DE102010062386B4 - Verfahren zum Konvertieren von Halbleiterschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse - Google Patents

Verfahren zum Konvertieren von Halbleiterschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse Download PDF

Info

Publication number
DE102010062386B4
DE102010062386B4 DE102010062386.5A DE102010062386A DE102010062386B4 DE 102010062386 B4 DE102010062386 B4 DE 102010062386B4 DE 102010062386 A DE102010062386 A DE 102010062386A DE 102010062386 B4 DE102010062386 B4 DE 102010062386B4
Authority
DE
Germany
Prior art keywords
plasma
vol
semiconductor layer
gas
process gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102010062386.5A
Other languages
English (en)
Other versions
DE102010062386A1 (de
Inventor
Patrick Stenner
Dr. Patz Matthias
Dr. Cölle Michael
Dr. Wieber Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102010062386.5A priority Critical patent/DE102010062386B4/de
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to PCT/EP2011/069854 priority patent/WO2012072401A1/de
Priority to EP11788095.5A priority patent/EP2647264A1/de
Priority to JP2013541277A priority patent/JP2014502424A/ja
Priority to US13/885,316 priority patent/US20130240892A1/en
Priority to CN201180058196.4A priority patent/CN103229602B/zh
Priority to TW100143936A priority patent/TWI602316B/zh
Publication of DE102010062386A1 publication Critical patent/DE102010062386A1/de
Application granted granted Critical
Publication of DE102010062386B4 publication Critical patent/DE102010062386B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02027Setting crystal orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02689Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/3003Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

Verfahren zum Konvertieren von amorphen in kristalline Halbleiterschichten, wobei das Konvertieren durch Behandeln der Halbleiterschicht mit einem Plasma und durch Temperierung bei einer Temperatur zwischen ≥ 150°C und ≤ 500°C erfolgt, wobei das Plasma von einer, mit einer Plasmadüse (1) ausgestatteten Plasmaquelle erzeugt wird.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Konvertieren von Halbleiterschichten, insbesondere zum Konvertieren von amorphen in kristalline Siliciumschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse.
  • Bei der Herstellung von Siliciumschichten entsteht, je nach Verfahren, zunächst amorphes Silicium. Amorphes Silicium erreicht jedoch bei einer späteren Anwendung in der Dünnschichtsolarzelle nur einen Wirkungsgrad von etwa 7%. Daher wird amorphes Silicium herkömmlicherweise zuvor in kristallines Silicium umgewandelt beziehungsweise konvertiert.
  • Die Konvertierung von Halbleiterschichten kann durch Energiezufuhr, zum Beispiel durch thermische Behandlung, durch Bestrahlung, beispielsweise mit Laser- oder Infrarotstrahlung, oder durch Plasmabehandlung der Halbleiterschicht erfolgen.
  • Die Druckschrift CN 101724901 A beschreibt ein Verfahren zur Herstellung von polykristallinen Siliciumschichten, in dem ein Siliciummehrschichtsystem in einem Ofen bei 450°C bis 550°C und 0,2 Torr bis 0,8 Torr getempert wird und ein Wasserstoffplasma durch Zugabe von Wasserstoff erzeugt wird.
  • Die Druckschrift CN 101609796 A beschreibt ein Verfahren zur Herstellung von Dünnschichtsolarzellen, in dem eine Schicht aus amorphem Silicium unter einem Wasserstoffdruck von 100 atm bis 800 atm getempert wird.
  • In der Veröffentlichung: „Low-Temperature Crystallization of Amorphous Silicon by Atmospheric-Pressure Plasma Treatment in H2/He or H2/Ar Mixture”, Hiromasa Ohmi u. a., Jpn. J. Appl. Phys. 45 (2006) 8488, wird die Konvertierung von amorphem Silicium durch eine Plasmaquelle mit einer zylindrischen, Rotationselektrode beschrieben. Das Konvertieren erfolgt, indem die Reaktionskammer, in der die zu behandelnde Schichte angeordnet ist, evakuiert und dann bis zum Erreichen des Atmosphärendrucks mit einem Wasserstoff-Helium- beziehungsweise Wasserstoff-Argon-Prozessgas gefüllt wird, wobei ein Atmosphärendruckplasma durch Anlegen einer Hochfrequenzspannung mit einer Frequenz von 150 MHz zwischen der Rotationselektrode und dem Substrat erzeugt wird.
  • US 6 130 397 A offenbart ein Verfahren zum Konvertieren von Halbleiterschichten, insbesondere von amorphen in kristalline Halbleiterschichten, bei dem das Konvertieren durch Behandeln der Halbleiterschicht mit einer Plasmaquelle erfolgt.
  • JP 2008-130503 A offenbart weiterhin eine Plasmadüse mit einer Innenelektrode, die u. a. mit zwei oder mehr Gasen betrieben werden kann.
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zum Konvertieren von amorphen in kristalline Halbleiterschichten, wobei das Konvertieren durch Behandeln der Halbleiterschicht mit einem Plasma und durch Temperierung bei einer Temperatur zwischen ≥ 150°C und ≤ 500°C erfolgt, wobei das Plasma von einer mit einer Plasmadüse (1) ausgestatteten Plasmaquelle erzeugt wird.
  • Unter einer Halbleiterschicht kann dabei insbesondere eine Schicht verstanden werden, welche mindestens einen Elementhalbleiter, bevorzugt ausgewählt aus der Gruppe bestehend aus Si, Ge, α-Sn, C, B, Se, Te und Mischungen davon, und/oder mindestens einen Verbindungshalbleiter, insbesondere ausgewählt aus der Gruppe, bestehend aus IV-IV-Halbleitern, wie SiGe, SiC, III-V-Halbleitern, wie GaAs, GaSb, GaP, InAs, InSb, InP, InN, GaN, AlN, AlGaAs, InGaN, oxidischen Halbleitern, wie InSnO, InO, ZnO, II-VI-Halbleitern, wie ZnS, ZnSe, ZnTe, III-VI-Halbleitern, wie GaS, GaSe, GaTe, InS, InSe, InTe, I-III-VI-Halbleitern, wie CuInSe2, CuInGaSe2, CuInS2, CuInGaS2, und Mischungen davon, umfasst oder daraus besteht.
  • Unter dem Konvertieren eines amorphen in ein kristallines Material kann im Sinne der vorliegenden Erfindung insbesondere das Umwandeln eines amorphen in ein kristallines Material beziehungsweise das Überführen eines amorphen in ein kristallines Material verstanden werden. Eine erfolgte Konvertierung ist zum Beispiel bei Solarzellen durch eine Erhöhung des lichtinduzierten Ladungstransports relativ zu dem Zeitpunkt vor erfolgter Konvertierung messbar. Allgemein lässt sich die Konvertierung eines Materials Raman-spektroskopisch durch eine Bandenverschiebung (im Fall von Silicium durch eine Verschiebung der charakteristischen Bande bei 468 cm–1) überprüfen.
  • Insbesondere kann es sich bei der Halbleiterschicht um eine Siliziumschicht handeln. Dabei kann unter einer Siliziumsschicht sowohl eine im Wesentlichen reine Siliciumschicht als auch eine siliciumhaltige Schicht, beispielsweise eine auf Silicium basierende, darüber hinaus Dotierstoffe enthaltende Schicht oder eine Silicium enthaltende Verbindungshalbleiter-Schicht verstanden werden. Insbesondere kann durch das Verfahren eine amorphe Siliciumschicht in eine kristalline Siliciumschicht konvertiert werden.
  • Im Rahmen einer Ausführungsform erfolgt das Konvertieren durch Behandeln der Halbleiterschicht mit einem Plasma, welches von einer, mit einer Plasmadüse ausgestatteten Plasmaquelle erzeugt wird. Derartige Plasmaquellen sind indirekte Plasmaquellen. Dabei kann unter einer indirekten Plasmaquelle eine Plasmaquelle verstanden werden, bei der das Plasma außerhalb der Reaktionszone mit der Halbleiterschicht erzeugt wird. Das erzeugte Plasma kann dabei, insbesondere unter Entstehung einer Art „Plasmafackel”, auf die zu behandelnde Halbleiterschicht geblasen werden.
  • Ein mit einer Plasmadüsen-Plasmaquelle erzeugtes Plasma hat den Vorteil, dass die eigentliche Plasmabildung nicht durch das Substrat beeinflusst wird. So kann vorteilhafterweise eine hohe Prozesssicherheit erzielt werden. Entsprechend hergestellt Plasmen haben zudem den Vorteil, dass sie potentialfrei sind und daher eine Beschädigung der Oberfläche durch Entladung vermieden werden kann. Weiterhin kann ein Fremdmetalleintrag auf die Oberfläche vermieden werden, da das Substrat nicht als Gegenpol dient.
  • Die Plasmaquelle kann insbesondere eine im Hohlraum der Plasmadüse angeordnete und von der Plasmadüse elektrisch isolierte Innenelektrode aufweisen. Durch Einspeisen des Prozessgases in den Hohlraum der Plasmadüse und Anlegen einer elektrischen Potentialdifferenz an die Innenelektrode und die Plasmadüse kann bei einer derartigen Plasmaquelle zwischen der Innenelektrode und der Plasmadüse ein Plasma durch eine selbsterhaltende Gasentladung erzeugt werden. Die Plasmaquelle kann insbesondere eine Hochspannungsgasentladungsplasmaquelle beziehungsweise eine Lichtbogenplasmaquelle sein.
  • Das Plasma kann insbesondere mittels eines Lichtbogens beziehungsweise mittels einer Hochspannungsgasentladung, beispielsweise einer aufgebauten Spannung von ≥ 8 kV bis ≤ 30 kV, erzeugt werden. Insbesondere kann das Plasma durch eine Hochspannungsgasentladungsplasmaquelle beziehungsweise eine Lichtbogenplasmaquelle erzeugt werden. Beispielsweise kann das Plasma durch eine gepulste Spannung, beispielsweise eine Rechteckspannung, oder eine Wechselspannung erzeugt werden. Zum Beispiel kann das Plasma durch eine Rechteckspannung von ≥ 15 kHz bis ≤ 25 kHz und/oder ≥ 0 V bis ≤ 400 V, beispielsweise ≥ 260 bis ≤ 300 V, zum Beispiel 280 V, und/oder mit einer Stromstärke von ≥ 2,2 A bis ≤ 3,2 A und/oder einem Plasma Cycle von ≥ 50% bis ≤ 100% erzeugt werden. Insbesondere kann das Plasma durch eine Hochdruck-Gasentladung bei Stromstärken von < 45 A, beispielsweise ≥ 0,1 A bis ≤ 44 A, beispielsweise von ≥ 1,5 A bis ≤ 3 A, Gleichstrom erzeugt werden. Dabei kann unter einer Hochdruck-Gasentladung insbesondere eine Gasentladung bei Drücken von ≥ 0,5 bar bis ≤ 8 bar, beispielsweise von ≥ 1 bar bis ≤ 5 bar, verstanden werden. Das Prozessgas kann vor dem Einspeisen aus unterschiedlichen Gasen, beispielsweise Edelgas/en, insbesondere Argon, und/oder Stickstoff und/oder Wasserstoff, gemischt werden. Die Behandlungsbreite der Plasmadüse kann beispielsweise von ≥ 0,25 mm bis ≤ 20 mm, beispielsweise von ≥ 1 mm bis ≤ 5 mm, betragen. Zur Durchführung des Verfahrens geeignete, mit einer Plasmadüse ausgestattete Plasmaquellen (Plasmadüsen-Plasmaquellen) werden zum Beispiel mit unter der Handelsproduktbezeichnung Plasmajet von der Firma Plasmatreat GmbH, Deutschland oder unter der Handelsproduktbezeichnung Plasmabeam von der Firma Diener GmbH, Deutschland vertriebenen.
  • Im Rahmen einer weiteren Ausführungsform wird das Plasma durch eine Spannung mit einer Frequenz von < 30 kHz, beispielsweise von ≥ 15 kHz bis ≤ 25 kHz, zum Beispiel von ~ 20 kHz, erzeugt. Aufgrund der geringen Frequenzen ist der Energieeintrag vorteilhafterweise besonders gering. Der geringe Energieeintrag hat wiederum den Vorteil, dass eine Beschädigung der Oberfläche der Halbleiterschicht vermieden werden kann.
  • Im Rahmen einer weiteren Ausführungsform erfolgt das Konvertieren bei Atmosphärendruck. Insbesondere kann die Plasmaquelle eine Atmosphärendruckplasmaquelle sein. So kann vorteilhafterweise auf ein kostspieliges Niederdruck oder Hochdruckverfahren verzichtet werden. Zudem kann – verglichen mit Niederdruckverfahren beziehungsweise Vakuumverfahren – die Verweilzeit reduziert werden, da bei Atmosphärendruck bedingt durch die höhere Moleküldichte eine höhere Energiedichte erzielt werden kann.
  • Das Prozessgas kann vor dem Einspeisen aus unterschiedlichen Gasen, beispielsweise Edelgas/en, insbesondere Argon, und/oder Stickstoff und/oder Wasserstoff, gemischt werden. Die unterschiedlichen Gase können dabei insbesondere in einem einstellbaren Verhältnis zueinander gemischt werden.
  • Im Rahmen einer weiteren Ausführungsform wird das Plasma aus einem Prozessgas erzeugt, welches eine Edelgas oder Edelgasgemisch, insbesondere Argon, und/oder Stickstoff umfasst.
  • Es hat sich gezeigt, dass Halbleiterschichten durch Behandlung mit einem, aus einem edelgashaltigen, insbesondere argonhaltigen, und/oder stickstoffhaltigen Prozessgas erzeugten Plasma konvertiert werden können. Insbesondere können durch Behandlung mit einem, aus einem edelgashaltigen, insbesondere argonhaltigen, und/oder stickstoffhaltigen Prozessgas erzeugten Plasma amorphe Siliciumschichten in kristalline Siliciumschichten konvertiert werden. Die Verwendung eines stickstoffhaltigen Prozessgases beziehungsweise der Einsatz von Stickstoff anstelle von Edelgasen im Prozessgas hat den Vorteil, dass die Prozesskosten deutlich gesenkt werden können, da Stickstoff günstiger als Edelgase, wie Argon, oder Helium ist.
  • Es hat sich herausgestellt, dass reiner Stickstoff als Prozessgas eingesetzt werden kann, um ein Plasma zu erzeugen, dessen Plasmatemperatur zur Konvertierung von Halbleiterschichten geeignet ist. In Abhängigkeit von der zu behandelnden Halbleiterschicht beziehungsweise deren Substrat kann es jedoch sinnvoll sein, die Plasmatemperatur höher oder niedriger einzustellen. Insbesondere kann eine höhere Plasmatemperatur bei Halbleiterschichten auf Substraten mit einer hohen Wärmeleitfähigkeit, beispielsweise metallischen Substraten, und eine niedrigere Plasmatemperatur bei Halbleiterschichten auf Substraten mit einer niedrigen Wärmeleitfähigkeit, beispielsweise Glassubstraten, wie EAGLE-Glassubstraten, eingestellt werden.
  • In diesem Zusammenhang hat sich gezeigt, dass die Plasmatemperatur eines, aus einem stickstoffhaltigen Prozessgas erzeugten Plasmas zum Einen durch Erhöhung des Prozessgasdrucks beziehungsweise der Prozessgasgeschwindigkeit gesenkt und umgekehrt durch Verringern des Prozessgasdrucks beziehungsweise der Prozessgasgeschwindigkeit erhöht werden kann.
  • Zum anderen hat sich gezeigt, dass die Plasmatemperatur eines, aus einem stickstoffhaltigen Prozessgas erzeugten Plasmas durch Zugabe von Edelgasen, wie Argon, beziehungsweise durch Erhöhung des Edelgasanteils gesenkt und umgekehrt durch Senken des Edelgasanteils erhöht werden kann.
  • Weiterhin hat sich gezeigt, dass die Plasmatemperatur eines, aus einem edelgashaltigen Prozessgas erzeugten Plasma durch Zugabe von Stickstoff und/oder Wasserstoff beziehungsweise durch Erhöhung des Stickstoffanteils und/oder Wasserstoffanteils erhöht und umgekehrt durch Senken des Stickstoffanteils und/oder Wasserstoffanteils gesenkt werden kann.
  • Der Prozessgasdruck und die Prozessgaszusammensetzung kann beispielsweise derart eingestellt werden, dass Plasmatemperaturen von ≥ 750°C resultieren.
  • Die Temperatur mit der die Halbleiterschicht behandelt wird kann auch noch durch weitere Prozessparameter eingestellt werden.
  • Die Behandlungstemperatur kann zum Beispiel durch Vergrößern des Abstandes zwischen dem Ort der Plasmaerzeugung und der zu behandelnden Halbleiterschicht verringert, und umgekehrt durch Verringern des Abstandes zwischen dem Ort der Plasmaerzeugung und der zu behandelnden Halbleiterschicht erhöht werden.
  • Weiterhin kann die Behandlungstemperatur durch Verlängern der Behandlungszeit mit dem Plasma erhöht und umgekehrt durch Verkürzen der Behandlungszeit mit dem Plasma verringert werden. Im Rahmen des Verfahrens kann das Plasma über die Halbleiterschicht, insbesondere parallel zur Halbleiterschicht bewegt werden. Dies kann beispielsweise durch einen X/Y-Schreiber erfolgen. Dabei kann die Behandlungstemperatur durch Verlangsamen der Geschwindigkeit, mit der das Plasma über die Halbleiterschicht bewegt wird, erhöht und durch Erhöhen der Geschwindigkeit, mit der das Plasma über die Halbleiterschicht bewegt wird, verringert werden.
  • Im Rahmen einer weiteren Ausführungsform umfasst das Prozessgas weiterhin Wasserstoff. Wie bereits erläutert kann so vorteilhafterweise bei Bedarf die Plasmatemperatur erhöht werden. Zudem kann so die Halbleiterschicht vorteilhafterweise gleichzeitig konvertiert und die beim Konvertieren möglicherweise entstehenden offenen Bindungen (Englisch: dangling bonds), mit Wasserstoff abgesättigt beziehungsweise passiviert werden. Daher kann das Verfahren im Rahmen dieser Ausführungsform insbesondere als Verfahren zum Konvertieren und zum Wasserstoffpassivieren von Halbleiterschichten bezeichnet werden. Durch das gleichzeitige Konvertieren und Wasserstoffpassivieren kann vorteilhafterweise die Zahl der Prozessschritte verringert sowie unterschiedliche Prozessschritte vermieden werden und damit die insgesamt die Herstellungskosten von Halbleiterschichten gesenkt werden. Eine Wasserstoffpassivierung wird zum Beispiel für Solarzellen durch eine Erhöhung des lichtinduzierten Ladungstransports relativ zu dem Zeitpunkt vor erfolgter Passivierung messbar. Allgemein lässt sich die Wasserstoffpassivierung IR-spektroskopisch durch die Veränderung der Banden des jeweiligen Halbleiters (für Siliciumschichten: durch die Veränderung der charakteristischen Bande bei 2000 cm–1) überprüfen. Vorteilhafterweise ist zur Passivierung eine geringe Wasserstoffmenge ausreichend, was sich vorteilhaft auf die Prozesskosten auswirkt.
  • Grundsätzlich kann das Prozessgas ≥ 0 Vol.-% oder bis ≤ 100 Vol.-%, insbesondere ≥ 50 Vol.-% oder ≥ 90 Vol.-% oder ≥ 95 Vol.-% bis ≤ 100 Vol.-% oder ≤ 99,9 Vol.-% oder ≤ 99,5 Vol.-% oder ≤ 95 Vol.-% oder ≤ 90 Vol.-%, beispielsweise ≥ 95 Vol.-% bis ≤ 99,5 Vol.-%, Edelgas/e, insbesondere Argon, und/oder ≥ 0 Vol.-% bis ≤ 100 Vol.-%, insbesondere ≥ 50 Vol.-% oder ≥ 90 Vol.-% oder ≥ 95 Vol.-% bis ≤ 100 Vol.-% oder ≤ 99,9 Vol.-% oder ≤ 99,5 Vol.-% oder ≤ 95 Vol.-% oder ≤ 90 Vol.-%, beispielsweise ≥ 95 Vol.-% bis ≤ 99,5 Vol.-%, Stickstoff und/oder ≥ 0 Vol.-% bis ≤ 10 Vol.-%, insbesondere ≥ 0 Vol.-% oder ≥ 0,1 Vol.-% oder ≥ 0,5 Vol.-% bis ≤ 10 Vol.-% oder ≤ 5 Vol.-%, Wasserstoff umfassen, insbesondere wobei die Summe der Volumenprozentwerte von Stickstoff und/oder Edelgas/en und/oder Wasserstoff insgesamt 100 Volumenprozent ergibt.
  • Dabei ist sowohl möglich, dass das Prozessgas edelgashaltige, aber nicht stickstoffhaltig ist, als auch, dass das Prozessgas stickstoffhaltig, aber nicht edelgashaltig ist. Zudem ist es möglich, dass das Prozessgas an Edelgas/en und Stickstoff zusammen ≥ 0 Vol.-% oder bis ≤ 100 Vol.-%, insbesondere ≥ 50 Vol.-% oder ≥ 90 Vol.-% oder ≥ 95 Vol.-% bis ≤ 100 Vol.-% oder ≤ 99,9 Vol.-% oder ≤ 99,5 Vol.-% oder ≤ 95 Vol.-% oder ≤ 90 Vol.-%, beispielsweise ≥ 95 Vol.-% bis ≤ 99,5 Vol.-%, umfasst. Beispielsweise kann das Prozessgas ≥ 0 Vol.-% bis ≤ 100 Vol.-%, insbesondere ≥ 50 Vol.-% bis ≤ 90 Vol.-% Stickstoff und/oder ≥ 0 Vol.-% bis ≤ 50 Vol.-% oder ≤ 40 Vol.-%, Edelgas/e, insbesondere Argon, umfassen. Zusätzlich kann das Prozessgas ≥ 0 Vol.-% oder ≥ 0,1 Vol.-% bis ≤ 10 Vol.-%, beispielsweise ≥ 0,5 Vol.-% bis ≤ 5 Vol.-%, Wasserstoff umfassen. Dabei ergibt die Summe der Volumenprozentwerte von Stickstoff, Edelgas/en und/oder Wasserstoff vorzugsweise insgesamt 100 Volumenprozent.
  • Insbesondere kann das Prozessgas aus > 0 Vol.-% bis ≤ 100 Vol.-%, insbesondere ≥ 50 Vol.-% oder ≥ 90 Vol.-% oder ≥ 95 Vol.-% bis ≤ 100 Vol.-% oder ≤ 99,9 Vol.-% oder ≤ 99,5 Vol.-% oder ≤ 95 Vol.-% oder ≤ 90 Vol.-%, beispielsweise ≥ 90 Vol.-% oder ≥ 95 Vol.-% bis ≤ 99,9 Vol.-% oder ≤ 99,5 Vol.-%, Edelgas/en, insbesondere Argon, und/oder Stickstoff, zum Beispiel aus ≥ 50 Vol.-% bis ≤ 90 Vol.-% Stickstoff und/oder ≥ 0 Vol.-% bis ≤ 50 Vol.-%, insbesondere ≥ 5 Vol.-% bis ≤ 40 Vol.-%, Edelgas/en, und ≥ 0 Vol.-% bis ≤ 10 Vol.-%, insbesondere ≥ 0,5 Vol.-% bis ≤ 5 Vol.-%, Wasserstoff bestehen, insbesondere wobei die Summe der Volumenprozentwerte von Stickstoff, Edelgas/en, insbesondere Argon, und Wasserstoff insgesamt 100 Volumenprozent ergibt. Ein Prozessgas mit einer derartigen Zusammensetzung hat sich zur Konvertierung von Halbleiterschicht insbesondere als vorteilhaft erwiesen.
  • Im Rahmen einer weiteren Ausführungsform umfasst das Prozessgas ≥ 90 Vol.-% bis ≤ 99,9 Vol.-%, beispielsweise ≥ 95 Vol.-% bis ≤ 99,5 Vol.-%, Edelgas/e, insbesondere Argon, und/oder Stickstoff (also an Edelgas/en oder an Stickstoff oder an Edelgas/en und Stickstoff zusammen) und ≥ 0,1 Vol.-% bis ≤ 10 Vol.-%, beispielsweise ≥ 0,5 Vol.-% bis ≤ 5 Vol.-%, Wasserstoff, insbesondere wobei die Summe der Volumenprozentwerte von Stickstoff, Edelgas/en und Wasserstoff insgesamt 100 Volumenprozent ergibt.
  • Im Rahmen einer weiteren Ausführungsform wird die Behandlungstemperatur durch Einstellen der Zusammensetzung des Prozessgases eingestellt. Zum Beispiel kann die Plasmatemperatur und damit auch die Behandlungstemperatur durch Zugabe von Edelgasen, wie Argon, beziehungsweise durch Erhöhung des Edelgasanteils gesenkt und umgekehrt durch Senken des Edelgasanteils erhöht werden. Durch Ersetzen eines Edelgasanteils durch einen Wasserstoffanteil kann die Plasmatemperatur und damit auch die Behandlungstemperatur erhöht und umgekehrt durch Ersetzen eines Wasserstoff- und/oder Stickstoffanteils durch einen Edelgasanteil gesenkt werden. Insbesondere können die Anteile von Stickstoff, Edelgas, insbesondere Argon, und Wasserstoff innerhalb der vorstehend beschriebenen Bereiche zur Einstellung der Plasma- und Behandlungstemperatur variiert werden.
  • Im Rahmen einer weiteren Ausführungsform wird die Behandlungstemperatur durch Einstellen des Prozessgasdrucks beziehungsweise der Prozessgasgeschwindigkeit eingestellt. Beispielsweise kann der Prozessgasdruck innerhalb eines Bereiches von ≥ 0,5 bar bis ≤ 8 bar, beispielsweise ≥ 1 bar bis ≤ 5 bar, variiert werden. Dabei sinkt die Plasmatemperatur und damit auch die Behandlungstemperatur mit steigendem Prozessgasdruck beziehungsweise steigender Prozessgasgeschwindigkeit und steigt mit sinkendem Prozessgasdruck beziehungsweise sinkender Prozessgasgeschwindigkeit.
  • Im Rahmen einer weiteren Ausführungsform wird die Behandlungstemperatur durch Einstellen des Abstandes zwischen dem Ort der Plasmaerzeugung und der zu behandelnden Halbleiterschicht, beispielsweise zwischen einer Plasmadüse und der Halbleiterschicht, eingestellt. Dabei sinkt die Behandlungstemperatur bei einer Vergrößerung des Abstands und steigt bei einer Verkleinerung des Abstands. Beispielsweise kann der Abstand zwischen einer Plasmadüse und der zu behandelnden Halbleiterschicht in einem Bereich von 50 μm bis 50 mm, bevorzugt 1 mm bis 30 mm, insbesondere bevorzugt 3 mm bis 10 mm, eingestellt werden.
  • Der aus der Düse austretende Plasmastrahl wird zur Erzielung einer besonders guten Konvertierung bevorzugt in einem Winkel von 5 bis 90°, bevorzugt 80 bis 90°, besonders bevorzugt 85 bis 90° (in letzterem Fall: im wesentlichen rechtwinklig zur Substratoberfläche für planare Substrate) auf die auf dem Substrat befindliche Halbleiterschicht gelenkt.
  • Als Düsen für die Lichtbogenplasmaquelle eignen sich Spitzdüsen, Fächerdüsen oder rotierende Düsen, wobei bevorzugt Spitzdüsen eingesetzt werden, die den Vorteil haben, dass eine höhere punktuelle Energiedichte erreicht wird.
  • Im Rahmen einer weiteren Ausführungsform wird die Behandlungstemperatur durch Einstellen der Behandlungszeit, insbesondere der Behandlungsgeschwindigkeit, mit welcher das Plasma über die Halbleiterschicht bewegt wird, eingestellt. Dabei sinkt die Behandlungstemperatur bei einer Verkürzung der Behandlungszeit beziehungsweise einer Erhöhung der Behandlungsgeschwindigkeit, mit welcher das Plasma über die Halbleiterschicht bewegt wird und steigt bei einer Verlängerung der Behandlungszeit beziehungsweise einer Verringerung der Behandlungsgeschwindigkeit, mit welcher das Plasma über die Halbleiterschicht bewegt wird. Eine besonders gute Konvertierung wird, insbesondere für die o. g. Abstände der Düse von der zu behandelnden Halbleiterschicht, erzielt, wenn die Behandlungsgeschwindigkeit, bestimmt als behandelte Strecke der Halbleiterschicht pro Zeiteinheit, 0,1 bis 500 mm/s bei einer Behandlungsbreite von 1 bis 15 mm beträgt. Je nach der zu behandelnden Halbleiteroberfläche beschleunigt eine Temperierung weiterhin die Konvertierung. Zur Erhöhung der Behandlungsgeschwindigkeit können mehrere Plasmadüsen hintereinander geschaltet werden.
  • Bei stationärer Verfahrensführung beträgt die Behandlungsbreite der Plasmadüse zur Erzielung einer guten Konvertierung vorzugsweise 0,25 bis 20 mm, bevorzugt 1 bis 5 mm.
  • Die Halbleiterschicht wird weiterhin bei einer Temperatur zwischen ≥ 150°C und ≤ 500°C, beispielsweise zwischen ≥ 200°C und ≤ 400°C temperiert. So wird die Konvertierung und gegebenenfalls die Passivierung der Halbleiterschicht beschleunigt. Prinzipiell kann die Temperierung durch den Einsatz von Öfen, beheizten Walzen, Heizplatten, Infrarot- oder Mikrowellenstrahlung oder ähnlichem erfolgen. Besonders bevorzugt wird die Temperierung jedoch wegen des dann resultierenden geringen Aufwandes mit einer Heizplatte oder mit beheizten Walzen im Rolle-zu-Rolle-Verfahren durchgeführt.
  • Das Verfahren ermöglicht auch eine simultane Behandlung von mehreren übereinander liegenden Halbleiterschichten Zum Beispiel können Halbleiterschichten unterschiedlichen Dotiergrads (p/n Dotierung) oder nicht dotierte Halbleiterschichten mit dem Verfahren konvertiert und gegebenenfalls passiviert werden. Das Verfahren ist dabei beispielsweise gut zur Konvertierung und gegebenenfalls Passivierung mehrerer übereinanderliegender Schichten geeignet, deren Schichtdicken jeweils in einem Bereich zwischen 10 nm und 3 μm liegen, wobei Schichtdicken zwischen 10 nm und 60 nm, 200 nm und 300 nm und 1 μm und 2 μm bevorzugt sind.
  • Hinsichtlich weiterer Merkmale und Vorteile des erfindungsgemäßen Verfahrens wird hiermit explizit auf die Erläuterungen im Zusammenhang mit der erfindungsgemäßen Plasmaquelle und der Figurenbeschreibung verwiesen.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Halbleiterschicht, welche durch ein erfindungsgemäßes Verfahren hergestellt ist.
  • Hinsichtlich weiterer Merkmale und Vorteile der erfindungsgemäßen Halbleiterschicht wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Verfahren, der erfindungsgemäßen Plasmaquelle und der Figurenbeschreibung verwiesen.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein elektronisches oder optoelektronisches Erzeugnis, beispielsweise Photovoltaikvorrichtung, Transistor, Flüssigkristallanzeige, insbesondere Solarzelle, welches eine erfindungsgemäße Halbleiterschicht umfasst.
  • Hinsichtlich weiterer Merkmale und Vorteile des erfindungsgemäßen Erzeugnisses wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Verfahren, der erfindungsgemäßen Plasmaquelle und der Figurenbeschreibung verwiesen.
  • Geeignet zur Durchführung des erfindungsgemäßen Verfahrens ist weiterhin eine Plasmaquelle, welche eine Plasmadüse, eine im Hohlraum der Plasmadüse angeordnete und von der Plasmadüse elektrisch isolierte Innenelektrode und eine Gas- und Spannungsversorgungsvorrichtung zum Einspeisen eines Prozessgases in den Hohlraum der Plasmadüse und zum Anlegen einer elektrischen Potentialdifferenz, insbesondere einer Hochspannung, an die Innenelektrode und die Plasmadüse, um zwischen der Innenelektrode und der Plasmadüse ein Plasma durch eine selbsterhaltende Gasentladung beziehungsweise einen Lichtbogen zu erzeugen, umfasst. Dabei umfasst die Gas- und Spannungsversorgungsvorrichtung mindestens zwei, beispielsweise mindestens drei, Gasanschlüsse zum Einspeisen unterschiedlicher Gasspezies, insbesondere von Edelgas/en, insbesondere Argon, und/oder Stickstoff und/oder Wasserstoff, und eine Gasmischeinheit zum Mischen des Prozessgases aus den unterschiedlichen Gasspezies.
  • Eine derartige Plasmaquelle ist vorteilhafterweise zur Durchführung des erfindungsgemäßen Verfahrens geeignet. So kann das Plasma mittels eines Lichtbogens beziehungsweise mittels einer Hochspannungsgasentladung, beispielsweise einer aufgebauten Spannung von ≥ 8 kV bis ≤ 30 kV, erzeugt werden. Daher kann die Plasmaquelle auch als Lichtbogenplasmaquelle beziehungsweise Hochspannungsgasentladungsplasmaquelle bezeichnet werden. Zudem handelt es sich bei einer derartigen Plasmaquelle vorteilhafterweise um eine indirekte Plasmaquelle. Vorteilhafterweise ist die Plasmaquelle zudem bei Atmosphärendruck betreibbar.
  • Vorzugsweise ist die Gasmischeinheit dazu ausgelegt, die unterschiedlichen Gasspezies in einem einstellbaren Verhältnis zueinander zu mischen. Eine derartig ausgestaltete Plasmaquelle hat sich zur Durchführung des erfindungsgemäßen Verfahrens als besonders vorteilhaft erwiesen. Die Gasmischeinheit kann sowohl in die Gas- und Spannungsversorgungsvorrichtung integriert als auch an die Gas- und Spannungsversorgungsvorrichtung angeschlossen sein.
  • Die Plasmaquelle kann insbesondere dazu ausgelegt sein, das Plasma durch eine gepulste Spannung, beispielsweise eine Rechteckspannung oder eine Wechselspannung, zu erzeugen.

Claims (9)

  1. Verfahren zum Konvertieren von amorphen in kristalline Halbleiterschichten, wobei das Konvertieren durch Behandeln der Halbleiterschicht mit einem Plasma und durch Temperierung bei einer Temperatur zwischen ≥ 150°C und ≤ 500°C erfolgt, wobei das Plasma von einer, mit einer Plasmadüse (1) ausgestatteten Plasmaquelle erzeugt wird.
  2. Verfahren nach Anspruch 1, wobei das Plasma durch eine Spannung mit einer Frequenz von < 30 kHz erzeugt wird.
  3. Verfahren nach Anspruch 1 oder 2, wobei das Konvertieren bei Atmosphärendruck erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das Plasma aus einem Prozessgas erzeugt wird, welches ein Edelgas oder Edelgasgemisch, insbesondere Argon, und/oder Stickstoff umfasst.
  5. Verfahren nach Anspruch 4, wobei das Prozessgas weiterhin Wasserstoff umfasst.
  6. Verfahren nach Anspruch 4 oder 5, wobei das Prozessgas ≥ 90 Vol.-% bis ≤ 99,9 Vol.-% Edelgas/e und/oder Stickstoff, und ≥ 0,1 Vol.-% bis ≤ 10 Vol.-% Wasserstoff, umfasst, insbesondere wobei die Summe der Volumenprozentwerte von Stickstoff, Edelgas/en und Wasserstoff insgesamt 100 Volumenprozent ergibt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Behandlungstemperatur durch Einstellen der Zusammensetzung des Prozessgases, und/oder des Prozessgasdrucks beziehungsweise der Prozessgasgeschwindigkeit, und/oder des Abstandes zwischen der Plasmadüse und der Halbleiterschicht, und/oder der Behandlungszeit, insbesondere der Behandlungsgeschwindigkeit, mit welcher das Plasma über die Halbleiterschicht bewegt wird, eingestellt wird.
  8. Halbleiterschicht, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 7.
  9. Elektronisches oder optoelektronisches Erzeugnis umfassend eine Halbleiterschicht gemäß Anspruch 8.
DE102010062386.5A 2010-12-03 2010-12-03 Verfahren zum Konvertieren von Halbleiterschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse Expired - Fee Related DE102010062386B4 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102010062386.5A DE102010062386B4 (de) 2010-12-03 2010-12-03 Verfahren zum Konvertieren von Halbleiterschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse
EP11788095.5A EP2647264A1 (de) 2010-12-03 2011-11-10 Verfahren zum konvertieren von halbleiterschichten
JP2013541277A JP2014502424A (ja) 2010-12-03 2011-11-10 半導体層の変換方法
US13/885,316 US20130240892A1 (en) 2010-12-03 2011-11-10 Method for converting semiconductor layers
PCT/EP2011/069854 WO2012072401A1 (de) 2010-12-03 2011-11-10 Verfahren zum konvertieren von halbleiterschichten
CN201180058196.4A CN103229602B (zh) 2010-12-03 2011-11-10 用于转换半导体层的方法
TW100143936A TWI602316B (zh) 2010-12-03 2011-11-30 將非晶形半導體層轉換成結晶狀半導體層之方法、半導體層及其應用、和電漿源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102010062386.5A DE102010062386B4 (de) 2010-12-03 2010-12-03 Verfahren zum Konvertieren von Halbleiterschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse

Publications (2)

Publication Number Publication Date
DE102010062386A1 DE102010062386A1 (de) 2012-06-06
DE102010062386B4 true DE102010062386B4 (de) 2014-10-09

Family

ID=45044548

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102010062386.5A Expired - Fee Related DE102010062386B4 (de) 2010-12-03 2010-12-03 Verfahren zum Konvertieren von Halbleiterschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse

Country Status (7)

Country Link
US (1) US20130240892A1 (de)
EP (1) EP2647264A1 (de)
JP (1) JP2014502424A (de)
CN (1) CN103229602B (de)
DE (1) DE102010062386B4 (de)
TW (1) TWI602316B (de)
WO (1) WO2012072401A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040231A1 (de) 2010-09-03 2012-03-08 Evonik Degussa Gmbh p-Dotierte Siliciumschichten
DE102010041842A1 (de) 2010-10-01 2012-04-05 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Hydridosilanverbindungen
DE102010053214A1 (de) * 2010-12-03 2012-06-06 Evonik Degussa Gmbh Verfahren zur Wasserstoffpassivierung von Halbleiterschichten
DE102010062984A1 (de) 2010-12-14 2012-06-14 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Halogen- und Hydridosilane
DE102010063823A1 (de) 2010-12-22 2012-06-28 Evonik Degussa Gmbh Verfahren zur Herstellung von Hydridosilanen
US9613826B2 (en) 2015-07-29 2017-04-04 United Microelectronics Corp. Semiconductor process for treating metal gate
CN107708283A (zh) * 2017-11-06 2018-02-16 清华大学 一种微波等离子体的温度控制方法及设备
GB201718387D0 (en) * 2017-11-07 2017-12-20 Univ College Dublin Nat Univ Ireland Dublin Surface preparation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130397A (en) * 1997-11-06 2000-10-10 Tdk Corporation Thermal plasma annealing system, and annealing process
US20020100409A1 (en) * 1998-07-10 2002-08-01 Jin Jang Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
JP2008130503A (ja) * 2006-11-24 2008-06-05 Toyota Gakuen 大気圧プラズマジェット装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1335641B1 (de) * 2002-02-09 2004-08-25 Plasma Treat GmbH Plasmadüse
DE10303402A1 (de) * 2003-01-24 2004-08-12 Pva Tepla Ag Vorrichtung zum Erzeugen eines breiten Aktivgasstrahls auf Basis eines Gasentladungsplasmas
JP2006190493A (ja) * 2004-12-28 2006-07-20 Tohoku Techno Arch Co Ltd プラズマ処理装置およびプラズマ処理方法
JP4453693B2 (ja) * 2005-11-14 2010-04-21 セイコーエプソン株式会社 半導体装置の製造方法及び電子機器の製造方法
JP2008053634A (ja) * 2006-08-28 2008-03-06 Seiko Epson Corp 半導体膜の製造方法、半導体素子の製造方法、電気光学装置、電子機器
JP5103956B2 (ja) * 2007-03-12 2012-12-19 セイコーエプソン株式会社 プラズマ処理装置
CN101609796B (zh) 2008-06-20 2012-03-21 福建钧石能源有限公司 薄膜形成方法和薄膜太阳能电池的制造方法
CN101724901B (zh) 2009-12-17 2012-05-23 南开大学 一种氢等离子体氛围中铝诱导晶化多晶硅薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130397A (en) * 1997-11-06 2000-10-10 Tdk Corporation Thermal plasma annealing system, and annealing process
US20020100409A1 (en) * 1998-07-10 2002-08-01 Jin Jang Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
JP2008130503A (ja) * 2006-11-24 2008-06-05 Toyota Gakuen 大気圧プラズマジェット装置

Also Published As

Publication number Publication date
JP2014502424A (ja) 2014-01-30
WO2012072401A1 (de) 2012-06-07
CN103229602B (zh) 2018-08-31
TW201242050A (en) 2012-10-16
CN103229602A (zh) 2013-07-31
US20130240892A1 (en) 2013-09-19
TWI602316B (zh) 2017-10-11
EP2647264A1 (de) 2013-10-09
DE102010062386A1 (de) 2012-06-06

Similar Documents

Publication Publication Date Title
DE102010062386B4 (de) Verfahren zum Konvertieren von Halbleiterschichten, derartig hergestellte Halbleiterschichten sowie derartige Halbleiterschichten umfassende elektronische und optoelektronische Erzeugnisse
DE102012209887B4 (de) Abplatzverfahren zur Bildung einer Mehrfach-Photovoltaikstruktur
EP2647037B1 (de) Verfahren zur wasserstoffpassivierung von halbleiterschichten
DE102007047231B4 (de) Siliziumkarbid-Halbleiterbauelement und Verfahren zu dessen Herstellung
DE102004001099B4 (de) Oxidationsverfahren mit hochdichtem Plasma
DE2929296A1 (de) Verfahren zur ausbildung von pn-sperrschichten
KR20010039865A (ko) 반도체박막, 그것을 사용한 반도체장치, 그들의 제조방법및 반도체박막의 제조장치
Iftiquar The roles of deposition pressure and rf power in opto-electronic properties of a-SiO: H films
DE112010001613T5 (de) Gepulste Plasmaabscheidung zum Ausbilden einer Mikrokristallinen Siliziumschicht fürSolaranwendungen
WO2012072406A1 (de) Verfahren zum konvertieren von halbleiterschichten
EP2556547A1 (de) Verfahren zum herstellen von amorphen halbleiterschichten
i Cabarrocas et al. Low temperature plasma synthesis of nanocrystals and their application to the growth of crystalline silicon and germanium thin films
WO2012000815A1 (de) Modifizierung von siliciumschichten aus silan-haltigen formulierungen
DE60125649T2 (de) Verfahren zur Bildung dünner Schichten
DE112010001895T5 (de) Hochwertige Kontaktstruktur einer TCO-Silizium-Schnittstelle für hocheffiziente Dünnschicht-Silizium-Solarzellen
WO2010069287A2 (de) Verfahren zur abscheidung von mikrokristallinem silizium auf einem substrat
Miyahara et al. Electrode distance dependence of photo-induced degradation in hydrogenated amorphous silicon
Shyam et al. Properties of A-(Si, Ge) Materials and Devices grown using Chemical Annealing
Rusop et al. Hydrogenated amorphous carbon based solar cells by pulsed laser deposition with mixture of graphite and camphor as precursor materials
Saadane et al. Helium versus hydrogen dilution of silane in the deposition of polymorphous silicon films: Effects on the structure and the transport properties
Ali-Guerry et al. Activation of shallow B and BF 2 implants in Si using Excimer laser annealing
Dalal et al. High Quality, Low Bandgap a-Si Films and Devices Produced Using Chemical Annealing
DE102010047841A1 (de) Verfahren zur Passivierung von Halbleiterschichten
DE102010013324A1 (de) Verfahren für die Herstellung einer optoelektronischen Vorrichtung

Legal Events

Date Code Title Description
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee