WO2003033623A1 - Verfahren zur stromerzeugung aus kohlenstoffhaltigem material - Google Patents

Verfahren zur stromerzeugung aus kohlenstoffhaltigem material Download PDF

Info

Publication number
WO2003033623A1
WO2003033623A1 PCT/DE2002/003509 DE0203509W WO03033623A1 WO 2003033623 A1 WO2003033623 A1 WO 2003033623A1 DE 0203509 W DE0203509 W DE 0203509W WO 03033623 A1 WO03033623 A1 WO 03033623A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
steam
gasified
waste heat
boiler
Prior art date
Application number
PCT/DE2002/003509
Other languages
English (en)
French (fr)
Inventor
Hubertus Winkler
Original Assignee
Bu Bioenergie & Umwelttechnik Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bu Bioenergie & Umwelttechnik Ag filed Critical Bu Bioenergie & Umwelttechnik Ag
Priority to EP20020772068 priority Critical patent/EP1436366A1/de
Publication of WO2003033623A1 publication Critical patent/WO2003033623A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/08Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
    • C10K1/10Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
    • C10K1/101Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1215Heating the gasifier using synthesis gas as fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment
    • C10J2300/1634Ash vitrification
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1823Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1892Heat exchange between at least two process streams with one stream being water/steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a method for generating electricity from carbon-containing material, in particular from biomass, the material being gasified allothermally in a reactor to produce a fluidized bed, the gas generated being cooled in successive steps after passing through a cyclone, pollutants being removed in the individual steps the gas by condensing and pollutants are additionally removed chemically from the gas in at least one step.
  • Biogenic substances such as biomass, organic waste, sewage sludge or liquid manure, animal waste and other carbon-containing compounds are gasified using different processes.
  • allothermal gasification processes the material to be gasified is indirectly heated by external heat. Allothermal gasification processes are particularly important for the future because, unlike autothermal processes, they do not introduce atmospheric nitrogen into the process gas through partial combustion and therefore work with low levels of pollutants. In the case of autothermal processes, the material to be gasified is heated directly by combustion with air or oxygen. This can result in a high pollution of the gas as a result of an unregulated carbonization.
  • the steam reformer process with circulating fluidized bed is of particular importance in the allothermal processes.
  • the heat transfer medium preferably sand or corundum
  • the material to be gasified is entered into this fluidized bed.
  • Steam injected into the reformer from below serves to circulate and fluidize the fluidized bed.
  • the injected steam is used for the thermo-chemical digestion of the biomass.
  • Allothermic gasification processes are particularly advantageous because they are insensitive to moisture fluctuations in the material to be gasified. With Even the finest dusts can be easily gasified using this process. In addition, this method is insensitive to fluctuations in the geometry of the effective reaction space. It is also of great advantage that almost all carbon compounds can be gasified.
  • the gasification can be regulated at a constant, ideal temperature level, the circulating fluidized bed ensuring a large thermo-chemical breakdown and preventing sintering by ash fractions, which tend to sinter even at low temperatures.
  • the exhaust gases from the residual combustion process of the material to be gasified are used to heat the heat transfer medium, preferably sand or steel balls, to approximately 1000 ° C.
  • This heat transfer medium is fed to the gasification process and supplies the thermal energy for gasification.
  • Another disadvantage is that the gasification does not take place at a uniform temperature level, but takes place unregulated between 500 and 1000 ° C.
  • the high inlet temperature of the heat transfer medium of approx. 1000 ° C in the gasification process leads to the sintering and accumulation of residual ash on the heat transfer medium.
  • the gas then has to be cleaned using a dust filter or wet gas cleaning.
  • the contaminated gas is cleaned in a waste heat boiler via a dust filter with subsequent quenching and fine cleaning.
  • biomass is finely ground, predried and pelletized and fed to the gasifier.
  • the thermal gasification energy is determined by a Mixture of gas, pure oxygen and steam as hot fluidizing gas supplied to the biomass.
  • the rest of the resulting gas is fed into a waste heat boiler and cleaned in the subsequent dust filter and quench.
  • the present invention is therefore based on the object of designing and developing a method of the type mentioned at the outset in such a way that effective energy generation can be implemented without problems.
  • a method for generating electricity from carbon-containing material is characterized in that part of the gas is burned in burners for heating the fluidized bed and the remaining part of the gas is burned in internal combustion engines and is preferably used electrochemically.
  • the combustion of part of the resulting gas reduces the supply of extraneous gas.
  • the process is particularly economical.
  • it has been recognized that it is precisely the combination of the features of the labeling part, namely combustion of part of the gas in burners and combustion of the rest of the gas in combustion internal combustion engines for electro-chemical recycling, a particularly effective energy production realized.
  • the method according to the invention makes it possible to use the resulting gas in two ways, namely as a supplier of electrical energy and thermal energy.
  • the exhaust gases from the internal combustion engines and / or the burners could be used for the thermochemical digestion of the material to be gasified.
  • This specific embodiment advantageously uses waste products of the process for the preparation of the material to be gasified, which are produced anyway.
  • the exhaust gases from the internal combustion engines and / or the burners could be used to heat and / or dry the material to be gasified.
  • This specific embodiment of the method advantageously uses thermal energy of the method in order to prepare the material to be gasified in such a way that it exhibits particularly favorable reaction properties in the fluidized bed due to its dryness.
  • the exhaust gases from the internal combustion engines and / or the burners could be used to heat the combustion air of the gas in the burners or a post-combustion boiler.
  • the fluidized bed can be heated in an energetically particularly advantageous manner, since the energy supply to the burners is reduced by using the exhaust gases.
  • the exhaust gases from the burners could be directed into a waste heat boiler for steam generation.
  • the energy content of the exhaust gases is used to support the thermo-chemical digestion.
  • the exhaust gases from the burners could be fed into the waste heat boiler via a steam superheater. This ensures that the process steam required for the thermo-chemical decomposition of the carbon is brought to a suitable reaction temperature.
  • the process steam also serves to fluidize the fluidized bed.
  • a condensation steam turbine could be driven by the waste heat boiler. When using highly effective condensation steam turbines, energy is released in the form of warm air in an air condenser at a low temperature level of approx. 45 ° C. This can be channeled through biomass temporarily stored in the warehouse in order to pre-dry it. This significantly improves the overall energy balance.
  • moist raw materials can also be stored.
  • the targeted drying in this form avoids drying in intermediate storage spaces, which causes transport and storage costs.
  • raw materials are stored temporarily, their energy content decreases due to the formation of fungi and lignin degradation.
  • Part of the steam for the thermal decomposition of the material to be gasified could already be introduced into the screw conveyor of the material to be gasified.
  • the material to be gasified is not only dried further during transport but at the same time heated, which has a positive influence on the course of the gasification reaction.
  • the carbon in the residual ash separated in the cyclone could be fed directly from the cyclone into a steam boiler and burned there. Due to this specific design, even waste products, namely the residual ash, are still used.
  • the steam boiler serves as a slag burner boiler that burns the carbon of the residual ash so that the ash is slagged on the one hand and all carbon compounds are used in thermal energy in the form of steam on the other hand.
  • the carbon in the residual ash is burned at a higher temperature level so that the silicon components melt the heavy metal compounds and the ash is rendered inert. This means that it can also be used when contaminated waste wood is used, for example for road construction, which reduces its disposal costs.
  • Low pressure steam could be used as process steam for the allothermic reaction. This enables the allothermal gasification process to be carried out at a low temperature level without causing disposal and energy use problems with a higher carbon content in the ash.
  • the allothermal gasification temperature is low, less gas is used for the thermochemical digestion. Proportionally more gas is thus available for the internal combustion engines. In addition, the knock number of the gas is improved. Energetic processes at a lower energy level improve the overall balance of the entire process.
  • Low pressure steam could be directed into the condensing steam turbine.
  • This specific embodiment uses thermal energy in the form of steam in the low-pressure stage of the condensation steam turbine to generate electricity.
  • the thermal energy is used as process auxiliary energy.
  • the waste heat from the engine cooling could be used to dry the material and heat the combustion air of the burners.
  • the thermal energy that is released during the electrochemical utilization of the gas could be used in an economically sensible manner.
  • the waste heat from the engine cooling could be used for combustion in the steam boiler. This supports the combustion of the carbons of the residual ash in an energetically particularly advantageous manner.
  • the supply of waste heat enables a suitable activation of the combustion reaction.
  • the waste heat from the engine cooling could be used for district heating processes.
  • the energy industry in residential areas and residential areas could advantageously be influenced in such a way that heat is generated from waste products for heating purposes.
  • the exhaust air from an air condenser of the condensation steam turbine could be used for predrying the material to be gasified.
  • the material to be gasified is prepared so that almost No external energy is used to dry the material to be gasified during the gasification process.
  • waste heat from gas cooling from 300 ° C to 40 ° C during cleaning and condensation steps could be used to predry the material to be gasified. It is conceivable here that the gas is suddenly cooled in several stages using the energy given off in corresponding temperature stages, with a majority of dioxins and furans cracking and a backward Boudouard reaction being avoided.
  • a tube bundle heat exchanger which is arranged downstream of a cyclone, could cool the gas down to 310 ° C without gas components being able to condense.
  • steam of a higher pressure level is generated very effectively using a heat exchanger of inexpensive design.
  • the gas could suddenly be cooled with water so that sprayed water drops simultaneously form condensation nuclei for the accumulation of pollutants.
  • the gas could be cooled to such an extent that excess water condenses out and is conducted in a clean cycle via heat exchangers.
  • the condensed water can be fed back to a preliminary stage. It is conceivable that the waste heat from the gas scrubber is used to preheat the condensate.
  • contaminated woods can also be used.
  • the process is also suitable for the gasification of waste products, for example shredder light fractions, for the generation of electricity or hydrogen.
  • the process for the gasification of waste products also generates high-energy gas for energetic use in combustion processes, for example in the brick and cement industries. Due to the intensive pre-cleaning of the gas, the exhaust gases from the motors or burners can be directed into highly efficient heat exchangers. Since the gas is free of pollutants, no waste products accumulate on the heat exchanger surfaces, which reduce their efficiency. Therefore, more efficient heat exchangers can be used and no exhaust gas cleaning is required.
  • Residual ash separated in the cyclone could be gasified autothermally and the resulting gas could be mixed with the gas produced in the allothermal gasification process.
  • the steam boiler, the combustion of the residual ash or the autothermal gasification could be designed in such a way that a lower gasification temperature can be selected in the reformer of the allothermic gasification. This requires low thermal digestion energy, which means that more gas is available for the engines and the gas composition is improved in terms of methane number and overall efficiency.
  • the knock number is improved by improving the methane number of the gas composition. In this respect, an engine-friendly design of the method is implemented.
  • the material to be gasified could be introduced into the interior of the circulating fluidized bed. This advantageously realizes that the material to be gasified is gasified particularly uniformly and a gradient formation in the fluidized bed or in the material to be gasified is avoided.
  • the exhaust gases generated in the steam boiler could possibly be passed through high-temperature-resistant heat exchanger tubes in the reformer with the addition of material to be gasified, and replace the burners in the reformer in whole or in part.
  • This configuration realizes allothermal gasification in a particularly advantageous manner in that the material to be gasified indirectly via hot pipes is gasified. Exhaust gases produced as waste products are used in an advantageous manner.
  • the condensed hydrocarbons formed during gas cleaning could be fed to the steam boiler.
  • This configuration realizes that not only hydrocarbons from the residual ash are recycled, but also hydrocarbons that are not separated with the residual ash. In this respect, a particularly effective utilization of all hydrocarbons is realized through this process step.
  • the condensed hydrocarbons formed during gas cleaning could be fed to the allothermic or autothermal gasification process. This ensures that the allothermic or autothermal gasification process is accelerated.
  • the gas produced in the allothermal gasification process could be dried, whereby carbons are condensed out via a cryogenic process.
  • aftertreatment of the gas for higher demands is realized.
  • Due to the high hydrogen content of the gas traces of hydrocarbons can condense out due to their particularly low partial pressure when the already very clean gas is subsequently compressed.
  • This low-volume gas which is three times higher than that of autothermal gasification processes and has an energy content three times higher than that of autothermal processes, can be effectively cleaned wet in small systems using special processes. This can be done in such a way that it is also suitable for motor-driven power generators, in particular in connection with a cryogenic process, for highly effective, pressure-charged, high-compression engines with electrical efficiencies above 40%.
  • the cryo process could be carried out by pre-drying before cooling or by cooling alone so that no gas hydrate formation occurs.
  • this configuration can optionally be carried out by gas predrying or a combination process. This will result in a dry gas if the gas temperature is raised slightly to approx. 20 ° C. testifies which can be passed into standard air filters for engines. In this respect, commercially readily available devices can be used.
  • the energy content of process steps is used to support the thermo-chemical digestion in order to use available energies for the generation of electricity, whereby total electrical efficiencies of up to 40% are possible. It is also conceivable that the energy content is used to raise the temperature of the condensate. Overall, even with lower power plants that use renewable raw materials, overall efficiencies of up to 40% are possible.
  • stoichiometric gasification is possible using an autothermal gasification process, or, if necessary, using the Karbo-V process, with simultaneous slagging of the residual ash.
  • the resulting gas is mixed with the main stream before gas cooling and gas scrubbing.
  • the advantage in this case is a higher gas volume for highly efficient gas engines.
  • capital expenditure must be weighed up here.
  • the possibility of an overall energetic optimization is created in such a way that the allothermal gasification takes place more energy-efficiently at lower temperatures, for example at 700 ° C. Gasification of the volatile components takes place at higher throughput rates. It is accepted that there is more carbon in the residual ash, which is then also used for thermo-chemical digestion in connection with the steam cycle or gasified in an autothermal or allothermal process.
  • the process steam draws gas from the reformer via a Venturi nozzle, possibly for regulating the fluidized bed, and introduces it into the fluidized bed with only a slight loss of temperature, by the amount of process steam for reducing circulation. This creates opportunities for stable allothermic gasification even with higher material moisture or moisture fluctuations.
  • Another advantage is that the energy recovery of washed-out carbon compounds such as oils, petrol and tars reduces their disposal costs.
  • Fig. In a schematic diagram, the method for generating electricity from carbonaceous material.
  • the method according to the invention shown in FIG. 1 uses a reactor 1 in which the gasification of the biomass 2 takes place. This can process a wide range of different biogenic substances.
  • the biomass 2 is stored in a warehouse 3, which is sufficient for a quantity of approximately 7000 m 3 . This amount has an average residence time of approx. 10 days.
  • the biomass 2 has different piece or grain sizes.
  • the delivered biomass 2 is processed in a warehouse 3 by processing and conveying systems. Foreign materials such as metals, stones and the like are separated from biomass 2 by means of separators and sieves. The processing takes place in such a way that 1 piece goods of size type G 50 are fed to the reactor.
  • the moisture of the biomass 2 can be subject to strong fluctuations depending on the season.
  • Biomass 2 with a residual moisture of less than 20% is used for the energetically optimized operation of the reactor 1.
  • the biomass 2 is aerated and dried in the warehouse 3.
  • the ventilation and drying of the biomass 2 takes place by means of low-temperature heat, which arises in the overall process. Suction fans suck air at a temperature of approx. 45 ° C. from an air condenser 4 and blow slightly overheated air into special ventilation channels of the bearing 3. In this way, dry values of about 15 to 20% residual moisture of the biomass 2 used are achieved.
  • the conveyor systems of the warehouse 3 are designed redundantly two-lane, the biomass 2 is conveyed via automatic crane systems.
  • the cranes are equipped with moisture sensors so that an optimal distribution in the area of the individual storage chambers takes place when the biomass 2 is delivered.
  • the conveyor systems within the warehouse 3 work fully automatically, so that no permanent staff is required for this.
  • the exhaust air from the warehouse 3 is passed through a filter system.
  • the pre-dried biomass 2 is fed to the reactor 1 via screw conveyors.
  • the feed takes place on two opposite sides, so that an optimal loading of the fluidized bed 5 of the reactor 1 is ensured.
  • the fluidized bed 5 of the reactor 1 is heated by means of burners which are arranged one above the other in the reactor space.
  • the burners are supplied with combustion air via a fan, which is preheated to about 45 ° C. and is drawn off from the air condenser 4.
  • the burners burn a mixture of air and fuel gas in a ratio of 1.1 to 1.2, with an excess of air.
  • the thermal energy required for the gasification process is provided via fuel gas branched off after a gas scrubbing.
  • Inner cyclones integrated in the reactor 1 retain entrained bed material, larger ashes and coke particles and feed them back to the fluidized bed 5.
  • the gas leaves the reactor 1 at a temperature of approximately 800 ° C. and is first passed through an external cyclone. There, fine ash and coke particles are separated, which are then used for post-combustion for further energetic use.
  • the hot gas is further cooled in a tubular heat exchanger to approx. 300 ° C and generates steam which is under a pressure of approx. 45 bar.
  • the ash components contained in the biomass 2 are discharged via the external cyclone at the outlet from the reactor 1.
  • This ash fraction contains residual carbon that was not reacted in reactor 1.
  • a very high carbon conversion can be generated, which is higher than 99%.
  • the reactivity of carbon and biomass 2 and the temperature of the gasification process play an important role here.
  • the higher the operating temperature the higher the carbon conversion.
  • the gas remaining for processing in the combustion engines designed as gas engines 8 decreases, a technically and economically sensible value must be set here.
  • a carbon conversion of approx. 95% is considered to be sensible.
  • Sufficient gas is thus available for the gas engines 8 and the residual carbon of the ash fraction is approximately 20 to 50% depending on the ash content of the biomass used.
  • This stream of solids is fed to a combustion boiler and burned with the addition of a gas stream for auxiliary firing.
  • the heat generated is used to generate low-pressure steam that is placed on the low-pressure rail of a steam System is given. There, this leads to a reduction in the required extraction steam on a steam turbine, so that the electrical output of the turboset increases by this amount. This means that the energy content of the residual carbon can be fully used.
  • the combustion of the carbonaceous ash flow in the combustion boiler is carried out using a slag burner.
  • the ash is liquefied and slagged in the combustion process.
  • the detoxified ash is easier to deposit due to the lower elution ability, since the water-soluble components contained therein can no longer be washed out.
  • the costs for the disposal of slagged ashes are considerably lower than for untreated ashes, which results in an additional economic advantage.
  • the cooled gas enters the gas scrubber and is saturated in direct contact with injected water, thereby cooling to around 45 ° C. All high-boiling hydrocarbons are condensed out and the remaining fine ash particles are separated.
  • a pH value of the circulating water By regulating a pH value of the circulating water to approximately 5 to 6 by metering in sulfuric acid, a complete absorption of the ammonia contained in the gas can be achieved.
  • the condensed tars and residual ash components are concentrated in the circulating water of the gas scrubber.
  • a waste water stream is removed from the gas scrubbing as a result of the excess water which occurs during gas cooling.
  • Solid components, tars and liquid hydrocarbons are separated from this stream.
  • the remaining waste water is discharged into the sewage system to the waste water system.
  • the cleaned gas is free from tars, acidic constituents etc. and essentially consists only of hydrogen, methane, carbon monoxide and carbon dioxide and can therefore be used directly in the gas engines 8 connected downstream. Part of the gas is used to fire the burners. The remaining portion is used to generate electricity in the gas engines 8.
  • the gas available after the gas scrubbing is fed into gas engines 8.
  • gas engines 8 There are two basic options available for this.
  • self-priming gas Otto engines can be used.
  • pilot gas engine with turbocharging is offered.
  • the variant with pilot gas engine is disregarded here, since the investment costs are significantly higher than with conventional gas engines.
  • the total electrical output here is around 4.5 MW, the available thermal output at 90 ° C flow temperature is around 2.0 MW.
  • the exhaust gases from the individual gas engines 8 are brought together and, after mixing with the exhaust gases from the pulse burners, are passed into the waste heat block.
  • the exhaust gases of the gas engines 8 have a temperature between 500 and 600 ° C, so that after mixing with the exhaust gases of the burners, mixing temperatures of 620 to 670 ° C are reached.
  • This exhaust gas mixture is fed to the waste heat boiler 7 for generating high-pressure steam.
  • the required NOx and CO values can be achieved by using catalysts.
  • the mixed exhaust gases from the gas engines 8 and the burners are brought into the waste heat boiler 7.
  • the waste heat boiler 7 the boiler feed water is heated, the generation of high pressure steam at 45 bar and the superheating of the high pressure steam to approximately 440 ° C.
  • the high pressure steam generated is fed to a condensation steam turbine 9.
  • the design of the turbine 9 plays a special role here, since the generation of the electrical energy is determined by the turbine efficiency. Since electricity is the main supply product of the plant and has the greatest impact on the overall economy of the plant, a multi-stage machine with high internal efficiency will be used here.
  • the condensation steam turbine 9 is provided with a tap, from which the need for the low-pressure rail is covered.
  • the steam reformer is supplied with process steam from the low pressure rail.
  • the low-pressure steam that occurs in the ash afterburning is fed to the low-pressure rail, so that the tapping amount of the turbine 9 is thereby reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

Ein Verfahren zur Stromerzeugung aus kohlenstoffhaltigem Material, insbesondere aus Biomasse (2), wobei das Material in einem Reaktor (1) unter Erzeugung einer Wirbelschicht (5) allotherm vergast wird, wobei das erzeugte Gas nach Durchlaufen eines Zyklons in aufeinanderfolgenden Schritten abgekühlt wird, wobei in den einzelnen Schritten Schadstoffe aus dem Gas durch Auskondensieren und in mindestens einem Schritt Schadstoffe zusätzlich chemisch aus dem Gas entfernt werden, ist im Hinblick auf die Aufgabe eine effektive Energiegewinnung problemlos zu realisieren dadurch gekennzeichnet, dass ein Teil des Gases in Brennern zur Erwärmung des Wirbelbetts (5) verbrannt wird und der übrige Teil des Gases in Verbrennungsmotoren (8) verbrannt und vorzugsweise elektro-chemisch verwertet wird.

Description

„Verfahren zur Stromerzeugung aus kohlenstoffhaltigem Material"
Die Erfindung betrifft ein Verfahren zur Stromerzeugung aus kohlenstoffhaltigem Material, insbesondere aus Biomasse, wobei das Material in einem Reaktor unter Erzeugung einer Wirbelschicht allotherm vergast wird, wobei das erzeugte Gas nach Durchlaufen eines Zyklons in aufeinanderfolgenden Schritten abgekühlt wird, wobei in den einzelnen Schritten Schadstoffe aus dem Gas durch Auskondensieren und in mindestens einem Schritt Schadstoffe zusätzlich chemisch aus dem Gas entfernt werden.
Verfahren der in Rede stehenden Art sind aus der Praxis bereits bekannt. So werden biogene Stoffe wie Biomasse, Biomüll, Klärschlamm oder Gülle, tierische Abfälle und sonstige kohlenstoffhaltige Verbindungen mit unterschiedlichen Verfahren vergast.
Bei allothermen Vergasungsverfahren erfolgt eine indirekte Beheizung des zu vergasenden Materials durch Fremdwärme. Allotherme Vergasungsverfahren sind deshalb für die Zukunft besonders bedeutsam, weil sie im Gegensatz zu autothermen Verfahren keinen Luftstickstoff ins Prozessgas durch Teilverbrennung einbringen und daher schadstoffarm arbeiten. Bei autothermen Verfahren wird das zu vergasende Material direkt durch Verbrennung mit Luft oder Sauerstoff beheizt. Hierbei kann infolge einer ungeregelten Verschwelung eine hohe Schadstoffbelastung des Gases entstehen.
Bei den allothermen Verfahren ist das Dampfreformer - Verfahren mit zirkulierendem Wirbelbett von besonderer Bedeutung. Bei diesem Verfahren wird das Wärmeträgermedium, vorzugsweise Sand oder Korund, als Wirbelbett indirekt über Wärmetauscher auf die Reaktionstemperatur erhitzt. In dieses Wirbelbett wird das zu vergasende Material eingetragen. Dabei dient von unten in den Reformer eingedüster Dampf zur Zirkulation und Fluidisierung des Wirbelbetts. Darüber hinaus dient der eingedüste Dampf zum thermo-chemischen Aufschluss der Biomasse.
Allotherme Vergasungsverfahren sind vor allem deswegen vorteilhaft, weil sie gegen Feuchtigkeitsschwankungen des zu vergasenden Materials unempfindlich sind. Mit diesem Verfahren sind auch feinste Stäube gut vergasbar. Darüber hinaus ist dieses Verfahren gegen Geometrieschwankungen des effektiven Reaktionsraums unempfindlich. Von großem Vorteil ist außerdem, dass nahezu alle Kohlenstoffverbindungen vergast werden können. Die Vergasung kann auf konstantem idealem Temperaturniveau eingeregelt werden, wobei das zirkulierende Wirbelbett einen großen thermo-chemischen Aufschluss sichert und ein Versintern durch Aschefraktionen verhindert, die auch bei niedrigen Temperaturen zu Versinterungen neigen.
Es ist bekannt, dass in allothermen Vergasungsverfahren, zum Beispiel dem Batteileverfahren, die Abgase aus dem Restverbrennungsprozess des zu vergasenden Materials verwendet werden, um den Wärmeträger, vorzugsweise Sand oder Stahlkugeln, auf ca. 1000°C zu erhitzen. Dieser Wärmeträger wird dem Vergasungsprozess zugeführt und liefert die thermische Energie zur Vergasung.
Nachteilig ist hierbei, dass sowohl die Abgase als auch deren Ablagerungen am Wärmeträger das Gas verunreinigen und verdünnen.
Nachteilig ist überdies, dass die Vergasung nicht auf gleichmäßigem Temperaturniveau stattfindet, sondern ungeregelt zwischen 500 und 1000°C erfolgt.
Die hohe Eingangstemperatur des Wärmeträgers von ca. 1000°C führt im Vergasungsprozess zur Versinterung und Anlagerung von Restaschen an dem Wärmeträger. Im Anschluss muss das Gas durch Staubfilter oder Nassgasreinigung aufwendig gereinigt werden.
Bei Nutzung dieses Verfahrens zur Gaserzeugung in Gasmotoren wird das belastete Gas in einem Abhitzekessel über Staubfilter mit anschließender Quenche und Feinreinigung gereinigt.
Die gegenwärtigen Probleme der Restbelastungen des Gases erfordern neue Wege, da die Abhitzekessel schnell versotten und der Wirkungsgrad der Anlagen sinkt.
Gemäß einem weiteren Verfahren wird Biomasse fein zermahlen, vorgetrocknet und pellettiert dem Vergaser zugeführt. Die thermische Vergasungsenergie wird durch ein Gemisch von Gas, reinem Sauerstoff und Dampf als heißes Wirbelgas der Biomasse zugeführt. Der Rest des entstehenden Gases wird in einen Abhitzekessel geleitet und im anschließenden Staubfilter und einer Quenche gereinigt.
Bei diesen bekannten Verfahren ist nachteilig, dass dem Gas reiner Sauerstoff zugeführt werden muss, dass sich Verunreinigungen des Gases im Abhitzekessel ablagern können, und dass das Wirbelgas im Reaktor unterschiedliche Temperaturzonen aufweist. Von ganz besonderem Nachteil ist, dass die Biomasse aufwendig vorbehandelt werden muss. Es ist außerdem Stand der Technik, das Gas ohne vorgelagerten Zyklon abzukühlen und zu reinigen. Die Verbrennungsluft eines Gasmotors wird dann einem Wärmeerzeuger in Kombination mit einem Ölbrenner zugeführt.
Allen genannten Verfahren ist gemeinsam, dass die gesamtenergetische Verwertung des zu vergasenden Rohstoffes und des entstehenden Gases nicht optimiert wird. Problematisch ist überdies, dass die wesentlichen Verfahrensschritte nur unter Entstehung erheblicher Verunreinigungen und Schadstoffbelastungen ausgeführt werden können.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art derart auszugestalten und weiterzubilden, dass eine effektive Energiegewinnung problemlos realisierbar ist.
Erfindungsgemäß wird die voranstehende Aufgabe hinsichtlich eines Verfahrens zur Stromerzeugung aus kohlenstoffhaltigem Material mit den Merkmalen des Patentanspruchs 1 gelöst. Danach ist ein Verfahren zur Stromerzeugung aus kohlenstoffhaltigem Material dadurch gekennzeichnet, dass ein Teil des Gases in Brennern zur Erwärmung des Wirbelbetts verbrannt wird und der übrige Teil des Gases in Verbrennungsmotoren verbrannt und vorzugsweise elektro-chemisch verwertet wird.
In erfindungsgemäßer Weise ist erkannt worden, dass die Verbrennung eines Teils des entstehenden Gases die Zufuhr von Fremdgas verringert. Insofern ist das Verfahren besonders ökonomisch. Darüberhinaus ist erkannt worden, dass gerade die Kombination der Merkmale des Kennzeichnungsteils, nämlich Verbrennung eines Teils des Gases in Brennern und Verbrennung des übrigen Teils des Gases in Ver- brennungsmotoren zur elektro-chemischen Verwertung, eine besonders effektive Energiegewinnung realisiert. In ganz besonders raffinierter Weise wird durch das erfindungsgemäße Verfahren ermöglicht, entstehendes Gas in zweifacher Weise zu nutzen, nämlich als Lieferant für elektrische Energie und Wärmeenergie.
Die Abgase der Verbrennungsmotoren und/oder der Brenner könnten zum thermo- chemischen Aufschluss des zu vergasenden Materials verwendet werden. Diese konkrete Ausgestaltung verwendet vorteilhaft ohnehin entstehende Abfallprodukte des Verfahrens zur Aufbereitung des zu vergasenden Materials.
Die Abgase der Verbrennungsmotoren und/oder der Brenner könnten zur Erwärmung und/oder Trocknung des zu vergasenden Materials verwendet werden. Diese konkrete Ausgestaltung des Verfahrens nutzt vorteilhaft Wärmeenergie des Verfahrens, um das zu vergasende Material dahingehend aufzubereiten, dass es im Wirbelbett aufgrund seiner Trockenheit besonders günstige Reaktionseigenschaften zeigt.
Die Abgase der Verbrennungsmotoren und/oder der Brenner könnten zur Erwärmung der Verbrennungsluft des Gases in den Brennern oder eines Nachverbrennungskessels verwendet werden. Bei dieser konkreten Ausgestaltung ist vorteilhaft, dass die Erwärmung des Wirbelbetts in energetisch besonders günstiger Weise erfolgen kann, da die Energiezufuhr zu den Brennern durch Nutzung der Abgase verringert wird.
Die Abgase der Brenner könnten in einen Abhitzekessel zur Dampferzeugung geleitet werden. Bei dieser konkreten Ausgestaltung wird der Energiegehalt der Abgase zur Unterstützung des thermo-chemischen Aufschlusses genutzt.
Die Abgase der Brenner könnten über einen Dampfüberhitzer in den Abhitzekessel geleitet werden. Hierdurch wird gewährleistet, dass der zum thermo-chemischen Aufschluss des Kohlenstoffes notwendige Prozessdampf auf eine geeignete Reaktionstemperatur gebracht wird. Der Prozessdampf dient gleichzeitig der Fluidisierung des Wirbelbetts. Darüberhinaus ist vorteilhaft realisiert, dass die zu erbringende Leistung der Brenner reduziert wird und die Zirkulation des Wirbelbetts bei Kontakt mit der Biomasse beschleunigt wird. Durch den Abhitzekessel könnte eine Kondensationsdampfturbine angetrieben werden. Bei Einsatz von hoch effektiven Kondensationsdampturbinen wird in einem Luftkondensator auf niedrigem Temperaturniveau von ca. 45°C Energie in Form von Warmluft freigesetzt. Diese kann über Kanäle durch im Lager zwischengelagerte Biomasse geleitet werden, um diese vorzutrocknen. Hierdurch wird die Gesamtenergiebilanz erheblich verbessert. Durch diese konkrete Ausgestaltung sind auch feuchte Rohstoffe einlagerbar. Die gezielte Trocknung in dieser Form vermeidet die Trocknung in Zwischenlagerplätzen, was Transport- und Lagerkosten verursacht. Außerdem sinkt bei der Zwischenlagerung feuchter Rohstoffe deren Energiegehalt durch Pilzbildung und Ligninabbau.
Ein Teil des Dampfes für den thermischen Aufschluss des zu vergasenden Materials könnte bereits in die Transportschnecke des zu vergasenden Materials eingebracht werden. Durch diese Maßnahme wird das zu vergasende Material während des Transports nicht nur noch weiter getrocknet sondern zugleich erhitzt, wodurch der Ablauf der Vergasungsreaktion in positiver Weise beeinflusst wird.
Die Kohlenstoffe der im Zyklon abgeschiedenen Restasche könnten direkt aus dem Zyklon in einen Dampfkessel eingeleitet werden und dort verbrannt werden. Durch diese konkrete Ausgestaltung werden sogar Abfallprodukte, nämlich die Restasche, noch verwertet.
Im Dampfkessel könnten Schwermetallverbindungen eingeschmolzen werden. Bei dieser konkreten Ausgestaltung dient der Dampfkessel quasi als Schlackenbrenner- kessel, der die Kohlenstoffe der Restasche so verbrennt, dass einerseits die Asche verschlackt wird und andererseits alle Kohlenstoffverbindungen in thermische Energie in Form von Dampf verwertet werden. Dabei wird der Kohlenstoff in der Restasche auf höherem Temperaturniveau so verbrannt, dass die Siliziumanteile die Schwermetallverbindungen einschmelzen und die Asche inertisiert wird. Dadurch ist sie auch bei Verwendung belasteter Althölzer, zum Beispiel für den Straßenbau, einsetzbar, wodurch ihre Entsorgungskosten geringer werden. Dampf niederer Druckstufe könnte als Prozessdampf für die allotherme Reaktion verwendet werden. Hierdurch wird ermöglicht, dass der allotherme Vergasungsprozess auf niedrigem Temperaturniveau ausgeführt werden kann, ohne dass bei höherem Kohlenstoffanteil der Asche Entsorgungs- und Energienutzungsprobleme entstehen. Bei niedriger allothermer Vergasungstemperatur wird weniger Gas für den thermo- chemischen Aufschluss verbraucht. Es steht somit anteilig mehr Gas für die Verbrennungsmotoren zu Verfügung. Darüber hinaus wird die Klopfzahl des Gases verbessert. Energetische Prozesse auf niedrigerem Energieniveau verbessern die Gesamtbilanz des gesamten Verfahrens.
Dampf niederer Druckstufe könnte in die Kondensationsdampfturbine geleitet werden. Durch diese konkrete Ausgestaltung wird thermische Energie in Form von Dampf in der Niederdruckstufe der Kondensationsdampfturbine zur Stromerzeugung verwertet. Darüber hinaus wird die thermische Energie als Prozesshilfsenergie verwertet.
Die Abwärme der Motorkühlung könnte für die Materialtrocknung und Erwärmung der Verbrennungsluft der Brenner verwendet werden. Durch diese konkrete Ausgestaltung könnte die thermische Energie, die bei der elektro-chemischen Verwertung des Gases frei wird, in ökonomisch sinnvoller Weise verwendet werden.
Die Abwärme der Motorkühlung könnte für die Verbrennung im Dampfkessel verwendet werden. Hierdurch wird die Verbrennung der Kohlenstoffe der Restasche in energetisch besonders vorteilhafter Weise unterstützt. Die Zufuhr der Abwärme ermöglicht eine geeignete Aktivierung der Verbrennungsreaktion.
Die Abwärme der Motorkühlung könnte für Fernwärmeprozesse verwendet werden. Vorteilhafterweise könnte die Energiewirtschaft im Siedlungsbereich und in Wohngebieten dahingehend beeinflusst werden, dass aus Abfallprodukten Wärme für Heizungszwecke gewonnen wird.
Die Abluft eines Luftkondensators der Kondensationsdampfturbine könnte für die Vortrocknung des zu vergasenden Materials verwendet werden. Bei dieser Ausgestaltung wird das zu vergasende Material dahingehend vorbereitet, dass nahezu keine prozessfremde Energie verbraucht wird, um das zu vergasende Material während des Vergasungsprozesses selbst zu trocknen.
Die Abwärme einer Gasabkühlung von 300°C auf 40°C bei Reinigungs- und Kondensationsschritten könnte für die Vortrocknung des zu vergasenden Materials verwendet werden. Hierbei ist denkbar, dass das Gas in mehreren Stufen schlagartig unter Verwendung der abgegebenen Energie in entsprechenden Temperaturstufen abgekühlt wird, wobei ein Hauptteil von Dioxinen und Furanen gecrackt und eine rückläufige Boudouard-Reaktion vermieden wird.
Durch die Vermeidung einer Boudouard-Reaktion wird die Rückreaktion von zwei Anteilen Kohlenmonoxid in einen Anteil Kohlendioxid und einen Anteil Kohlenstoff vermieden. Hierbei könnte ein Rohrbündelwärmetauscher, der einem Zyklon nachgeordnet ist, das Gas bis auf 310°C abkühlen, ohne dass Gasbestandteile kondensieren können. Hierbei wird hocheffektiv Dampf höherer Druckstufe unter Verwendung eines Wärmetauschers kostengünstiger Bauart erzeugt.
In der zweiten Stufe könnte das Gas mit Wasser schlagartig so gekühlt werden, dass gleichzeitig versprühte Wassertropfen Kondensationskeime zur Schadstoffanlagerung bilden.
In einer dritten Stufe könnte das Gas so weit abgekühlt werden, dass überschüssiges Wasser auskondensiert und in einem sauberen Kreislauf über Wärmetauscher geleitet wird. Das kondensierte Wasser kann einer Vorstufe wieder zugeführt werden. Hierbei ist denkbar, dass die Abwärme der Gaswäsche zur Kondensatvorwärmung genutzt wird.
Bei einer Kombination der drei zuvor genannten Stufen der Gasbehandlung sind auch belastete Hölzer verwendbar. Darüber hinaus ist das Verfahren für die Vergasung von Abfallprodukten, zum Beispiel Schredderleichtfraktionen, zur Strom- oder Wasserstofferzeugung geeignet. Selbstverständlich ist hier auch denkbar, dass das Verfahren für die Vergasung von Abfallprodukten auch energiereiches Gas zur energetischen Nutzung in Brennprozessen, zum Beispiel der Ziegelindustrie und Zementindustrie, erzeugt. Durch die intensive Vorreinigung des Gases können die Abgase der Motoren oder Brenner in hocheffiziente Wärmetauscher geleitet werden. Da das Gas schadstofffrei ist, setzen sich keine Abfallprodukte an den Wärmetauscherflächen an, die deren Wirkungsgrade verringern. Es sind daher effizientere Wärmetauscher einsetzbar und es ist keine Abgasreinigung erforderlich.
Die laufenden Betriebskosten für dieses Gaswäscheverfahren sind geringer als die von Abgasreinigungsanlagen. Entscheidend ist hierbei, dass die Energieausbeute des reinen Prozessgases bis in den Kondensationsbereich des Wassers genutzt werden kann, wogegen bei den bisherigen Verfahren das Auskondensieren der Kohlenstoff- und Schwefelverbindungen höhere Prozessgastemperaturen fordert.
Im Zyklon abgeschiedene Restasche könnte autotherm vergast werden und das entstehende Gas könnte dem im allothermen Vergasungsprozess entstandenen Gas beigemischt werden. Hierbei könnte der Dampfkessel, die Verbrennung der Restasche oder die autotherme Vergasung so ausgelegt sein, dass eine niedrigere Vergasungstemperatur im Reformer der allothermen Vergasung gewählt werden kann. Diese erfordert eine geringe thermische Aufschlussenergie, wodurch mehr Gas für die Motoren verfügbar ist und die Gaszusammensetzung hinsichtlich der Methanzahl und der Gesamtwirkungsgrad verbessert wird. Bei dieser Ausgestaltung wird die Klopfzahl verbessert, indem die Methanzahl der Gaszusammensetzung verbessert wird. Insofern ist eine motorschonende Ausgestaltung des Verfahrens realisiert.
Das zu vergasende Material könnte in das Innere des zirkulierenden Wirbelbetts eingebracht werden. Hierdurch ist vorteilhaft realisiert, dass das zu vergasende Material besonders gleichmäßig vergast und eine Gradientenbildung im Wirbelbett bzw. im zu vergasenden Material vermieden wird.
Die im Dampfkessel entstehenden Abgase könnten gegebenenfalls unter Zufeuerung von zu vergasendem Material durch hochtemperaturbeständige Wärmetauscherrohre im Reformer geleitet werden und die Brenner im Reformer ganz oder teilweise ersetzen. Durch diese Ausgestaltung wird eine allotherme Vergasung in besonders vorteilhafter Weise dadurch realisiert, dass das zu vergasende Material indirekt über heiße Rohre vergast wird. Dabei werden als Abfallprodukte entstehende Abgase in vorteilhafter Weise verwertet.
Die bei der Gasreinigung entstehenden auskondensierten Kohlenwasserstoffe könnten dem Dampfkessel zugeführt werden. Durch diese Ausgestaltung wird realisiert, dass nicht nur Kohlenwasserstoffe der Restasche verwertet werden, sondern Kohlenwasserstoffe, die nicht mit der Restasche abgeschieden werden. Insofern ist durch diesen Verfahrensschritt eine besonders effektive Verwertung sämtlicher Kohlenwasserstoffe realisiert.
Die bei der Gasreinigung entstehenden auskondensierten Kohlenwasserstoffe könnten dem allothermen oder autothermen Vergasungsprozess zugeführt werden. Hierdurch ist gewährleistet, dass der allotherme beziehungsweise autotherme Vergasungsprozess beschleunigt erfolgt.
Das im allothermen Vergasungsprozess entstehende Gas könnte getrocknet werden, wobei über einen Kryo-Prozess Kohlenstoffe auskondensiert werden. Hierdurch ist eine Nachbehandlung des Gases für höhere Ansprüche realisiert. Aufgrund des hohen Wasserstoffanteils des Gases können bei nachfolgender Verdichtung des bereits sehr sauberen Gases Spuren von Kohlenwasserstoffen aufgrund ihres besonders niedrigen Partialdrucks auskondensieren. Dieses gegenüber bei autothermen Vergasungsverfahren entstehende geringvolumige Gas mit gegenüber autothermen Verfahren dreifach höherem Energiegehalt kann in kleinen Anlagen effektiv nass mit speziellen Verfahren gereinigt werden. Dies kann so erfolgen, dass es für motorgetriebene Stromerzeuger, insbesondere in Verbindung mit einem Kryo-Prozess, auch für hocheffektive, druckaufgeladene, hochverdichtende Motoren mit elektrischen Wirkungsgraden über 40% geeignet wird.
Der Kryo-Prozess könnte durch Vortrocknen vor der Abkühlung oder allein durch Abkühlung so geführt werden, dass keine Gashydratbildung stattfindet. Gegebenenfalls kann diese Ausgestaltung je nach Prozessgaszusammensetzung und Restwassergehalt durch eine Gasvortrocknung oder einen Kombiprozess erfolgen. Hierdurch wird bei leichter Anhebung der Gastemperatur auf ca. 20°C ein trockenes Gas er- zeugt, welches in Standardluftfilter für Motoren geleitet werden kann. Insofern können kommerziell leicht erhältliche Apparate verwendet werden.
Insgesamt wird der Energiegehalt von Prozessschritten zur Unterstützung des thermo-chemischen Aufschlusses genutzt, um verfügbare Energien für die Stromerzeugung zu nutzen, wobei elektrische Gesamtwirkungsgrade bis 40% möglich werden. Dabei ist auch denkbar, dass der Energiegehalt für die Temperaturanhebung von Kondensat genutzt wird. Insgesamt sind auch bei Kraftwerken kleinerer Leistung, die nachwachsende Rohstoffe verwerten, Gesamtwirkungsgrade bis 40% möglich.
Alternativ zur Verbrennung des Kohlenstoffs der Restasche ist eine stöchiometrische Vergasung nach einem autothermen Vergasungsverfahren, gegenenenfalls nach dem Karbo-V-Verfahren, bei gleichzeitiger Verschlackung der Restasche möglich. Hierbei wird das entstehende Gas vor Gaskühlung und Gaswäsche dem Hauptstrom beigemischt. Der Vorteil ist in diesem Fall eine höhere enstehende Gasmenge für hocheffiziente Gasmotoren. Hierbei sind allerdings Investitionsaufwendungen abzuwägen. Darüber hinaus ist die Möglichkeit für eine gesamte energetische Optimierung in der Form geschaffen, dass die allotherme Vergasung energieeffizienter bei niedrigeren Temperaturen, zum Beispiel bei 700°C, erfolgt. Hierbei findet eine Vergasung der leicht flüchtigen Bestandteile bei höheren Durchsatzleistungen statt. Dabei nimmt man in Kauf, dass sich mehr Kohlenstoff in der Restasche befindet, welcher dann auch für den thermo-chemischen Aufschluss in Verbindung mit dem Dampfkreislauf genutzt oder in einem autothermen beziehungsweise allothermen Verfahren vergast wird.
Im Rahmen des Verfahrens ist selbstverständlich denkbar, dass die Restfeuchte im zu vergasenden Material schlagartig durch notwendigen zusätzlichen Prozessdampf in Brüdendampf umgewandelt wird. Dieser unterstützt einerseits den Zirkulationspro- zess und spart andererseits Prozessdampf ein. Darüber hinaus wird der thermo- chemische Aufschluss und der Massetransport unterstützt.
Es ist auch möglich, dass der Prozessdampf über eine Venturidüse, gegebenenfalls zur Regelung des Wirbelbetts, Gas aus dem Reformer ansaugt und diesen mit nur geringem Temperaturverlust in das Wirbelbett einführt, um die Prozessdampfmenge für die Zirkulation zu reduzieren. Hierdurch werden Möglichkeiten geschaffen, auch mit höheren Materialfeuchten oder Feuchtigkeitsschwankungen stabil allotherm zu vergasen.
Von Vorteil ist überdies, dass die energetische Verwertung ausgewaschener Kohlenstoffverbindungen wie Öle, Benzine und Teere deren Entsorgungsaufwand reduziert.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung eines bevorzugten Ausführungsbeispiels des erfindungsgemäßen Verfahrens anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung des bevorzugten Ausführungsbeispiels anhand der Zeichnung werden auch im allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigt die einzige
Fig. in einem schematischen Diagramm das Verfahren zur Stromerzeugung aus kohlenstoffhaltigem Material.
Das erfindungsgemäße Verfahren gemäß einziger Fig. verwendet einen Reaktor 1 , in dem die Vergasung der Biomasse 2 erfolgt. Dieser kann eine breite Palette an verschiedenen biogenen Stoffen verarbeiten. Die Biomasse 2 ist in einem Lager 3 gelagert, das für eine Menge von ca. 7000 m3 ausreicht. Diese Menge hat eine mittlere Verweilzeit von ca. 10 Tagen.
Die Biomasse 2 weist unterschiedliche Stück- beziehungsweise Korngrößen auf. Die angelieferte Biomasse 2 wird in einem Lager 3 durch Aufbereitungs- und Förderanlagen verarbeitet. Fremdmaterialien wie Metalle, Steine und ähnliches werden durch Abscheidevorrichtungen und Siebe aus der Biomasse 2 ausgesondert. Die Verarbeitung erfolgt in der Art, dass dem Reaktor 1 Stückgut des Größentyps G 50 zugefördert wird. Die Feuchtigkeit der Biomasse 2 kann je nach Jahreszeit starken Schwankungen unterworfen sein. Für den energetisch optimierten Betrieb des Reaktors 1 wird Biomasse 2 mit einer Restfeuchte kleiner 20% eingesetzt. Die Biomasse 2 wird im Lager 3 belüftet und getrocknet. Die Belüftung und Trocknung der Biomasse 2 erfolgt mittels Niedertemperaturwärme, die beim Gesamtverfahren anfällt. Sauggebläse saugen Luft mit einer Temperatur von ca. 45°C von einem Luftkondensator 4 ab und blasen leicht überhitzte Luft in spezielle Belüftungskanäle des Lagers 3 ein. Hierdurch werden Trockenwerte von ca. 15 bis 20% Restfeuchte der eingesetzten Biomasse 2 erzielt.
Die Förderanlagen des Lagers 3 sind redundant zweistraßig ausgeführt, wobei die Förderung der Biomasse 2 über automatische Krananlagen erfolgt. Die Kräne sind mit Feuchtigkeitssensoren ausgerüstet, so dass schon bei Anlieferung der Biomasse 2 eine optimale Verteilung im Bereich der einzelnen Lagerkammern erfolgt. Die Fördereinrichtungen innerhalb des Lagers 3 arbeiten vollautomatisch, so dass hierfür kein permanentes Personal erforderlich ist. Die Abluft aus dem Lager 3 wird über ein Filtersystem geführt.
Die vorgetrocknete Biomasse 2 wird über Förderschnecken zum Reaktor 1 geführt. Die Einspeisung erfolgt auf zwei gegenüberliegenden Seiten, so dass eine optimale Beschickung der Wirbelschicht 5 des Reaktors 1 gewährleistet ist.
Die Beheizung der Wirbelschicht 5 des Reaktors 1 erfolgt über Brenner die übereinander im Reaktorraum angeordnet sind. Die Brenner werden über ein Gebläse mit Verbrennungsluft versorgt, die auf etwa 45°C vorgewärmt vom Luftkondensator 4 abgezogen wird.
Die Brenner verbrennen eine Mischung aus Luft und Brenngas in einem Verhältnis von 1 ,1 bis 1 ,2, wobei ein Luftüberschuss gegeben ist. Die für den Vergasungsprozess erforderliche Wärmeenergie wird über nach einer Gaswäsche abgezweigtes Brenngas bereitgestellt.
Im Reaktor 1 integrierte innere Zyklone halten mitgerissenes Bettmaterial, größere Asche und Koksteilchen zurück und führen diese wieder der Wirbelschicht 5 zu. Das Gas verlässt mit einer Temperatur von ca. 800°C den Reaktor 1 und wird zunächst über einen externen Zyklon geführt. Dort erfolgt die Abscheidung von feinen Asche- und Koksteilchen die zur weiteren energetischen Nutzung einer Nachverbrennung zugeführt werden. Das heiße Gas wird in einem Röhrenwärmetauscher weiter auf ca. 300°C abgekühlt und erzeugt dabei Dampf, der unter einem Druck von ca. 45 bar steht.
Zur Fluidisierung der Wirbelschicht 5 wird überhitzter Prozessdampf in den Reformer eingeblasen. Die aus den Brennern austretenden heißen Abgase werden nach Abkühlung im Dampfüberhitzer 6 zur weiteren energetischen Nutzung dem Abhitzekessel 7 zugeführt.
Die in der Biomasse 2 enthaltenen Aschebestandteile werden über den externen Zyklon am Austritt aus dem Reaktor 1 ausgetragen. In dieser Aschefraktion befinden sich Restkohlenstoffanteile, die im Reaktor 1 nicht umgesetzt wurden. Mit dem in Rede stehenden Verfahren lässt sich eine sehr hohe Kohlenstoffkonversion erzeugen, die höher als 99% ist. Hierbei spielen jedoch die Reaktivität des Kohlenstoffs und der Biomasse 2 sowie die Temperatur des Vergasungsprozesses eine wesentliche Rolle.
Grundsätzlich gilt, je höher die Betriebstemperatur ist, desto höher ist die Kohlenstoffkonversion. Hier gilt es jedoch, unter Betrachtung der Gesamtenergiebilanz, das System dahingehend zu optimieren, dass der Aufwand zur Beheizung des Reformers im Verhältnis zur erforderlichen Kohlenstoffkonversion nicht zu hoch ist. Da mit steigender Heizleistung des Reformers, das zur Verarbeitung in den als Gasmotoren ausgebildeten Verbrennungsmotoren 8 verbleibende Gas abnimmt, muss hier ein technisch und wirtschaftlich sinnvoller Wert festgelegt werden. Im vorliegenden Fall wird eine Kohlenstoffkonversion von ca. 95% als sinnvoll erachtet. Damit steht hinreichend Gas für die Gasmotoren 8 zur Verfügung und der Restkohlenstoff der Aschefraktion beträgt etwa 20 bis 50% je nach Aschegehalt des Biomasseeinsatzes.
Dieser Feststoffstrom wird einem Verbrennungskessel zugeführt und mit Zugabe eines Gasstroms zur Stützfeuerung verbrannt. Die entstehende Wärme wird genutzt, um Niederdruckdampf zu erzeugen, der auf die Niederdruckschiene eines Dampf- Systems gegeben wird. Dies führt dort zu einer Verringerung des erforderlichen Extraktionsdampfes auf einer Dampfturbine, so dass die elektrische Leistung des Turbosatzes um diesen Betrag ansteigt. Damit lässt sich der Energieinhalt des Restkohlenstoffs vollständig nutzen.
Die Verbrennung des kohlenstoffhaltigen Aschestromes im Verbrennungskessel erfolgt mittels eines Schlackenbrenners. Dabei wird im Verbrennungsprozess die Asche verflüssigt und verschlackt. Im Vergleich zur Entsorgung unbehandelter Asche lässt sich die entschlackte Asche wegen der geringeren Eluierbarkeit leichter deponieren, da die darin enthaltenen wasserlöslichen Bestandteile nicht mehr auswaschbar sind. Die Kosten zur Entsorgung verschlackter Asche sind erheblich geringer als für unbehandelte Asche, womit sich ein zusätzlicher wirtschaftlicher Vorteil ergibt.
Das abgekühlte Gas tritt in die Gaswäsche ein und wird im direkten Kontakt mit eingespritztem Wasser aufgesättigt und dadurch auf etwa 45°C abgekühlt. Hierbei werden alle hochsiedenden Kohlenwasserstoffe auskondensiert sowie restliche feine Ascheteilchen abgeschieden. Durch Einregelung eines pH-Wertes des Umlaufwassers auf ca. 5 bis 6 durch Eindosierung von Schwefelsäure lässt sich eine vollkommene Absorption des im Gas enthaltenen Ammoniaks erzielen.
In einem weiteren Waschabschnitt erfolgt die Absorption von im Gas enthaltenen sauren, im Wesentlichen Schwefelwasserstoffbestandteilen.
Im umlaufenden Wasser der Gaswäsche konzentrieren sich die auskondensierten Teere und Restaschebestandteile auf. Durch den insgesamt bei der Gasabkühlung auftretenden Wasserüberschuss wird aus der Gaswäsche ein Abwasserstom abgeführt.
Aus diesem Strom werden feste Bestandteile, Teere und flüssige Kohlenwasserstoffe abgeschieden. Das verbleibende Abwasser wird in die Kanalisation zur Abwasseranlage abgegeben. Das gereinigte Gas ist frei von Teeren, sauren Bestandteilen etc. und besteht im Wesentlichen nur noch aus Wasserstoff, Methan, Kohlenmonoxid und Kohlendioxid und kann somit direkt in den nachgeschalteten Gasmotoren 8 eingesetzt werden. Ein Teil des Gases wird zur Befeuerung der Brenner benutzt. Der verbleibende Anteil dient zur Stromerzeugung in den Gasmotoren 8.
Das nach der Gaswäsche zur Verfügung stehende Gas wird auf Gasmotoren 8 aufgegeben. Hierzu stehen zwei prinzipielle Möglichkeiten zur Verfügung. Einmal können selbst- ansaugende Gas-Ottomotoren eingesetzt werden. Zum anderen ist die Anwendung eines selbst- ansaugenden Zündstrahlgasmotors mit Turboaufladung angeboten. Die Variante mit Zündstrahlgasmotor wird hier außer Acht gelassen, da der Investitionsaufwand deutlich höher als bei den herkömmlichen Gasmotoren liegt. Die Betriebskosten sind jedoch aufgrund der spezifischen Besonderheit dieser Baueinheit, zum Beispiel geringere Drehzahl, größere Zylinder, geringer als bei den Otto- Motoren.
Die gesamte elektrische Leistung liegt hier bei ca. 4,5 MW die verfügbare thermische Leistung bei 90°C Vorlauftemperatur bei ca. 2,0 MW.
Hinsichtlich der erforderlichen Gasqualität sind besondere Anforderungen im Hinblick auf den Gehalt an Teeren, Silizium und Halogenen einzuhalten. Diese Anforderungen werden durch die angewendete Gaswäsche und durch die charakteristischen Eigenschaften des allothermen Vergasungsverfahren eingehalten.
Die Abgase der einzelnen Gasmotoren 8 werden zusammengeführt und nach Mischung mit den Abgasen der Pulsbrenner in den Abhitzeblock geleitet. Die Abgase der Gasmotoren 8 haben eine Temperatur zwischen 500 und 600°C, so dass sich nach Mischung mit den Abgasen der Brenner Mischtemperaturen von 620 bis 670°C einstellen. Dieses Abgasgemisch wird dem Abhitzekessel 7 zur Erzeugung von Hochdruckdampf zugeführt.
Hinsichtlich der einzuhaltenden Emissionen können die erforderlichen NOx- und CO- Werte durch den Einsatz von Katalysatoren erreicht werden. Die gemischten Abgase aus den Gasmotoren 8 und den Brennern werden in den Abhitzekessel 7 gebracht. Im Abhitzekessel 7 erfolgt die Anwärmung von Kesselspeisewasser, die Erzeugung von Hochdruckdampf bei 45 bar und die Überhitzung des Hochdruckdampfes auf ca. 440°C.
Der erzeugte Hochdruckdampf wird einer Kondensationsdampfturbine 9 zugeführt. Hierbei spielt die Ausführung der Turbine 9 eine besondere Rolle, da durch den Turbinenwirkungsgrad die Erzeugung der elektrischen Energie bestimmt wird. Da Strom das Haupt-Abgabeprodukt der Anlage darstellt, und den größten Einfluss auf die Gesamtwirtschaftlichkeit der Anlage hat, wird hier eine Mehrstufenmaschine mit hohem internen Wirkungsgrad eingesetzt werden.
Die Kondensationsdampfturbine 9 ist mit einer Anzapfung versehen, von der aus der Bedarf der Niederdruckschiene gedeckt wird. Von der Niederdruckschiene erfolgt die Versorgung des Dampfreformers mit Prozessdampf.
Der in der Aschenachverbrennung erfolgte Niederdruckdampf wird der Niederdruckschiene zugeführt, so dass dadurch die Anzapfmenge der Turbine 9 reduziert wird.
Schließlich sei ausdrücklich darauf hingewiesen, dass das voranstehend beschriebene Ausführungsbeispiel lediglich zur Erörterung der beanspruchten Lehre dient, diese jedoch nicht auf das Ausführungsbeispiel einschränkt.

Claims

Patentansprüche
1. Verfahren zur Stromerzeugung aus kohlenstoffhaltigem Material, insbesondere aus Biomasse (2), wobei das Material in einem Reaktor (1) unter Erzeugung einer Wirbelschicht (5) allotherm vergast wird, wobei das erzeugte Gas nach Durchlaufen eines Zyklons in aufeinanderfolgenden Schritten abgekühlt wird, wobei in den einzelnen Schritten Schadstoffe aus dem Gas durch Auskondensieren und in mindestens einem Schritt Schadstoffe zusätzlich chemisch aus dem Gas entfernt werden, dadurch gekennzeichnet, dass ein Teil des Gases in Brennern zur Erwärmung des Wirbelbetts (5) verbrannt wird und der übrige Teil des Gases in Verbrennungsmotoren (8) verbrannt und vorzugsweise elektro-chemisch verwertet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abgase der Verbrennungsmotoren (8) und/oder der Brenner zum thermo-chemischen Aufschluß des zu vergasenden Materials verwendet werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abgase der Verbrennungsmotoren (8) und/oder der Brenner zur Erwärmung und/oder Trocknung des zu vergasenden Materials verwendet werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Abgase der Verbrennungsmotoren (8) und/oder der Brenner zur Erwärmung der Verbrennnungsluft des Gases oder eines Nachverbrennungskessels verwendet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Abgase der Brenner in einen Abhitzekessel (7) zur Dampferzeugung geleitet werden.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Abgase der Verbrennungsmotoren (8) in den Abhitzekessel (7) zur Dampferzeugung geleitet werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Abgase der Brenner über einen Dampfüberhitzer (6) in den Abhitzekessel (7) geleitet werden.
8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass durch den Abhitzekessel (7) eine Kondensationsdampfturbine (9) angetrieben wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass ein Teil des Dampfes für den thermischen Aufschuß des zu vergasenden Materials bereits in die Transportschnecke des zu vergasenden Materials eingebracht wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Kohlenstoffe der im Zyklon abgeschiedenen Restasche direkt aus dem Zyklon in einen Dampfkessel eingeleitet werden und dort verbrannt werden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass im Dampfkessel Schwermetallverbindungen eingeschmolzen werden.
12. Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass Dampf niederer Druckstufe als Prozessdampf für die allotherme Reaktion verwendet wird.
13. Verfahren nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass Dampf niederer Druckstufe in die Kondensationsdampfturbine (9) geleitet wird.
14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Abwärme der Motorkühlung für die Materialtrocknung und Erwärmung der Verbrennungsluft der Brenner verwendet wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Abwärme der Motorkühlung für die Verbrennung im Dampfkessel verwendet wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Abwärme der Motorkühlung für Fernwärmeprozesse verwendet wird.
17. Verfahren nach einem der Ansprüche 8 bis 16, dadurch gekennzeichnet, dass Abluft eines Luftkondensators (4) der Kondensationsdampfturbine (9) für die Vortrocknung des zu vergasenden Materials verwendet wird.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Abwärme einer Gasabkühlung von 300°C auf 40°C bei Reinigungs- und Kondensationsschritten für die Vortrocknung des zu vergasenden Materials verwendet wird.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass im Zyklon abgeschiedene Restasche autotherm vergast und das entstehende Gas dem im allothermen Vergasungsprozess entstandenen Gas beigemischt wird.
20. Verfahren nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass das zu vergasende Material in das Innere des zirkulierenden Wirbelbetts (5) eingebracht wird.
21. Verfahren nach einem der Ansprüche 10 bis 20, dadurch gekennzeichnet, dass die im Dampfkessel (7) entstehenden Abgase gegebenfalls unter Zufeuerung von zu vergasendem Material durch hochtemperaturbeständige Wärmetauscherrohre im Reformer geleitet werden, die die Brenner im Reformer ganz oder teilweise ersetzen.
22. Verfahren nach einem der Ansprüche 10 bis 21 , dadurch gekennzeichnet, dass die bei der Gasreinigung entstehenden auskondensierten Kohlenwasserstoffe dem Dampfkessel zugeführt werden.
23. Verfahren nach einem der Ansprüche 19 bis 22, dadurch gekennzeichnet, dass die bei der Gasreinigung entstehenden auskondensierten Kohlenwasserstoffe dem allothermen oder autothermen Vergasungsprozess zugeführt werden.
24. Verfahren nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass das im allothermen Vergasungsprozess entstehende Gas getrocknet und über einen Kryo-Prozess Kohlenstoffe auskondensiert werden.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass der Kryo-Prozess durch Vortrocknen vor der Abkühlung oder durch Abkühlung so geführt wird, dass keine Gashydratbildung stattfindet.
PCT/DE2002/003509 2001-10-09 2002-09-17 Verfahren zur stromerzeugung aus kohlenstoffhaltigem material WO2003033623A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20020772068 EP1436366A1 (de) 2001-10-09 2002-09-17 Verfahren zur stromerzeugung aus kohlenstoffhaltigem material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10149649.4 2001-10-09
DE10149649A DE10149649A1 (de) 2001-10-09 2001-10-09 Verfahren zur hocheffizienten Stromerzeugung aus Biomassen und sonstigen kohlenstoffhaltigen Rohstoffen

Publications (1)

Publication Number Publication Date
WO2003033623A1 true WO2003033623A1 (de) 2003-04-24

Family

ID=7701831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003509 WO2003033623A1 (de) 2001-10-09 2002-09-17 Verfahren zur stromerzeugung aus kohlenstoffhaltigem material

Country Status (3)

Country Link
EP (1) EP1436366A1 (de)
DE (1) DE10149649A1 (de)
WO (1) WO2003033623A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4312632B2 (ja) * 2004-03-03 2009-08-12 中外炉工業株式会社 バイオマスガス化システムおよびその運転方法
KR100637340B1 (ko) 2004-04-09 2006-10-23 김현영 고온 개질기
EP1672049A1 (de) 2004-12-16 2006-06-21 Riser Energy Limited Vorrichtung und Verfahren zur Vergasung durch Ozone
DE102007002895B4 (de) 2006-01-20 2021-08-26 Uwe Athmann Vorrichtung zur Holzvergasung
FR2899596B1 (fr) * 2006-04-05 2010-03-12 Enria Procede de production d'energie electrique a partir de biomasse
DE102007004294A1 (de) * 2007-01-23 2008-07-24 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur Herstellung von Energie, Treibstoffen oder chemischen Rohstoffen unter Einsatz von CO2-neutralen biogenen Einsatzstoffen
JP5030750B2 (ja) * 2007-11-30 2012-09-19 三菱重工業株式会社 石炭ガス化複合発電設備
DE102008036734A1 (de) * 2008-08-07 2010-02-18 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur Herstellung von Energie, DME (Dimethylether und Bio-Silica unter Einsatz von CO2-neutralen biogenen reaktiven und reaktionsträgen Einsatzstoffen
DE102010015039A1 (de) * 2010-04-15 2013-01-31 Ziemann Energy Gmbh Verbrennungsanlage für Nasstreber und dergleichen
AT514400B1 (de) * 2013-05-31 2015-05-15 Cleanstgas Gmbh Anlage zum Vergasen von stückigen Brennstoffen
DE102019204502A1 (de) 2019-03-29 2020-10-01 Robert Benoufa Verfahren und Vorrichtung zur Erzeugung von Wasserstoff aus einem kohlenstoffhaltigen Rohstoff

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009364A1 (en) * 1987-05-27 1988-12-01 Munck Af Rosenschoeld John A method for generating producer gas from straw and like materials, and apparatus for carrying out the method
DE3920968A1 (de) * 1989-06-27 1991-01-03 Metallgesellschaft Ag Verfahren zur herstellung eines gasfoermigen brennstoffs fuer gasmotoren
WO1997041193A1 (de) * 1996-04-30 1997-11-06 Christian Eder Verfahren und vorrichtung zum verarbeiten von biologischen reststoffen, insbesondere klärschlamm
DE19829275A1 (de) * 1997-07-01 1999-03-04 Horst Dr Grochowski Verfahren zum Reinigen von beim Verschwelen oder Vergasen von kohlenstoffhaltigen Abfällen, wie Müll, Holz und dergleichen, anfallenden Schwelgasen
DE20012865U1 (de) * 2000-03-23 2000-11-09 Fraunhofer Ges Forschung Vorrichtung zur Stromerzeugung aus Biomasse durch Vergasung mit anschließender katalytischer Beseitigung von Teerverbindungen aus dem Brenngas
WO2001012754A1 (en) * 1999-08-19 2001-02-22 Manufacturing And Technology Conversion International, Inc. Gas turbine with indirectly heated steam reforming system
US20010011438A1 (en) * 1994-03-10 2001-08-09 The Furukawa Electric Co., Ltd. Method and apparatus for treating wastes by gasification

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988009364A1 (en) * 1987-05-27 1988-12-01 Munck Af Rosenschoeld John A method for generating producer gas from straw and like materials, and apparatus for carrying out the method
DE3920968A1 (de) * 1989-06-27 1991-01-03 Metallgesellschaft Ag Verfahren zur herstellung eines gasfoermigen brennstoffs fuer gasmotoren
US20010011438A1 (en) * 1994-03-10 2001-08-09 The Furukawa Electric Co., Ltd. Method and apparatus for treating wastes by gasification
WO1997041193A1 (de) * 1996-04-30 1997-11-06 Christian Eder Verfahren und vorrichtung zum verarbeiten von biologischen reststoffen, insbesondere klärschlamm
DE19829275A1 (de) * 1997-07-01 1999-03-04 Horst Dr Grochowski Verfahren zum Reinigen von beim Verschwelen oder Vergasen von kohlenstoffhaltigen Abfällen, wie Müll, Holz und dergleichen, anfallenden Schwelgasen
WO2001012754A1 (en) * 1999-08-19 2001-02-22 Manufacturing And Technology Conversion International, Inc. Gas turbine with indirectly heated steam reforming system
DE20012865U1 (de) * 2000-03-23 2000-11-09 Fraunhofer Ges Forschung Vorrichtung zur Stromerzeugung aus Biomasse durch Vergasung mit anschließender katalytischer Beseitigung von Teerverbindungen aus dem Brenngas

Also Published As

Publication number Publication date
EP1436366A1 (de) 2004-07-14
DE10149649A1 (de) 2003-04-24

Similar Documents

Publication Publication Date Title
EP1226222B1 (de) Verfahren zur vergasung von organischen stoffen und stoffgemischen
DE60120957T2 (de) Verfahren und system zur zersetzung wasserhaltiger brennstoffe oder anderer kohlenstoffhaltiger materialien
EP2118602B1 (de) Verfahren und anlage zur trocknung von staubförmigen, insbesondere einer vergasung zuzuführenden brennstoffen
EP2406190B1 (de) Verfahren und anlage zur verwertung von biomasse sowie blockheizkraftwerk
EP2344810B1 (de) Verfahren und vorrichtung zur reduzierung von schadstoffemissionen in verbrennungsanlagen
CH661112A5 (de) Verfahren zur abfallbeseitigung durch vergasung, insbesondere von haushaltmuell.
AT519471B1 (de) Verkohlungsanlage
DE102005045166B4 (de) Verfahren zur Erzeugung thermischer Energie mit einem FLOX-Brenner
DD293335A5 (de) Verfahren zur verwertung von klaerschlamm
WO2003033623A1 (de) Verfahren zur stromerzeugung aus kohlenstoffhaltigem material
DE102010014479A1 (de) Vorrichtung und Verfahren zur Heißgaserzeugung mit integrierter Erhitzung eines Wärmeträgermediums
DE102010002737A1 (de) Verfahren zur Erzeugung von Rauchgas, Dampf und elektrischer Energie, sowie Vorrichtung zur Erzeugung von Dampf
DE4442136C2 (de) Verfahren zur Verbrennung von fossilem Brennstoff und Abfall
EP1377649A1 (de) Anlage und verfahren zur energiegewinnung durch pyrolyse
EP1167492A2 (de) Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomasse
WO2001079123A1 (de) Konditionierungsverfahren biogener feststoffe
DE10010358A1 (de) Verfahren und Vorrichtung zum Vergasen von brennbarem Material
DE19925011C2 (de) Verfahren zur thermischen Entsorgung von heizwertreichen Fraktionen aus sortiertem Müll und/oder Reststoffen in fossil gefeuerten Kraftwerksanlagen
EP3491293B1 (de) Gestufte feuerung
DE102009049181B4 (de) Verfahren zur Kombination von Wirbelschichttrocknung und Vergasung unter erhöhtem Druck
WO2000071934A1 (de) Verfahren zur thermischen entsorgung von heizwertreichen fraktionen aus müll in fossil gefeuerten kraftwerksanlagen
DE2932399C2 (de) Verfahren zur Erzeugung von Schwelgas, Wassergas und Koks aus feinkörnigem festem Brennstoff
DE19961437C2 (de) Verfahren und Anlage zur Gewinnung von brennbarem Gas aus Klärschlamm
AT525741B1 (de) Verfahren und system zur abwärmerückgewinnung
AT502147B1 (de) Verfahren zum katalytischen konvertieren von klärschlamm

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002772068

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002772068

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP