DE102005035881A1 - Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle - Google Patents

Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle Download PDF

Info

Publication number
DE102005035881A1
DE102005035881A1 DE102005035881A DE102005035881A DE102005035881A1 DE 102005035881 A1 DE102005035881 A1 DE 102005035881A1 DE 102005035881 A DE102005035881 A DE 102005035881A DE 102005035881 A DE102005035881 A DE 102005035881A DE 102005035881 A1 DE102005035881 A1 DE 102005035881A1
Authority
DE
Germany
Prior art keywords
values
value
angular velocity
determined
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005035881A
Other languages
English (en)
Inventor
Holger Dr. Stork
Heiko Dell
Minh Nam Dr. Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
LuK Lamellen und Kupplungsbau Beteiligungs KG
LuK Lamellen und Kupplungsbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LuK Lamellen und Kupplungsbau Beteiligungs KG, LuK Lamellen und Kupplungsbau GmbH filed Critical LuK Lamellen und Kupplungsbau Beteiligungs KG
Priority to DE102005035881A priority Critical patent/DE102005035881A1/de
Publication of DE102005035881A1 publication Critical patent/DE102005035881A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Bei einem Verfahren zum Verstellen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle, bei dem die Kurbelwelle über ein Verstellgetriebe mit der Nockenwelle in Antriebsverbindung steht, das als Dreiwellengetriebe mit einer kurbelwellenfesten Antriebswelle, einer nockenwellenfesten Abtriebswelle und einer Verstellwelle ausgebildet ist, die mit einem Verstellmotor in Antriebsverbindung steht, wird für mindestens einen Kurbelwellen-Messzeitpunkt ein Messwert für den Kurbelwellendrehwinkel erfasst. Für wenigstens zwei Verstellwellen-Messzeitpunkte wird jeweils ein Messwert für den Verstellwellendrehwinkel digital erfasst. Für mindestens einen Bezugspunkt, der nach den Kurbelwellen- und Verstellwellen-Messzeitpunkten liegt, wird aus mindestens zwei Verstellwellendrehwinkel-Messwerten, dem Zeitunterschied zwischen den Verstellwellen-Messzeitpunkten sowie dem Zeitabstand zwischen dem letzten Verstellwellen-Messzeitpunkt und dem Bezugszeitpunkt ein Schätzwert für den Drehwinkel, den die Verstellwelle an dem Bezugszeitpunkt aufweist, extrapoliert. Anhand des Schätzwerts, des mindestens einen Kurbelwellendrehwinkel-Messwerts und der Getriebekenngröße wird ein Wert für die Drehwinkellage bestimmt.

Description

  • Die Erfindung betrifft ein Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle, wobei die Kurbelwelle über ein Verstellgetriebe mit der Nockenwelle in Antriebsverbindung steht, das als Dreiwellengetriebe mit einer kurbelwellenfesten Antriebwelle, einer nockenwellenfesten Abtriebswelle und einer Verstellwelle ausgebildet ist, die mit einem Verstellmotors in Antriebsverbindung steht, wobei für mindestens einen Kurbelwellen-Messzeitpunkt ein Messwert für den Kurbelwellendrehwinkel erfasst wird, wobei für wenigstens zwei Verstellwellen-Messzeitpunkte jeweils ein Messwert für den Verstellwellendrehwinkel digital erfasst wird, wobei für mindestens einen Bezugszeitpunkt, der nach den Kurbelwellen- und Verstellwellen-Messzeitpunkten liegt, anhand mindestens eines Kurbelwellendrehwinkel-Messwerts, mindestens eines Verstellwellendrehwinkel-Messwerts und einer Getriebekenngröße des Dreiwellengetriebes ein Wert für die Drehwinkellage der Nockenwelle relativ zur Kurbelwelle bestimmt wird.
  • Ein derartiges Verfahren ist aus der Praxis bekannt. Dabei ist als Verstellgetriebe ein Umlaufgetriebe vorgesehen, mit dessen Antriebwelle ein relativ zur Nockenwelle verdrehbar gelagertes Nockenwellenzahnrad drehfest verbunden ist, das über eine Antriebskette mit einem Kurbelwellenzahnrad in Antriebsverbindung steht. Eine Abtriebswelle des Verstellgetriebes steht mit der Nockenwelle und eine Verstellwelle mit einem Verstellmotor in Antriebsverbindung. Bei stillstehender Antriebswelle liegt zwischen der Verstellwelle und der Abtriebswelle eine durch das Verstellgetriebe vorgegebene Getriebeübersetzung vor, die so genannte Standgetriebeübersetzung. Wenn sich die Verstellwelle dreht, vergrößert bzw. verkleinert sich je nach Drehrichtung der Verstellwelle relativ zum Nockenwellenzahnrad die Getriebeübersetzung zwischen der Antriebs- und der Abtriebswelle, wodurch sich die Phasenlage der Nockenwelle relativ zur Kurbelwelle verändert. Im Vergleich zu einem Verfahren, bei welchem die Verbrennungsmaschine mit konstanter Phasenlage betrieben wird, kann durch die Anpassung der Phasenlage eine bessere Zylinderfüllung der Verbrennungsmaschine erreicht werden, wodurch Kraftstoff eingespart, der Schadstoffausstoß reduziert und/oder die Ausgangsleitung der Verbrennungsmaschine erhöht werden kann. Um die Phasenlage auf ein Sollwertsignal zu regeln, werden zunächst die Drehwinkel der Kurbelwelle und der Verstellwelle mit Hilfe von induktiven Sensoren gemessen und dann wird mit Hilfe der bekannten Standgetriebeübersetzung ein Istwertsignal für die Phasenlage der Nockenwelle relativ zur Kurbelwelle bestimmt. An einem Bezugszeitpunkt wird in einem mikroprozessorbasierten elektronischen Steuergerät ein Interrupt ausgelöst, bei welchem der Messwert für den Verstellwellendrehwinkel in eine Regeleinrichtung eingelesen und mit einem bereitgestellten Sollwertsignal verglichen wird. Beim Auftreten einer Abweichung zwischen dem Messwert und dem Sollwertsignal steuert die Regeleinrichtung den EC-Motor derart an, dass die Abweichung reduziert wird. Die Messung des Verstellwellendrehwinkels erfolgt mit Hilfe von Magnetfeldsensoren, welche die Lage von am Umfang des EC-Motor-Läufers angeordneten Magnetsegmenten digital detektieren. Aufgrund der Digitalisierung der Messwerte und des von den Verstellwellen-Messzeitpunkten abweichenden Bezugszeitpunkt kommt es jedoch zu Mess-Ungenauigkeiten, die dazu führen, dass die gemessene relative Drehwinkellage der Nockenwelle eine sägezahnförmige Schwingung um die tatsächliche Drehwinkellage durchführt. Dies wirkt sich nachteilig auf die Regelungsgenauigkeit aus und hat außerdem auch eine erhöhte Energieaufnahme des EC-Motors zur Folge.
  • Es besteht deshalb die Aufgabe, ein Verfahren der eingangs genannten Art zu schaffen, das eine genaue Bestimmung der Drehwinkellage der Nockenwelle relativ zur Kurbelwelle ermöglicht.
  • Diese Aufgabe wird dadurch gelöst, dass aus mindestens zwei Verstellwellendrehwinkel-Messwerten, dem Zeitunterschied zwischen den Verstellwellen-Messzeitpunkten sowie dem Zeitabstand zwischen dem letzten Verstellwellen-Messzeitpunkt und dem Bezugszeitpunkt ein Schätzwert für den Drehwinkel, den die Verstellwelle an dem Bezugszeitpunkt aufweist, extrapoliert wird, und dass anhand des Schätzwerts, des mindestens einen Kurbelwellendrehwinkel-Messwerts und der Getriebekenngröße der Wert für die Drehwinkellage bestimmt wird.
  • In vorteilhafter Weise wird also die Genauigkeit der Werte für die Phasenlage dadurch erhöht, dass der Winkel, um den sich die Verstellwelle zwischen dem letzten Verstellwellen-Messzeitpunkt und dem jeweils aktuellen Bezugszeitpunkt weitergedreht hat, geschätzt und bei der Ermittlung der Werte für die Phasenlage berücksichtigt wird. Die Amplitude der sägezahnförmigen Schwingung, welche der gemessene Verstellwellendrehwinkelverlauf um den tatsächlichen Verstellwellendrehwinkelverlauf ausführt, reduziert sich dadurch entsprechend. Das erfindungsgemäße Verfahren ermöglicht dadurch eine hohe Präzision bei der Bestimmung der Phasenlage sowie eine geringe Energieaufnahme des Verstellmotors.
  • Bei einer bevorzugten Ausführungsform der Erfindung wird zumindest für den jeweils letzten Verstellwellen-Messzeitpunkt ein Wert für die Winkelgeschwindigkeit der Verstellwelle ermittelt, wobei der Schätzwert für den Drehwinkel, den die Verstellwelle an dem Bezugszeitpunkt aufweist, aus dem letzen Verstellwellendrehwinkel-Messwert, der Zeitdifferenz zwischen dem Bezugszeitpunkt und dem letzten Verstellwellen-Messzeitpunkt sowie dem Winkelgeschwindigkeitswert bestimmt wird. Der Verstellwellendrehwinkel-Messwert zum Bezugszeitpunkt wird also durch lineare Interpolation aus dem jeweils letzen Verstellwellendrehwinkel-Messwert mit Hilfe des Winkelgeschwindigkeitswerts ermittelt. Der Winkelgeschwindigkeitswert kann aus der Winkeldifferenz der beiden zuletzt gemessenen Winkelgeschwindigkeitswerte und der Zeitdifferenz zwischen den diesen Winkelgeschwindigkeitswerten zugeordneten Messzeitpunkten berechnet werden.
  • Bei einer vorteilhaften Ausführungsform der Erfindung ist der Verstellmotor ein EC-Motor, der einen Stator mit einer Wicklung und einem drehfest mit der Verstellwelle verbundenen Läufer hat, an dem in Umfangsrichtung zueinander versetzte, abwechselnd in zueinander entgegen gesetzte Richtungen magnetisierte Magnetsegmente angeordnet sind, die Toleranzen hinsichtlich ihrer Positionierung und/oder ihrer Abmessungen haben, wobei zum Erfassen der Verstellwellendrehwinkel-Messwerte und/oder der Winkelgeschwindigkeitswerte die Lage der Magnetsegmente relativ zu dem Stator detektiert wird, wobei mindestens ein Korrekturwert zum Kompensieren des Einflusses wenigstens einer Toleranz auf die Verstellwellendrehwinkel-Messwerte erfasst wird, und wobei die Verstellwellendrehwinkel-Messwerte und/oder die Winkelgeschwindigkeitswerte mit Hilfe des Korrekturwerts korrigiert werden. Dieser Ausführungsform liegt die Erkenntnis zu Grunde, dass bei einem mehrfachen Vorbeibewegen eines toleranzbehafteten Magnetsegments des Läufers an einem ortsfest zum Stator angeordneten Magnet-Sensor, das mit Hilfe des Magnet-Sensors detektierte Lagemesssignal für das entsprechende Magnetsegment bei jedem Passieren des Magnet-Sensors stets denselben, durch die Toleranz des Magnetsegments bedingten Fehler aufweist. Dieser Fehler wird durch Messung oder auf andere Weise ermittelt, um dann einen Korrekturwert zu bestimmen, mit dem die Verstellwellendrehwinkel-Messwerte zu einem späteren Zeitpunkt korrigiert werden, wenn das betreffende Magnetsegment den Magnetfeldsensor erneut passiert. Somit kann eine durch eine Toleranz eines Magnetsegments hervorgerufene Mess-Ungenauigkeit auf einfache Weise in dem Drehzahlsignal korrigiert werden. Dabei ist es sogar möglich, diese Korrektur online bei dem jeweils aktuell gemessenen Drehzahlwert durchzuführen, ohne dass zwischen dem korrigierten Drehzahlwert und dem unkorrigierten Drehzahlwert eine Zeitverzögerung auftritt.
  • Vorteilhaft ist, wenn die Lage der Magnetsegmente mit Hilfe einer Messeinrichtung detektiert wird, die an dem Stator mehrere Magnetfeldsensoren aufweist, die derart in Umfangsrichtung des Stators zueinander versetzt angeordnet sind, dass pro Umdrehung des Läufers relativ zu dem Stator eine Anzahl von Magnetsegment-Sensor-Kombinationen durchlaufen wird, und wenn für jede dieser Magnetsegment-Sensor-Kombinationen jeweils ein Korrekturwert ermittelt, gespeichert und zur Korrektur der Verstellwellendrehwinkel-Messwerte und/oder der Winkelgeschwindigkeitswerte verwendet wird. Die Phasenlage der Nockenwelle relativ zur Kurbelwelle kann dann mit noch größerer Präzision eingestellt werden. Die Anzahl der Magnetsegment-Sensor-Kombinationen entspricht vorzugsweise dem Produkt aus der Anzahl der Magnetfeldsensoren und der Anzahl der magnetischen Pole des Läufers.
  • Bei eine bevorzugten Ausgestaltung der Erfindung wird der Läufer derart relativ zu dem Stator verdreht, dass eine Anzahl von Magnetsegment-Sensor-Kombinationen durchlaufen wird, wobei mit Hilfe der Messeinrichtung für diese Magnetsegment-Sensor-Kombinationen erste unkorrigierte Verstellwellendrehwinkel-Messwerte und/oder Winkelgeschwindigkeitswerte erfasst werden, wobei zusätzlich Referenzwerte für den Verstellwellendrehwinkel und/oder die Winkelgeschwindigkeit erfasst werden, die eine größere Genauigkeit aufweist als das die ersten Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte, wobei mit Hilfe der ersten unkorrigierten Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte die Korrekturwerte als Korrekturfaktoren bestimmt werden, wobei die den ersten unkorrigierten Verstellwellendrehwinkel-Messwerten bzw. Winkelgeschwindigkeitswerten zugeordneten Magnetsegment-Sensor-Kombinationen erneut durchlaufen und dabei mit Hilfe der Messeinrichtung zweite unkorrigierte Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte erfasst werden, und wobei diese Werte mit Hilfe der zuvor ermittelten Korrekturfaktoren korrigiert werden. Die Korrekturwerte werden also in Form von Korrekturfaktoren ermittelt, wodurch eine Korrektur der durch die Toleranzen des Magnetsegments verursachten Messfehlern bei unterschiedlichen Drehzahlen möglich ist. Das Referenzsignal kann ein Messsignal sein, das beispielsweise bei der Fertigung des EC-Motors mit Hilfe einer zusätzlichen Lagemesseinrichtung erfasst wird. Das Referenzsignal kann auch ein Drehzahl- und/oder ein aufintegriertes Beschleunigungssignal einer Welle sein, die mit dem EC-Motor gekoppelt ist.
  • Bei einer zweckmäßigen Ausgestaltung der Erfindung werden die Referenzwerte dadurch gebildet, dass die ersten unkorrigierten Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte durch Filterung geglättet werden. Dadurch kann ein zusätzlicher Sensor zur Messung des Referenzsignals eingespart werden.
  • Vorteilhaft ist, wenn der Läufer derart relativ zu dem Stator verdreht wird, dass die einzelnen Magnetsegment-Sensor-Kombinationen mindestens zwei mal auftreten, wenn dabei für die einzelnen Magnetsegment-Sensor-Kombinationen jeweils ein Korrekturfaktor für die Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte ermittelt wird, wenn aus den für die einzelnen Magnetsegment-Sensor-Kombinationen ermittelten Korrekturfaktoren jeweils ein Mittelwert gebildet wird, und wenn die so erhaltenen Mittelwerte als neue Korrekturfaktoren gespeichert und die Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte bei einem erneuten Durchlaufen der Magnetsegment-Sensor-Kombinationen mit Hilfe dieser Korrekturfaktoren korrigiert werden. Die einzelnen Magnetsegment-Sensor-Kombinationen werden dabei bevorzugt möglichst oft durchlaufen, was bei einem EC-Motor für eine elektronische Nockenwellenverstellung problemlos möglich ist, da sich dieser während des Betriebs der Verbrennungsmaschine ständig dreht.
  • Bei einer Ausführungsform der Erfindung wird als Mittelwert jeweils der arithmetische Mittelwert gebildet. Dabei gehen sämtliche für die Mittelwertbildung verwendeten Korrekturfaktoren mit demselben Gewicht in den Mittelwert ein.
  • Bei einer bevorzugten Ausführungsform der Erfindung wird als Mittelwert jeweils ein gleitender Mittelwert gebildet, vorzugsweise derart, dass das Gewicht, mit dem die Korrekturfaktoren in den Mittelwert eingehen, mit zunehmendem Alter der Korrekturfaktoren abnimmt. Neue Korrekturfaktoren werden also in dem Mittelwert stärker berücksichtigt als Korrekturfaktoren, die einem weiter zurückliegenden Zeitpunkt zugeordnet sind. Sollte einmal ein Fehler auftreten, der dazu führt, dass eine Magnetsegment-Sensor-Kombination nicht erkannt und dadurch die bereits ermittelten Korrekturfaktoren den falschen Magnetsegmenten zugeordnet werden, wirkt sich die falsche Korrekturfaktorzuordnung nur kurzeitig auf die Korrektur des Drehzahlsignals aus, d.h. die falschen Korrekturfaktoren werden relativ schnell „vergessen".
  • Vorteilhaft ist, wenn die gleitenden Mittelwerte FNeu[i(t–T)] für die einzelnen Magnetsegment-Sensor-Kombinationen zyklisch nach der Formel FNeu[i(t–T)] = λ FAlt[i(t–T)] + (1–λ) F[i(t–T)] bestimmt werden, wobei i ein die jeweilige Magnetsegment-Sensor-Kombination identifizierender Index, t die Zeit, T eine Verzögerungszeit zwischen der tatsächlichen Winkelgeschwindigkeit und der gemessenen Winkelgeschwindigkeitswerten, FAlt[i(t–T)] der bei der letzten Mittelwertbildung am Index i ermittelte Mittelwert und λ ein Vergessensfaktor bedeuten, der größer als Null und kleiner als 1 ist und vorzugsweise im Intervall zwischen 0,7 und 0,9 liegt. Eine derartige Mittelwertbildung ist für eine Online-Berechnung gut geeignet. Die Zeit T ist von der Drehzahl abhängig und nimmt mit zunehmender Drehzahl ab (ereignisgesteuertes System).
  • Bei einer vorteilhaften Ausführungsform der Erfindung ist vorgesehen, dass
    • a) der Läufer relativ zu dem Stator verdreht und die Korrekturfaktoren für die einzelnen Magnetsegment-Sensor-Kombinationen ermittelt und gespeichert werden,
    • b) dass danach die entsprechenden Magnetsegment-Sensor-Kombinationen erneut durchlaufen werden, wobei ein Satz neuer Korrekturfaktoren ermittelt wird,
    • c) dass die Korrekturfaktoren des alten Korrekturfaktorsatzes relativ zu denen des neuen Korrekturfaktorsatzes zyklisch vertauscht und die Korrekturfaktorsätze danach miteinander verglichen werden,
    • d) dass Schritt c) wiederholt wird, bis alle Vertauschungskombinationen des alten Korrekturfaktorsatzes mit dem neuen Korrekturfaktorsatz verglichen wurden,
    • e) dass die Vertauschungskombination, bei der eine maximale Übereinstimmung mit dem neuen Korrekturfaktorsatz auftritt, ermittelt wird,
    • f) und dass mit der dieser Vertauschungskombination zugeordneten Anordnung der Korrekturwerte des alten Korrekturfaktorsatzes die Winkelgeschwindigkeitswerte korrigiert werden.
  • Auf diese Weise kann die Zuordnung der Korrekturfaktoren zu den Magnetsegmenten wiederhergestellt werden, falls sie beispielsweise aufgrund einer Störung des Messsignals unbeabsichtigt verändert worden sein sollte. Somit können die bereits ermittelten Korrekturfaktoren auch nach dem Auftreten der Störung weitergenutzt werden. Dabei kann eine Kennung an dem Läufer des EC-Motors, die eine absolute Messung der Lage des Läufers relativ zum Stator ermöglicht, eingespart werden. In vorteilhafter Weise kann das Verfahren aber auch nach dem Wiedereinschalten des EC-Motors zur Anwendung kommen, um Korrekturfaktoren, die während einer früheren Einschaltphase des EC-Motors ermittelt und in einem nichtflüchtigen Speicher abgelegt wurden, denjenigen Magnetsegment-Sensor-Kombinationen zuzuordnen, für die sie während der früheren Einschaltphase ermittelt wurden.
  • Gegebenenfalls können die Korrekturfaktoren auch unter Idealbedingungen bei der Fertigung des EC-Motors ermittelt werden, vorzugsweise in einem Endstadium der Fertigung.
  • Vorteilhaft ist, wenn aus den bei der Vertauschungskombination, bei der eine maximale Übereinstimmung zwischen den Korrekturfaktorsätzen auftritt, jeweils einander zugeordneten Korrekturfaktoren des alten Korrekturfaktorsatzes und des neuen Korrekturfaktorsatzes jeweils ein Mittelwert gebildet und als neuer Korrekturfaktor gespeichert wird, und wenn mit dem durch diese Mittelwertbildung erhaltenen Korrekturfaktorsatz die Winkelgeschwindigkeitswerte korrigiert werden. Es werden also sowohl die Korrekturfaktoren des ersten Datensatzes als auch die des zweiten Datensatzes bei der Korrektur der Winkelgeschwindigkeitswerte berücksichtigt.
  • Bei einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass
    • a) dass der Läufer derart relativ zu dem Stator verdreht wird, dass alle Magnetsegment-Sensor-Kombinationen mindestens einmal durchlaufen werden,
    • b) dass dabei ein Lagemesssignal der Magnetfeldsensoren derart generiert wird, dass pro Umdrehung des EC-Motors für jedes Polpaar des Läufers jeweils eine Anzahl von Messsignal-Zuständen durchlaufen wird,
    • c) dass ein erster Datensatz mit einer der Anzahl der Magnetsegment-Sensor-Kombinationen entsprechenden Anzahl Wertekombinationen, jeweils bestehend zumindest aus einem Korrekturfaktor für die betreffende Magnetsegment-Sensor-Kombination und einem dieser zugeordneten Messsignal-Zustand, ermittelt und gespeichert wird,
    • d) dass danach die entsprechenden Magnetsegment-Sensor-Kombinationen erneut durchlaufen werden, wobei ein neuer, zweiter Datensatz mit Wertekombinationen ermittelt und gespeichert wird,
    • e) dass bei einer Abweichung zwischen den Messsignal-Zuständen des ersten und denen des zweiten Datensatzes die Wertekombinationen des ersten Datensatzes derart zyklisch relativ zu denen des zweiten Datensatzes verschoben werden, dass die Messsignal-Zustände der Datensätze übereinstimmen,
    • f) dass danach die jeweils einander zugeordneten Korrekturfaktoren der Datensätze miteinander verglichen werden,
    • g) dass die Korrekturfaktoren des einen Datensatzes um eine der doppelten Anzahl der Magnetfeldsensoren entsprechende Anzahl Schritte relativ zu den Korrekturfaktoren des anderen Datensatzes zyklisch vertauscht und danach die jeweils einander zugeordneten Korrekturfaktoren der Datensätze miteinander verglichen werden,
    • h) dass Schritt g) gegebenenfalls wiederholt wird, bis alle Vertauschungskombinationen bearbeitet wurden,
    • i) dass eine Vertauschungskombination, bei der eine maximale Übereinstimmung zwischen den Korrekturfaktoren der Datensätze auftritt, ermittelt wird,
    • j) und dass mit der dieser Vertauschungskombination zugeordneten Anordnung der Korrekturwerte des ersten Datensatzes die Winkelgeschwindigkeitswerte korrigiert werden.
  • Durch diese Maßnahmen kann mit relativ wenig Vertauschungs- bzw. Verschiebeoperationen und somit entsprechend geringem Zeitaufwand die Zuordnung der Korrekturfaktoren zu den Magnetsegment-Sensor-Kombinationen wiederhergestellt werden.
  • Dabei ist es sogar möglich, dass aus den bei der Vertauschungskombination, bei der eine maximale Übereinstimmung zwischen den Korrekturfaktoren der Datensätze auftritt, jeweils einander zugeordneten Korrekturfaktoren des ersten und zweiten Datensatzes jeweils ein Mittelwert gebildet und als neuer Korrekturfaktor gespeichert wird und dass mit dem durch diese Mittelwertbildung erhaltenen Korrekturtaktorsatz Winkelgeschwindigkeitswerte korrigiert werden. Somit werden sowohl die Korrekturfaktoren des ersten Datensatzes als auch die des zweiten Datensatzes bei der Korrektur des Drehzahlsignals berücksichtigt.
  • Bei einer zweckmäßigen Ausgestaltung des Verfahrens werden die Schwankungsweiten der unkorrigierten Winkelgeschwindigkeitswerte und der korrigierten Winkelgeschwindigkeitswerte jeweils in einem Zeitfenster ermittelt und miteinander verglichen, wobei für den Fall, dass die Schwankungsweite der korrigierten Winkelgeschwindigkeitswerte größer ist als die der unkorrigierten Winkelgeschwindigkeitswerte, die Korrekturfaktoren neu ermittelt und/oder die Zuordnung der Korrekturfaktoren zu den Magnetsegment-Sensor-Kombinationen wiederhergestellt wird. Dabei wird davon ausgegangen, für den Fall, dass die Schwankung der korrigierten Winkelgeschwindigkeitswerte größer ist als die der unkorrigierten Winkelgeschwindigkeitswerte, ein Fehler bei der Zuordnung der Korrekturfaktoren zu den einzelnen Magnetsegment-Sensor-Kombinationen aufgetreten ist, beispielsweise durch EMV-Einstrahlung. Zur Korrektur dieses Fehlers können die Korrekturfaktoren auf den Wert 1 zurückgesetzt und danach neu adaptiert worden oder die ursprüngliche Zuordnung wird beispielsweise durch zyklisches Vertauschen der Korrekturfaktoren wiederhergestellt.
  • Zweckmäßigerweise werden die Korrekturfaktoren auf einen vorgegebenen Wertebereich begrenzt, der vorzugsweise zwischen 0,8 und 1,2 beträgt. Dadurch können Ausreißer in dem korrigierten Drehzahlsignal, die durch nicht plausible, außerhalb des vorgegebenen Wertebereichs liegende Korrekturfaktoren verursacht sind, unterdrückt werden.
  • Bei einer vorteilhaften Ausführungsform der Erfindung wird ein Trägheitsmomentwert für das Massenträgheitsmoment des Läufers bestimmt, wobei ein Stromsignal I erfasst wird, indem für die einzelnen Verstellwellen-Messzeitpunkte jeweils ein Stromwert I(k) für den elektrischen Strom in der Wicklung bestimmt wird, wobei für die einzelnen Winkelgeschwindigkeitswerte ω(k) jeweils aus einem einem früheren Verstellwellen-Messzeitpunkt zugeordneten Winkelgeschwindigkeitswert ωk(k–1), dem Stromsignal I und dem Trägheitsmomentwert ein Schätzwert ωs(k) für den Winkelgeschwindigkeitswert ω(k) bestimmt wird, wobei diesem Schätzwert ωs(k) ein Toleranzband zugeordnet wird, in dem der Schätzwert ωs(k) enthalten ist, und wobei für den Fall, dass der Winkelgeschwindigkeitswert ω(k) außerhalb des Toleranzbands liegt, der Winkelgeschwindigkeitswert ω(k) durch einen innerhalb des Toleranzbands befindlichen Winkelgeschwindigkeitswert ωk(k) ersetzt wird. Es werden also Winkelgeschwindigkeitswerte ω(k), die außerhalb des Toleranzbands liegen und die somit nicht plausibel sind, auf das Toleranzband begrenzt, wobei die Grenzwerte für das Toleranzband dynamisch ermittelt werden. Dadurch können Schwankungen in den Winkelgeschwindigkeitswerten auf einfache Weise geglättet werden, ohne dass es zu einer nennenswerten Zeitverzögerung zwischen dem geglätteten bzw. korrigierten Winkelgeschwindigkeitssignal und dem gemessenen Winkelgeschwindigkeitssignal kommt. Der Begrenzung liegt die dynamische Gleichung der elektrischen Maschine zugrunde: J·dω/dt = Kt·I
  • J ist das Massenträgheitsmoment des Läufers, ω die Läufer-Drehzahl, Kt eine Konstante der elektrischen Maschine, I der Wicklungsstrom und t die Zeit. Der Drehzahl-Schätzwert ωs(k) lässt sich wie folgt bestimmen, wobei T eine Abtastdauer bedeutet:
    Figure 00100001
  • Wenn die Breite des Toleranzbands auf ± ΔωGrenz festgelegt wird, können der obere Randwert ωHighLim(k) und der untere Randwert ωLowLim(k) des Toleranzbands für den k-ten Drehzahlmesswert ω(k) ausgehend von dem Schätzwert ωs wie folgt ermittelt werden: ωHighLim(k) = ωs + ΔωGrenz = ω(k–1) + T Kt·I(k–1)/J + ΔωGrenz ωLowLim(k) = ωs – ΔωGrenz = ω(k–1) + T Kt·I(k–1)/J – ΔωGrenz
  • Dabei wird die Breite ± ΔωGrenz des Toleranzbands vorzugsweise deutlich kleiner gewählt als die Schwankungsweite der Drehzahlmesswerte ω(k), um eine spürbare Reduzierung der Schwankung der Winkelgeschwindigkeitswerte zu erreichen.
  • Bei einer vorteilhaften Ausführungsform der Erfindung wird der Läufer wird mit einem Lastmoment belastet, wobei für das Lastmoment ein Lastmomentsignal ML bereitgestellt wird, und wobei der Schätzwert ωs(k) jeweils aus dem dem früheren Abtastzeitpunkt zugeordneten Winkelgeschwindigkeitswert ωk(k–1), dem Stromsignal I, dem Lastmomentsignal ML und dem Trägheitsmomentwert bestimmt wird. Die dynamische Gleichung des EC-Motors lautet dann: J·dω/dt = Kt·I – ML
  • Daraus lassen sich der Winkelgeschwindigkeits-Schätzwert ωs(k) sowie der obere Randwert ωHighLim(k) und der untere Randwert ωLowLim(k) des Toleranzbands wie folgt bestimmen:
    Figure 00100002
    ωHighLim(k)) = ωs + ΔωGrenz = ω(k–1) + T/J [Kt·I(k–1) – ML(k–1)] + ΔωGrenz ωLowLim(k) = ωs – ΔωGrenz = ω(k–1) + T/J [Kt·I(k–1) – ML(k–1)] – ΔωGrenz
  • Bei einer zweckmäßigen Ausführungsform der Erfindung wird die an der Wicklung anliegende elektrische Spannung erfasst, wobei die Stromwerte I(k) indirekt aus der Spannung, der Impedanz der Wicklung, dem gegebenenfalls korrigierten Drehzahlmesswert ω(k) und einer Motorkonstanten Ke bestimmt wird. Die entsprechende Systemgleichung lautet: U = RA·I + LA·dl/dt + Ke·ωk
  • Dabei ist RA der ohmsche Widerstand der Wicklung, LA die Induktivität der Wicklung und Ke die Motorkonstante des EC-Motors. Das Verfahren kommt bevorzugt bei EC-Motoren zum Einsatz, bei denen der Wicklungsstrom durch Pulsweitenmodulation einer an die Wicklung angelegten elektrischen Spannung eingestellt wird.
  • Vorteilhaft ist, wenn die Breite und/oder Lage des Toleranzbands in Abhängigkeit von dem dem früheren Verstellwellen-Messzeitpunkt zugeordneten Winkelgeschwindigkeitswert ωk(k–1) gewählt wird und vorzugsweise mit zunehmender Winkelgeschwindigkeit reduziert und/oder mit abnehmender Winkelgeschwindigkeit vergrößert wird. Wenn für das Lastmoment der Nockenwelle ein Mittelwert vorliegt, dessen Genauigkeit von der Drehzahl abhängig ist, kann die Drehzahlabhängigkeit der Genauigkeit bei der Bestimmung der Breite des Toleranzbands berücksichtigt werden.
  • Bei einer zweckmäßigen Ausgestaltung der Erfindung wird die Breite und/oder Lage des Toleranzbands in Abhängigkeit von dem Stromsignal I gewählt und vorzugsweise mit zunehmendem Strom vergrößert und/oder mit abnehmendem Strom reduziert. Dabei wird davon ausgegangen, dass bei einem großen Wicklungsstrom der Läufer in der Regel beschleunigt wird, so dass die Drehzahl entsprechend ansteigt. Die Breite und/oder Lage des Toleranzbands wird also an die aufgrund der Bestromung der Wicklung zu erwartenden Drehzahländerungen des Läufers angepasst.
  • Wenn das Drehzahlsignal mit Störungen, wie zum Beispiel einer Welligkeit behaftet ist, schwankt meistens der Wicklungsstrom entsprechend. In diesem Fall kann es vorteilhaft sein, das Stromsignal I durch Filterung, insbesondere durch eine gleitende Mittelwertbildung, geglättet wird, und wenn die Schätzwerte ωs(k) für die Winkelgeschwindigkeitswerte ω(k) mit Hilfe des gefilterten Stromsignals I bestimmt werden.
  • Bei einer vorteilhaften Ausführungsform der Erfindung wird jeweils aus mindestens zwei Kurbelwellendrehwinkel-Messwerten, dem Zeitunterschied zwischen den diesen Messwerten zugeordneten Kurbelwellendrehwinkel-Messzeitpunkten sowie dem Zeitabstand zwischen dem letzten Kurbelwellen-Messzeitpunkt und dem Bezugszeitpunkt ein Schätzwert für den Drehwinkel, den die Kurbelwelle an dem Bezugszeitpunkt aufweist, extrapoliert, wobei die Zeitdifferenz zwischen dem Bezugszeitpunkt und dem letzten Kurbelwellen-Messzeitpunkt ermittelt wird, und wobei der Schätzwert aus dem Kurbelwellendrehwinkel-Messwert am letzten Kurbelwellen-Messzeitpunkt, der Zeitdifferenz und dem Winkelgeschwindigkeitswert bestimmt wird. Durch diese Maßnahme kann in Kombination mit der Extrapolation der Verstellwellen-Messzeitpunkte eine besonders hohe Präzision bei der Einstellung der Phasenlage erreicht werden.
  • Nachfolgend ist sind Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert. Es zeigen:
  • 1: eine schematische Darstellung eine Kurbelwellen-Nockenwellenanordnung eines Hubkolben-Verbrennungsmotors, die eine Verstellvorrichtung zum Verändern der Drehwinkellage der Nockenwelle relativ zur Kurbelwelle aufweist,
  • 2 eine graphische Darstellung des tatsächlichen Drehwinkelverlaufs und von Drehwinkel-Messwerten des Rotors eines Verstellmotors der Verstellvorrichtung, wobei auf der Abszisse die Zeit und auf der Ordinate der Drehwinkel aufgetragen ist,
  • 3 eine graphische Darstellung des tatsächlichen Drehwinkelverlaufs des Verstellmotors, wobei die Stellen, an denen Hallsensor-Pulse auftreten, im Drehwinkelverlauf markiert sind, wobei auf der Abszisse die Zeit und auf der Ordinate der Drehwinkel aufgetragen ist,
  • 4 eine schematische Ansicht auf die Stirnseite des Läufers eines EC-Motors, wobei am Umfang des Läufers Magnetsegmente angeordnet sind, und wobei eine Lagemesseinrichtung zur Detektion der Lage des Läufers relativ zum Stator vorgesehen ist,
  • 5 eine graphische Darstellung eines mit Hilfe der Lagemesseinrichtung erfassten Lagemesssignals,
  • 6 ein Ablaufdiagramm, welches die einzelnen Schritte bei der Korrektur eines aus dem Lagemesssignal erzeugten Winkelgeschwindigkeitssignals verdeutlicht, und
  • 7 eine graphische Darstellung von Korrekturfaktoren, wobei die Beträge der Korrekturfaktoren als Balkendiagramm dargestellt sind, wobei unterhalb des Balkens jeweils ein Wert eines dem betreffenden Korrekturfaktor zugeordneten Lagemesssignals und darunter jeweils ein Index abgebildet sind, der den betreffenden Korrekturfaktor einer Magnetsegment-Sensor-Kombination zuordnet.
  • Eine Verstellvorrichtung zum Verstellen der Drehwinkel- oder Phasenlage der Nockenwelle 11 einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle 12 weist ein Verstellgetriebe 13 auf, das als Dreiwellengetriebe mit einer kurbelwellenfesten Antriebwelle, einer nockenwellenfesten Abtriebswelle und einer mit dem Rotor eines Verstellmotors in Antriebsverbindung stehenden Verstellwelle ausgebildet ist. Zum Bestimmen von Messwerten für die Phasenlage wird an Kurbelwellen-Messzeitpunkten jeweils ein Messwert für den Kurbelwellendrehwinkel erfasst. Außerdem wird an Verstellwellen-Messzeitpunkten jeweils ein Messwert für den Verstellwellendrehwinkel gemessen. Aus den Messwert für den Kurbelwellendrehwinkel und den Verstellwellendrehwinkel wird mit Hilfe einer bekannten Standgetriebeübersetzung des Dreiwellengetriebes ein Wert für die Phasenlage bestimmt.
  • In 1 ist erkennbar, dass zur Messung des Kurbelwellendrehwinkels ein induktiver Sensor 15 vorgesehen ist, der die Zahnflanken eines aus einem magnetisch leitenden Werkstoff bestehenden, auf der Kurbelwelle 12 angeordneten Zahnkranzes 16 detektiert. Eine der Zahnlücken oder Zähne des Zahnkranzes 16 weist eine größere Breite auf als die anderen Zahnlücken bzw. Zähne und dient als Referenzmarke. Beim Vorbeilaufen der Referenzmarke an dem Sensor 15 wird der Messwert für den Kurbelwellendrehwinkel auf einen Startwert gesetzt. Danach wird der Messwert bis zum Erneuten Vorbeilaufen der Referenzmarke an dem Sensor 15 bei jedem Detektieren einer Zahnflanke nachgeführt. Das Nachführen des Messwerts für den Kurbelwellenwinkel erfolgt mit Hilfe eines Steuergeräts, in dessen Betriebsprogramm jeweils beim Detektieren einer Zahnflanke ein Interrupt ausgelöst wird. Der Kurbelwellendrehwinkel wird also digital gemessen.
  • Als Verstellmotor ist ein EC-Motor 14 vorgesehen, der einen Läufer aufweist, an dessen Umfang eine Reihe von abwechselnd in zueinander entgegengesetzte Richtungen magnetisierten Magnetsegmenten angeordnet ist, die über einen Luftspalt mit Zähnen eines Stators magnetisch zusammenwirken. Die Zähne sind mit einer Wicklung bewickelt, die über eine Ansteuereinrichtung bestromt wird.
  • Die Lage der Magnetsegmente relativ zum Stator und damit der Verstellwellendrehwinkel wird mit Hilfe einer Messeinrichtung 17 detektiert, die an dem Stator mehrere Magnetfeldsensoren A, B, C aufweist, die derart in Umfangsrichtung des Stators zueinander versetzt angeordnet sind, dass pro Umdrehung des Läufers eine Anzahl von Magnetsegment-Sensor-Kombinationen durchlaufen wird. Als Referenzwertgeber für den Nockenwellendrehwinkel ist ein Hall-Sensor 18 vorgesehen, der mit einem auf der Nockenwelle 11 angeordneten Triggerrad 19 zusammenwirkt. Wenn der Hall-Sensor 18 eine Flanke des Triggerrads 19 detektiert, wird im Betriebsprogramm des Steuergeräts ein Interrupt ausgelöst, bei dem der Kurbelwellendrehwinkel und der Verstellwellendrehwinkel zwischengespeichert werden. Dieser Interrupt wird nachstehend auch als Nockenwellen-Interrupt bezeichnet.
  • Der nockenwellengetriggerte Absolutwinkel εAbs und der relative Verstellwinkel ΔεRel werden zum aktuellen Verstellwinkel εaktuell verrechnet. Ein den aktuellen Verstellwinkel εaktuell repräsentierendes Signal liegt an einem Istwert-Eingang eines für die Regelung der Phasenlage vorgesehenen Regelkreises an. Der Absolutwinkel εAbs ist der Kurbelwellenwinkel zu einem Zeitpunkt tTrigNW, an dem der Nockenwellen-Interrupt ausgelöst wird: εAbs = εKW(tTrigNW)
  • Die Drehwinkellage ΔεRel der Nockenwelle 11 relativ zur Kurbelwelle 12 wird dabei aus den zeitsynchronen Änderungen (Reglerabtastung) der Winkelzähler von Rotor ΔφEm und Kurbelwelle ΔφKW bezogen auf die Referenzwerte bei Nockenwellen-Triggerung über die Getriebegrundgleichung des Dreiwellengetriebes berechnet:
    Figure 00140001
  • Dabei ist ig die Standgetriebeübersetzung zwischen der Nockenwelle 11 und der Verstellwelle:
    Figure 00150001
  • Um die Drehwinkellage ΔεRel berechnen zu können, werden die Winkel der Kurbelwelle φKW,TrigNW und des EC-Motor-Rotors bzw. der Verstellwelle φEm,TrigNW Zum Zeitpunkt des Nockenwellentriggers gespeichert. Zu einem späteren Zeitpunkt wird dann im Betriebsprogramm des Steuergeräts ein Interrupt ausgelöst, bei dem die Drehwinkellage ΔεRel mit Hilfe der zwischengespeicherten Winkel φKW,TrigNW und φEm,TrigNW berechnet wird. Dieser Interrupt wird nachstehend auch als zyklischer Interrupt bezeichnet.
  • Die Auflösung der relativen Drehwinkellage ΔεRel ergibt sich durch eine Unsicherheitsbetrachtung der einzelnen Komponenten der Gl. (1.1). Der Kurbelwellendrehwinkel hat beispielsweise eine Unsicherheit von -0 bis +0.2°. Die Auflösung δEM der Messeinrichtung 17 ergibt sich aus der Anzahl der Polpaare P (z.B. P=7) und der Anzahl m (z.B. m=3) der Magnetfeldsensoren A, B, C:
    Figure 00150002
    wobei die Unsicherheitsband (bei positiver Drehzahl) einseitig von -0 bis +8,57° angesetzt werden darf, da der Winkel jeweils zum Zeitpunkt eines Wechsels der Magnetsegment-Sensor-Kombinationen als exakt angenommen wird und danach zunimmt. Würde man die relative Drehwinkellage ΔεRel direkt aus dem Kurbelwellendrehwinkel φKW,TrigNW und dem Verstellwellendrehwinkel φEm,TrigNW berechnen, ergäbe sich eine Messunsicherheit für die relative Drehwinkellage ΔεRel von -0,29° bis +0.49°:
    Figure 00150003
  • Wie in 2 erkennbar ist, bewirkt die Digitalisierung des Verstellwellendrehwinkels eine Art Schwebung zwischen den Zeitpunkten, an denen der zyklische Interrupt auftritt, und den Zeitpunkten, an denen die Magnetsegment-Sensor-Kombinationen wechseln. Stationär dreht der EC-Motor 14 genau doppelt so schnell wie die Kurbelwelle 12. In der Regel unterscheiden sich die Zeitpunkte, an denen der zyklische Interrupt auftritt, von den Zeitpunkten, an denen die Magnetsegment-Sensor-Kombinationen wechseln. In 2 treten z.B. neun Wechsel der Magnetsegment-Sensor-Kombinationen innerhalb von acht Interruptzyklen auf, d.h. pro Interruptzyklus überstreicht der E-Motor einen Winkel von (9/8)·8,57°. Da nur ein ganzzahliges Vielfaches von 8,57° im Steuergerät eingelesen wird, wird die Differenz zwischen wahrem Verstellwellendrehwinkel und dem im Steuergerät verarbeiteten Verstellwellendrehwinkel immer größer, bis bei einem zyklischen Interrupt ein Hallsensor-Puls mehr als sonst eingeht, und wahrer und gemessener Verstellwellendrehwinkel kurzzeitig wieder synchron sind.
  • Würde die relative Drehwinkellage ΔεRel direkt aus dem Kurbelwellendrehwinkel φKW,TrigNW und dem Verstellwellendrehwinkel φEm,TrigNW berechnet, ergäben sich gemäß Gl. (1) Sprünge in der gemessenen Drehwinkellage ΔεRel, die etwa eine Größe von Δε = 2·δEm/ig = 0.29° aufweisen und einen Reglereingriff verursachen würden. Dies ist speziell im stationären Betrieb unerwünscht.
  • Um die Höhe dieser Sprünge zu reduzieren oder sie sogar vollständig zu vermeiden, wird durch Extrapolation von jeweils mindestens zwei Verstellwellendrehwinkel-Messwerten ein Schätzwert für den Drehwinkel, den die Verstellwelle an Bezugszeitpunkt aufweist, der nach den Verstellwellen-Messzeitpunkten liegt. Als Bezugszeitpunkte werden einerseits die Zeitpunkte, an denen die Nockenwellen-Interrupts auftreten, und andererseits die Zeitpunkte, an denen die zyklischen Interrupts ausgelöst werden, gewählt.
  • Nachstehend wird die Extrapolation wird anhand von 3 erläutert. Zum Zeitpunkt tTrigNW des Nockenwellen-Interrupt stehen der dem Verstellwellendrehwinkelwert entsprechende Zählerstand NTrigNW der Messeinrichtung 17, die Zeit ΔtTrigNW sowie die Drehzahl ωEm,TrigNW (vorzeichenbehaftet) beim letzten Wechsel der Magnetsegment-Sensor-Kombination zur Verfügung. Auf entsprechende Daten kann bei jedem zyklischen Interrupt ti zugegriffen werden. Beispielsweise ist zur Zeit t18 der Zählerstand Nt18, die Differenzzeit Δt18 und die Drehzahl ωEm,t18 verfügbar.
  • Mit diesen Daten lässt sich der seit dem Auftreten des letzten Wechsels der der Magnetsegment-Sensor-Kombination überstrichene Winkel, und damit der EC-Motor- bzw. Verstellwellendrewinkel beim Nockenwellentrigger und zum aktuellen Steuergeräteinterrupt ti genauer als bisher bestimmen: φEm,TrigNW = NTrigNW·δEm + ΔtTrigNW·ωEm,TrigNW (2.1) φEm,ti = Nti·δEm + Δti·ΔEm,ti (2.2)
  • Der für die Berechnung des Phasenwinkels notwendige Differenzwinkel zum aktuellen Steuergeräteinterrupt ti lautet dementsprechend: ΔφEm,ti = φEm,ti – φEm,TrigNW = (Nti – NTrigNW)·δEm + [Δti·ωEm,ti – ΔtTrigNW·ΔEm,TrigNW]
  • Für die Extrapolation wird die aktuelle EC-Motordrehzahl benötigt. Sie kann am einfachsten aus der Zeitdauer ΔtHall zwischen dem letzten und vorletzten Verstellwellen-Messzeitpunkt bzw. der Zeitdauer ΔtHall zwischen dem letzten und vorletzten Wechsel der Magnetsegment-Sensor-Kombination gewonnen werden (diese Information steht ohne Zeitverzögerung direkt zur Verfügung). Zusammen mit dem Vorzeichen S der Zählrichtung ergibt sich: ωEm = S·δEm/ΔtHall.
  • Diese Methode ist sehr einfach, kann jedoch stark schwankende Werte liefern, da die Zeiten ΔtHall zwischen den Wechseln der Magnetsegment-Sensor-Kombination auch bei konstanter Drehzahl aufgrund von Fertigungstoleranzen sehr unregelmäßig sein können. Grundsätzlich ist zur Verbesserung des Ergebnisses eine Mittelung über mehrere Verstellwellendrewinkelwerte möglich. Hierbei ist jedoch zu beachten, dass der Mittelwert nur zeitverzögert berechnet werden kann, so dass bei Beschleunigung des EC-Motors 14 dieser Fehler in die Extrapolation einfließt. In dem Steuergeräteinterrupt wird die aktuelle Drehzahl ωEm des EC-Motors 14 auch für die Regelung des Phasenwinkels berechnet.
  • Nachstehend wird anhand von 4 bis 7 erläutert, wie der Einfluss der durch die genannten Fertigungstoleranzen auftretenden Fehler auf die Drehwinkellage der Nockenwelle relativ zur Kurbelwelle ohne eine Zeitverzögerung reduziert werden kann.
  • Bei dem in 4 gezeigten Ausführungsbeispiel hat der Läufer acht Magnetsegmente 1..8, die in einem Raster von 45° in Umfangsrichtung eines Trägerteils 9, an dem die Magnetsegmente 1..8 fixiert sind, zueinander versetzt sind. Die Magnetsegmente 1..8 bilden am Umfang des Läufers jeweils einen Magnetpol, wodurch sich insgesamt über den Umfang eine Anzahl von p Polpaaren ergibt. In 4 ist dies beispielhaft für ein Läufer mit p=4 Polpaaren dargestellt. Auf dem durch die Magnetsegmente 1..8 gebildeten Ring wechselt die Magnetisierung also 8 mal pro Umdrehung ihre Richtung. Wie bereits erwähnt wurde, weisen die Magnetsegmente 1..8 sowohl hinsichtlich ihrer Lage auch hinsichtlich ihrer Abmessungen in Umfangsrichtung Toleranzen auf. Der mechanische Winkel α zwischen zueinander korrespondierenden Stellen zueinander benachbarter Magnetsegmente 1..8 kann also von dem Sollwert 180°/p (hier: 45°) abweichen. Die Drehrichtung des Läufers ist in 4 mit dem Pfeil Pf angedeutet.
  • Das Ausgangssignal des Magnetfeldsensors A ändert sich jeweils bei einer Drehung des Läufers um den Winkel α. Mit Hilfe des Magnetfeldsensors A alleine könnte somit eine Auflösung des Läufers-Drehwinkels von α erreicht werden. Wie in 4 erkennbar ist, sind die Sensoren A, B, C am Umfang des Läufers versetzt zueinander angeordnet. Der Versatz ist derart gewählt, dass das mit Hilfe der Sensoren A, B, C detektierte Lagemesssignal eine Auflösung von 180°/(p·m) aufweist. Dies wird dadurch erreicht, dass der Magnetfeldsensor B um einen mechanischen Winkel von 180°/(m·p) zuzüglich eines ganzzahligen Vielfaches von β = 180°/m gegenüber dem Magnetfeldsensor A und der Magnetfeldsensor C um das Doppelte dieses mechanischen Winkels gegenüber dem Magnetfeldsensor A in Vorwärtsdrehrichtung Pf versetzt ist.
  • In 5 ist ein Abschnitt des aus den Ausgangssignalen A', B', C' der Sensoren A, B, C zusammengesetzten Verstellwellendrehwinkelsignals für eine Rechtsdrehung in Richtung des Pfeils Pf graphisch dargestellt. Dabei ist das Ausgangssignal A' dem Magnetfeldsensor A, das Ausgangssignal B' dem Magnetfeldsensor B usw. zugeordnet. Bei den Ausgangssignalen A', B', C' handelt es ich um Digitalsignale, welche die logischen Werte 1 oder 0 annehmen können. Dabei tritt der Wert 1 auf, wenn dem betreffenden Sensor A, B, C ein einen Nordpol bildendes Magnetsegment 1..8 gegenüberliegt. In entsprechender Weise nimmt das Ausgangssignal A', B', C' den logischen Wert 0 an, wenn dem betreffenden Sensor A, B, C ein einen Südpol bildendes Magnetsegment 1..8 gegenüberliegt.
  • Um die Zuordnung der einzelnen Werte eines Ausgangssignals zu den jeweils gerade an dem betreffenden Sensor A, B, C vorbeibewegten Magnetfeldabschnitt 1..8 zu verdeutlichen, ist an den Ausgangssignalwerten jeweils die Bezugszahl des betreffenden Magnetfeldabschnitts 1..8 wiedergegeben. In 5 sind unterhalb der Ausgangssignale auf den Abszissen jeweils der magnetische Drehwinkel φmagnetisch und der mechanische Drehwinkel φmagnetisch aufgetragen. Deutlich ist erkennbar, dass bei einer mechanischen Drehung von 360°/p (=90°) das Verstellwellendrehwinkelsignal nacheinander 2·m (=6) verschiedene Zustände annimmt, die sich danach wiederholen.
  • Das aus den Ausgangssignalen A', B' und C' zusammengesetzte Verstellwellendrehwinkelsignal wird zur Auswertung an das Steuergerät übermittelt, das mit den Magnetfeld-Sensoren A, B, C verbunden ist. Dem Steuergerät sind nur die Ausgangssignale A', B' und C' bekannt, nicht jedoch, welche Magnetsegmente 1..8 gerade an den Sensoren A, B, C vorbeibewegt werden.
  • In 5 ist erkennbar, dass immer eine der Magnetsegment-Sensor-Kombinationen gerade aktiv ist. In 5 sind dies von links nach rechts die Magnetsegment-Sensor-Kombinationen (1,6,3), (1,6,4), (1,7,4), (2,7,4), (2,7,5), (2,8,5) usw. Diese Abfolge von Magnetsegment-Sensor-Kombinationen wiederholt sich, nachdem 2·p Magnetsegmente 1..8 an einem Magnetfeld-Sensor A, B, C vorbeigelaufen sind, also nach einer mechanischen Volldrehung.
  • Durch Zählen der Wechsel, an denen das Lagemesssignal seinen Wert ändert, wird der Gesamtdrehwinkel des Läufers bestimmt. Ausgehend von einem Startwert wird der Gesamtwinkel bei jedem Wechsel inkrementiert.
  • Das so ermittelte Verstellwellendrehwinkelsignal wird zur Bildung eines Drehzahlsignals differenziert. Dies kann beispielsweise derart erfolgen, dass die Zeit Δt zwischen zwei Änderungen des Verstellwellendrehwinkelsignals gemessen und das Drehzahl ω wie folgt bestimmt wird: ω = π/(m·p·Δt)[rad/s].
  • Aufgrund der Toleranzen der Magnetsegmente 1..8 ist das so ermittelte Drehzahlsignal ωMess,i mit Fehlern behaftet, die beispielsweise bei konstanter tatsächlicher Drehzahl des Läufers dazu führen, dass das Drehzahlsignal Sprünge aufweist.
  • In dem Steuergerät werden die Magnetsegment-Sensor-Kombinationen von 1 bis 2·m·p durchnummeriert, so dass der Zählwert, der nachstehend kurz als „Index i" bezeichnet wird, hochläuft und bei Erreichen von 2·m·p dann auf 1 springt. Beim Einschalten des EC-Motors wird der Index i auf einen Startwert gesetzt, z.B. auf den Wert 1.
  • Für jede Magnetsegment-Sensor-Kombination wird nun ein Korrekturfaktor FAdap[i] ermittelt, der über den Index i dem entsprechenden Magnetsegment 1..8 zugeordnet wird. Dieser Korrekturfaktor FAdap[i] entspricht dem Verhältnis zwischen dem Drehzahlwert ωMess,i, der mit Hilfe des Verstellwellendrehwinkelsignals für die i-te Magnetsegment-Sensor-Kombination ermittelt wurde, und einem Referenzdrehzahlwert ωRef, von dem angenommen wird, dass er eine größere Genauigkeit aufweist als der Drehzahlwert ωMess,i. Die Korrekturfaktoren FAdap[i] werden in einem Datenspeicher des Steuergeräts abgelegt.
  • Mit Hilfe des Korrekturfaktors FAdap[i] wird für jeden Drehzahlwert ωMess,i jeweils wie folgt ein korrigierter Drehzahlwert ωKorr,i ermittelt: ωKorr,i = ωMess,i/FAdap[i],
  • Die Korrekturfaktoren FAdap[i] werden in einem Lernvorgang ermittelt. Beim Start des Lernvorgangs werden alle Korrekturfaktoren FAdap[i] jeweils auf den Wert 1 gesetzt, d.h. die korrigierte Drehzahl ωKorr,i entspricht zunächst der gemessenen Drehzahl ωMess,i. Während des Lernvorgangs werden die Korrekturfaktoren FAdap[i] auf einen Wertebereich zwischen 0,8 und 1,2 begrenzt, um bei einer eventuellen Fehladaption, die in der Praxis nicht ganz auszuschließen ist, das Fehlerausmaß zu begrenzen.
  • Wie aus 6 ersichtlich ist, wird die folgende Sequenz immer dann durchlaufen, wenn eine Änderung des Verstellwellendrehwinkelsignals erkannt wird. Der aktuelle Zeitpunkt wird mit t bezeichnet.
    • A: Die Differenzzeit Δt zwischen dem letzten und dem aktuellen Wechsel der Magnetsegment-Sensor-Kombination wird gespeichert. Sie zeigt an, wie lange das Überstreichen der zuvor aktiven Magnetsegment-Sensor-Kombination gedauert hat. Auf den dieser Magnetsegment-Sensor-Kombination zugeordneten Messwert des Lagemesssignals zeigt der Index i, derjeweils am Ende Sequenz für den Aufruf der nächsten Sequenz angepasst wird.
    • B: Berechnung der unkorrigierten Drehzahl ωMess,i = π/(m·p·Δt).
    • C: Filtern der unkorrigierten Drehzahl: Da die wahre Drehzahl ωTrue unbekannt ist, wird das Referenzsignal für die Drehzahl durch Filterung der unkorrigierten Drehzahl gebildet. Das Ergebnis ωRef der Filterung stimmt relativ gut mit der tatsächlichen Geschwindigkeit vor T Sekunden überein, ωRef(t) ≈ ωTrue(t–T). Dabei ist T die Verzögerungszeit des Filters, die von der Art und der Ordnung des Filters abweicht.
    • D: Überprüfen der Adaptionsvoraussetzungen. Beispielsweise wird der Korrekturfaktor nicht adaptiert, wenn sich die Drehrichtung des Läufers geändert hat. Auch wird während einer Phase starker Beschleunigung und/oder Verzögerung des Läufers die Adaption des Korrekturfaktors ausgesetzt, da die gefilterte Drehzahl dann wahrscheinlich mit der tatsächlichen Drehzahl nicht genau übereinstimmt.
    • E: Der tatsächliche Korrekturfaktor zu der letzten Magnetsegment-Sensor-Kombination ergibt sich als Quotient aus der berechneten Drehzahl ωMess,i(t) und dem wahren Drehzahlsignal ωTrue(t), FTrue[i] = ωMess,i(t)/ωTrue(t)Da die wahre Drehzahl ωTrue nur mit einer Verzögerung T in Form der Referenzdrehzahl ωRef zur Verfügung steht, müssen alle anderen beteiligten Größen ebenfalls verzögert werden. Deshalb sind der Index i und die unkorrigierten Drehzahlwerte ωMess,i in einem Schieberegister gespeichert, damit ihre Verzögerungswerte jetzt zur Verfügung stehen. Somit ergibt sich der Korrekturfaktor zu: F[i(t–T)] = ωMess,i(t–T)/ωRef(t).
    • F: Mittelwertbildung für den Korrekturfaktor: Der Korrekturfaktor F weist noch eine gewisse Ungenauigkeit auf, da der Drehzahl-Referenzwert ωRef mit dem tatsächlichen Drehzahlwert ωTrue nur näherungsweise übereinstimmt. Bei den einzelnen Umdrehungen des Läufers werden deshalb jeweils neue Korrekturfaktoren ermittelt, wobei diese nach und nach für die jeweilige Magnetsegment-Sensor-Kombination ermittelten Korrekturfaktoren durch Bildung eines gleitenden Mittelwerts gemittelt werden: FNeu[i(t–T)] = λ FAlt[i(t–T)] + (1–λ) F[i(t–T)]Dabei bedeuten FNeu der jeweils aktuelle Korrekturfaktor-Mittelwert, FAlt der bei dem jeweils vorherigen Taktzyklus ermittelte Mittelwert und λ ein Vergessensfaktor, der zwischen 0 und 1 liegen kann. Je größer λ ist, desto länger werden vergangene Werte ωMess,i(t) berücksichtigt.
    • G: Die Korrektur wird mit den aktuellen Werte i(t) und ωMess,i(t) durchgeführt. Mit dem bis dahin adaptierten Korrekturfaktor F[i] wird der Messwert korrigiert: ωKorr,i = ωMess(t)/F[i].Die Korrektur des Drehzahlsignals wird mit Hilfe der zu der gerade zuvor überstrichenen Magnetsegment-Sensor-Kombination durchgeführt, während für die Adaption der Korrekturfaktoren F[i] ältere Werte verwendet werden.
    • H: Speichern von i und ωMess,i in das Schieberegister, um später erneut auf diese Werte als Vergangenheitswerte zugreifen zu können.
    • J: Zur Vorbereitung der nächsten Sequenz wird anhand der alten Magnetsegment-Sensor-Kombination der Index i erhöht. Überschreitet der Index i dabei das Intervall [1 .. 2·p·m], so wird er auf 1 gesetzt. Der Index i benennt jetzt die aktuelle Magnetsegment-Sensor-Kombination.
  • Ein entscheidender Punkt bei der Adaption ist die Genauigkeit, mit der die tatsächliche Drehzahl angenähert wird. Bei dem vorstehend beschriebenen Ausführungsbeispiel wird diese Näherung durch Filtern der gemessenen Drehzahl erreicht. Es ist aber auch möglich, die bereits korrigierten Drehzahlen zu filtern. Steht ein anderes Messsignal zur Verfügung, von welchem auf die tatsächliche Drehzahl geschlossen werden kann, so kann auch dieses verwendet werden.
  • Bei Ausschalten der aus dem EC-Motors und der Steuergeräts bestehenden Vorrichtung werden die 2·p·m gelernten Korrekturfaktoren in einen nichtflüchtigen Datenspeicher des Steuergeräts geschrieben. Da zu Beginn der Adaption der Index i bei einer Magnetsegment-Sensor-Kombination, die gerade zufällig aktiv war, auf einen willkürlich gewählten Startwert gesetzt und diese Magnetsegment-Sensor-Kombination nach dem Wiedereinschalten des Steuergeräts zunächst nicht bekannt ist, muss die Zuordnung der Korrekturfaktoren zu den Magnetsegment-Sensor-Kombinationen überprüft und beim Feststellen einer fehlerhaften Zuordnung berichtigt werden, damit die Korrekturfaktoren nach dem Wiedereinschalten des Steuergeräts weiterbenutzt werden können.
  • Die gleiche Problematik besteht bereits während der Adaption, wenn diese beispielsweise aufgrund von Signalstörungen fälschlicherweise durchgeführt oder nicht durchgeführt wird, so dass der Index i falsch fortgeschrieben wird und somit die Korrekturfaktoren Magnetsegment-Sensor-Kombinationen zugeordnet werden, die gegenüber den Magnetsegment-Sensor-Kombinationen, für welche die Korrekturfaktoren ermittelt wurden, verschoben sind. In einem solchen Fall kann die korrigierte Drehzahl ωKorr deutlich stärker von der tatsächlichen Drehzahl abweichen als die unkorrigierte Drehzahl.
  • Im Datenspeicher des Steuergeräts ist die korrekte Reihenfolge der 2 m (=6) aufeinander folgenden Lagemesssignal-Zustände gespeichert. Diese wird mit der Reihenfolge der Zustände des Lagemesssignals verglichen. Wird dabei eine Abweichung festgestellt, wird dieser Fehler beim nächsten Aufruf der Sequenz beseitigt. Die Veränderung der Magnetsegment-Sensor-Kombinationen ist nämlich innerhalb von ±m Änderungen eindeutig. Ist sicher, dass während der Störung die Drehrichtung des Läufers beibehalten wurde, können sogar (2 m–1) Fortschreibungen korrigiert werden.
  • Die Qualität der Adaption wird dadurch überwacht, dass die Schwankungsweite der unkorrigierten und der korrigierten Drehzahl immer wieder über ein bestimmtes Zeitfenster miteinander verglichen werden. Schwankt die korrigierte Drehzahl stärker als die unkorrigierte Drehzahl, wird auf eine fehlerhafte Zuordnung geschlossen. Die Zuordnung wird dann entweder wiederhergestellt oder die Korrekturfaktoren werden auf 1 gesetzt.
  • Bei der Wiederherstellung der Zuordnung wird davon ausgegangen, dass die Zahlenfolge der 2·p·m Korrekturfaktoren eine Art charakteristische Signatur darstellt. Adaptiert man einen neuen Satz von Korrekturfaktoren, so müssen diese eine sehr ähnliche Zahlenfolge haben, wobei die neue Zahlenfolge allerdings gegenüber der bisherigen Zahlenfolge verschoben sein kann. Zur Wiederherstellung der Zuordnung wird deshalb die alte Zahlenfolge 2·p·m mal zyklisch verschoben und nach jedem Verschiebschritt mit der bisherigen Zahlenfolge verglichen. Bei derjenigen Vertauschungs- bzw. Verschiebungskombination, bei der die größte Übereinstimmung zwischen der alten und der bisherigen Zahlenfolge auftritt, wird angenommen dass die Zahlenwerte der alten Zahlenfolge den Magnetsegment-Sensor-Kombinationen richtig zugeordnet sind. Mit dieser Zuordnung wird dann die Korrektur des Drehzahlsignals und/oder die weitere Adaption durchgeführt.
  • Bei einem anderen Ausführungsbeispiel der Erfindung wird folgendermaßen vorgegangen:
    • • Zunächst wird ein erster Datensatz mit einer der Anzahl der Magnetsegment-Sensor-Kombinationen entsprechenden Anzahl Wertekombinationen, jeweils bestehend zumindest aus einem Korrekturfaktor für die betreffende Magnetsegment-Sensor-Kombination und einem dieser zugeordneten Messsignal-Zustand, ermittelt und gespeichert. Ein Ausführungsbeispiel eines solchen Datensatzes für einen EC-Motor 4 mit drei Magnetfeldsensoren und drei Polpaaren ist in der oberen Hälfte von 7 graphisch dargestellt.
    • • Danach werden die Magnetsegment-Sensor-Kombinationen, für welche die Korrekturfaktoren ermittelt wurden, erneut durchlaufen, wobei ein neuer, zweiter Datensatz mit Wertekombinationen ermittelt und gespeichert wird. Dieser zweite Datensatz ist in 7 unten graphisch dargestellt.
    • • Dann werden die Messsignal-Zustände des ersten und des zweiten Datensatzes miteinander verglichen. Wird dabei eine Abweichung festgestellt, werden die Wertekombinationen der Datensätze derart zyklisch relativ zueinander verschoben, dass die Messsignal-Zustände der Datensätze übereinstimmen. Bei dem Ausführungsbeispiel nach 7 kann dies dadurch erreicht werden, dass die Wertekombinationen der alten Adaption um drei Positionen zyklisch nach rechts verschoben werden.
    • • Danach werden die jeweils einander zugeordneten Korrekturfaktoren der Datensätze miteinander verglichen werden, also der Korrekturfaktor mit dem Index i=1 des ersten Datensatzes in 7 mit dem Korrekturfaktor mit dem Index i=4 des zweiten Datensatzes, der Korrekturfaktor mit dem Index i=2 des ersten Datensatzes mit dem Korrekturfaktor mit dem Index i=5 des zweiten Datensatzes, usw.
    • • In einem weiteren Schritt werden die Korrekturfaktoren des ersten Datensatzes um eine der doppelten Anzahl der Magnetfeld-Sensoren entsprechende Anzahl Schritte (also 2·p=6 Schritte) relativ zu den Korrekturfaktoren des anderen Datensatzes zyklisch vertauscht und danach die jeweils einander zugeordneten Korrekturfaktoren der Datensätze miteinander verglichen. Dieser Schritt wird wiederholt, bis alle Vertauschungskombinationen bearbeitet wurden.
    • • Danach wird die Vertauschungskombination, bei der eine maximale Übereinstimmung zwischen den Korrekturfaktorsätzen erreicht wird, ermittelt. Mit dieser Vertauschungskombination wird jeweils aus den einander zugeordneten Korrekturfaktoren der Korrekturfaktorsätze ein Mittelwert gebildet und als neuer Korrekturfaktor gespeichert wird. Mit den so ermittelten neuen Korrekturfaktoren wird dann das Drehzahlmesssignal korrigiert.
  • Es muss also nicht 2·p·m mal geschoben werden. Es muss lediglich herausgefunden werden, welche der p magnetischen Perioden am besten passt. Während der Zeit, in der die neuen Korrekturfaktoren adaptiert werden, wird die korrigierte Drehzahl entweder mit dem Faktor 1 oder mit den bis dahin neu adaptierten Korrekturfaktoren berechnet.
  • 1..8
    Magnetsegment
    9
    Trägerteil
    11
    Nockenwelle
    12
    Kurbelwelle
    13
    Verstellvorrichtung
    14
    EC-Motor
    15
    induktiver Sensor
    16
    Zahnkranz
    17
    Messeinrichtung
    18
    Hall-Sensor
    19
    Triggerrad
    α
    Winkel zwischen zwei Magnetsegmenten
    β
    Winkel
    A
    Magnetfeldsensor
    B
    Magnetfeldsensor
    C
    Magnetfeldsensor
    A'
    Ausgangssignal des Magnetfeldsensors A
    B'
    Ausgangssignal des Magnetfeldsensors B
    C'
    Ausgangssignal des Magnetfeldsensors C
    Pf
    Drehrichtung

Claims (24)

  1. Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle (11) einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle (12), wobei die Kurbelwelle (12) über ein Verstellgetriebe mit der Nockenwelle (11) in Antriebsverbindung steht, das als Dreiwellengetriebe mit einer kurbelwellenfesten Antriebwelle, einer nockenwellenfesten Abtriebswelle und einer Verstellwelle ausgebildet ist, die mit einem Verstellmotors in Antriebsverbindung steht, wobei für mindestens einen Kurbelwellen-Messzeitpunkt ein Messwert für den Kurbelwellendrehwinkel erfasst wird, wobei für wenigstens zwei Verstellwellen-Messzeitpunkte jeweils ein Messwert für den Verstellwellendrehwinkel digital erfasst wird, wobei für mindestens einen Bezugszeitpunkt, der nach den Kurbelwellen- und Verstellwellen-Messzeitpunkten liegt, anhand mindestens eines Kurbelwellendrehwinkel-Messwerts, mindestens eines Verstellwellendrehwinkel-Messwerts und einer Getriebekenngröße des Dreiwellengetriebes ein Wert für die Drehwinkellage der Nockenwelle (11) relativ zur Kurbelwelle (12) bestimmt wird, dadurch gekennzeichnet, dass aus mindestens zwei Verstellwellendrehwinkel-Messwerten, dem Zeitunterschied zwischen den Verstellwellen-Messzeitpunkten sowie dem Zeitabstand zwischen dem letzten Verstellwellen-Messzeitpunkt und dem Bezugszeitpunkt ein Schätzwert für den Drehwinkel, den die Verstellwelle an dem Bezugszeitpunkt aufweist, extrapoliert wird, und dass anhand des Schätzwerts, des mindestens einen Kurbelwellendrehwinkel-Messwerts und der Getriebekenngröße der Wert für die Drehwinkellage bestimmt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zumindest für den jeweils letzten Verstellwellen-Messzeitpunkt ein Wert für die Winkelgeschwindigkeit der Verstellwelle ermittelt wird, und dass der Schätzwert für den Drehwinkel, den die Verstellwelle an dem Bezugszeitpunkt aufweist, aus dem letzen Verstellwellendrehwinkel-Messwert, der Zeitdifferenz zwischen dem Bezugszeitpunkt und dem letzten Verstellwellen-Messzeitpunkt sowie dem Winkelgeschwindigkeitswert bestimmt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verstellmotor ein EC-Motor (14) ist, der einen Stator mit einer Wicklung und einem drehfest mit der Verstellwelle verbundenen Läufer hat, an dem in Umfangsrichtung zueinander versetzte, abwechselnd in zueinander entgegen gesetzte Richtungen magnetisierte Magnetsegmente (1..8) angeordnet sind, die Toleranzen hinsichtlich ihrer Positionierung und/oder ihrer Abmessungen haben, dass zum Erfassen der Verstellwellendrehwinkel-Messwerte und/oder der Winkelgeschwindigkeitswerte die Lage der Magnetsegmente (1..8) relativ zu dem Stator detektiert wird, dass mindestens ein Korrekturwert zum Kompensieren des Einflusses wenigstens einer Toleranz auf die Verstellwellendrehwinkel-Messwerte erfasst wird, und dass die Verstellwellendrehwinkel-Messwerte und/oder die Winkelgeschwindigkeitswerte mit Hilfe des Korrekturwerts korrigiert werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Lage der Magnetsegmente (1..8) mit Hilfe einer Messeinrichtung (17) detektiert wird, die an dem Stator mehrere Magnetfeldsensoren aufweist, die derart in Umfangsrichtung des Stators zueinander versetzt angeordnet sind, dass pro Umdrehung des Läufers relativ zu dem Stator eine Anzahl von Magnetsegment-Sensor-Kombinationen durchlaufen wird, und dass für jede dieser Magnetsegment-Sensor-Kombinationen jeweils ein Korrekturwert ermittelt, gespeichert und zur Korrektur der Verstellwellendrehwinkel-Messwerte und/oder der Winkelgeschwindigkeitswerte verwendet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Läufer derart relativ zu dem Stator verdreht wird, dass eine Anzahl von Magnetsegment-Sensor-Kombinationen durchlaufen wird, dass mit Hilfe der Messeinrichtung (17) für diese Magnetsegment-Sensor-Kombinationen erste unkorrigierte Verstellwellendrehwinkel-Messwerte und/oder Winkelgeschwindigkeitswerte erfasst werden, dass zusätzlich Referenzwerte für den Verstellwellendrehwinkel und/oder die Winkelgeschwindigkeit erfasst werden, die eine größere Genauigkeit aufweist als das die ersten Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte, dass mit Hilfe der ersten unkorrigierten Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte die Korrekturwerte als Korrekturfaktoren bestimmt werden, dass die den ersten unkorrigierten Verstellwellendrehwinkel-Messwerten bzw. Winkelgeschwindigkeitswerten zugeordneten Magnetsegment-Sensor-Kombinationen erneut durchlaufen und dabei mit Hilfe der Messeinrichtung (17) zweite unkorrigierte Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte erfasst werden, und dass diese Werte mit Hilfe der zuvor ermittelten Korrekturfaktoren korrigiert werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Referenzwerte dadurch gebildet werden, dass die ersten unkorrigierten Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte durch Filterung geglättet werden.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Läufer derart relativ zu dem Stator verdreht wird, dass die einzelnen Magnetsegment-Sensor-Kombinationen mindestens zwei mal auftreten, dass dabei für die einzelnen Magnetsegment-Sensor-Kombinationen jeweils ein Korrekturfaktor für die Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte ermittelt wird, dass aus den für die einzelnen Magnetsegment-Sensor-Kombinationen ermittelten Korrekturfaktoren jeweils ein Mittelwert gebildet wird, und dass die so erhaltenen Mittelwerte als neue Korrekturfaktoren gespeichert und die Verstellwellendrehwinkel-Messwerte bzw. Winkelgeschwindigkeitswerte bei einem erneuten Durchlaufen der Magnetsegment-Sensor-Kombinationen mit Hilfe dieser Korrekturfaktoren korrigiert werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Mittelwert jeweils der arithmetische Mittelwert gebildet wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Mittelwert jeweils ein gleitender Mittelwert gebildet wird, vorzugsweise derart, dass das Gewicht, mit dem die Korrekturfaktoren in den Mittelwert eingehen, mit zunehmendem Alter der Korrekturfaktoren abnimmt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die gleitenden Mittelwerte FNeu[i(t–T)] für die einzelnen Magnetsegment-Sensor-Kombinationen zyklisch nach der Formel FNeu[i(t–T)] = λ FAlt[i(t–T)] + (1–λ) F[i(t–T)] bestimmt werden, wobei i ein die jeweilige Magnetsegment-Sensor-Kombination identifizierender Index, t die Zeit, T eine Verzögerungszeit zwischen der tatsächlichen Winkelgeschwindigkeit und der gemessenen Winkelgeschwindigkeitswerten, FAlt[i(t–T)] der bei der letzten Mittelwertbildung am Index i ermittelte Mittelwert und λ ein Vergessensfaktor bedeuten, der größer als Null und kleiner als 1 ist und vorzugsweise im Intervall zwischen 0,7 und 0,9 liegt.
  11. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass a) der Läufer relativ zu dem Stator verdreht und die Korrekturfaktoren für die einzelnen Magnetsegment-Sensor-Kombinationen ermittelt und gespeichert werden, b) dass danach die entsprechenden Magnetsegment-Sensor-Kombinationen erneut durchlaufen werden, wobei ein Satz neuer Korrekturfaktoren ermittelt wird, c) dass die Korrekturfaktoren des alten Korrekturfaktorsatzes relativ zu denen des neuen Korrekturfaktorsatzes zyklisch vertauscht und die Korrekturfaktorsätze danach miteinander verglichen werden, d) dass Schritt c) wiederholt wird, bis alle Vertauschungskombinationen des alten Korrekturfaktorsatzes mit dem neuen Korrekturfaktorsatz verglichen wurden, e) dass die Vertauschungskombination, bei der eine maximale Übereinstimmung mit dem neuen Korrekturfaktorsatz auftritt, ermittelt wird, f) und dass mit der dieser Vertauschungskombination zugeordneten Anordnung der Korrekturwerte des alten Korrekturfaktorsatzes die Winkelgeschwindigkeitswerte korrigiert werden.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass aus den bei der Vertauschungskombination, bei der eine maximale Übereinstimmung zwischen den Korrekturfaktorsätzen auftritt, jeweils einander zugeordneten Korrekturfaktoren des alten Korrekturfaktorsatzes und des neuen Korrekturfaktorsatzes jeweils ein Mittelwert gebildet und als neuer Korrekturfaktor gespeichert wird, und dass mit dem durch diese Mittelwertbildung erhaltenen Korrekturfaktorsatz die Winkelgeschwindigkeitswerte korrigiert werden.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, a) dass der Läufer derart relativ zu dem Stator verdreht wird, dass alle Magnetsegment-Sensor-Kombinationen mindestens einmal durchlaufen werden, b) dass dabei ein Lagemesssignal der Magnetfeldsensoren derart generiert wird, dass pro Umdrehung des EC-Motors (14) für jedes Polpaar des Läufers jeweils eine Anzahl von Messsignal-Zuständen durchlaufen wird, c) dass ein erster Datensatz mit einer der Anzahl der Magnetsegment-Sensor-Kombinationen entsprechenden Anzahl Wertekombinationen, jeweils bestehend zumindest aus einem Korrekturfaktor für die betreffende Magnetsegment-Sensor-Kombination und einem dieser zugeordneten Messsignal-Zustand, ermittelt und gespeichert wird, d) dass danach die entsprechenden Magnetsegment-Sensor-Kombinationen erneut durchlaufen werden, wobei ein neuer, zweiter Datensatz mit Wertekombinationen ermittelt und gespeichert wird, e) dass bei einer Abweichung zwischen den Messsignal-Zuständen des ersten und denen des zweiten Datensatzes die Wertekombinationen des ersten Datensatzes derart zyklisch relativ zu denen des zweiten Datensatzes verschoben werden, dass die Messsignal-Zustände der Datensätze übereinstimmen, f) dass danach die jeweils einander zugeordneten Korrekturfaktoren der Datensätze miteinander verglichen werden, g) dass die Korrekturfaktoren des einen Datensatzes um eine der doppelten Anzahl der Magnetfeldsensoren entsprechende Anzahl Schritte relativ zu den Korrekturfaktoren des anderen Datensatzes zyklisch vertauscht und danach die jeweils einander zugeordneten Korrekturfaktoren der Datensätze miteinander verglichen werden, h) dass Schritt g) gegebenenfalls wiederholt wird, bis alle Vertauschungskombinationen bearbeitet wurden, i) dass eine Vertauschungskombination, bei der eine maximale Übereinstimmung zwischen den Korrekturfaktoren der Datensätze auftritt, ermittelt wird, j) und dass mit der dieser Vertauschungskombination zugeordneten Anordnung der Korrekturwerte des ersten Datensatzes die Winkelgeschwindigkeitswerte korrigiert werden.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass aus den bei der Vertauschungskombination, bei der eine maximale Übereinstimmung zwischen den Korrekturfaktoren der Datensätze auftritt, jeweils einander zugeordneten Korrekturfaktoren des ersten und zweiten Datensatzes jeweils ein Mittelwert gebildet und als neuer Korrekturfaktor gespeichert wird, und dass mit dem durch diese Mittelwertbildung erhaltenen Korrekturfaktorsatz die Winkelgeschwindigkeitswerte korrigiert werden.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Schwankungsweiten der unkorrigierten Winkelgeschwindigkeitswerte und der korrigierten Winkelgeschwindigkeitswerte in einem Zeitfenster ermittelt und miteinander verglichen werden, und dass für den Fall, dass die Schwankungsweite der korrigierten Winkelgeschwindigkeitswerte größer ist als die der unkorrigierten Winkelgeschwindigkeitswerte, die Korrekturfaktoren neu ermittelt und/oder die Zuordnung der Korrekturfaktoren zu den Magnetsegment-Sensor-Kombinationen wiederhergestellt wird.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Korrekturfaktoren auf einen vorgegebenen Wertebereich begrenzt werden, der vorzugsweise zwischen 0,8 und 1,2 beträgt.
  17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass ein Trägheitsmomentwert für das Massenträgheitsmoment des Läufers bestimmt wird, dass ein Stromsignal I erfasst wird, indem für die einzelnen Verstellwellen-Messzeitpunkte jeweils ein Stromwert I(k) für den elektrischen Strom in der Wicklung bestimmt wird, dass für die einzelnen Winkelgeschwindigkeitswerte ω(k) jeweils aus einem einem früheren Verstellwellen-Messzeitpunkt zugeordneten Winkelgeschwindigkeitswert ωk(k – 1), dem Stromsignal I und dem Trägheitsmomentwert ein Schätzwert ωs(k) für den Winkelgeschwindigkeitswert ω(k) bestimmt wird, dass diesem Schätzwert ωs(k) ein Toleranzband zugeordnet wird, in dem der Schätzwert ωs(k) enthalten ist, und dass für den Fall, dass der Winkelgeschwindigkeitswert ω(k) außerhalb des Toleranzbands liegt, der Winkelgeschwindigkeitswert ω(k) durch einen innerhalb des Toleranzbands befindlichen Winkelgeschwindigkeitswert ωk(k) ersetzt wird.
  18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Läufer mit einem Lastmoment belastet wird, dass für das Lastmoment ein Lastmomentsignal ML bereitgestellt wird, und dass der Schätzwert ωs(k) jeweils aus dem dem früheren Abtastzeitpunkt zugeordneten Winkelgeschwindigkeitswert ωk(k – 1), dem Stromsignal I, dem Lastmomentsignal ML und dem Trägheitsmomentwert bestimmt wird.
  19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die an der Wicklung anliegende elektrischen Spannung erfasst wird, und dass die Stromwerte I(k) indirekt aus der Spannung, der Impedanz der Wicklung, den gegebenenfalls korrigierten Winkelgeschwindigkeitswerten ωk(k) und einer Motorkonstanten bestimmt werden.
  20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass das Toleranzband durch Randwerte begrenzt ist, und dass Winkelgeschwindigkeitswerte ω(k), die außerhalb des Toleranzbands liegen, auf den ihnen am nächsten liegenden Randwert des Toleranzbands korrigiert werden.
  21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die Breite und/oder Lage des Toleranzbands in Abhängigkeit von dem dem früheren Verstellwellen-Messzeitpunkt zugeordneten Winkelgeschwindigkeitswert ωk(k – 1) gewählt wird und vorzugsweise mit zunehmender Winkelgeschwindigkeit reduziert und/oder mit abnehmender Winkelgeschwindigkeit vergrößert wird.
  22. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Breite und/oder Lage des Toleranzbands in Abhängigkeit von dem Stromsignal I gewählt wird und vorzugsweise mit zunehmendem Strom vergrößert und/oder mit abnehmendem Strom reduziert wird.
  23. Verfahren nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass das Stromsignal I durch Filterung, insbesondere durch eine gleitende Mittelwertbildung, geglättet wird, und dass die Schätzwerte ωs(k) für die Winkelgeschwindigkeitswerte ω(k) mit Hilfe des gefilterten Stromsignals I bestimmt werden.
  24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass jeweils aus mindestens zwei Kurbelwellendrehwinkel-Messwerten, dem Zeitunterschied zwischen den diesen Messwerten zugeordneten Kurbelwellendrehwinkel-Messzeitpunkten sowie dem Zeitabstand zwischen dem letzten Kurbelwellen-Messzeitpunkt und dem Bezugszeitpunkt ein Schätzwert für den Drehwinkel, den die Kurbelwelle (12) an dem Bezugszeitpunkt aufweist, extrapoliert wird, dass die Zeitdifferenz zwischen dem Bezugszeitpunkt und dem letzten Kurbelwellen-Messzeitpunkt ermittelt wird, und dass der Schätzwert aus dem Kurbelwellendrehwinkel-Messwert am letzten Kurbelwellen-Messzeitpunkt, der Zeitdifferenz und dem Winkelgeschwindigkeitswert bestimmt wird.
DE102005035881A 2004-08-28 2005-07-30 Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle Withdrawn DE102005035881A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102005035881A DE102005035881A1 (de) 2004-08-28 2005-07-30 Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004041712 2004-08-28
DE102004041712.1 2004-08-28
DE102005035881A DE102005035881A1 (de) 2004-08-28 2005-07-30 Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle

Publications (1)

Publication Number Publication Date
DE102005035881A1 true DE102005035881A1 (de) 2006-03-02

Family

ID=35745830

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005035881A Withdrawn DE102005035881A1 (de) 2004-08-28 2005-07-30 Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle

Country Status (1)

Country Link
DE (1) DE102005035881A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021230A1 (de) * 2007-05-07 2008-11-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kalibrierung einer Vielzahl von Projektionseinrichtungen
DE102007060604A1 (de) 2007-12-13 2009-06-18 Continental Teves Ag & Co. Ohg Magnetfeld-Sensorelement
DE102008038960A1 (de) 2008-08-13 2010-02-18 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Ermittlung der Drehwinkellage einer Nockenwelle
WO2011057727A1 (en) * 2009-11-13 2011-05-19 Ab Skf Position sensing method and unit
FR2962802A1 (fr) * 2010-11-18 2012-01-20 Continental Automotive France Capteur de mesure de position angulaire et procede de compensation de mesure
EP2916107A1 (de) * 2014-03-05 2015-09-09 Siemens Aktiengesellschaft Extrapolation der Feinlage bei einem Lagegeber mit phasenmoduliertem Rohsignal
DE102010053365B4 (de) * 2009-12-04 2016-02-25 Mando Corp. Winkelsteuerverfahren und -vorrichtung und automatisches Parksystem unter Verwendung von diesen
DE102016208711A1 (de) * 2016-05-20 2017-11-23 Robert Bosch Gmbh Verfahren zum Bestimmen eines aktuellen Nockenwellenwinkels einer Nockenwelle einer Brennkraftmaschine
DE102018101415B3 (de) 2018-01-23 2019-01-31 Dspace Digital Signal Processing And Control Engineering Gmbh Verfahren zur Erfassung der Drehwinkel zweier gekoppelter Wellen
CN112018647A (zh) * 2019-05-29 2020-12-01 Abb瑞士股份有限公司 用于中压开关装置的改进的诊断解决方案
DE102019118689A1 (de) * 2019-07-10 2021-01-14 Schaeffler Technologies AG & Co. KG Verbrennungsmotor und Verfahren zum Betrieb eines elektromechanischen Nockenwellenverstellers
CN114962024A (zh) * 2022-07-04 2022-08-30 潍柴动力股份有限公司 一种发动机转动角度的确定方法、装置及发动机

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007021230A1 (de) * 2007-05-07 2008-11-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kalibrierung einer Vielzahl von Projektionseinrichtungen
DE102007021230B4 (de) * 2007-05-07 2021-02-11 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kalibrierung einer Vielzahl von Projektionseinrichtungen
DE102007060604A1 (de) 2007-12-13 2009-06-18 Continental Teves Ag & Co. Ohg Magnetfeld-Sensorelement
US8575924B2 (en) 2007-12-13 2013-11-05 Continental Teves Ag & Co. Ohg Magnetic field sensor element
DE102008038960B4 (de) * 2008-08-13 2020-10-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Ermittlung der Drehwinkellage einer Nockenwelle
DE102008038960A1 (de) 2008-08-13 2010-02-18 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Ermittlung der Drehwinkellage einer Nockenwelle
WO2011057727A1 (en) * 2009-11-13 2011-05-19 Ab Skf Position sensing method and unit
DE102010053365B4 (de) * 2009-12-04 2016-02-25 Mando Corp. Winkelsteuerverfahren und -vorrichtung und automatisches Parksystem unter Verwendung von diesen
FR2962802A1 (fr) * 2010-11-18 2012-01-20 Continental Automotive France Capteur de mesure de position angulaire et procede de compensation de mesure
EP2916107A1 (de) * 2014-03-05 2015-09-09 Siemens Aktiengesellschaft Extrapolation der Feinlage bei einem Lagegeber mit phasenmoduliertem Rohsignal
DE102016208711A1 (de) * 2016-05-20 2017-11-23 Robert Bosch Gmbh Verfahren zum Bestimmen eines aktuellen Nockenwellenwinkels einer Nockenwelle einer Brennkraftmaschine
DE102018101415B3 (de) 2018-01-23 2019-01-31 Dspace Digital Signal Processing And Control Engineering Gmbh Verfahren zur Erfassung der Drehwinkel zweier gekoppelter Wellen
CN112018647A (zh) * 2019-05-29 2020-12-01 Abb瑞士股份有限公司 用于中压开关装置的改进的诊断解决方案
DE102019118689A1 (de) * 2019-07-10 2021-01-14 Schaeffler Technologies AG & Co. KG Verbrennungsmotor und Verfahren zum Betrieb eines elektromechanischen Nockenwellenverstellers
CN114096747A (zh) * 2019-07-10 2022-02-25 舍弗勒技术股份两合公司 内燃发动机和用于操作机电凸轮轴调节器的方法
CN114962024A (zh) * 2022-07-04 2022-08-30 潍柴动力股份有限公司 一种发动机转动角度的确定方法、装置及发动机
CN114962024B (zh) * 2022-07-04 2023-03-24 潍柴动力股份有限公司 一种发动机转动角度的确定方法、装置及发动机

Similar Documents

Publication Publication Date Title
EP1630363B1 (de) Verfahren zum Bestimmen der Phasenlage einer Nockenwelle einer Brennkraftmaschine
DE102005035881A1 (de) Verfahren zum Bestimmen der Drehwinkellage der Nockenwelle einer Hubkolben-Verbrennungsmaschine relativ zur Kurbelwelle
EP1596493B1 (de) Verfahren zum Messen der Drehzahl eines EC-Motors
DE102005019515B4 (de) Verfahren zum Messen der Drehzahl eines EC-Motors
EP1087232B1 (de) Verfahren zur Messung einer Frequenzinformation, insbesondere einer Drehzahlinformation bei einem Motors, und Vorrichtung zur Durchführung eines solchen Verfahrens
EP1792057B1 (de) Verfahren zur lagebestimmung bei einem ec-motor
DE102010003526B4 (de) Vorrichtung und Verfahren zur Verarbeitung von Signalen, die eine Winkelstellung einer Welle eines Motors repräsentieren
DE10105693C2 (de) Hochauflösender Inkrementalpositionssensor mit Impulsschaltstrategie
EP1272858B1 (de) Verfahren zur kompensation der drehunförmigkeit bei der drehzahlerfassung
DE19610059B4 (de) Anzeigeinstrument und Verfahren zum Betrieb desselben
DE4133679A1 (de) Verfahren zur adaption von mechanischen toleranzen eines geberrades
EP1797287A1 (de) Verfahren zum einstellen der drehwinkellage der nockenwelle einer hubkolben-verbrennungsmaschine relativ zur kurbelwelle
WO2000077374A1 (de) Verfahren zur korrektur eines winkelfehlers eines absolutwinkelgebers
EP3080555A1 (de) Vorrichtung und verfahren zur messung eines rotorparameters
DE19622042C2 (de) Verfahren zum Erkennen und Korrigieren von Fehlern bei der Zeitmessung an sich drehenden Wellen
DE10345734B4 (de) Verfahren und Anordnung zur Korrektur der Auswertung der Schaltschwellen bei einer Magnetsensoranordnung
WO1999054697A2 (de) Vorrichtung zur erfassung des auf eine welle wirkenden drehmoments
DE102006017146B4 (de) Verfahren zur Bestimmung der Drehzahl eines EC-Motors
EP1612923A1 (de) Verfahren zum Messen der Drehzahl einer elektrischen Maschine
DE4221891C2 (de) Verfahren zur Korrektur von Winkelfehlern an einem Geberrad bei der Bestimmung der Momentandrehzahl eines rotierenden Körpers
DE102010054532A1 (de) Verfahren zur automatischen Bestimmung eines Geberradfehlers einer Brennkraftmaschine
EP1620642B1 (de) Verfahren und vorrichtungen zur bestimmung eines korrekturwertes für eine gemessene segmentzeit
DE19802109C2 (de) Verfahren zur Adaption von mechanischen Toleranzen bei der Zeitmessung an sich drehenden Wellen
DE10151678B4 (de) Verfahren zur Ermittlung einer aktuellen Motordrehzahl
DE10218641B4 (de) Motordrehzahl-Bestimmung

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: SCHAEFFLER KG, 91074 HERZOGENAURACH, DE

8127 New person/name/address of the applicant

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 H, DE

R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20120822

R005 Application deemed withdrawn due to failure to request examination

Effective date: 20120731