DE102005004082A1 - Verfahren und Anlage zur thermischen Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgase - Google Patents

Verfahren und Anlage zur thermischen Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgase Download PDF

Info

Publication number
DE102005004082A1
DE102005004082A1 DE200510004082 DE102005004082A DE102005004082A1 DE 102005004082 A1 DE102005004082 A1 DE 102005004082A1 DE 200510004082 DE200510004082 DE 200510004082 DE 102005004082 A DE102005004082 A DE 102005004082A DE 102005004082 A1 DE102005004082 A1 DE 102005004082A1
Authority
DE
Germany
Prior art keywords
swklw
plant
disposal
heat
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE200510004082
Other languages
English (en)
Other versions
DE102005004082B4 (de
Inventor
Volker Dipl.-Ing. Spiegelberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPIEGELBERG, VOLKER, DIPL.-ING., DE
Original Assignee
Energy Systems & Solutions Gmb
Energy Systems & Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Energy Systems & Solutions Gmb, Energy Systems & Solutions GmbH filed Critical Energy Systems & Solutions Gmb
Priority to DE200510004082 priority Critical patent/DE102005004082B4/de
Publication of DE102005004082A1 publication Critical patent/DE102005004082A1/de
Application granted granted Critical
Publication of DE102005004082B4 publication Critical patent/DE102005004082B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/28Control devices specially adapted for fluidised bed, combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/01001Co-combustion of biomass with coal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/10005Arrangement comprising two or more beds in separate enclosures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2202/00Combustion
    • F23G2202/60Combustion in a catalytic combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/50Fluidised bed furnace
    • F23G2203/503Fluidised bed furnace with two or more fluidised beds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55011Detecting the properties of waste to be incinerated, e.g. heating value, density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/70Incinerating particular products or waste
    • F23G2900/7003Incinerating litter from animals, e.g. poultry litter

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

Der Gegenstand der Erfindung betrifft ein Verfahren und eine Anlage zur thermischen Entsorgung unterschiedlicher schadstoffentlasteter Abfall- und Reststoffe sowie nicht schadstoffbelasteter Stoffe in einer stationären Wirbelschichtfeuerungsanlage kleiner Leistung unter Nutzung der im Abgas enthaltenen Energie (in Folge SWkLW bezeichnet) durch Umwandlung in Wärme und Elektroenergie. DOLLAR A Realisiert wird diese Zielstellung für eine SWkLW für Leistungsbereiche von 20 kW/therm bis 30000 kW/therm auf der Basis eines physikalisch-chemischen Modells, in das alle verfahrensspezifischen und technischen Parameter, nämlich der folgenden Anlagenbestandteile: DOLLAR A - Reaktorkörper mit Inertmaterial (2) DOLLAR A - Katalysatoren, anlagenspezifisch (3) DOLLAR A - Düsenboden (4) DOLLAR A - Freeboard (5) DOLLAR A - Stützfundament (6) DOLLAR A - Gebläse (definierte Anzahl) (7) DOLLAR A - Mess- und Datenerfassungssystem (8) DOLLAR A - elektronische Steuerung (9) DOLLAR A - Abgasführung mit Zyklon(en)/Filter (10) DOLLAR A - System zur Abgasnutzung (11), bestehend aus DOLLAR A È interner Wärmenutzung DOLLAR A È externer Wärmenutzung DOLLAR A - Fernüberwachungs-, Analyse- und Steuerungssystem (12) DOLLAR A - Beheizungsfläche (Flächenwärmeübertrager) (13) DOLLAR A steuerungstechnisch eingegliedert sind.

Description

  • Der Gegenstand der Erfindung betrifft ein Verfahren und Anlage zur thermischen Entsorgung schadstoffentlasteter Abfall- und Reststoffe sowie nicht schadstoffbelasteter Stoffe in einer stationären Wirbelschichtfeuerungsanlage kleiner Leistung unter Nutzung der im Abgas enthaltenen Energie (in Folge SWkLW bezeichnet) durch Umwandlung in Wärme und/oder Elektroenergie.
  • Wirbelschichtfeuerungsanlagen (WSF) werden bisher industriell ausschließlich als Anlagen mit Leistungen deutlich größer 30 MW Leistung ausgeführt. Diese Anlagen werden seit vielen Jahren zur Nutzung z. B. von Braunkohlen- oder Ölschiefervorkommen und auch zur Entsorgung von festen Abfällen eingesetzt.
  • Solche Anlagen in denen gasförmige Stoffe entsorgt und/oder genutzt werden, gibt es bisher nur in einem Falle zur Entsorgung von Deponiegas ( DE 199 39 390 A1 ), über deren Entwicklungsstand erfindungsgemäß deutlich hinausgegangen werden soll.
  • Eine WSF arbeitet auf der Grundlage eines tragenden fluidisierten Materialbettes aus losen Inertmaterial mit einer flammenlosen Verbrennung. Als Inertmaterial findet vorrangig Quarzsand Verwendung, der durch einen erhitzten Gasstrom (zumindestens in der Anfahrphase) und vertikal aufsteigenden Primärluftstrom in einem Reaktionsraum bei einer definierten Betriebstemperatur von mindestens 850° C fluidisierend verwirbelt wird. In das aufgeheizte und fluidisierte Sandbett wird dann das zu entsorgende Material als Brennstoff in den Reaktionsraum eingetragen und in dieser Wirbelschicht flammenlos verbrannt.
  • Feste Brennstoffe werden entweder von oben auf die Wirbelschicht gegeben, wo sie wegen ihrer größeren Dichte in die fluidisierende Schicht eintauchen, oder der Brennstoff wird mittels einer Eintragsvorrichtung direkt in die fluidisierte Schicht eingebracht. Durch gleichzeitige dosierte Zugabe von Additivs (z. B. gemahlener Kalkstein) wird bei der Verbrennung freigesetztes SO2 chemisch gebunden und durch eine Luftstufung eine Senkung der CO- und NOx-Emissionen ermöglicht.
  • Die vorgenannten Emissionsbelastungen werden maßgeblich von den Prozeßparametern der Verbrennungsreaktion beeinflußt, wie Temperatur, Konzentration, und Reaktionsverlauf und Verweilzeit.
  • In großen WSF-Anlagen können diese Parameter relativ problemlos genutzt werden, so dass eine breite Brennstoffpalette als auch größere Brennstoffkörner bis ca. 40 mm Durchmesser verarbeiten werden können. Eine wesentliche Voraussetzung für ein vollständige Verbrennung eines Brennstoffes bildet hierbei die variable Gestaltung der erforderlichen Verweilzeit in der WSF. Sie wird durch die Variation der Ruhe-Schichthöhe beeinflußt. Bei längeren erforderlichen Verweilzeiten ist eine größere Ruhe-Schichthöhe vorzugeben. Das hat zur Folge, dass der bei der Fluidisation zu überwindende Druckverlust eine überproportionale Gebläseleistung erforderlich macht, die im erheblichen Maße die Betriebskosten der Anlage belastet. Darüber hinaus sind Laständerungen während des Prozeßablaufes der WSF problemlos möglich, was eine gewisse Sorgfalt in der kontinuierlichen prozeßorientierten Einstellung auf sich ändernde Brennstoffqualitäten, insbesondere den Wechseln zwischen unterschiedlichen Brennstoffen erfordert.
  • Der Heizwert eines Brennstoffes mit selbständiger Verbrennung ist nach unten begrenzt. Ein Unterschreitung des Grenzwertes macht die Zufeuerung eines höherwertigen Brennstoffes oder eine intensive Luftvorwärmung erforderlich.
  • Für schwer verbrennbare Stoffe kommt daher vorrangig die zirkulierende WSF (ZWSF) zum Tragen. Bei diesen System wird bewusst der Austragungspunkt des Bettmaterials überschritten. Die aufgewirbelten unverbrannten Brennstoffteile werden über einen Zyklonabscheider abgefangen und im unteren Bereich der WSF-Schicht wieder dem Verbrennungsprozess zugeführt. Dieses System erfordert einen erheblichen Mehrbedarf an Bettmasse und ist technisch sehr aufwendig. Neben einer höheren Verfahrens-Geschwindigkeit ist der Einsatz eines Zyklons für die Abscheidung und Zurückführung des aufgewirbelten und nicht vollständig verbrannten Materials notwendig.
  • Das Ziel und die Aufgabe der Erfindung ist es, ein entsprechendes Verfahren und die dazu notwendigen anlagetechnischen Voraussetzungen zu entwickeln, in dem zur Nutzung und/oder Entsorgung von Stoffen im Bereich kleiner Leistung für dezentrale Entsorgungs- oder Energienutzungsanlagen das Verfahren der stationären Wirbelschichtfeuerung kleiner Leistung mit integrierter Wärmenutzung zur Anwendung kommen soll.
  • Zugleich verfolgt die Erfindung das Ziel einer den Bedingungen der 17. BImschV (Bundes-Immissionschutz-Verordnung) entsprechenden und somit umweltverträglichen Verbrennung von Stoffen in einer SWkLW. Nur unter Einhaltung dieser und weiterer Bedingungen kann eine erfindungsgemäß vorgesehene SWkLW für relativ kleine Leistungsbereiche konzipiert werden.
  • Ein weiteres wesentliches Ziel der Erfindung ist es, in SWkLW unter atmosphärischen oder druckaufgeladen Bedingungen mit anlagenspezifisch definierter (relativ niedriger) Bett-Betriebsschichthöhe sicherzustellen, dass eine vollständige Verbrennung des gesamten Brennstoffes erreicht wird. Das wiederum ist die Basis für eine den Emissionsvorschriften entsprechende Abgasqualität und eine damit maximal mögliche Nutzung des Energieinhaltes der Abgase.
  • Bezugsbasis für die Ausführung der Erfindung bilden hierbei die DE 198 59 052 C2 , DE 198 59 053 C2 , DE 199 18 927 A1 , DE 199 18 928 A1 und DE 199 39 390 A1 für die insofern eine Angrenzung vorzunehmen ist, da jede dieser Lösungen im Einzelnen die mit der Erfindung verfolgte globale Zielstellung nicht erreicht.
  • Die erfindungsgemäßen Merkmale des Verfahrens gemäß Oberbegriff umfassen die Ansprüche 1 bis 12.
  • Das Grundprinzip und anlagenspezifsche Merkmale der Anlage zur Ausführung des Verfahrens beinhalten die Ansprüche 13 bis 17.
  • Das prinzipielle Grundschema einer SWkLW-Anlage ist in der beigefügten Abbildung dargestellt.
  • Die verfahrensgemäß eingesetzte SWkLW besteht aus folgenden Kernelementen
    • – physikalisch-chemisches Modell
    • – Reaktorkörper mit Inertmaterial
    • – Katalysatoren, anlagenspezifisch
    • – Düsenboden
    • – Freeboard mit Additivdosierung
    • – Stützenfundament
    • – definierten Anzahl von Gebläsen
    • – Mess- und Datentransfersystemen
    • – elektronischer Steuerung
    • – Abgasführung mit Zyklon(en), Filtern
    • – System zur Abgasnutzung bestehend aus – interner Wärmernutzung – externer Wärmenutzung
    • – Fernüberwachungs-, Analyse- und Steuerungssystem
    • – optionale Bettheizflächen
  • Verfahrensgemäß ist die Ausarbeitung des für die jeweilige reale Anlage erforderlichen physikalisch-chemischen Modells die Ausgangsbasis für sowohl für die Auslegung als auch für den verfahrensgemäßen Betrieb einer solchen SWkLW.
  • In diesem Modell werden solche anlagenspezifischen oder vorgegebenen physikalischen Größen wie Verbrennungstemperatur, Brennstoffmenge, Abgastemperatur und Abgaszusammensetzung in Verbindung gebracht mit dem Heizwert des Brennstoffs oder der Brennstoffgemische, der Zusammensetzung des Brennstoffs und weiteren Informationen, wie Standortdaten, Betriebszeit u. dgl.. Daraus werden dann die Anlagenparameter, wie Durchmesser, Höhen, Gewichte, Wärmeleistungen, Wärmeabführungen, Frischluftbedarf, Zusammensetzung und Menge des Inertmaterials, Sauerstoffüberschuss, Einsatzstoff erforderliche Verweilzeit, interner Wärmebedarf (Prozeßwärme), Betriebsgeschwindigkeit der SWkLW, Isolierungen, Abgasvolumenstrom unter Einbeziehung manuell einzugebender Größen wie z.B. Wirkungsgraden ermittelt.
  • Des weiteren werden in dem Modell die zur Einhaltung der Abgasgrenzwerte oder bei anderen Prozessen erforderlichen chemischen Reaktionsbedingungen bei der Verwendung von Additiven oder sonstigen chemisch reagierenden Stoffen in der SWkLW einzusetzenden oder sich ergebenden Mengen ermittelt. Als Beispiel werden bei einem gegebenen SO2-Anteil im einem Methan-Brenngas die erforderliche Additivmenge Ca(OH)2 ermittelt und die nach der Reaktion anfallende Menge an Gips-Anhydrid (CaSO4 ) bestimmt.
  • Dieses physikalisch-chemische Modell ist somit eine reproduzierbare Einzelfalllösung.
  • Verfahrensgemäß werden grundsätzlich alle Brennstoffe in die fluidisierte Schicht eingetragen. In Abhängigkeit des verwendeten Brennstoffs, der SWkLW-Größe und der Betriebsgeschwindigkeit im Reaktor kann dieser Eintrag in unterschiedlicher Höhe der SWkLW erfolgen.
  • Grundsätzlich erfolgt der Eintrag bis zu einer maximal Höhe von 90% des ruhenden Wirbelbettes. Bei SWkLW mit Reaktordurchmessern geringer als 1m ist zur Sicherstellung der Funktionsfähigkeit der unterschiedlichen Eintragsvorrichtungen ihre Anordnung innerhalb dieser Eintragshöhe erforderlich. In Abhängigkeit der realen Anlage ist die konkrete Einbauhöhe einer Eintragsvorrichtung über das zur Auslegung einer SWkLW verfahrensgemäß vorgesehene physikalisch-chemische Modell anlagenspezifisch zu ermitteln. Damit ist die Gewähr gegeben, dass der gesamte Verbrennungsvorgang innerhalb der fluidisierten Schicht stattfindet. Die aktive Betriebsschichthöhe sollte für eine effiziente Betriebsweise einer SWkLW in einem Bereich von 60 cm bis 550 cm liegen.
  • In Abhängigkeit der konstruktiv vorgegebenen Einbauhöhe und damit bedingten Fluidisation der Brennstoffart als auch der Geometrie der zu verbrennenden Partikel soll die Verfahrens- und SWkLW- typische Verweilzeit im Bereich von 2 bis zu 13 Sekunden innerhalb des Reaktorraumes und des Freeboards liegen.
  • Ein weiteres verfahrensgemäßes Merkmal der Erfindung sieht vor, dass durch den Einsatz des o. g. physikalisch-chemischen Modells für eine reale Anlage mit realen Brennstoffen/Entsorgungsgütern (Menge und Art) der gesamte Verbrennungsprozess und daraus folgend die Abmessungen der Anlage, deren Betriebsverhalten, der Störgrößenausgleich und weitere Parameter anlagenspezifisch ausgelegt werden kann. Diese Auslegung ist auch eine Funktion der am jeweiligen Anlagenstandort vorhandenen oder vorgegebenen Bedingungen. Dieses Modell dient weiterhin dazu, die Grundlagen der jeweiligen anlagenspezifischen elektronischen Steuerung abzubilden und somit die Übereinstimmung zwischen der beabsichtigten Zielstellung der SWkLW und deren realer Auslegung sicherzustellen.
  • Ein weiteres verfahrensgemäßes Merkmal besteht darin, dass auch bei der gleichzeitigen Verwendung von mehreren Brennstoffen/Entsorgungsgütern unterschiedlicher Art (fest, flüssig, gasförmig, pastös), unterschiedlicher Heizwerte (Brennstoffmix) und unterschiedlicher Eintragsmengen durch die elektronische Steuerung die SWkLW so ausgesteuert wird, dass die festgelegte Temperatur und der festgelegte Sauerstoffüberschuss als Kennzeichen und Sicherheit einer vollständigen Verbrennung exakt eingehalten werden. Beispielsweise ist hier der Einsatz von Sekundärbrennstoffen und der gleichzeitige Einsatz von Klärschlamm in einer SWkLW zu nennen.
  • Als Temperaturgrenzen sind für die sehr differenzierten Einsatzfälle der SWkLW 450°C (untere Grenze) bis 980°C (obere Grenze) vorgegeben. Die jeweilig zutreffende, durch Gesetzgebung und/oder technische, physikalische und chemische Kenngrößen bestimmte Temperatur ist mittels des physikalisch-chemischen Modells festzulegen. Sie dient als eine Basis der Auslegung und des Betriebs der SWkLW.
  • Eine weitere wesentliche verfahrensspezifische Kenngröße für die Auslegung und den Betrieb einer SWkLW ist der Sauerstoffüberschuss, der als Sauerstoffanteil im Abgasvolumenstrom gemessen wird. Seine Festlegung erfolgt mittels des physikalisch-chemischen Modells und hat darin auf eine Reihe von Parametern Einfluss. So werden mit dem Sauerstoffüberschuss, der auch durch Gesetzgebung und/oder technische, physikalische und chemische Kenngrößen bestimmt wird, die Gebläse hinsichtlich ihrer Größe ausgelegt, der Eintragsvorrichtungen und Reaktordurchmesser dimensioniert und Temperatureinflüsse ausgeübt. Diese wechselseitige Beeinflussung mit der Temperatur hat auf die Auslegung und den Betrieb einer SWkLW signifikanten Einfluss.
  • Der Wert des Sauerstoffüberschusses kann in Abhängigkeit vom realen Einsatzfall zwischen 2,5 Vol.% (untere Grenze) und 16 Vol.% (obere Grenze) variieren. Seine Einhaltung ist durch die Steuerung der Anlage in einem einsatzfallabhängigen Schwankungsbereich sicherzustellen. So ist zum Beispiel für eine Anlage der Wert des Sauerstoffüberschusses mit 9,5 Vol.% des Masseanteils eingestellt. Dann regelt die Steuerung diesen Wert z.B. mit +/– 3 Vol.% aus.
  • Von wesentlichem Einfluss auf den erfindungsgemäßen Betrieb einer SWkLW ist die Auslegung des Reaktorkörpers und insbesondere des Freeboards. Diese Auslegungen erfolgen wieder mittels des physikalischen-chemischen Modells. Dabei sollen verfahrensgemäß die aus den Ausgangswerten (Brennstoffart/Entsorgungsgut, -mengen, Temperaturen, Sauerstoff überschuss, Additivmengen, u.s.w.) abgeleitenden Abmessungen von Reaktor und Freeboard, deren Isolierungsstärken und der Einsatz von zusätzlichen Heizflächen als Bettheizflächen festgelegt werden. Mit der Festlegung des Freeboard-Durchmessers und seiner Höhe und damit erzeugten Verweilzeit (verfahrensgemäß 2 bis 13 sec.) wird über den bekannten Effekt der Reduzierung der Strömungsgeschwindigkeit Einfluss auf den Austrag von Inertmaterial- und Aschepartikeln sowie auf Partikeln von Reaktionsprodukten diskreter Größe genommen. Verfahrensgemäß soll dieser Auslegungsbereich – bestimmt mittels des physikalischenchemischen Modells – in einem definierten Bereich von 1,35 bis 2,45 × Reaktordurchmesser für reale SWkLW liegen. Die Höhe des Freeboard soll dabei zwischen 0,9 und 1,85 des ermittelten Freeboarddurchmessers betragen.
  • Die Verwendung von spezifisch auf die Brennstoffe bzw. Entsorgungsgüter bezogene Additiven hat das Ziel der Vermeidung von Schadstoffemissionen durch gezielte chemische Reaktionen während oder nach einer Verbrennung im Reaktor. Diese gezielte Beeinflussbarkeit solcher oder ähnlicher chemischer Reaktionen ist ein entscheidender Vorteil der SWkLW. Damit kann in wesentlichen Einsatzfällen ein hoher Reinigungseffekt des Abgases erreicht werden und eine nachgeschaltete Abgasreinigung über eine Entstaubung hinaus vermieden werden.
  • Ein weiteres Merkmal des Verfahrens und der Anlagengestaltung besteht darin, dass eine SWkLW zur schrittweisen Umsetzung von Reinigungseffekten und/oder Energienutzung von Stoffen/Entsorgungsgütern und/oder zur Entsorgung gezielt als mehrstufige Anlage ausgeführt und betrieben werden kann. Eine solche Anlage besteht aus mehreren hintereinander oder parallelgeschalteten SWkLW mit denen beispielsweise ein höherer Entschwefelungswirkungsgrad erreicht wird als mit einer einzigen SWkLW. Dabei können zwischen den SWkLW auch weitere Anlagenkomponenten, gleich welcher Art, angeordnet sein. Die Steuerung eines solchen Anlagekomplexes erfolgt ebenfalls auf der Basis des physikalisch-chemischen Modells.
  • Ausgehend zum Beispiel von einer effektiven SWkLW-Grundleistung von ca. 20 kW/therm werden Anlagengruppen mit einer Leistung von bis zu 60 000 kW/therm beispielweise in Kombination mit Pyrolyseverfahren zur Entsorgung hochgiftiger und/oder bakteriologisch verseuchter oder anderer Stoffe oder zur Biomassenutzung oder auch Anlagengruppen mit einer Gesamtleistung von bis zu 100 000 kW/therm insbesondere zur Entschwefelung von Stoffen der verschiedensten Art, wie Erdöl, Erdgas oder entsprechender Folgeprodukte eingesetzt. Im letzteren Fall vorzugsweise in Raffinerien.
  • Bei heizwertreichen Brennstoffen/Entsorgungsgütern sind verfahrens- und anlagengemäß zusätzliche Bettheizflächen (Wärmeaustauscher) in flächiger Form im Reaktorraum angeordnet. Damit kann die beabsichtigte Brennstoffmenge bei den festgelegten/ermittelten Werten für Temperatur und Sauerstoffüberschuss effizienter verarbeitet werden. Bei der Auslegung dieser Komponenten kommt das physikalisch-chemisch Modell zur Anwendung. Diese auf den konkreten Einzelfall ausgelegte zusätzliche Möglichkeit Wärme abzuführen, stellt sicher, dass die Flexibilität der realen SWkLW hinsichtlich des Einsatzes einer größeren Brennstoffvielfalt gegeben ist. In einer vorhanden realen Anlage kann dadurch nunmehr auch ein Brennstoffmix mit einem deutlich höheren Heizwert gefahren werden. Bereits bei der Auslegung einer solchen SWkLW kann diese Option berücksichtigt werden. Im realen Betrieb ist dann die Einbindung in die Gesamtsteuerung der Anlage verfahrensgemäß umzusetzen.
  • Bei sehr heizwertarmen Brennstoffen/Entsorgungsgütern oder bei chemisch schwierigen Verbindungen wird verfahrensgemäß die Fähigkeit der SWkLW zur Verarbeitung solcher Stoffe durch den Einsatz von Katalysatoren deutlich erweitert. Diese in einer Wirbelschicht, insbesondere in der SWkLW erstmals eingesetzten Katalysatoren werden verfahrensgemäß mit dem Inertmaterial in das Wirbelbett eingebracht. Sie beschleunigen oder ermöglichen eine Verbrennung und/oder chemische Reaktion der betreffenden Brennstoffe/Entsorgungsgütern und/oder deren Verbrennungsprodukten und anderen Verbindungen. Diese Katalysatoren sind anlagenspezifisch auszulegen und einzusetzen. Mit ihnen wird das Spektrum der in einer SWkLW verarbeitbaren Stoffe deutlich erweitert. Beispielsweise ist durch den Einsatz von Katalysatoren die Verbrennung eines Deponiegases noch unterhalb von 7 Vol.% Methan möglich.
  • Zusammen mit der bekannten Möglichkeit des Einsatzes von Additiven wird somit die Einsatzvielfalt der SWkLW über den ursprünglichen Verbrennungszweck hinaus erhöht.
  • Weiterhin wird damit verfahrensgemäß erreicht, dass dadurch eine Stützfeuerung mit Zusatzbrennstoff nicht oder nur in einem geringeren Umfang erforderlich wird.
  • Ein spezifisches Merkmal der Erfindung besteht auch darin, das im Ruhebetrieb die SWkLW im stand-by-Betrieb gefahren und der Reaktor dazu thermisch geschlossen wird (Thermoeffekt).
  • Zur Sicherung des stand-by-Betriebes werden mögliche Wärmeabstrahlungsverluste über die im Reaktor integrierten Bettheitzflächen ausgeglichen bzw. wird zusätzliche Wärmeenergie bei wieder Inbetriebnahme des Reaktors zum zügigen Hochfahren eingebracht.
  • Der stand-by-Betrieb ist neben den normalen Ruhebetrieb insbesondere bei mobilen SWkLW im Zuge des Standortwechsels vorgesehen.
  • Die Nutzung der Abwärme aus einer SWkLW kann in zwei Richtungen erfolgen.
  • Zum einen ist Nutzung der Abgasenergie als Prozesswärme ein wichtiges Element bei der Vorwärmung der zum Einsatz gelangenden Brennstoffe und/oder der Frischluft. Damit wird die für die Verbrennung erforderliche Energie reduziert. Bei heizwertarmen Brennstoffen/Entsorgungsgütern ist in vielen Fällen nur so eine Verbrennung erst möglich. Die Nutzung des Energiepotentials des Abgases stellt eine anlagenseitig einfache und kostengünstige Lösung der Vorwärmung von Brennstoff und/oder Wirbelluft dar. Die Einbindung dieser Vorwärmung in das Abgassystem der Anlage und dessen Auslegung über das ermöglichen eine anlagenspezifische Energieoptimierung. Zusätzlich zur Abwärme ist auch die Nutzung des Wärmepotential der Asche anlagenseitig möglich und vorgesehen.
  • Während des Betriebes ist diese Energieoptimierung durch die Steuerung der SWkLW den realen Betriebsbedingungen anzupassen, so dass in jedem Zeitpunkt ein Optimum an Energieausnutzung erreicht wird. Dieses Optimum ist auch zu erreichen, wenn neben der Energienutzung für interne Verwendung auch Wärme für externe Verwendung ausgekoppelt wird. Die Größe der externen Wärmenutzung ist anlagenspezifisch hinsichtlich ihrer Leistungsparameter auch mittels des physikalisch-chemisch Modells auszulegen.
  • An diese Anlagentechnik (Wärmeaustauscher) schließt sich im konkreten Einzelfall auszuwählende Anlagentechnik zur Wärmenutzung und z.B. zur Stromerzeugung an. Das können für die Stromerzeugung sowohl Dampfkraftprozesse als auch ORC- oder Kalina-Anlagen sein. Die energetische Optimierung solcher Anlagen ist u.a. wegen einer maximalen Brennstoffnutzung und wegen einzuhaltender Einspeisungsdaten zwingend erforderlich. Das wiederum hat Einfluss auf das Fahrregime der SWkLW und muss somit in der Steuerung der Anlage Berücksichtigung finden. Bei der gleichzeitigen Aussteuerung sowohl der internen als auch der externen Wärmenutzung sind die Anforderungen und Einflüsse auf die Steuerung der SWkLW zur Einhaltung der optimalen Prozessparameter gravierend.
  • Der wirtschaftliche Betrieb einer SWkLW ist stark von der Qualifizierung des eingesetzten Personals und der Zuverlässigkeit der technischen Anlagen abhängig.
  • Besonders bei der dezentralen Einsetzbarkeit Anlagen kleiner Leistung ist wenig Personal mit einer nicht adäquaten Qualifikation zu erwarten.
  • Mit der beschriebenen Komplexität der Anlage und den damit steigenden Anforderungen an die Steuerung ist eine schnelle und kompetente Reaktion unerlässlich. Das kann dauerhaft nur durch eine Fernüberwachung auf der Basis des physikalisch-chemischen Modells des Gesamtprozesses gewährleistet werden. Dieses Modell ist gleichzeitig als Grundlage der realen Anlagensteuerung im Einsatz und ist damit über eine Datenfernübertragung jederzeit hinsichtlich des aktuellen Zustandes der SWkLW „auskunftsfähig". Bei Störungen, die nicht über die Anlagensteuerung automatisch ausgeregelt werden, werden diese nicht nur festgestellt, sondern sie können zielgerichtet behoben werden. Damit wird ein entscheidender Beitrag nicht zur Prozessstabilität sondern auch zur Verfügbarkeit geleistet.
  • Während bei großtechnischen Anlagen diese Verfahrensweise kaum eine Rolle spielt, ist sie gerade bei dezentralen Anlagen kleiner Leistung unerläßlich. Da solche erfindungsgemäßen Anlagen derzeit nicht gibt, muss ihre Zukunftsfähigkeit gerade auch an der Verfügbarkeit solcher innovativen Lösungen gemessen werden.
  • Insbesondere für SWkLW mit Betonung auf kleine Leistungen wird durch das vorgeschlagene Verfahren und anlagenspezifische Gestaltung der Mobilitätsanspruch realisiert. Die dazu vorgeschlagenen verfahrensspezifischen Methoden sichern eine volle Funktionalität mobiler Anlagen.
  • Bezüglich der Anlagengröße mobiler SWkLW wird eine Obergrenze von 20 kW/therm als optimal angesehen.
  • Eine gattungsgemäße mobile Anlage einer stationären Wirbelschichtanlage (SWSF) als Vergleichsbasis für die Ausführung einer SWkLW zeigt beispielsweise die DE 198 59 052 C2 .
  • 1
    physikalisch-chemisches Modell
    2
    Reaktorkörper mit Inertmaterial
    3
    Katalysatoren, anlagenspezifisch
    4
    Düsenboden
    5
    Freeboard
    6
    Stützfundament
    7
    Gebläse (definierte Anzahl)
    8
    Mess- und Datenerfassungssystem
    9
    elektronische Steuerung
    10
    Abgasführung mit Zyklon(en), Filter
    11
    System zur Abgasnutzung bestehend aus
    – interner Wärmenutzung
    – externen Wärmenutzung
    12
    Fernüberwachungs-, Analyse- und Steuerungssystem
    13
    optimale Beheizungsfläche (Flächenwärmeübertrager)

Claims (17)

  1. Verfahren zur Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels Stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgasenergie (SWkLW genannt) dadurch gekennzeichnet, dass – für die jeweilige reale Anlage ein physikalisch-chemisches Modell (1) die Ausgangsbasis sowohl für die Auslegung als auch für den Betrieb einer SWkLW ist, – alle Brennstoffe in die fluidisierte Inertschicht eingetragen werden, – dieser Eintrag in Abhängigkeit der Brennstoffqualität bzw. der Qualität der Entsorgungsgüter in unterschiedlicher Höhe der SWkLW erfolgt, – der Eintrag bis zu einer Höhe von 90% des ruhenden Inert-Wirbelbettes erfolgt, – die eingetragenen Partikels in einer Verweilzeit von wenigstens 2 bis zu 13 Sekunden innerhalb des Reaktorraumes (2) und des Freeboards (5) verbrannt werden, – eine SWkLW vorzugsweise für Leistungsbereiche von 20 bis 30 000 kWtherm eingesetzt werden, – sie unter atmosphärischen oder druckaufgeladenen Bedingungen mit anlagenspezifisch definierter Bett-Betriebsschichthöhe von 60 cm. bis 550 cm arbeitet, – der Einsatz von Additiven in Abhängigkeit der Schadstoffemissionen erfolgt und deren Einschleusung über die Anlagensteuerung gesteuert wird, – zur schrittweisen Umsetzung von Reinigungseffekten und/oder Energienutzung von Stoffen/Entsorgungsgütern ein gezielter Einsatz als mehrstufige SWkLW erfolgt, – sie über eine anlagenspezifische elektronische Steuerung (9) verfügt, die auf der Grundlage des physikalisch-chemischen Modells arbeitet, – eine gleichzeitige Verwendung von mehreren Brennstoffen/Entsorgungsgütern unterschiedlicher Art (fest, flüssig, gasförmig, pastös) und Struktur, unterschiedlicher Heizwerte (Brennstoffmix) bei unterschiedlichen Eintragsmengen vorgesehen ist und die Steuerung dieses aussteuert, – sich die Verbrennungstemperaturgrenzen im Reaktor für die differenzierten Einsatzfälle der SWkLW von wenigstens 450°C bis 980°C erstrecken, – der Wert des Sauerstoffüberschusses in Abhängigkeit vom realen Einsatzfall zwischen 2,5% und 16% variierbar liegt, – zusätzliche Bettheizflächen (13) dafür sorgen, dass die beabsichtigte Brennstoffmenge bei den festgelegten/ermittelten Werten für Temperatur und Sauerstoffüberschuss verarbeitet und/oder Wärme aus den Reaktor ausgekoppelt werden kann, – im stand-by-Betrieb der Reaktor (2) thermisch geschlossenen ist, – zum Ausgleich von Wärmeverlusten im stand-by-Betriebes und zum Hochfahren des Reaktors über die Bettheizflächen (13) Wärme eingetragen wird, – der stand-by-Betrieb insbesondere bei Reaktorleerlauf und bei Standortwechsel mobiler SWkLW genutzt wird, – bei heizwertarmen Brennstoffen/Entsorgungsgütern oder bei chemisch schwierigen Verbindungen die Fähigkeit der SWkLW zur Verarbeitung solcher Stoffe durch den Einsatz von Katalysatoren (3) ermöglicht wird, – diese Katalysatoren (3) in das Wirbelbett eingebracht werden und eine Verbrennung und/oder chemische Reaktion von Brennstoffe/Entsorgungsgütern und/oder deren Verbrennungsprodukten und anderen Verbindungen beschleunigen oder ermöglichen, – eine Nutzung der Prozesswärme in Form von Abgasenergie und/oder wahlweise der Aschewärme zur internen Verwendung, vorzugsweise zur Vorwärmung der zum Einsatz gelangenden Brennstoffe und/oder der Frischluft erfolgt, – Wärme für eine externe Verwendung ausgekoppelt werden kann, – eine anlagenspezifische Energieoptimierung erfolgt, und dass darin sowohl die interne als auch externe Energieverwendung optimiert sind und in ihr Dampfkraftprozesse ebenso wie ORC- oder Kalina-Anlagen integriert werden, – eine Fernüberwachung und Steuerung von SWkLW auf der Basis des physikalischchemisch Modells (1) vorhanden ist, – der Einsatz als mobile Anlage bei voller Leistungsfähigkeit der SWkLW bis zu einer Leistung von 20 kWtherm. erfolgt, – der Einsatz als mehrstufige Anlage erfolgen kann und dass bei einer Grundleistung der Einzelanlage von 20 kWtherm. effiziente Anlagegruppen bis zu 100 000 kWtherm. gebildet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass – eine umweltgerechte Entsorgung und/oder energetische Nutzung von Schlechtgasen, Sauergasen, heizwertarmen Brenngasen, Deponiegasen, Sondergasen, Erdölbegleitgasen, L-Gasen, Fackelgasen, Grubengasen, Gichtgasen, und allen anderen Gasen erfolgt, deren Methananteile bzw. brennbaren Anteile als untere Grenze ein Wert von 4 Vol.% überschreiten und dass dabei eine SWkLW auch als Wirbelschichtfackel eingesetzt wird, – eine Entsorgung von Gasen aller Art ohne jeglichen eigenen Heizwert unter Zuhilfenahme von Stützfeuerung erfolgt, – die Anlagengröße zum vorgenannten Zweck bis zu 60 000 kWtherm. erweitert wird.
  3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass ein Einsatz als Deponietechnik für die Entsorgung von Deponiestoffen (Sickerwasser, Sondermüll u. dgl.) mit und ohne eigenen Heizwert unter Verwendung von Deponiegas oder anderen heizwertreichen Fraktionen aus Deponien bzw. Müllaufbereitungsanlagen jeglicher Art mit anschließender oder in Aufbereitungsanlagen integrierter energetischer Nutzung der Abwärme erfolgt.
  4. Verfahren nach Anspruch 1, 2 und 3, dadurch gekennzeichnet, dass es eingesetzt wird zur Entsorgung von Klärschlämmen und Schlämmen aller Art (getrocknet, flüssig oder pastös) gegebenenfalls unter Verwendung von Sekundärbrennstoffen aller Art oder sonstigen Brennstoffen, wie sie üblich oder nach den Verfahren nach den Ansprüchen 1 bis 3 einsetzbar sind.
  5. Verfahren nach Anspruch 1, 2, 3 und 4, dadurch gekennzeichnet, dass es eingesetzt wird an Bord von Schiffen, insbesondere Kreuzfahrtschiffen, und/oder in Hotelanlagen zur Entsorgung von – Küchenabfällen, Verpackungsabfällen, Waschlaugenrückständen, Klärschlämmen, – Slugde, Seperatorrückständen und sonstigen Anfällen aller Art, – Abgasreinigung/Rußentsorgung unter anschließender oder integrierter energetischen Nutzung der Abgaswärme.
  6. Verfahren nach Anspruch 1, 2, 3 und 4, dadurch gekennzeichnet, dass es eingesetzt wird an Bord von (Spezial)-schiffen oder bei mobilen Landanlagen zur Entsorgung von – gasförmigen, flüssigen, und festen Ladungsrückständen – Rückständen aus den Schiffsbetrieb – Havariegut aus Tanker- oder anderen Schiffshavarien.
  7. Verfahren nach Anspruch 1, 2, 3, 4 und 6 dadurch gekennzeichnet, dass es eingesetzt wird zur Beseitigung von Ölhavariegut, insbesondere bei Ölhavarien auf Seen, Meeren und an Stränden, wobei Anlagen für diesen Zweck bis zu einer Leistungsgrenze von 20 kWtherm. für einen mobilen Einsatz ausgelegt sind.
  8. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass es eingesetzt wird – als ein- oder mehrstufiges Entschwefelungsverfahren zur Entschwefelung von Stoffen aller An, insbesondere Erdgasen, und Erdölen oder schwefelhaltigen Folgeprodukten der Erdgas- oder Erdölförderung oder -verarbeitung, – als ein- oder mehrstufiges Entschwefelungsverfahren in Raffinerien, – in Anlagen mit Anlagegrößen zum genannten Zweck mit einer Gesamtleistung von bis zu 100 000 kWtherm..
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass – es als zentraler, integrierter Bestandteil und/oder in Kombination mit Pyrolyseverfahren einer Entsorgungsanlage für Reifen jeglicher An eingesetzt wird, – die aus dem Pyrolyseverfahren oder der SWkLW freigesetzten Stoffe ganz oder teilweise intern und/oder extern energetisch genutzt oder entsorgt werden, – die Anlagengröße entsprechend dem genannten Zweck eine Gesamtleistung von bis zu 60 000 kWtherm. aufweist.
  10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es – als Biomasse-Kraftwerk sowohl Wärme als auch Strom erzeugt und als Brennstoffe Biomasse jeglicher Art und in jeglicher Zusammensetzung als auch Rückstände aus der Tierproduktion wie Hühnermist jeglicher An und Schweinegülle jeglichen Trockenheitsgrades verwendet, – als Bestandteil oder im Zusammenhang mit einer technologischen Kette zur Herstellung von Dünger jeglicher Art oder Kompostarten aus Biomasse eingesetzt wird, – für genannten Zweck auf eine Anlagengröße von bis zu 60 000 kWtherm. erweitert wird.
  11. Verfahrens nach Anspruch 1 und 8 oder 9 oder 10, gekennzeichnet dadurch, dass bei mehrstufigen Anlagebetrieb in der zweiten Anlagestufe vorzugsweise Brennstoffe und Additive verbrannt oder diese Stufe als Fackel eingesetzt wird.
  12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die SWkLW ohne vorherige Bestimmung oder Nutzung des physkalisch-chemischen Modells (1) betrieben wird.
  13. Anlage zur Durchführung des Verfahrens nach Anspruch 1, gekennzeichnet dadurch, dass die SWklW folgende Grundelemente aufweist, nämlich – Reaktorkörper mit Inertmaterial (2) – Katalysatoren, anlagenspezifisch (3) – Düsenboden (4) – Freeboard (5) – Stützfundament (6) – Gebläse (definierte Anzahl) (7) – Mess- und Datenerfassungssystem (8) – elektronische Steuerung (9) – Abgasführung mit Zyklon(en)/Filter (10) – System zur Abgasnutzung (11) bestehend aus – interner Wärmenutzung – externen Wärmenutzung – Fernüberwachungs-, Analyse- und Steuerungssystem (12) – Beheizungsfläche (Flächenwärmeübertrager) (13) und das diese technischen Systeme in einem physikalisch – chemischen Modell steuerungstechnisch eingegliedert sind.
  14. Anlage nach Anspruch 13, gekennzeichnet dadurch, dass der anlagenspezifische Durchmesser des Freeboard (5) in einem definierten Bereich von 1,35 bis 2,45 × Reaktordurchmessers liegt.
  15. Anlage nach Anspruch 13, gekennzeichnet dadurch, dass die Höhe des Freeboards (5) gegenüber dem ermittelten Freeboarddurchmessers 0,9 und 1,85 desselben beträgt.
  16. Anlage nach Anspruch 1, 11 und 13 gekennzeichnet dadurch, dass bei mehrstufigen Anlagebetrieb die einzelnen SWkLW in Reihe oder parallel geschaltet sind.
  17. Anlage nach Anspruch 13, gekennzeichnet dadurch, dass im Reaktor als Beheizungsfläche (13) ein Flächenwärmeübertrager angeordnet ist.
DE200510004082 2005-01-28 2005-01-28 Verfahren und Anlage zur thermischen Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgasenergie Active DE102005004082B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200510004082 DE102005004082B4 (de) 2005-01-28 2005-01-28 Verfahren und Anlage zur thermischen Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgasenergie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510004082 DE102005004082B4 (de) 2005-01-28 2005-01-28 Verfahren und Anlage zur thermischen Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgasenergie

Publications (2)

Publication Number Publication Date
DE102005004082A1 true DE102005004082A1 (de) 2006-08-10
DE102005004082B4 DE102005004082B4 (de) 2008-06-26

Family

ID=36709468

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200510004082 Active DE102005004082B4 (de) 2005-01-28 2005-01-28 Verfahren und Anlage zur thermischen Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgasenergie

Country Status (1)

Country Link
DE (1) DE102005004082B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021840A2 (en) * 2008-08-22 2010-02-25 Alstom Technology Ltd Fluidized bed combustion optimization tool and method thereof
DE102008055851A1 (de) * 2008-11-04 2010-05-12 Kba-Metalprint Gmbh Regenerative Abluftreinigungseinrichtung sowie Verfahren zum Herstellen einer regenerativen Abluftreinigungseinrichtung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452616B1 (de) * 1990-03-10 1993-05-12 Deutsche Babcock Energie- und Umwelttechnik Aktiengesellschaft Verfahren zum Verbrennen von festen oder schlammartigen Brennstoffen in einer Wirbelschicht
DE19918928A1 (de) * 1999-04-26 2000-11-02 Dieter Steinbrecht Verfahren und Einrichtung zur Abfall- und Reststoffentsorgung auf Schiffen und Off-Shoreeinrichtungen
DE19918927A1 (de) * 1999-04-26 2000-11-02 Dieter Steinbrecht Verfahren zur thermischen Entsorgung von Kunststoffen
DE19859053C2 (de) * 1998-12-21 2001-01-25 Dieter Steinbrecht Verfahren zur Verbrennung von Säureharzteer in einer stationären Wirbelschichtfeuerung
DE19859052C2 (de) * 1998-12-21 2001-01-25 Dieter Steinbrecht Verfahren und Einrichtung zur thermischen Abfallverwertung und Abfallentsorgung fester, flüssiger und pumpfähiger inhomogener brennbarer Gemische und thermische Reinigung kontaminierter Materialien in einer Wirbelschichtfeuerung
DE19939390A1 (de) * 1999-08-19 2001-02-22 Dieter Steinbrecht Verfahren zur thermischen Verwertung und Entsorgung von Deponiegas mit hohem bis geringen Methankonzentrationen
WO2003102472A1 (en) * 2002-06-03 2003-12-11 Metso Automation Oy Method and apparatus in connection with a power boiler
US20040159366A1 (en) * 2003-02-12 2004-08-19 Tsangaris Andreas V. Multiple plasma generator hazardous waste processing system
US20040182003A1 (en) * 2003-02-24 2004-09-23 Jerome Bayle Multi-stage facility and method for gasifying a feedstock including organic matter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452616B1 (de) * 1990-03-10 1993-05-12 Deutsche Babcock Energie- und Umwelttechnik Aktiengesellschaft Verfahren zum Verbrennen von festen oder schlammartigen Brennstoffen in einer Wirbelschicht
DE19859053C2 (de) * 1998-12-21 2001-01-25 Dieter Steinbrecht Verfahren zur Verbrennung von Säureharzteer in einer stationären Wirbelschichtfeuerung
DE19859052C2 (de) * 1998-12-21 2001-01-25 Dieter Steinbrecht Verfahren und Einrichtung zur thermischen Abfallverwertung und Abfallentsorgung fester, flüssiger und pumpfähiger inhomogener brennbarer Gemische und thermische Reinigung kontaminierter Materialien in einer Wirbelschichtfeuerung
DE19918928A1 (de) * 1999-04-26 2000-11-02 Dieter Steinbrecht Verfahren und Einrichtung zur Abfall- und Reststoffentsorgung auf Schiffen und Off-Shoreeinrichtungen
DE19918927A1 (de) * 1999-04-26 2000-11-02 Dieter Steinbrecht Verfahren zur thermischen Entsorgung von Kunststoffen
DE19939390A1 (de) * 1999-08-19 2001-02-22 Dieter Steinbrecht Verfahren zur thermischen Verwertung und Entsorgung von Deponiegas mit hohem bis geringen Methankonzentrationen
WO2003102472A1 (en) * 2002-06-03 2003-12-11 Metso Automation Oy Method and apparatus in connection with a power boiler
US20040159366A1 (en) * 2003-02-12 2004-08-19 Tsangaris Andreas V. Multiple plasma generator hazardous waste processing system
US20040182003A1 (en) * 2003-02-24 2004-09-23 Jerome Bayle Multi-stage facility and method for gasifying a feedstock including organic matter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Beitz,W., Grote,K.-H.: Dubbel-Taschenbuch für den Maschinenbau, 20.Auflage, Berlin: Springer-Verlag, 2001, Y8 *
Fraunhofer Institut Umwelt-, Sicherheits-, Ener- gietechnik Umsicht: Jahresbericht 2003, S.49 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021840A2 (en) * 2008-08-22 2010-02-25 Alstom Technology Ltd Fluidized bed combustion optimization tool and method thereof
WO2010021840A3 (en) * 2008-08-22 2010-06-24 Alstom Technology Ltd Fluidized bed combustion optimization tool and method thereof
DE102008055851A1 (de) * 2008-11-04 2010-05-12 Kba-Metalprint Gmbh Regenerative Abluftreinigungseinrichtung sowie Verfahren zum Herstellen einer regenerativen Abluftreinigungseinrichtung
DE102008055851B4 (de) * 2008-11-04 2011-03-17 Kba-Metalprint Gmbh Regenerative Abluftreinigungseinrichtung sowie Verfahren zum Herstellen einer regenerativen Abluftreinigungseinrichtung

Also Published As

Publication number Publication date
DE102005004082B4 (de) 2008-06-26

Similar Documents

Publication Publication Date Title
CH661112A5 (de) Verfahren zur abfallbeseitigung durch vergasung, insbesondere von haushaltmuell.
DE3915992A1 (de) Verfahren zur reduktion von stickstoffoxiden
EP2136138A2 (de) Sudhausanlage mit Filtrationseinrichtung und Verfahren zur thermischen Verwertung von feuchten Filtrationspartikeln
DE60122829T2 (de) Müllverbrennungsanlage mit Abgasrückführung
DD237479A5 (de) Verfahren zur herstellung eines absorptions- und adsorptionsmittels, sowie nach diesem verfahren hergestelltes absorptions- und adsorptionsmittel
EP0607210A1 (de) Verfahren zur verbrennung von feststoffen.
WO1986006151A1 (en) Process and installation for burning refuse materials
DE102005004082B4 (de) Verfahren und Anlage zur thermischen Entsorgung und/oder Nutzung von unterschiedlichen Stoffen mittels stationärer Wirbelschichtfeuerungsanlagen für kleine Leistungen mit integrierter Nutzung der Abgasenergie
DE4121133C1 (de)
DE19939390B4 (de) Verfahren zur thermischen Verwertung und Entsorgung von Deponiegas mit hohen bis geringen Methankonzentrationen
DE19859052C2 (de) Verfahren und Einrichtung zur thermischen Abfallverwertung und Abfallentsorgung fester, flüssiger und pumpfähiger inhomogener brennbarer Gemische und thermische Reinigung kontaminierter Materialien in einer Wirbelschichtfeuerung
EP1918015B1 (de) Rauchgas-Äquilibrierung in Müllverbrennungsanlagen
WO2003033623A1 (de) Verfahren zur stromerzeugung aus kohlenstoffhaltigem material
EP0593999A1 (de) Verfahren zur Energiegewinnung bei Müll- oder Sondermüllverbrennungsanlagen
DE2726157B2 (de) Brennofenanlage für feste Güter
DE4425117C2 (de) Verfahren zur Verbrennung von Klärschlamm in einem Wirbelschichtkessel
DE2630650A1 (de) Kontinuierliches verbrennungsverfahren fuer mineralische oder organische brennstoffe und anlage fuer die durchfuehrung dieses verfahrens
WO2005068908A1 (de) Verfahren zur energetischen nutzung von ersatzbrennstoffen, pyrolyseanlage für ersatzbrennstoffe sowie kombination aus pyrolyseanlage und feuerungsanlage zur verfeuerung von pyrolysegasen
Botha et al. Sewage-sludge incineration in South Africa using a fluidized-bed reactor
EP0664330B1 (de) Verfahren zum thermischen Verwerten von Klärschlamm
EP3363524A1 (de) Verfahren zur abscheidung saurer schadgase aus einem eine niedrige abgastemperatur aufweisenden abgas
DE102018101865A1 (de) Verfahren zur Stickoxidreduzierung in Rauchgasen von Abfallverbrennungsanlagen
DE19859053C2 (de) Verfahren zur Verbrennung von Säureharzteer in einer stationären Wirbelschichtfeuerung
EP3176517B1 (de) Verfahren und vorrichtung zur erzeugung von wärme
DE4409709C2 (de) Verfahren und Vorrichtung zur Aufbereitung industrieller Rückstände

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8381 Inventor (new situation)

Inventor name: SPIEGELBERG, VOLKER, DIPL.-ING., 18055 ROSTOCK, DE

Inventor name: STEINBRECHT, DIETER, PROF. DR.-ING. HABIL., 14, DE

8363 Opposition against the patent
8363 Opposition against the patent
8368 Opposition refused due to inadmissibility
R084 Declaration of willingness to licence
R081 Change of applicant/patentee

Owner name: SPIEGELBERG, VOLKER, DIPL.-ING., DE

Free format text: FORMER OWNER: ENERGY SYSTEMS & SOLUTIONS GMBH, 18069 ROSTOCK, DE

R082 Change of representative