DE102009043001A1 - Verfahren zur Bestimmung von Defekten in einem Für elektromagnetische Wellen transparenten Material, insbesonders für optische Zwecke, eine Vorrichtung hierzusowie die Verwendung dieser Materialien - Google Patents

Verfahren zur Bestimmung von Defekten in einem Für elektromagnetische Wellen transparenten Material, insbesonders für optische Zwecke, eine Vorrichtung hierzusowie die Verwendung dieser Materialien Download PDF

Info

Publication number
DE102009043001A1
DE102009043001A1 DE102009043001A DE102009043001A DE102009043001A1 DE 102009043001 A1 DE102009043001 A1 DE 102009043001A1 DE 102009043001 A DE102009043001 A DE 102009043001A DE 102009043001 A DE102009043001 A DE 102009043001A DE 102009043001 A1 DE102009043001 A1 DE 102009043001A1
Authority
DE
Germany
Prior art keywords
scattered light
light
rotation
intensity
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102009043001A
Other languages
English (en)
Inventor
Christian Lemke
Manuela Lohse
Lars Dr. Ortmann
Stephan Strohm
Albrecht Dr. Hertzsch
Karl Hehl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to DE102009043001A priority Critical patent/DE102009043001A1/de
Priority to EP10009782A priority patent/EP2302369A1/de
Priority to JP2010211491A priority patent/JP2011145277A/ja
Priority to US12/888,775 priority patent/US20110090492A1/en
Priority to CN2010105375424A priority patent/CN102128839A/zh
Publication of DE102009043001A1 publication Critical patent/DE102009043001A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0278Detecting defects of the object to be tested, e.g. scratches or dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Abstract

Die vorliegende Erfindung betrifft eine Streulichtmessvorrichtung, mit der die Streulichtintensität von Streulicht eines auf einen Prüfling aus optisch transparentem Material einfallenden Lichtstrahls erfassbar ist, die eine Abbildungsoptik und eine lichtempfindliche Erfassungsvorrichtung umfasst, wobei mit der Abbildungsoptik das Streulicht erfassbar und auf eine Detektorfläche der Erfassungsvorrichtung abbildbar ist, mit der Abbildungsoptik das Streulicht in einem Streuwinkelbereich erfassbar ist, und mit der Erfassungsvorrichtung die Streulichtintensität durch Aufsummieren des in dem Streuwinkelbereich erfassten Streulichtes über die Detektorfläche bildbar ist.
Die vorliegende Erfindung betrifft weiterhin ein Streulichtmessverfahren, mit dem die Streulichtintensität von Streulicht eines auf einen Prüfling aus optisch transparentem Material einfallenden Lichtstrahls erfasst wird, insbesondere mit einer erfindungsgemäßen Streulichtmessvorrichtung, welches folgende Schritte umfasst:
- Bestrahlen des Prüflings mit dem Lichtstrahl;
- Erfassen des Streulichtes mit einer Abbildungsoptik;
- Abbilden des mit der Abbildungsoptik erfassten Streulichtes auf eine Detektorfläche einer lichtempfindlichen Erfassungsvorrichtung;
wobei das Streulicht in einem mit der Abbildungsoptik erfassbaren Streuwinkelbereich erfasst wird und die Erfassungsvorrichtung die Streulichtintensität durch Aufsummieren des über die Detektorfläche erfassten Streulichtes bildet.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung von Defekten in Materialien, insbesonders für optische Zwecke durch Erfassung von an den Defekten gestreuten Wellen, insbesondere mittels einem CCD- bzw. ortsauflösender Fotodetektor, sowie eine Vorrichtung zur Durchführung des Verfahrens, die eine Quelle für elektromagnetische Wellen sowie eine gegebenenfalls drehbare Halterung für das Material und einen gegebenenfalls schwenkbaren Detektor zum Erfassen von gestreuten Wellen umfasst. Die Erfindung betrifft auch die Verwendung der mit den Verfahren erhaltenen Materialien.
  • In vielen optischen Anwendungen, insbesondere bei Verwendung von Licht mit hoher Ausgangsleistung oder hoher Pulsenergie, wie beispielsweise Laserlicht, werden für optische Elemente, wie beispielsweise Linsen, Prismen, Masken, Spiegel oder Filter besonders hohe Anforderungen an die Güte des optisch transparenten Materials gestellt. Neben guten Transmissionseigenschaften werden je nach geplanter Anwendung eine sehr gute Homogenität, ein sehr geringer Blasengehalt sowie sehr wenig Einschlüsse gefordert.
  • Die Prüfung der Eigenschaften von optisch wirksamen Defekten, wie ihre Größe, Form und Lage sowie ihre Art, also Blasen und Einschlüsse im Volumeninneren von optisch transparenten Materialien, erfolgt derzeit lediglich durch eine visuelle Beurteilung. Dabei wird ein zu untersuchender Prüfling mit annähernd parallelem Licht durchleuchtet und die Größe und Lage der im Strahlkanal erkennbaren Materialfehler abgeschätzt. Die Beurteilung kann mit einem Mikroskop überprüft werden. Eine solche Prüfung ist jedoch zeitaufwendig, verlangt hohe Konzentration vom Prüfer und muss in einem Dunkelraum erfolgen. Weiterhin ist die Größe der Prüflinge beschränkt. Darüber hinaus ermöglicht dieses Verfahren auch nur eine Abschätzung und keine quantitative Erfassung der Größe und Lage der Materialfehler, die insbesondere auf Erfahrungswerten des Prüfers beruht, die Form der Defekte kann größtenteils nicht ermittelt werden und das Verfahren ist auf Materialfehler größer 10–20 μm beschränkt. Daher können höchstens Qualitätsansprüche, insbesondere das Erfassen von Materialfehlern zumindest ab einer Größe von ca. 1 μm oder kleiner, mit dieser Methode nicht erfüllt werden.
  • Die Nutzung von Streulicht zum Detektieren von Partikeln ist an sich bekannt. So beschreibt z. B. die DE 199 32 870 A1 eine Vorrichtung zur optischen Partikel- und Partikelströmungsanalyse, bei dem ein aus einem flüssigen oder gasförmigen Medium oder einem Vakuum bestehendes optisch transparentes Messvolumen durchleuchtet und über ein Mikroskop auf eine Kamera abgebildet wird. Die Vorrichtung ermöglicht eine Untersuchung der Bewegungs- und Strömungseigenschaften von Partikeln im Medium. Eine Bestimmung der Partikel ist damit jedoch nicht möglich und mit dem Verfahren sind keine weiteren Informationen erhältlich, d. h. die Partikel sind bzgl. ihrer Lage, Art, Größe und Form nicht dreidimensional erfassbar.
  • Mit dem weiterhin bekannten Phasendopplerverfahren sind keine Teilchenformen bestimmbar und das untersuchbare Messvolumen bzw. der Messbereich ist sehr eingeschränkt. (Damaschke et al (1998), Appl. Optics 37: 1752–1761)
  • Eine weitere Methode zum Erfassen von Partikeln ist in der GB 2379977 A für einen Rauchdetektor beschrieben. Dabei wird die Intensität von an Partikeln gestreutem Streulicht dadurch erfasst, dass mithilfe einer Strahlenfalle das an vielen Partikeln gestreute Streulicht innerhalb eines Volumenbereiches aufsummiert wird. Eine derartige Vorrichtung erfasst lediglich sphärische Partikel und ermöglicht keine Qualifizierung von Partikeln nach ihrer Art und Form. Auch ist eine genaue Bestimmung der Lage der Partikel nicht möglich.
  • Ferner wird eine Methode zur Erkennung lokaler Defekte (Blasen bzw. Einschlüsse) im Paper „System for Detection of Small Inclusions in Large Optics” beschrieben (Wolfe, Runkel, (2008), Proc. of SPIE Vol. 7132). Dabei rastert ein Laserstrahl das zu prüfende Volumen ab. Sobald dieser auf einen lokalen Defekt trifft, wird das gestreute Licht mit einer Kamera erfasst. Anschließend wird über eine Optik die Größe des Defektes bestimmt. Der Schwerpunkt dieser Messung liegt auf der Erkennbarkeit von Defekten < 5 μm, nicht aber auf der Analyse der gefundenen Defekte.
  • Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren sowie eine Vorrichtung zu schaffen, mit der die optische Güte eines Prüflings aus optisch transparentem Material in einfacher und kostengünstiger Weise rasch quantitativ und qualitativ charakterisiert werden kann, wobei auch Streuzentren mit einer Größe im Mikrometerbereich, insbesondere bis hinunter zu einer Größe von mindestens ca. 0,5 μm, hinsichtlich ihrer Art z. B. Blase oder Einschluss, ihrer Größe, ihrer Lage und ihrer Form, wie z. B. stabförmig, rund oder oval, erfassbar sind.
  • Eine weitere Aufgabe der Erfindung besteht darin, dass die Erfassung einen eindeutigen, nachvollziehbaren und protokollierbaren Nachweis der Streuzentren ermöglicht und so wenig Messzeit erfordert, dass die Einbindung des Verfahrens in eine Produktionslinie möglich ist.
  • Diese Aufgabe wird mit den in den Ansprüchen definierten Merkmalen gelöst.
  • Erfindungsgemäß wurde nämlich gefunden, dass sich beim Durchstrahlen eines optischen transparenten Materials mit einem Strahl elektromagnetischer Wellen die Intensität einer durch einen Defekt erzeugten Streuung, welche in einem Azimutwinkelbereich erfasst wird, periodisch ändert wodurch ein unregelmäßiges Muster aus Wellen mit unterschiedlichen Streulichtintensitäten entstehen.
  • Dabei korrelieren der Betrag der Intensitätsänderung und die Häufigkeit dieser Änderung (frequenzähnliche Variabilität bzw. Modulation der Intensität) innerhalb des Winkelbereichs) mit der Größe und Form des jeweiligen Defekts.
  • Aus einem Vergleich der so gefundenen Wellenmuster der Streulichtintensität mit bereits anderen, vorzugsweise mit Hilfe eines Beugungsmodells berechneten Modulationen bzw. Frequenzänderung der Intensität, ist es möglich, die Größe, Form und Art des jeweiligen optischen Defektes zu bestimmen. Dabei wurde auch gefunden, dass diese Wellenmuster mit klassischen Verfahren zur Bestimmung der Welligkeit von Oberflächen charakterisiert werden können, z. B. wie sie auch für Dicht,- Gleit,- und Wälzflächen angewendet werden.
  • Erfindungsgemäß wird daher mittels eines Detektors die Änderung der Intensität der durch das Streuzentrum bzw. den Defekt hervorgerufenen Streuung entweder während einer azimutalen Drehung des Materials um eine im Strahlengang der elektromagnetischen Wellen verlaufende Drehachse oder durch azimutales, radiales Schwenken des Detektors um diese Drehachse erfasst. Dabei erfolgt die Bestimmung des Streulichts in einem konstanten Streuwinkel zur Drehachse. Bei azimutaler Drehung φ des Detektors bzw. des Prüflings um einen vorgebaren Dreh- bzw. Schwenkwinkel dφ wird die Streuintensität für einen festen Streuwinkel als Funktion des azimutalen Dreh bzw. Schwenkwinkels gemessen. Die Winkelschrittweite und die numerische Apertur des Detektors geben das Auflösungsvermögen der Streulichtmodulationen vor. Als praxisrelevanter Wert hat sich eine Winkelschrittweite von 0,61–0,5 bzw. dφ = 0.1° ± 0,05 bewährt.
  • Die Dreh- bzw. Schwenkachse entspricht dem Strahl der elektromagnetischen Wellen. Minimale parallele Versetzungen zwischen mechanischer Drehachse und optischer Beleuchtungsachse können toleriert werden, wenn die Drehachse als auch der Strahl den Materialfehler durchlaufen.
  • In einer zweckmäßigerweisen Ausgestaltung erfasst der Detektor das Streulicht des Defekts durch Abbildung mit einem Spiegel und/oder einer Linse in einem definierten Streuwinkel. Vorzugsweise wird das erfasste Streulicht durch ein Objektiv so auf die Detektorfläche abgebildet, dass eine photosensitiven Einrichtung wie beispielsweise eine CCD-Kamera, eine Fotodiode oder ein SEV-Detektor ausschließlich das Streulicht des Defekts erfasst. Ein Aufsummieren des Streulichtes über die Detektorfläche ergibt die Streulichtintensität. Die numerische Apertur des Objektivs gibt den erfassbaren Raumwinkel des Streulichts an und sollte im Bereich der azimutalen Winkelauflösung liegen.
  • Das Streulicht kann durch Einstrahlen von beliebigen elektromagnetischen Wellen erzeugt werden. Zweckmäßige Wellen sind Licht, insbesonders sichtbares Licht, IR-Licht, UV-Licht sowie extremes UV. Vorzugsweise wird Laserlicht verwendet. Zweckmäßigerweise ist das eingestrahlte bzw. Anregungslicht ein paralleles Lichtbündel. Zweckmäßigerweise ist die eingestrahlte elektromagnetische Welle ein Strahl aus kohärenten Wellen, insbesonders aus zirkular, radial oder linear polarisierten Wellen. Bevorzugte Laser sind leistungsstarke HeNe-Laser mit einer Wellenlänge von 633 nm und einer Ausgangsleistung > 20 mW sowie Festkörperlaser mit einer Wellenlänge von 532 nm bei einer Ausgangsleistung von > 50 mW.
  • Durch die Verwendung eines feinen dünnen Lichtstrahls ist es möglich, das Volumen des optischen Materials bzw. des Prüflings rasterartig abzutasten bzw. zu scannen. Auf diese Weise können im gesamten Raum bzw. Volumen des zu bestimmenden Materials Lage, Größe, Form und Art sämtlicher Defekte ermittelt und kartiert werden.
  • In einer weiteren bevorzugten erfindungsgemäßen Ausführungsform wird das von einem Defekt erzeugte Streulicht zusätzlich in mindestens einem ggf. auch mehreren weiteren Streuwinkel(n) azimutal aufgelöst bestimmt. Hierzu wird, wie zuvor beschrieben, das Material bzw. der Prüfling nochmals um die gleiche durch den Defekt verlaufende Drehachse eine einem vorzugsweise dem gleichen Azumitwinkelbereich gedreht und dabei die Schwankungen der Intensität des Streulichtes bei dem weiteren Detektions- bzw. Streuwinkel erfasst.
  • Selbstverständlich ist es auch hier möglich, den Detektor um den Azumitwinkelbereich von der Drehachse beabstandet radial um diese zu schwenken. Erfindungsgemäß wurde nämlich überraschenderweise gefunden, dass sich aus der Differenz der durchschnittlichen Streuintensitäten für zwei unterschiedliche Streuwinkel die Art des Defektes bestimmen lässt. So zeigt beispielsweise eine geringe Intensitätsdifferenz der für den jeweiligen Streuwinkel ermittelten Intensitäten einen Einschluss eines vom optischen Material verschiedenen Partikels an, wie beispielsweise eine Gasblase oder – ein Fremdmaterialeinschluss. Besteht der Defekt aus dem gleichen oder einem Material mit einem für das verwendete Licht vergleichbaren Brechungsindex, so wurde überraschenderweise gefunden, dass sich dann die mittlere Intensität des Streulichtes bei verschiedenen Detektionswinkeln stark ändert. Auf diese Weise ist es mit dem erfindungsgemäßen Verfahren erstmals möglich, allein mittels physikalisch optischer Parameter nicht nur die Lage sondern auch die Form und Art des jeweiligen Defektes zu bestimmen. Dieser brechzahlabhängige Intensitätsabfall bei größer werdenden Streuwinkel kann auch mit der bekannten Mie-Beugung beschrieben werden. Eine ausreichend messbare Differenz der mittleren Intensitäten ergibt sich z. B. für die bevorzugten Streuwinkel im Bereich von 25–250, insbesonders von 20–45 z. B. Θ1 = 25° ± 2° und Θ2 = 30°± 2° und/oder Θ2 = 30°± 2° und Θ3 = 40°± 2°.
  • In einer erfindungsgemäßen bevorzugten Ausführungsform umfasst der Detektor bzw. Detektoreinheit eine Abbildungsoptik, die das Streulicht über den gesamten azimutalen Winkelbereich für einen definierten Streuwinkel gleichzeitig erfasst und die Streuintensität azimutal winkelaufgelöst ermittelt.
  • Diese Abbildungsoptik umfasst vorzugsweise einen ringförmigen Spiegel, welcher die vom Defekt ausgehende divergente Streustrahlung in zueinander parallel verlaufende Strahlen umlenkt und oder eine Mehrzahl von ringförmig angeordneten Linsen welche die Streustrahlung zu einer Detektionseinheit leitet. In einer weiteren erfindungsgemäßen bevorzugten Ausführungsform ist die Mehrzahl der ringförmig angeordneten Linsen zu einer einzigen durchgehenden Ringlinse zusammengefasst bzw. wird durch diese ersetzt. Eine solche Ringlinse wird durch eine um einen zentralen Mittelpunkt kreis- bzw. ringförmig verlaufende, wulstartige Linsenoberfläche gebildet, deren Linsenquerschnitt über den gesamten Kreisumfang konstant ist. Das von Ringspiegel und/oder Ringlinse gesammelte Streulicht wird dann zu einer lichtsensitiven Einrichtung wie beispielsweise einer CCD-Matrix oder einem Photodiodenarray weitergeleitet. Dort wird die gesamte azimutale Streulichtverteilung winkelaufgelöst für einen definierten Streuwinkel als Ring abgebildet. Wird eine bildseitige telezentrische Abbildung gewährleistet, so kann durch eine Veränderung des Abstandes von Ringlinse und Ringspiegel zum Prüfling die Objektebene der Abbildungsoptik verschoben werden. Auf diese Weise ist es möglich, Defekte in unterschiedlicher Prüflingstiefe zu erfassen und abzubilden. In einer weiteren bevorzugten Ausführungsform wird der Abstand von Ringlinse und Ringspiegel zur Prüflingsoberfläche mittels eines Signalgebers erfasst und direkt an eine Rechnergesteuerte Speichereinheit weitergeleitet. Auf diese Weise kann für jeden beliebigen Punkt im Prüfling bzw. dem optischen Material die jeweiligen Streulichteigenschaften gespeichert, zugeordnet und kartiert werden.
  • Die zur Durchführung des Verfahrens verwendete ebenfalls erfindungsgemäße Vorrichtung umfasst zweckmäßigerweise eine Halterung bzw. Lagerung für das zu untersuchende optische Material (Prüfling). Diese Lagerung ist um eine Rotationsachse um 360° drehbar bzw. rotierbar. Darüber hinaus weist die Halterung eine Einrichtung auf, mit der der Prüfling relativ zur Drehachse verschiebbar ist, und zwar derart, dass die optische Achse durch jeden Teil des Prüflings verlaufen kann. Auf diese Weise ist es möglich, das gesamte Volumen des Prüflings bzw. des zu untersuchenden Materials rasterförmig zu durchstrahlen und zu erfassen. Zweckmäßigerweise enthält die Vorrichtung weitere Signalgeber, welche die aktuelle Lage des Prüflings zur optischen Achse der Detektoreinheit an die Rechner-gesteuerte Speichereinheit weiterleiten. Somit lässt sich durch relative Verschiebung zwischen der Detektoreinheit und dem Prüfling zu jedem Volumenpunkt die Streulichtintensität azimutal winkelaufgelöst ermitteln und eine dreidimensionale Kartierung von Art, Größe und Form der optischen Defekte erhalten.
  • Im Gegensatz zu einer punktuellen Erfassung von Streulicht ermöglicht das Erfassen des Streulichtes eines Streuwinkelbereiches auch das Erkennen sehr kleiner und/oder stark richtungsabhängiger Streuzentren, beispielsweise Materialfehler im Mikrometerbereich, insbesondere von einer Größe z. B. von 0,5 μm. Die theoretische minimal erfassbare Defektgröße ergibt gemäß der Mie-Beugung nach der bekannten Formel
    Figure 00090001
    mit xM > 0.2., wobei xm der Mie-Parameter und dp der Partikeldruchmesser bedeuten.
  • Optisch transparente Materialien sind beispielsweise Fused Silica (Quarzglas), Kalziumfluorid (CaF2), Magnesiumfluorid (MgF2), Borosilikat-Kronglas (BK 7), Zerodur und Quarzkristall.
  • Ganz besonders bevorzugt verläuft die Rotationsachse im Zentrum eines die Streuung verursachenden Materialfehlers. Daher kann durch Rotation der Abbildungsoptik oder des Prüflings um die Rotationsachse das durch den Materialfehler bzw. Defekt verursachte Streulicht in Abhängigkeit vom Drehwinkel winkelaufgelöst erfasst werden. Aus der Zuordnung der jeweiligen Streulichtintensität zum Drehwinkel lässt sich die Form, ihre Größe sowie ihren Typ des Materialfehlers im Prüfling bestimmen, die in Koordinaten angegeben werden kann.
  • Vorzugsweise umfasst die erfindungsgemäße Vorrichtung eine Recheneinheit. Die Recheneinheit ermöglicht das Speichern und Verarbeiten der erfassten Streulichtintensität sowie die durch Signalgeber übermittelte Lage von streuenden Defekten. Dadurch ist nicht nur die Streulichtverteilung eines Defektes des Prüflings sondern auch seine genaue Lage im Koordinatensystem nachvollziehbar und protokollierbar.
  • Bevorzugt umfasst die Abbildungsoptik ein Begrenzungsmittel, so dass möglichst kein Streulicht der Eintrittsfläche und/oder der Austrittsfläche des Lichtstrahls oder Streulichtes in den oder aus dem Prüfling auf das Erfassungsmittel abgebildet wird. Besonders bevorzugt ist das Begrenzungsmittel eine Apertur und/oder eine geeignetes Strahlformungsmittel im Strahlengang des Streulichtes. Ebenfalls bevorzugt sind die Eintrittsfläche und/oder die Austrittsfläche gering streuend, insbesondere poliert und/oder beispielsweise mit einem Immersionsöl benetzt, damit die an ihnen entstehende Streuung die Messung möglichst nicht beeinflusst. Weiterhin bevorzugt erfolgt die Begrenzung in der Recheneinheit mit einem geeigneten Algorithmus einer Software.
  • In einer weiteren erfindungsgemäßen Ausführungsform wird das über Dreh bzw. Azimutwinkel aufgetragene Wellenmuster der Streuintensitäten gemäß der von der VDA 2007 beschriebenen Regeln und Verfahren zur Beurteilung der Oberflächenbeschaffenheit und Welligkeit gekennzeichnet. (Verband der Automobilindustrie VDA, Dokumentation Kraftfahrzeugwesen e. V. (DFK) Ulrichstr. 14, D-74321 Bietigheim-Bissingen). Für die statistische Welligkeitsanalyse werden Parameter wie beispielsweise die mittlere Höhe WDc, die Gesamthöhe WDt, die mittlere horizontale Welligkeitskenngröße WDSm sowie die Gesamtintensität und ein Anisotropiemaß herangezogen, die die Oszillationen der azimutalen Streulichtverteilung beschreiben und es ermöglichen, mittels einer beispielsweise in der Recheneinheit angelegten Datenbank von Streulichtverteilungen und mit Hilfe des vektoriellen Kirchhofbeugungsmodells an künstlichen Defekten durch Approximation der Messergebnisse mit theoretisch berechneten Kurven die Parameter Materialfehlergröße, Brechungsindex, Form und Orientierung des Materialfehlers zu ermitteln. Der Vergleich erfolgt bevorzugt anhand einer Probenbibliothek, die eine Vielzahl von Messergebnissen zu Proben mit Materialfehlern verschiedener Typen, Größen und Lagen enthält und einen Vergleich der Messergebnisse ermöglicht.
  • Mit der erfindungsgemäßen Streulichtmessvorrichtung und dem erfindungsgemäßen Streulichtmessverfahren, die sowohl in Transmissions- als auch Reflexionsrichtung eingesetzt werden können, ist eine quantitative Bestimmung der optischen Güte eines transparenten Materials eines Prüflings möglich. Im Prüfling aus optisch transparentem Material erzeugt ein in den Prüfkörper einfallender Lichtstrahl ein Streulicht bzw. eine Intensität, das in mindestens einem, vorzugsweise mindestens zwei vorgegebenen Streuwinkeln bzw. -bereichen azimutal winkelaufgelöst bestimmt wird. Die Streulichtintensität wird durch Summieren oder Integrieren des in einem Streuwinkelbereich gemessenen Streulichtes für den jeweiligen Azimutwinkel ermittelt.
  • Die ermittelte Streulichtintensitätsverteilung bzw. deren Änderung bildet eine bewertbare Messgröße in Abhängigkeit vom Azimut- bzw. Drehwinkel. Aus der Lage und dem Betrag der Peaks der Streulichtintensitätsverteilung (Modulation) lässt sich auf die Form, Größe, den Typ sowie die Lage der das Streulicht verursachenden Materialfehler schließen, wobei die Lage der Materialfehler mittels eines Signalgebers in Koordinaten angegeben werden kann. Mit der erfindungsgemäßen Streulichtmessvorrichtung und dem erfindungsgemäßen Streulichtmessverfahren sind Materialfehler ab einer Größe von ca. 0,5 μm erfassbar. Die Recheneinheit ermöglicht die Bewertung der Messergebnisse sowie eine reproduzierbare Ausgabe und Protokollierung der Messung. Aufgrund der räumlichen Erfassung ist ein Gesamtbild des Prüflings erstellbar (Kartierung bzw. Mapping). Andererseits können auch Bilder einzelner Materialfehler erstellt werden. Die Koordinaten der Materialfehler sind mit einer Genauigkeit von zumindest ± 0,5 mm, die Größe eines Materialfehlers mit einer Genauigkeit von zumindest ± 0,5 μm erfassbar. Die Materialfehler sind entsprechend ihrem Typ tabellarisch und visualisiert darstellbar. Schließlich können sowohl Prüflinge mit matten als auch mit polierten Oberflächen geprüft werden.
  • Die Streulichtmessvorrichtung sowie das Streulichtmessverfahren ist überall einsetzbar, wo Materialfehler erfasst werden sollen. Sie eignet sich insbesondere für Fusionsoptiken, ganz besonders für Großplatten aus Fused Silika für die Laserfusion. Es lassen sich mit ihr ohne weiteres Produkte mit einer Dimension bis zu (500·500·50) mm3 (Prüfrichtung 50 mm) erfassen. Sie ist in Produktionslinien einsetzbar und ermöglicht eine Prüfung solcher Produkte in weniger als 2 Stunden. Prinzipiell ist es mit der erfindungsgemäßen Vorrichtung auch möglich, Prüflingsdicken bis zu 250 mm zu vermessen.
  • Die Erfindung betrifft auch eine Abbildungsoptik, mit der punktförmige kleine Gegenstände, wie z. B. Volumeneinheiten oder optische Defekte, Einschlüsse, etc. auf einer photoempfindlichen Platte, wie z. B. einer CCD-Einrichtung erfasst werden können. Eine solche Vorrichtung umfasst eine ringförmige Anordnung. In einer einfachen Ausführungsform umfasst sie eine Vielzahl von Linsen, die auf einem Kreisumfang angeordnet sind, wobei der Mittelpunkt des Kreises und der Mittelpunkt der Kollimatorspiegel eine Symmetrieachse für die Abbildungsanordnung bilden. In einer besonders bevorzugten Ausführungsform werden die ringförmig angeordneten Linsen zu einer einzigen kreisförmig verlaufenden Ringlinse zusammengefasst, d. h. die Ringlinse wird durch einen ringförmig verlaufenden Wulst gebildet, wobei die Krümmung des Wulstes der Linsenwölbung entspricht. Eine derartige Ringlinse weist an jeder Stelle ihres Umfanges die gleiche Querschnittsform auf. Von der Ringlinse werden die senkrecht auf die Linse treffenden parallelen Strahlen zu einem rückseitig angeordneten Spiegel geleitet, welcher die Strahlen gegebenenfalls nach Reflektion von einem weiteren Spiegel an eine CCD-Einrichtung bzw. eine beliebige lichtempfindliche Vorrichtung weiterleitet, welche die Intensität der auftreffenden Lichtstrahlen qualitativ bzw. quantitativ erfasst.
  • In einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung umfasst dies einen Kollimator, welcher die von dem punktförmig abzubildenden Gegenstand divergent ausgehenden Lichtstrahlen derart umlenkt, dass diese anschließend parallel zueinander verlaufen. Zweckmäßigerweise ist dies ein Spiegel. Dieser ist vorzugsweise ringförmig ausgebildet. Prinzipiell ist es jedoch auch möglich, lediglich zwei oder mehrere gegenüberliegende kleinere. Spiegel anzuordnen, welche die entsprechenden Lichtstrahlen ebenfalls parallelisieren, d. h. dass diese ebenfalls Kollimatoreigenschaften aufweisen. Prinzipiell kann jeder beliebige Kollimator verwendet werden. Vom Kollimator werden die nunmehr parallel verlaufenden Lichtstrahlen auf eine Linse gelenkt. In einer weiteren erfindungsgemäß bevorzugten Ausführungsform sind in der Streulichterfassungs-Optik 2 ringförmige Linsenanordnungen konzentrisch zum Streulichtstrahl angeordnet. Auf diese Weise ist es möglich zeitlich versetzt oder gleichzeitig das Streulicht bei zwei verschiedenen Streulichtwinkeln zu messen. Prinzipiell ist es aber auch möglich die unterschiedlichen Streulichtwinkel mittels 2 verschiedener Linsen mit unterschiedlichem Durchmesser hintereinander zu bestimmen.
  • Mit der erfindungsgemäßgen Vorgehensweise ist es möglich einen größeren Prüfling in einem Zeitraum von ca. von 2 Stunden abzuscannen. Dabei ist es jedoch weiterhin bevorzugt den Prüfling zuerst einem groben Scan zu unterziehen und so die einzelnen Defekte zu ermitteln und ihre Raumlage zu lokalisieren. Diese folgt üblicherweise mittels 2 verschiedener Laserstrahlen.
  • Im Folgenden soll die Erfindung anhand von Figuren beispielhaft erläutert werden.
  • Dabei zeigt
  • 1 eine schematisierte Anordnung der erfindungsgemäßen Streulichtmessvorrichtung,
  • 2 zeigt eine Abbildungsoptik mit Ringlinse und ringförmigem Kollimator,
  • 3 zeigt schematisch eine Streulichtintensitätsmessung eines Prüflings,
  • 4 zeigt eine Streulichtabbildung eines Strahlkanals, durch einen Prüfling mit einem Materialfehler,
  • 5a zeigt eine azimutale Schwankung der Streulichtintensität bei einer Drehung von 360° an unterschiedlich großen Defekten in einem optischen Glas.
  • 5b zeigt die azimutalen Schwankungen von der Streulichtintensität eines feuerfesten Materials in Quarzglas bei einer Drehung von 350° bei Streulichtwinkeln von 30° und 40°
  • 5c zeigt die Schwankungen der Streulichtintensitäten an einem künstlichen Defekt (Polierstaub) in Quarzglas
  • 1 zeigt schematisch eine erfindungsgemäße Streulichtmessvorrichtung. Die Streulichtmessvorrichtung umfasst eine Abbildungsoptik 6, mit der Streulicht, hier durch einen Pfeil 8 angedeutet, welches durch einen Materialfehler bzw. optischen Defekt 2 in einem Prüfling 1 verursacht ist, erfassbar und auf eine Detektorfläche 30 einer Erfassungsvorrichtung 3, insbesondere eine CCD-Kamera, abbildbar ist. Der Prüfling 1 oder die Detektionsoptik 6 ist um eine Rotationsachse 4 herum in eine Drehrichtung 40 drehbar, so dass Prüfling 1 und Abbildungsoptik 6 relativ zueinander verstellbar sind. Gegebenenfalls kann auch die Erfassungsvorrichtung 3 zusammen mit der Abbildungsoptik 6 gedreht werden. Durch Drehen der Abbildungsoptik 6 um die Rotationsachse 4 verändert sich die Position der Abbildungsoptik 6 mit dem durch die gestrichelten Linien angedeuteten Verlauf 66. Durch einen Pfeil ist ein Lichtstrahl 9 angedeutet, der auf eine Eintrittsfläche 10 des Prüflings 1 fällt. Weiterhin ist eine Oberflächenormale 51 auf einer Austrittsfläche 5 des Streulichtes 8 aus dem Prüfling 1 durch einen Pfeil gezeigt. Als Lichtstrahl 9 wird bevorzugt Laserlicht verwendet.
  • 2 zeigt eine bevorzugte Abbildungsoptik 6 der erfindungsgemäßen Vorrichtung. An einem Materialfehler 2 gestreutes Streulicht, von dem hier zwei Strahlverläufe 80 gezeigt sind, fällt auf einen Ringspiegel 61 der Abbildungsoptik 6. Der Ringspiegel 61 erfasst das Streulicht und spiegelt die Streulichtstrahlen 80 in eine Ringlinse 60 der Abbildungsoptik 6. Die Ringlinse 60 verfügt über ein Spiegelsystem 601, mit dem die Streulichtstrahlen 80 auf die Detektorfläche 30 der Erfassungsvorrichtung 3 abbildbar sind. Diejenigen Strahlen, die auf den durch die Ringlinse gebildete innere Kreisfläche auftreffen, werden von der Detektionsoptik üblicherweise nicht mit erfasst.
  • 3 zeigt schematisch eine erfindungsgemäße Vorrichtung mit einem Prüfling 1. Darin fällt der Lichtstrahl 9 an der Eintrittsfläche 10 auf den Prüfling 1, läuft durch diesen hindurch und tritt an seiner Austrittsfläche 50 wieder aus. Im Prüfling 1 wird der Lichtstrahl 9 an einem Materialfehler 2 gestreut, wobei das gestreute Licht, welches hier durch einen Strahl mittleren Streulichtes 8 zur Oberflächennormale (s. 1) der Austrittsfläche 50 (s. 1) gezeigt ist, in einem Streuwinkel 81 aus dem Prüfling 1 austritt. Ein nicht gestreuter Teil des Lichtstrahls 9 wird in einer Strahl- bzw. Lichtfalle 17 gefangen. Das Streulicht 8 wird mittels einer Abbildungsvorrichtung bzw. Optik 15, das gegebenenfalls eine Aperturblende 14 umfasst, auf ein Spiegelsystem 16 geleitet, das es auf die Detektorfläche 30 einer Detektionseinrichtung 3 abbildet. Aperturblende 14, Objektiv 15 und Spiegel 16 bilden hier die Abbildungsoptik 6. Mit dem Objektiv 15 kann ein Streuwinkel erfasst werden, der durch die numerische Apertur des Objektivs 15 sowie den Streuwinkel 81 des Streulichtes zur Oberflächennormale 50 (s. 1) der Austrittsfläche 5 bestimmt ist. Durch Drehung des Prüflings um eine Drehachse 4 wird vom Materialfehler 2 Streulicht aus verschiedenen Dreh- bzw. Azumitwinkeln erzeugt und von der Abbildungsoptik 6 sowie der Detektionseinheit 3 efasst. Alternativ kann Eintritts und Austrittsstelle des Strahls auf die durch Drehung der Abbildungsoptik 6 um eine Rotationsachse 4 (die der Drehachse des Prüflings entspricht) in eine Drehrichtung 40 kann das Streulicht für eine Vielzahl von Azumitwinkeln jeweils in dem durch das Objektiv 15 vorgegebenen Streuwinkel bzw. -bereich erfasst werden.
  • 4 zeigt die Streulichtabbildung eines Strahlkanals 24 durch einen Prüfling mit einem Materialfehler 2. Dabei ist die Streuung an den Eintritts- und Austrittsflächen 18 und 19 deutlich erkennbar. Ebenfalls deutlich zu erkennen ist die Streuung eines Artefaktes 21 an der Oberfläche des Prüflings. Auf der x-Achse 22 ist dabei die Tiefenlage des Strahlverlaufes angegeben und auf der y-Achse 23 der Rasterabstand der einzelnen Messpunkte am Prüfling.
  • 5a zeigt die Änderung der Streulichtintensitäten von verschiedenartigen Defekten in einem Glas bei einer vollständigen Rotation um 360°. Sämtliche Defekte wurden mit dem gleichen Streuwinkel (bzw. Azimutwinkel, Θ s = 30°) bestimmt. Dabei zeigen unterschiedliche Defekte eine unterschiedliche frequenzartige Varianz (bzw. Modulation) der Streuintensität sowie eine je nach Art des Defektes verschiedene durchschnittliche Streuintensität.
  • 5b zeigt die Streulichtänderung eines künstlichen Defektes aus einem feuerfesten Material (Schamottmaterial) in Quarzglas. Dabei wurde die Streulichtintensität bei zwei verschiedenen Streulichtwinkeln, nämlich einmal Θ s = 30° und Θ s = 40° bestimmt. Dabei zeigt der hier vorliegende Defekt einen relativ geringen Abstand zwischen beiden Streuwinkeln, nämlich von nur ca. 5 bis 600 Einheiten.
  • 5c zeigt die unterschiedliche Streuvariation von Polierstaub in Quarzglas, d. h. von einem Einschluss des gleichen Materials. Wie daraus zu ersehen ist, zeigt ein Defekt, welcher aus dem gleichen Material besteht bzw. die gleiche oder vergleichbare Brechzahl aufweist, eine starke Differenz der durchschnittlichen Streulichtänderung bei verschiedenen Streu- bzw. Azimutwinkeln.
  • Bezugszeichenliste
  • 1
    Prüfling, Materialprobe
    10
    Eintrittsfläche eines Lichtstrahls in den Prüfling
    2
    Materialfehler, Einschluss, Blase, Knoten
    20
    Ebene des Materialfehlers
    3
    Erfassungsvorrichtung, CCD-Kamera
    30
    Detektorfläche der Erfassungsvorrichtung
    4
    Rotationsachse
    40
    Rotationsrichtung
    5
    Austrittsfläche
    50
    Oberflächennormale auf der Austrittsfläche
    6
    Abbildungsoptik
    60
    Ringlinse
    601
    Spiegelsystem
    61
    Spiegel, Ringspiegel
    66
    Weg der Abbildungsoptik bei Rotation um die Rotationsachse
    8
    Streulicht
    80
    Streulichtverlauf
    81
    Streuwinkel θs in ° des Streulichtes
    82
    Azimutwinkel ϕs in ° des Streulichtes
    9
    Lichtstrahl, Laser-Strahl
    90
    Eintrittswinkel θi in ° des Lichtstrahls
    14
    Aperturblende
    15
    Objektiv
    16
    Spiegel
    17
    Lichtfalle
    18
    Oberflächen des Prüflings, Eintritts- und Austrittsfläche
    19
    21
    Artefakte der Oberfläche des Prüflings
    22
    Tiefe [mm]
    23
    Länge [mm]
    24
    Strahlkanal des Lichtstrahls
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 19932870 A1 [0004]
    • GB 2379977 A [0006]
  • Zitierte Nicht-Patentliteratur
    • Damaschke et al (1998), Appl. Optics 37: 1752–1761 [0005]
    • Wolfe, Runkel, (2008), Proc. of SPIE Vol. 7132 [0007]

Claims (9)

  1. Verfahren zur Bestimmung von optischen Defekten in optischem (transparentem) Materialien umfassend bestrahlen des Materials mit Licht einer Lichtquelle, zum Erzeugen von durch optische Defekte hervorgerufenem Streulicht, drehen des optischen Materials um eine durch den Defekt verlaufenden Rotationsachse um mindestens einen Drehwinkel φ und bestimmen der Intensität des Streulichts in einem zur Rotationsachse gebildeten Streuwinkel δ mittels eines Detektors, erfassen der Änderung der Intensität des Streulichts bei verschiedenen Drehwinkeln φ und Bestimmen der Größe und/oder der Form des Defekts mittels vorher ermittelter Vergleichswerte.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Intensitätsänderung des Streulichtes bei mindestens einem weiteren Streuwinkel Θs bestimmt wird und die Differenz den Abstand der Streuintensität zwischen dem ersten Θs1 und zweiten Streuwinkel Θs2 bestimmt und aus dem so ermittelten Abstand die Art des Defektes ermittelt wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bestrahlen mit Licht entlang der Rotationsachse erfolgt.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Licht, Weißlicht, Infrarotlicht, Licht einer Wellenlänge im sichtbaren Bereich, UV-Licht oder tiefes UV-Licht ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lichtquelle ein Laser ist.
  6. Vorrichtung zum Bestimmen von optischen Defekten in einem optischen Material umfassend eine Lichtquelle die beim Durchstrahlen des Materials an den Defekten ein Streulicht erzeugt, eine um eine Achse drehbare Materialhalterung, eine in einem Streuwinkel Θs zum Strahlengang des Lichtes angeordneten Detektor zum Erfassen von Streulicht, sowie einen Signalgeber, der die räumliche Lage des Detektors sowie den Drehwinkel φ an eine rechnergestützte Steuereinheit übermittelt, dadurch gekennzeichnet, dass der Detektor die Intensität des Streulichts in Abhängigkeit des Drehwinkels erfasst und an die rechnergestützte Speichereinheit übermittelt und die Speichereinheit die Intensität dem jeweiligen Drehwinkel zuordnet.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Strahlengang des Lichtes entlang der Drehachse verläuft.
  8. Vorrichtung nach Anspruch 6 bis 7, dadurch gekennzeichnet, dass der Detektor ein CCD- und/oder Fotodiodenarray-Element umfasst.
  9. Verwendung von nach dem Verfahren nach einem der Ansprüche 1 bis 5 oder mit der Vorrichtung nach Ansprüchen 6 bis 8 erhaltenen optischen Material zur Herstellung von Linsen, Prismen, optischen Fenstern sowie optischen Komponenten für die DUV-Lithographie, Steppern, Excimer-Lasern, Wafern, Computerchips sowie integrierten Schaltungen und elektronischen Geräten, die solche Chips enthalten.
DE102009043001A 2009-09-25 2009-09-25 Verfahren zur Bestimmung von Defekten in einem Für elektromagnetische Wellen transparenten Material, insbesonders für optische Zwecke, eine Vorrichtung hierzusowie die Verwendung dieser Materialien Ceased DE102009043001A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102009043001A DE102009043001A1 (de) 2009-09-25 2009-09-25 Verfahren zur Bestimmung von Defekten in einem Für elektromagnetische Wellen transparenten Material, insbesonders für optische Zwecke, eine Vorrichtung hierzusowie die Verwendung dieser Materialien
EP10009782A EP2302369A1 (de) 2009-09-25 2010-09-17 Verfahren zur Bestimmung von Defekten in einem für elektromagnetische Wellen transparenten Material, insbesondere für optische Zwecke, eine Vorrichtung hierzu sowie die Verwendung dieser Materialien
JP2010211491A JP2011145277A (ja) 2009-09-25 2010-09-22 特に光学用途に用いられる、電磁放射透過性透明材料中欠陥の評価方法、該方法実施装置、及び該方法により選抜される材料
US12/888,775 US20110090492A1 (en) 2009-09-25 2010-09-23 Method of evaluating defects in a material transparent to electromagnetic radiation, especially for optical applications, apparatus for performing said method, and materials selected thereby
CN2010105375424A CN102128839A (zh) 2009-09-25 2010-09-25 评估透明材料中的缺陷的方法和执行该方法的仪器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009043001A DE102009043001A1 (de) 2009-09-25 2009-09-25 Verfahren zur Bestimmung von Defekten in einem Für elektromagnetische Wellen transparenten Material, insbesonders für optische Zwecke, eine Vorrichtung hierzusowie die Verwendung dieser Materialien

Publications (1)

Publication Number Publication Date
DE102009043001A1 true DE102009043001A1 (de) 2011-04-14

Family

ID=43332527

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102009043001A Ceased DE102009043001A1 (de) 2009-09-25 2009-09-25 Verfahren zur Bestimmung von Defekten in einem Für elektromagnetische Wellen transparenten Material, insbesonders für optische Zwecke, eine Vorrichtung hierzusowie die Verwendung dieser Materialien

Country Status (5)

Country Link
US (1) US20110090492A1 (de)
EP (1) EP2302369A1 (de)
JP (1) JP2011145277A (de)
CN (1) CN102128839A (de)
DE (1) DE102009043001A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087460B3 (de) * 2011-11-30 2013-06-06 Intego Gmbh Verfahren sowie Vorrichtung zur Überprüfung eines optisch transparenten Körpers auf Fehlstellen
DE102013107215B3 (de) * 2013-07-09 2014-10-09 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines Spiegelsubstrat-Rohlings aus Titan-dotiertem Kieselglas für die EUV-Lithographie, sowie System zur Positionsbestimmung von Defekten in einem Rohling
WO2018082841A1 (de) * 2016-11-07 2018-05-11 Robert Bosch Gmbh Verfahren zur detektion von materialinhomogenitäten
CN111316090A (zh) * 2019-04-04 2020-06-19 合刃科技(深圳)有限公司 透明或半透明材料微观缺陷检测系统及方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120180527A1 (en) * 2011-01-13 2012-07-19 Lawrence Livermore National Security, Llc Method and System for Mitigation of Particulate Inclusions in Optical Materials
CN102435547B (zh) * 2011-09-15 2014-02-05 上海华力微电子有限公司 敏感光阻耐受程度检测方法及晶圆缺陷检验方法
KR101284283B1 (ko) 2012-03-29 2013-07-08 동국대학교 산학협력단 전계 발광 시료 분석 장치
CN102944564A (zh) * 2012-11-26 2013-02-27 中国科学院长春光学精密机械与物理研究所 一种便携式双远心倾斜照明结构杂散光检测装置
CN103345060B (zh) * 2013-07-08 2015-02-04 苏州江奥光电科技有限公司 镜片扫描成像的方法
CN103727894A (zh) * 2014-01-15 2014-04-16 唐山英莱科技有限公司 一种基于线结构光折射成像的透明体三维轮廓检测系统
US9903811B2 (en) * 2014-08-12 2018-02-27 The Boeing Company Multi-spectral reflectometer
JP2018528396A (ja) * 2015-06-19 2018-09-27 コーニング インコーポレイテッド 光学技術を使用して基板に欠陥があるかを検査し、かつ、かかる欠陥を三次元で位置決めするための方法および装置
CN104949999A (zh) * 2015-07-20 2015-09-30 丹阳市精通眼镜技术创新服务中心有限公司 一种镜片疵病在线检测装置
CN105345651B (zh) * 2015-09-24 2018-06-26 武汉新芯集成电路制造有限公司 一种芯片截面抛光装置及抛光方法
CN105181701B (zh) * 2015-09-30 2018-09-25 南京理工大学 一种金属对激光能量吸收规律的探测系统及方法
CN106501266B (zh) * 2016-10-18 2018-05-29 淮阴师范学院 基于微分干涉的光学薄膜缺陷检测方法
US20180164224A1 (en) * 2016-12-13 2018-06-14 ASA Corporation Apparatus for Photographing Glass in Multiple Layers
CN109031658B (zh) * 2017-06-12 2020-10-02 中国科学院大连化学物理研究所 一种薄型激光透射探测窗口
US10429318B2 (en) 2017-12-19 2019-10-01 Industrial Technology Research Institute Detection system for a multilayer film and method thereof using dual image capture devices for capturing forward scattered light and back scattered light
FR3076618B1 (fr) * 2018-01-05 2023-11-24 Unity Semiconductor Procede et systeme d'inspection optique d'un substrat
CN109612690A (zh) * 2018-11-02 2019-04-12 中国科学院上海光学精密机械研究所 感光芯片不同入射角响应度测量装置及测量方法
CN109297991B (zh) * 2018-11-26 2019-12-17 深圳市麓邦技术有限公司 一种玻璃表面缺陷检测系统及方法
CN110806412A (zh) * 2019-11-15 2020-02-18 中国工程物理研究院激光聚变研究中心 一种基于光学元件的缺陷尺寸检测方法及系统
CN113916139B (zh) * 2021-10-09 2023-06-13 西安石油大学 一种用于测量泡沫尺寸分布的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2536860A1 (fr) * 1982-11-25 1984-06-01 Saint Gobain Isover Procede et dispositif pour l'analyse d'heterogeneites dans un materiau transparent
DD283212A5 (de) * 1989-05-10 1990-10-03 Univ Berlin Humboldt Optisches verfahren zur bestimmung der anzahl und des charakters von oberflaecheninhomogenitaeten
DE19932870A1 (de) 1999-07-09 2001-04-05 Friedrich Schiller Uni Jena Bu Vorrichtung zur optischen Partikel- und Partikelströmungsanalyse
GB2379977A (en) 2001-09-25 2003-03-26 Kidde Plc Particle detector using a second radiation emitter which becomes operative only if the signal from a first emitter signal exceeds a predetermined value
DE102007003023B4 (de) * 2007-01-20 2009-05-07 Sick Ag Optoelektronischer Sensor und Verfahren zum Lichtdurchlässigkeitstest der Schutzscheibe durch Totalreflexion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387442A (en) * 1972-05-20 1975-03-19 British Titan Ltd Measurement of absorption of radiation
US4231661A (en) * 1978-09-20 1980-11-04 Becton, Dickinson & Company Radial scanner
JPH03107745A (ja) * 1989-09-20 1991-05-08 Mitsubishi Rayon Co Ltd 光散乱測定方法およびその装置
JP3373327B2 (ja) * 1995-04-24 2003-02-04 松下電器産業株式会社 異物検査装置
DE19713200C1 (de) * 1997-03-28 1998-06-18 Alv Laser Vertriebsgesellschaf Meßgerät zur Bestimmung der statischen und/oder dynamischen Lichtstreuung
JP5156413B2 (ja) * 2008-02-01 2013-03-06 株式会社日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2536860A1 (fr) * 1982-11-25 1984-06-01 Saint Gobain Isover Procede et dispositif pour l'analyse d'heterogeneites dans un materiau transparent
DD283212A5 (de) * 1989-05-10 1990-10-03 Univ Berlin Humboldt Optisches verfahren zur bestimmung der anzahl und des charakters von oberflaecheninhomogenitaeten
DE19932870A1 (de) 1999-07-09 2001-04-05 Friedrich Schiller Uni Jena Bu Vorrichtung zur optischen Partikel- und Partikelströmungsanalyse
GB2379977A (en) 2001-09-25 2003-03-26 Kidde Plc Particle detector using a second radiation emitter which becomes operative only if the signal from a first emitter signal exceeds a predetermined value
DE102007003023B4 (de) * 2007-01-20 2009-05-07 Sick Ag Optoelektronischer Sensor und Verfahren zum Lichtdurchlässigkeitstest der Schutzscheibe durch Totalreflexion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Damaschke et al (1998), Appl. Optics 37: 1752-1761
Wolfe, Runkel, (2008), Proc. of SPIE Vol. 7132

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087460B3 (de) * 2011-11-30 2013-06-06 Intego Gmbh Verfahren sowie Vorrichtung zur Überprüfung eines optisch transparenten Körpers auf Fehlstellen
DE102013107215B3 (de) * 2013-07-09 2014-10-09 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur Herstellung eines Spiegelsubstrat-Rohlings aus Titan-dotiertem Kieselglas für die EUV-Lithographie, sowie System zur Positionsbestimmung von Defekten in einem Rohling
WO2015003966A1 (de) 2013-07-09 2015-01-15 Heraeus Quarzglas Gmbh & Co. Kg Verfahren zur herstellung eines spiegelsubstrat-rohlings aus titan-dotiertem kieselglas für die euv-lithographie, sowie system zur positionsbestimmung von defekten in einem rohling
US10016872B2 (en) 2013-07-09 2018-07-10 Heraeus Quarzglas Gmbh & Co. Kg Method for producing a mirror substrate blank of titanium-doped silica glass for EUV lithography, and system for determining the position of defects in a blank
WO2018082841A1 (de) * 2016-11-07 2018-05-11 Robert Bosch Gmbh Verfahren zur detektion von materialinhomogenitäten
CN109923410A (zh) * 2016-11-07 2019-06-21 罗伯特·博世有限公司 用于探测材料不均匀性的方法
CN111316090A (zh) * 2019-04-04 2020-06-19 合刃科技(深圳)有限公司 透明或半透明材料微观缺陷检测系统及方法

Also Published As

Publication number Publication date
EP2302369A1 (de) 2011-03-30
CN102128839A (zh) 2011-07-20
JP2011145277A (ja) 2011-07-28
US20110090492A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
DE102009043001A1 (de) Verfahren zur Bestimmung von Defekten in einem Für elektromagnetische Wellen transparenten Material, insbesonders für optische Zwecke, eine Vorrichtung hierzusowie die Verwendung dieser Materialien
EP3265779B1 (de) Verfahren zur optischen detektion einer bewegung in einer biologischen probe mit räumlicher ausdehnung
EP0867711B1 (de) Messgerät zur Bestimmung der statischen und/oder dynamischen Lichtstreuung
EP2361375B1 (de) Zellaufbau für lichtstreudetektoren mit selbstfokussierenden eigenschaften
EP3199943B1 (de) Vorrichtung und verfahren zur erfassung einer zumindest teilweise spiegelnden oberfläche
DE19624421A1 (de) Vorrichtung und Verfahren zur ortsaufgelösten Vermessung von Wellenfrontdeformationen
EP2165182A2 (de) Vorrichtung und verfahren zur durchführung statischer und dynamischer streulichtmessungen in kleinen volumina
DE60312406T2 (de) Apparat und Verfahren zur Messung von optischen Eigenschaften eines diffraktiven optischen Elements
DE102021105946A1 (de) Messvorrichtung und Verfahren zur Rauheits- und/oder Defektmessung an einer Oberfläche
EP0210263B1 (de) Vorrichtung zur optischen ermittlung von gestaltsfehlern niedriger ordnung
DE102015016240B3 (de) Transparente Mess-Sonde für Strahl-Abtastung
DE102015201823B4 (de) Vorrichtung und Verfahren zur automatisierten Klassifizierung der Güte von Werkstücken
DE102008018143A1 (de) Vorrichtung und Verfahren zur topographischen Vermessung von Oberflächen von Gegenständen
DE102004017237B4 (de) Verfahren und Vorrichtung zur quantitativen Bestimmung der optischen Güte eines transparenten Materials
DE102012005417B4 (de) Vorrichtung und Verfahren zur winkelaufgelösten Streulichtmessung
DE102013111780B4 (de) Verfahren und Vorrichtung zur Bestimmung einer Eigenschaft eines Objekts
WO2018224068A1 (de) Mess-sonde für strahlabtastung
RU2154815C2 (ru) Способ исследования микрообъектов
EP1376103A2 (de) Verfahren zur Bestimmung lokaler Strukturen in optischen Kristallen
DE10209593B4 (de) Verfahren zur Qualitätskontrolle und Schnittoptimierung von optischen Rohmaterialien
DE10348509A1 (de) Wellenfrontsensor
DE102017116763B4 (de) Verfahren und Vorrichtung zum Prüfen eines Prüfobjekts
DE102016011568B4 (de) Vorrichtung und Verfahren zur Bestimmung von räumlichen Abmessungen eines Lichtstrahls
DE102011077982B4 (de) Verfahren und Vorrichtung zur optischen Analyse eines Prüflings
DE19525847C2 (de) Verfahren und Vorrichtung zur Bestimmung des Durchmessers von Teilchen

Legal Events

Date Code Title Description
ON Later submitted papers
OP8 Request for examination as to paragraph 44 patent law
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final

Effective date: 20130820