdampft. Daher führt zwar die Wahl einer hohen Drehzahl zwar zu einer Erhöhung der Kühlleistung und damit zu einer Verkürzung der Betriebsphasen des Verdichters 6, doch ist diese Verkürzung geringer, als dem Verhältnis der Drehzahlen der beiden Betriebszustände entspricht. Der somit bei hoher Drehzahl verringerte Wirkungsgrad des Verdichters 6 führt dazu, dass ein größerer Anteil der von ihm aufgenommenen elektrischen Antriebsleistung als Abwärme zum Erwärmen der Verdunstungsschale 9 zur Verfügung steht.
-
Falls das Kältegerät einen einfachen Verdichter verwendet, dessen Drehzahl nicht auf verschiedene nichtverschwindende Werte einstellbar ist und der nur durch Ein- und Ausschalten gesteuert werden kann, dann kann die Steuereinheit 10 das in 4 gezeigte Verfahren einsetzen. Hier basiert nur das Einschalten des Verdichters 6 auf einer Messung der Temperatur in der Lagerkammer 3, ausgeschaltet wird der Verdichter 6 jeweils nach einer fest vorgegebenen Laufzeit. Je nachdem, ob in Schritt S4 der Grenzwert ϕ2 der Luftfeuchtigkeit überschritten ist oder nicht, wählt die Steuereinheit eine kurze Laufzeit (S11’) oder eine lange Laufzeit (S12’). Wenn in Schritt S13 festgestellt wird, dass die Temperatur T die Einschaltschwelle Tmax überschritten hat, wird der Verdichter eingeschaltet (S14’), die zuvor festgelegte Laufzeit wird abgewartet (S15’), und der Verdichter wird wieder ausgeschaltet (S16’). Da bei jedem Einschalten des Verdichters Energie verbraucht wird, um z.B. eine vom Verdampfer 4 zum Verdichter 6 führende Saugleitung zu kühlen und das für die benötigten Verdampfungstemperaturen erforderliche Druckgefälle aufzubauen, ist die Effizienz des Verdichters 6 bei kurzer Laufzeit niedriger, und einer größerer Anteil der von ihm aufgenommenen Antriebsleistung steht als Abwärme zum Beheizen der Verdunstungsschale 9 zur Verfügung.
-
Bei dem in 5 gezeigten Arbeitsverfahren ist davon ausgegangen, dass die Leistung bzw. die Drehzahl des Verdichters 6 auf eine Vielzahl unterschiedlicher Werte einstellbar ist. Dadurch ist es möglich, den Verdichter 6 ohne Unterbrechung zu betreiben und die Effizienzeinbußen zu vermeiden, die wie oben erläutert, durch die Notwendigkeit bedingt sind, nach jeder Unterbrechung des Verdichterbetriebs zwischenzeitlich erwärmte Teile wieder abzukühlen und das Druckgefälle auf dem Kältemittelkreis wieder aufzubauen. Die Leistung eines solchen Verdichters 6 kann geregelt werden, indem in regelmäßigen Zeitabständen überprüft wird, ob die Temperatur T der Lagerkammer eine obere Schwelle Tmax über- oder eine untere Schwelle Tmin unterschreitet. Im Fall der Überschreitung reicht die momentane Leistung des Verdichters 6 offensichtlich nicht aus, um die Lagerkammer 3 kalt zu halten, und daher wird diese Leistung nötigenfalls sooft um ein festes Inkrement erhöht, bis Tmax unterschritten ist. Umgekehrt ist bei Unterschreitung von Tmin die Kühlleistung höher als der Bedarf, sodass sie entsprechend vermindert werden kann. Die Häufigkeit, mit der eine solche Anpassung stattfindet, und die Größe des Inkrements sind für ein gegebenes Kältegerätemodell so zu optimieren, dass sowohl Überschwinger der Temperatur als auch ein unnötig langes Verweilen der Temperatur T außerhalb des Intervalls [Tmin, Tmax] vermieden wird.
-
Auf diesem Grundprinzip baut das Verfahren der 5 auf, indem ein effizienzoptimiertes kleines Inkrement in Schritt S12“ nur dann gewählt wird, wenn zuvor in Schritt S4 festgestellt worden ist, dass die Luftfeuchte unter ϕ2 liegt. Anderenfalls wird in Schritt S11“ ein nicht effizienzoptimiertes, großes Inkrement festgelegt. Im Extremfall kann dieses Inkrement von gleicher Größenordnung wie die maximale Leistung des Verdichters 6 sein, sodass ein einmaliges Erhöhen der Leistung um das große Inkrement dazuführt, dass der Verdichter 6 mit Volllast arbeitet, bzw. ein Dekrementieren zum Stillstand des Verdichters führt.
-
Wiederum wird im Schritt S13 überprüft, ob die obere Grenztemperatur Tmax überschritten ist. Wenn ja, wird in Schritt S14“ die Verdichterleistung um das zuvor festgelegte Inkrement erhöht, und das Verfahren kehrt zu S4 zurück. Anderenfalls wird in Schritt S15 geprüft, ob die untere Grenztemperatur Tmin unterschritten ist, und, falls ja, wird in Schritt S16“ die Leistung des Verdichters 6 um das Inkrement vermindert. Die Verwendung des großen Inkrements führt zu starken Schwankungen der Verdichterleistung im Laufe der Zeit und damit zu einer verschlechterten Effizienz und erhöhter Abgabe von Abwärme an die Verdunstungsschale 9.
-
ZITATE ENTHALTEN IN DER BESCHREIBUNG
-
Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
-
Zitierte Patentliteratur
-