DE10135143A1 - Verfahren und Vorrichtung zum Betreiben eines Antriebsmotors - Google Patents

Verfahren und Vorrichtung zum Betreiben eines Antriebsmotors

Info

Publication number
DE10135143A1
DE10135143A1 DE2001135143 DE10135143A DE10135143A1 DE 10135143 A1 DE10135143 A1 DE 10135143A1 DE 2001135143 DE2001135143 DE 2001135143 DE 10135143 A DE10135143 A DE 10135143A DE 10135143 A1 DE10135143 A1 DE 10135143A1
Authority
DE
Germany
Prior art keywords
idle
torque
idle controller
correction
engine speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2001135143
Other languages
English (en)
Inventor
Lilian Matischok
Juergen Biester
Holger Jessen
Thomas Schuster
Rainer Mayer
Mario Kustosch
Gerald-Markus Mueller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE2001135143 priority Critical patent/DE10135143A1/de
Priority to EP20020013385 priority patent/EP1277940B1/de
Priority to DE50212311T priority patent/DE50212311D1/de
Priority to JP2002194348A priority patent/JP2003049693A/ja
Publication of DE10135143A1 publication Critical patent/DE10135143A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/16Introducing closed-loop corrections for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • F02D2250/21Control of the engine output torque during a transition between engine operation modes or states

Abstract

Es werden ein Verfahren und eine Vorrichtung zum Betreiben eines Antriebsmotors vorgeschlagen. Dabei wird ein resultierendes Sollmoment abhängig von einem Fahrerwunschmoment und Sollmomenten weiterer Steuersysteme gebildet, dem ein Korrekturmoment eines Leerlaufdrehzahlreglers aufgeschaltet wird. Beim Übergang vom Leerlauf- in den Nichtleerlaufbetrieb oder umgekehrt wird diese Korrekturgröße kontinuierlich verändert, wobei die Veränderung zeitabhängig oder motordrehzahlabhängig ist.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betreiben eines Antriebsmotors eines Kraftfahrzeugs. Um Antriebsmotoren für Fahrzeuge zu betrieben werden elektronische Steuersysteme eingesetzt, mit deren Hilfe der oder die am Antriebsmotor einstellbaren Leistungsparameter abhängig von Eingangsgrößen festgelegt werden. Einige dieser elektronischen Steuersysteme arbeiten auf der Basis einer Drehmomentenstruktur, d. h. vom Fahrer und ggf. von Zusatzsystemen, wie Fahrgeschwindigkeitsregler, elektronische Stabilitätsprogramme, Getriebesteuerungen, etc., werden als Sollwerte für das Steuersystem Drehmomentenwerte vorgegeben, die von dem Steuersystem unter Berücksichtigung weiterer Größen in Einstellgrößen für den oder die Leistungsparameter des Antriebsmotors umgesetzt werden. Ein Beispiel für eine solche Drehmomentenstruktur ist aus der DE 42 39 711 A1 (US-Patent 5 558 178) bekannt.
  • Zur Aufrechterhaltung des Motorbetriebs übernimmt bei bekannten Steuersystemen bei nichtgetretenem Fahrpedal und geringen Drehzahlen ein Leerlaufregler die Aufgabe, die Motordrehzahl auf einem für den Motorbetrieb sicheren Niveau zu stabilisieren. Dieser Leerlaufregler soll jedoch das Moment des Antriebsmotors dann nicht beeinflussen, wenn bei getretenem Fahrpedal und höheren Drehzahlen das Motormoment entsprechend dem Fahrerwunsch eingestellt werden soll. Der Übergang zwischen diesen beiden Betriebszuständen ist dabei so zu realisieren, dass die Funktionsweise der Motorsteuerung und der Fahrkomfort möglichst wenig beeinflusst werden. Ferner ist eine optimierte Einbindung dieser Übergangsfunktion in eine Momentenstruktur, welche unabhängig von der jeweiligen Motorart (Ottomotor, Dieselmotor) ist, anzustreben.
  • Vorteile der Erfindung
  • Durch die Aufschaltung des Leerlaufregleranteils auf das resultierende Sollmoment nach Abschluss der Koordination von Fahrerwunschmoment und Sollmomenten anderer Steuersysteme sowie durch die betriebsgrößenabhängig gesteuerte Ablösung des Leerlaufreglerbeitrags wird es ermöglicht, die Leerlaufregelung optimal in eine Momentenstruktur einzupassen, die unabhängig von der Motorart eingesetzt werden kann. Momentenstruktur und die Ablösung bzw. das Wiedereinsetzen des Leerlaufreglers beim Übergang vom Leerlaufbetrieb und Nichtleerlaufbetrieb können damit für alle Motorarten gleich ausgeführt werden.
  • In vorteilhafter Weise ist es möglich, für Otto- und Dieselmotoren die gleiche (identische) Struktur für die Momentenkoordination einschließlich der Aufschaltung der Leerlaufregelung zu ermöglichen. Der Beitrag des Leerlaufreglers wird dabei in gleicher Weise für Otto- und Dieselmotoren beim Übergang vom Leerlauf zum Nichtleerlaufbetrieb und/oder umgekehrt beeinflusst.
  • Besonders vorteilhaft ist eine zeitlich gesteuerte Ablösung des Beitrags des Leerlaufreglers bei Betätigung des Fahrpedals. Dies deshalb, weil nach Ablauf eines zeitlich begrenzten Übergangsprozesses keine Veränderung oder Beeinflussung des Motormoments durch Leerlaufregler mehr erfolgt. Insbesondere werden Momentensprünge, die den Fahrkomfort beeinträchtigen und die durch unterschiedliche physikalische Übersetzung des Leerlaufreglermoments über das Getriebe entstehen, vermieden.
  • Ferner unterstützt die Tatsache, dass im Fahrbetrieb kein zusätzlicher Leerlaufregleranteil entsteht, die Anforderung an radmomentkonstante Übersetzungsänderungen, d. h. dass vor und nach einem Gangwechsel der gleiche Radmomentenwert eingestellt ist.
  • Vorteilhaft ist im Rahmen einer alternativen Lösung die motordrehzahlabhängige Ablösung des Leerlaufreglerbeitrags. In einem definierten Drehzahlbereich oberhalb einer Drehzahlschwelle wird auch hier die gewünschte Eigenschaft radmomentkonstanter Übersetzungsänderungen erreicht.
  • In besonders vorteilhafter Weise ist es möglich, eine doppelte Kompensation von Verlustmomente, die nicht für den Antrieb des Fahrzeugs zu Verfügung stehen, durch eine vorhandene Vorsteuerung dieser Verlustmomente und den Leerlaufregler zu vermeiden. Dies wird dadurch erreicht, dass die Aktivierung der Verlustmomentenvorsteuerung durch Gewichtung mit dem Komplement des Gewichtungsfaktors der Leerlaufregelung erfolgt. Mit anderen Worten wird bei der Ablösung des Beitrags der Leerlaufregelung eine entsprechende (drehzahl- oder zeitabhängig) Aufregelung der Verlustmomentenvorsteuerung vorgenommen.
  • In vorteilhafter Weise ist die Beeinflussungsfunktion des Leerlaufregler von weiteren Betriebsgrößen abhängig, z. B. Motortemperatur, Aussentemperatur, Luftdruck, etc. Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen bzw. aus den abhängigen Patentansprüchen.
  • Zeichnung
  • Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen näher erläutert. Fig. 1 zeigt ein Übersichtsbild einer Steuereinrichtung zum Betreiben eines Antriebsmotors, während in Fig. 2 anhand eines Ablaufdiagramms eine bevorzugte Ausführungsform einer Momentenstruktur in Verbindung mit der Steuerung eines Antriebsmotors dargestellt ist, sofern sie mit Blick auf die geschilderte Vorgehensweise von Belang ist. Die Fig. 3 und 4 zeigen zwei bevorzugte Ausführungsbeispiele zur Bildung eines Korrekturfaktors, mit dessen Hilfe der Leerlaufregler beim Übergang zwischen Leerlauf und Nichtleerlauf beeinflusst wird.
  • Beschreibung von Ausführungsbeispielen
  • Fig. 1 zeigt ein Blockschaltbild einer Steuereinrichtung zur Steuerung eines Antriebsmotors, insbesondere einer Brennkraftmaschine. Es ist eine Steuereinheit 10 vorgesehen, welche als Komponenten eine Eingangsschaltung 14, wenigstens eine Rechnereinheit 16 und eine Ausgangsschaltung 18 aufweist. Ein Kommunikationssystem 20 verbindet diese Komponenten zum gegenseitigen Datenaustausch. Der Eingangsschaltung 14 der Steuereinheit 10 werden Eingangsleitungen 22 bis 26 zugeführt, welche in einem bevorzugten Ausführungsbeispiel als Bussystem ausgeführt sind und über die der Steuereinheit 10 Signale zugeführt werden, welche zur Steuerung des Antriebsmotors auszuwertende Betriebsgrößen repräsentieren. Diese Signale werden von Messeinrichtungen 28 bis 32erfasst. Derartige Betriebsgrößen sind im Beispiel einer Brennkraftmaschine Fahrpedalstellung, Motordrehzahl, Motorlast, Abgaszusammensetzung, Motortemperatur, etc. Über die Ausgangsschaltung 18 steuert die Steuereinheit 10 die Leistung des Antriebsmotors. Dies ist in Fig. 1 anhand der Ausgangsleitungen 34, 36 und 38 symbolisiert, über welche die einzuspritzende Kraftstoffmasse, der Zündwinkel sowie wenigstens eine elektrisch betätigbare Drosselklappe zur Einstellung der Luftzufuhr betätigt werden. Über die dargestellten Stellpfade werden die Luftzufuhr zur Brennkraftmaschine, der Zündwinkel der einzelnen Zylinder, die einzuspritzende Kraftstoffmasse, der Einspritzzeitpunkt und/oder das Luft-/Kraftstoffverhältnis, etc. eingestellt. Ferner können weitere Steuersysteme des Fahrzeugs vorgesehen sein, die der Eingangsschaltung 14 Vorgabegrößen, beispielsweise Drehmomentensollwerte, übermitteln. Derartige Steuersysteme sind beispielsweise Antriebsschlupfregelungen, Fahrdynamikregelungen, Getriebesteuerungen, Motorschleppmomentenregelungen, Geschwindigkeitsregler, Geschwindigkeitsbegrenzer, etc. Neben diesen externen Sollwertvorgaben, zu denen auch eine Sollwertvorgabe durch den Fahrer in Form eines Fahrwunsches bzw. eine Maximalgeschwindigkeitsbegrenzung gehören können, sind interne Vorgabengrößen für den Antriebsmotor vorgesehen, z. B. das Ausgangssignal einer Leerlaufregelung, einer Drehzahlbegrenzung, einer Drehmomentenbegrenzung, etc..
  • In entsprechender Weise, mit angepassten Ausgangs- und Eingangsgrößen, wird das Steuersystem auch mit alternativen Antriebskonzepten, z. B. Elektromotoren, eingesetzt.
  • Zur Aufrechterhaltung des Motorbetriebs bei nichtgetretenem Fahrpedal und geringen Drehzahlen ist ein Leerlaufregler vorgesehen. Dieser ermittelt beispielsweise abhängig von der Drehzahlabweichung zwischen einer Soll- und einer Istdrehzahl mittels einer vorgegebenen Reglerstrategie (z. B. Proportional-, Integral- und/oder Differenzialanteil) einen Beitrag (z. B. Momentenänderungsgröße oder Sollmoment), der zum resultierenden Sollmomentenwert für den Antriebsmotor aufgeschaltet wird. Im bevorzugten Ausführungsbeispiel wird diese Aufschaltung als Addition ausgeführt. In anderen Ausführungsbeispielen wird der Leerlaufbeitrag z. B. normiert werden, so dass die Aufschaltung mittel Multiplikation erfolgt. Die Aufschaltung des Leerlaufreglers erfolgt zum resultierenden Sollmoment, welches durch Koordination von Fahrerwunschmoment und den Sollmomenten weiterer Steuersysteme, externer und ggf. interner Vorgabegrößen gebildet wird. Dadurch wird wie oben erwähnt eine Beeinflussung des Radmoments durch den Leerlaufregler vermieden, so dass radmomentenkonstante Übersetzungsänderungen erreicht werden.
  • Mit Betätigen des Fahrpedals wird im bevorzugten Ausführungsbeispiel ein zeitlich begrenzter Vorgang gestartet, während dem zeitabhängig der Leerlaufreglerbeitrag kontinuierlich auf Null zurückgenommen wird. Im bevorzugten Ausführungsbeispiel wird abhängig von der Zeit ein Faktor gebildet, der beginnend mit Eins nach Ablauf einer vorgegebenen Zeitperiode den Wert Null einnimmt und mit dem der Leerlaufreglerbeitrag gewichtet (multipliziert) wird. Nach Ablauf der vorgegebenen Zeitperiode ist der Leerlaufreglerbeitrag Null. Bei Loslassen des Fahrpedals, wenn dies seine Leerlaufposition einnimmt, wird dieser Faktor im bevorzugten Ausführungsbeispiel schlagartig auf Eins gesetzt, um den Leerlaufregler die Möglichkeit zu geben, sofort zur Aufrechterhaltung des Motorbetriebs einzugreifen. In anderen Ausführungsbeispielen wird auch hier eine zeitabhängige Aufsteuerung des Leerlaufreglerbeitrags angewendet, wobei der Faktor von Null auf Eins ansteigt. Die Zeitperioden für Ablösung und Einschalten des Leerlaufreglers sind dabei vorzugsweise verschieden, wobei bei Einschalten des Reglers eine kürzere Zeitperiode gewählt wird als bei der Ablösung.
  • Ein alternative Lösung zeigt eine entsprechende Ablösung des Leerlaufreglers abhängig von der Drehzahl anstelle der Zeit. Es wird mit steigender Drehzahl der Leerlaufreglerbeitrag auf Null gefahren, wobei im bevorzugten Ausführungsbeispiel der oben erwähnte Faktor entsprechend einer drehzahlabhängigen Kennlinie gebildet wird. Auch hier ist beim Absinken der Motordrehzahl ein drehzahlabhängiges Aufregeln des Leerlaufreglerbeitrags nach Maßgabe derselben oder einer anderen Kennlinie vorgesehen, wobei der oben genannte Faktor entsprechend gebildet wird.
  • Eine weitere Alternative besteht darin, das dem Leerlaufreglerausgangssignal maximale und minimale Wertegrenzen zugeordnet sind, auf die das Signal begrenzt ist. Die Ablösung bzw. Aufsteuerung wird dann durch Manipulation dieser Grenzwerte realisiert, wobei bei der Ablösung z. B. der Maximalwert vorzugsweise zeitabhängig oder drehzahlabhängig auf den Wert Null abgesteuert wird, und/oder der Minimalwert auf den Wert Null aufgesteuert wird. Bei der Aufsteuerung wird umgekehrt verfahren.
  • Das in Fig. 2 dargestellte Ablaufdiagramm beschreibt ein Programm eines Mikrocomputers der Steuereinheit 10, wobei die einzelnen Blöcke der Darstellung der Fig. 2 Programme, Programmteile oder Programmschritte darstellen, während die Verbindungslinien den Signalfluss repräsentieren. Dabei kann der erste Teil bis zu der senkrechten, gestrichelten Linie in einer ersten Steuereinheit, dort ebenfalls in einem Mikrocomputer, ablaufen, während der Teil nach dieser Linie in einer zweiten Steuereinheit abläuft.
  • Zunächst werden Signale zugeführt, welche der Fahrzeuggeschwindigkeit VFZG sowie der Fahrpedalstellung PWG entsprechen. Diese Größen werden in einem Kennfeld 100 in einen Momentenwunsch des Fahrers umgesetzt. Dieses Fahrerwunschmoment, welches eine Vorgabegröße für ein Moment ausgangsseitig des Getriebes bzw. für ein Radmoment darstellt, wird einer Korrekturstufe 102 zugeführt. Diese Korrektur ist vorzugsweise eine Addition bzw. Subtraktion. Das Fahrerwunschmoment wird dabei durch ein gewichtetes Verlustmoment MKORR korrigiert, welches in der Verknüpfungsstelle 104 gebildet wurde. In dieser wird das zugeführte, mittels der Übersetzung Ü im Triebstrang sowie ggf. weitere Übersetzungen im Antriebsstrang abtriebsseitig des Getriebes auf ein Moment nach dem Getriebe, vorzugsweise ein Radmoment umgerechnete Verlustmoment MVER mit einem Faktor F3 gewichtet. Die Gewichtung erfolgt vorzugsweise als Multiplikation. Der Faktor F3 wird in 106 aus der die Fahrpedalstellung repräsentierenden Größe PWG und ggf. zusätzlich einer die Motordrehzahl repräsentierenden Größe NMOT gebildet.
  • Der auf diese Weise Fahrerwunsch MFA wird der Momentenkoordination zur Bildung eines resultierenden Vorgabemoments MSOLLRES zugeführt. Im gezeigten Beispiel wird in einer ersten Maximalwertauswahlstufe 108 der Maximalwert aus Fahrerwunschmoment MFA und dem Vorgabemoment MFGR eines Fahrgeschwindigkeitsreglers ausgewählt. Dieser Maximalwert wird einer darauffolgenden Minimalwertstufe 110 zugeführt, in der der kleinere aus diesem Wertes und dem Sollmomentenwert MESP eines elektronischen Stabilitätsprogramms ausgewählt wird. Die Ausgangsgröße der Minimalwertstufe 110 stellt eine Momentengröße ausgangsseitig des Getriebes bzw. eine Radmomentengröße dar, die durch Berücksichtigung der Getriebeübersetzung Ü sowie ggf. weitere Übersetzungen im Antriebsstrang abtriebsseitig des Getriebes in eine Momentengröße umgerechnet wird, welche getriebeeingangsseitig bzw. ausgangsseitig des Antriebsmotors vorliegt. Diese Momentengröße wird in einem weiteren Koordinator 112 mit dem Sollmoment MGETR einer Getriebesteuerung koordiniert. Das Sollmoment der Getriebesteuerung wird nach den Bedürfnissen des Schaltvorgangs gebildet. In der darauffolgenden Maximalwertauswahlstufe 114 wird dann das resultierende Sollmoment MSOLLRES als der größere der Momentenwerte Minimalmoment MMIN und dem Ausgangsmoment der Koordinationsstufe 112 gebildet. Das Minimalmoment wird in einem bevorzugten Ausführungsbeispiel aus dem Verlustmoment abgeleitet.
  • Die Momentenkoordination ist vorstehend lediglich beispielhaft dargestellt. In anderen Ausführungen wird das eine oder andere Vorgabemoment nicht zur Koordination herangezogen bzw. sind weitere Vorgabemomente vorgesehen, beispielsweise ein Moment einer Maximalgeschwindigkeitsbegrenzung, einer Motordrehzahlbegrenzung, etc.
  • Das auf die oben beschriebene Weise gebildete resultierende Sollmoment wird einer Korrekturstufe 116 zugeführt, in der das Sollmoment mit den vom Motor aufzubringenden, nicht dem Antrieb zur Verfügung stehenden Verlustmomenten korrigiert wird. Die Verlustmomente MVER werden dabei ggf. in einer Gewichtungsstufe 118 mit einem Faktor F2 gewichtet. Dieser ist je nach Ausführung konstant (auch 1) oder betriebsgrößenabhängig, z. B. motordrehzahlabhängig. Die Verlustmomente MVER selbst werden in der Additionsstufe 120 aus dem Momentenbedarf MNA von Nebenaggregaten und dem Motorverlustmoment MVERL gebildet. Die Bestimmung dieser Größen ist aus dem Stand der Technik bekannt, wobei der Momentenbedarf abhängig vom Betriebsstatus des jeweiligen Nebenaggregats nach Maßgabe von Kennlinien oder ähnlichem, die Motorverlustmomente abhängig von Motordrehzahl und Motortemperatur bestimmt wird. Das auf diese Weise gebildete Verlustmoment MVER wird dann der Korrekturstufe 104 zur Verfügung gestellt, wobei eine Umrechnung des Verlustmoments mit Hilfe der bekannten Getriebeübersetzung Ü sowie ggf. weitere Übersetzungen im Antriebsstrang abtriebsseitig des Getriebes auf die Ebene der getriebeausgangs- bzw. Radmomente erfolgt.
  • Die Ausgangsgröße der Korrekturstufe 116, die im bevorzugten Ausführungsbeispiel eine Addition darstellt, ist eine Vorgabegröße für das von der Antriebseinheit zu erzeugende Drehmoment für den Antrieb unter Berücksichtigung der inneren Verluste und des zum Betrieb von Nebenaggregaten (z. B. Klimakompressor) notwendigen Moments (indiziertes Motormoment). Dieses Vorgabemoment wird in einer weiteren Korrekturstufe 122 mit dem in einer Korrekturstufe 124 gewichteten Ausgangsgröße DMLLR des Leerlaufreglers korrigiert (vorzugsweise addiert). Der Gewichtungsfaktor F1, mit dem in 124 die Ausgangsgröße des Leerlaufreglers gewichtet wird, ist dabei drehzahl- und/oder zeitabhängig, wobei bei Verlassen des Leerlaufbereichs der Faktor zeitlich oder mit zunehmender Motordrehzahl auf Null abnimmt. Die Vorgabegröße MISOLL wird dann in 126 wie aus dem Stand der Technik bekannt in Stellgrößen zur Einstellung der Leistungsparameter des Antriebsmotors umgesetzt, im Falle einer Ottobrennkraftmaschine in Luftzufuhr, Kraftstoffeinspritzung und Zündwinkel, im Falle einer Dieselbrennkraftmaschine in Kraftstoffmenge.
  • Zusätzlich zur Zeit oder zur Drehzahl werden in einer Ausführung weitere Betriebsgrößen bei der Bestimmung der Absteuerung bzw. Aufsteuerung des Leerlaufregelanteils berücksichtigt, z. B. Motortemperatur, Außentemperatur, Außendruck, etc.
  • Der Leerlaufregler greift mit seinem Beitrag DMLLR in Wirkungsrichtung nach der Momentenkoordination (108 bis 114) in die Momentenvorgabe ein, in dem er entsprechend seinem Ausgangssignal das resultierende Sollmoment MSOLLRES korrigiert. Im Leerlaufreglerbereich ist die Korrektur vollständig. Beim Übergang vom Leerlaufbetrieb in den Nichtleerlaufbetrieb wird in 124 der Leerlaufreglerausgang mit einem Faktor F1 gewichtet, welcher mit der Zeit nach Betätigen des Fahrpedals oder drehzahlabhängig von Eins auf Null zurückgeht. Ist der Faktor Null so wird kein Leerlaufregleranteil mehr aufgeschaltet. Der Leerlaufregler selbst kann dabei je nach Auslegung weiter aktiv sein und entsprechend den Drehzahlverhältnissen an seine Begrenzung laufen oder durch zeitliche Absteuerung des Integralanteils, durch zu Null setzen von Proportional- und Differenzialanteil oder durch Festsetzen des Integralanteils auf dem aktuellen Wert teilweise oder ganz angehalten werden. Im Ausführungsbeispiel der Fig. 2 wird der Leerlaufregler ferner durch die Aufschaltung der Verlustmomente MVER in 116 vorgesteuert. Dies bedeutet, dass der Leerlaufregler nur noch die Abweichungen zwischen Vorsteuerungswerten und den tatsächlichen Momentenverhältnissen ausregelt. In anderen Ausführungsbeispielen fehlt diese Vorsteuerung der Verlustmomente, so dass der Leerlaufregler die gesamten Verlustmomente und den Bedarf der Nebenaggregate ausregelt. Eine Zwischenlösung besteht darin, in 118 die Verlustmomentenvorsteuerung mit einem Faktor F2 zu gewichten, der komplementär zur Abregelung des Leerlaufreglerbeitrags aufgeregelt wird. Das heißt in dem Maße, in dem durch die Gewichtung des Leerlaufreglerbeitrags in 124 dieser abnimmt, nimmt durch entsprechende gegensinnige Gewichtung der Vorsteuerung in Schritt 118 diese zu.
  • Wesentlich für die Funktionsweise dieser Anordnung ist die Bildung des Faktors F1, der die Ablösung und ggf. in analoger Weise die Aufsteuerung des Leerlaufreglerbeitrags bewirkt. Eine erste Lösung ist in Fig. 3 dargestellt. dort wird der Faktor F1 zeitlich ausgelöst durch die Betätigung des Fahrpedals (Signal PWG > 0) von seinem Wert Eins auf den Wert Null reduziert. Ein Beispiel ist in Fig. 3 dargestellt, bei welchem die Reduktion linear vorgenommen wird. In anderen Ausführungen werden andere Zeitfunktionen, beispielsweise exponentielle, stufenförmige Zeitfunktionen, etc. eingesetzt. Das Pedal wird zum Zeitpunkt T0 betätigt, nach Ablauf einer bestimmten vorgegebenen Zeitperiode zum Zeitpunkt T1 ist der Faktor F1 dann auf den Wert Null reduziert. Dies bedeutet ein vollständiges Verschwinden der Wirkung des Leerlaufreglers im Rahmen der Momentensteuerung. -. Wird das Pedal losgelassen, d. h. kehrt der Antriebsmotor wieder in den Leerlaufbetrieb zurück, so wird der Leerlaufregleranteil in einem Ausführungsbeispiel zeitabhängig wieder auf seinen vollen Wert aufgesteuert.
  • Anstelle der Fahrpedalstellung allein ist in anderen Ausführungen eine Kombination aus Fahrpedalstellung und Drehzahl oder Fahrgeschwindigkeit für die Bestimmung des Übergangs ausschlaggebend. Eine andere Ausführung leitet die gezeigte Vorgehensweise bei Betätigen des Pedals über ein bestimmtes Maß hinaus ein.
  • Eine zweite Ausführungsform wird in Fig. 4 dargestellt. Dort ist eine Kennlinie 150 vorgesehen, der die Motordrehzahl NMOT zugeführt wird. In dieser Kennlinie ist der Faktor F1 über der Motordrehzahl aufgetragen. Für Drehzahlen unterhalb der Drehzahl N1 ist der Faktor 1, für Drehzahlen größer N2 ist er Null. Im Bereich zwischen den Drehzahlen N1 und N2 ist ein Verlauf des Faktors F1 vorgegeben, wobei dieser mit steigender Drehzahl Richtung Null abfällt. Die dargestellte lineare Abhängigkeit zwischen Faktor F1 und Drehzahl ist beispielhaft. In anderen Ausführungen werden andere Abhängigkeiten gewählt. Im bevorzugten Ausführungsbeispiel ist N1 eine Drehzahl, die knapp über der Leerlaufdrehzahl liegt (beispielsweise 900 Umdrehungen pro Minute), während die zweite Drehzahl N2 eine größere Drehzahl von z. B. 1500 Umdrehungen pro Minute darstellt. In Abhängigkeit der Motordrehzahl wird aus der Kennlinie 150 der Wert des Faktors F1 ausgelesen, der dann entsprechend seiner Größe die Wirkung des Leerlaufreglers im Rahmen der gezeigten Momentensteuerung gewichtet. Kehrt die Drehzahl wieder in den Bereich der Drehzahlen N1 und N2 zurück, so wird der Leerlaufregleranteil in einem Ausführungsbeispiel drehzahlabhängig wieder auf seinen vollen Wert aufgesteuert.
  • Das obige Ausführungsbeispiel, bei welchem die Ablösung bzw. Aufsteuerung des Leerlaufreglerbeitrags über Gewichtungsfaktoren erfolgt, ist beispielhaft. In anderen Ausführungsbeispielen erfolgt dies durch entsprechende Gewichtung der Reglerparameter, z. B. des Integralanteils (wobei Proportional- und Differenzialanteil zu Null gesetzt werden kann). Eine andere Möglichkeit der Realisierung ist, von dem aktuellen Leerlaufreglerbeitrag in Abhängigkeit von der Drehzahl bzw. der Zeit Momentenbeiträge abzuziehen, bis der resultierende Leerlaufreglerbeitrag Null ist.
  • Die dargestellte Vorgehensweise wird in analoger Weise in Verbindung mit der Steuerung von Elektromotoren eingesetzt.
  • Desweiteren wird in einem Ausführungsbeispiel zur Bestimmung der drehzahlabhängigen Veränderung des Leerlaufreglersignals nicht die Motordrehzahl, sondern eine, z. B. auf die Leerlaufsolldrehzahl, normierte Größe verwendet. Dies ist vorteilhaft beim Einsatz einer betriebszustandsabhängigen (normierten) Drehzahlschwelle für die Leerlaufregelung, deren Aktivieren bei Unterschreiten dieser Drehzahlschwelle durch die (normierte) Motordrehzahl erfolgt.

Claims (12)

1. Verfahren zum Betreiben eines Antriebsmotors, wobei in Abhängigkeit vom Fahrerwunsch und weiterer Vorgabegrößen eine resultierende Vorgabengröße zur Steuerung des Antriebsmotors ermittelt wird, wobei ferner von einem Leerlaufregler eine Korrekturgröße in Abhängigkeit der Motordrehzahl gebildet wird, dadurch gekennzeichnet, dass die Korrekturgröße des Leerlaufreglers auf die resultierende Vorgabegröße aufgeschaltet wird, wobei beim Übergang vom Leerlaufbetrieb in den Nichtleerlaufbetrieb oder umgekehrt die Korrekturgröße des Leerlaufreglers motordrehzahlabhängig oder zeitabhängig verändert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass Vorgabegrößen und Korrekturgröße Momentengrößen sind, die Radmomente, Motorausgangsmomente oder indizierte Motormomente darstellen.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine zeitabhängige Absteuerung bzw. Aufsteuerung der Korrekturgröße des Leerlaufreglers bei Betätigen des Fahrpedals erfolgt.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Betätigen des Fahrpedals ein Faktor zeitabhängig verändert wird, mit dem die Korrekturgröße des Leerlaufreglers gewichtet wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Faktor zeitabhängig von Eins auf Null oder umgekehrt verändert wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Faktor abhängig von der Motordrehzahl gebildet wird, mit dem die Korrekturgröße des Leerlaufreglers gewichtet wird, wobei der Faktor sinkt, wenn die Motordrehzahl ansteigt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Faktor von Eins auf Null mit steigender Motordrehzahl sich verändert.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Verlustmomente gebildet werden, welche den Momentenbedarf von Nebenverbrauchern und/oder das infolge von innerer Reibung vom Antriebsmotor aufzubringende Drehmoment repräsentiert, wobei dieser Verlustmomentenwert der resultierenden Vorgabegröße aufgeschaltet wird und die aufgeschaltete Verlustmomentengröße gegensinnig zur Korrekturgröße des Leerlaufreglers gewichtet ist.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Korrekturgröße des Leerlaufregler auf einen Maximalwert und/oder einen Minimalwert begrenzt ist, wobei beim Übergang vom Leerlaufbetrieb in den Nichtleerlaufbetrieb oder umgekehrt der Maximalwert und/oder der Minimalwert motordrehzahlabhängig oder zeitabhängig verändert wird.
10. Vorrichtung zum Betreiben eines Antriebsmotors, mit einer Steuereinheit, welche aus einer Fahrerwunschgröße und Vorgabegrößen weiterer Steuersysteme eine resultierende Vorgabegröße zur Steuerung des Antriebsmotors bildet, die einen Leerlaufregler umfasst, der eine Korrekturgröße bildet, dadurch gekennzeichnet, dass die elektronische Steuereinheit Mittel aufweist, die die Korrekturgröße des Leerlaufreglers der resultierenden Vorgabegröße aufschalten, wobei die Korrekturgröße des Leerlaufreglers beim Übergang vom Leerlaufbetrieb in den Nichtleerlaufbetrieb oder umgekehrt motordrehzahlabhängig oder zeitabhängig verändert wird.
11. Computerprogramm mit Programmcodemitteln, um alle Schritte von jedem beliebigen der Ansprüche 1 bis 8 durchzuführen, wenn das Programm auf einen Computer ausgeführt wird.
12. Computerprogrammprodukt mit Programmcodemitteln, die auf einem computerlesbaren Datenträger gespeichert sind, um das Verfahren nach jedem beliebigen der Ansprüche 1 bis 8 durchzuführen, wenn das Programmprodukt auf einem Computer ausgeführt wird.
DE2001135143 2001-07-19 2001-07-19 Verfahren und Vorrichtung zum Betreiben eines Antriebsmotors Withdrawn DE10135143A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE2001135143 DE10135143A1 (de) 2001-07-19 2001-07-19 Verfahren und Vorrichtung zum Betreiben eines Antriebsmotors
EP20020013385 EP1277940B1 (de) 2001-07-19 2002-06-19 Verfahren und Vorrichtung zum Betreiben eines Antriebmotors
DE50212311T DE50212311D1 (de) 2001-07-19 2002-06-19 Verfahren und Vorrichtung zum Betreiben eines Antriebmotors
JP2002194348A JP2003049693A (ja) 2001-07-19 2002-07-03 駆動機関の運転方法および装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2001135143 DE10135143A1 (de) 2001-07-19 2001-07-19 Verfahren und Vorrichtung zum Betreiben eines Antriebsmotors

Publications (1)

Publication Number Publication Date
DE10135143A1 true DE10135143A1 (de) 2003-01-30

Family

ID=7692341

Family Applications (2)

Application Number Title Priority Date Filing Date
DE2001135143 Withdrawn DE10135143A1 (de) 2001-07-19 2001-07-19 Verfahren und Vorrichtung zum Betreiben eines Antriebsmotors
DE50212311T Expired - Lifetime DE50212311D1 (de) 2001-07-19 2002-06-19 Verfahren und Vorrichtung zum Betreiben eines Antriebmotors

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE50212311T Expired - Lifetime DE50212311D1 (de) 2001-07-19 2002-06-19 Verfahren und Vorrichtung zum Betreiben eines Antriebmotors

Country Status (3)

Country Link
EP (1) EP1277940B1 (de)
JP (1) JP2003049693A (de)
DE (2) DE10135143A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8099229B2 (en) 2008-03-03 2012-01-17 GM Global Technology Operations LLC Method and apparatus for limiting wheel slip
DE102011120792A1 (de) * 2011-12-10 2013-06-13 Gm Global Technology Operations, Llc Verfahren zum Steuern und Steuerschaltung eines Verbrennungsmotors eines Kraftfahrzeuges
DE102017200296A1 (de) * 2017-01-10 2018-07-12 Volkswagen Aktiengesellschaft Motorsteuerung, Motorsteuerungsverfahren und entsprechendes Computerprogramm

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357868A1 (de) * 2003-12-11 2005-07-07 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit
DE102004041660B3 (de) * 2004-08-27 2006-05-04 Siemens Ag Verfahren und Vorrichtung zur Ermittlung eines Ausgabedrehmoments
FR2927281B1 (fr) * 2008-02-11 2010-04-16 Renault Sas Procede de regulation automatique du couple moteur pendant les phases de glissement symetrique des roues motrices d'un vehicule et dispositif pour la mise en oeuvre de ce procede
DE102011004862A1 (de) 2011-02-28 2012-08-30 Bayerische Motoren Werke Aktiengesellschaft Bestimmen von Rad- und/oder Achsmomentvorgaben in einem Kraftfahrzeug
DE102011005962B4 (de) 2011-03-23 2023-07-27 Bayerische Motoren Werke Aktiengesellschaft Aufteilen einer Momentenanforderung auf zwei von unterschiedlichen Motoren angetriebenen Antriebsachsen eines Kraftfahrzeugs
CN112428982B (zh) * 2019-08-07 2022-02-01 纬湃科技投资(中国)有限公司 混合动力汽车油门踏板信号处理方法
CN112196677B (zh) * 2020-10-10 2022-11-29 东风康明斯发动机有限公司 一种发电用电控柴油机的转速控制系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100380A1 (de) * 1991-01-09 1992-07-16 Vdo Schindling Verfahren zum betreiben einer drosselklappengeregelten brennkraftmaschine im leerlaufregelbereich
DE4239711B4 (de) 1992-11-26 2005-03-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs
US5901682A (en) * 1997-12-19 1999-05-11 Caterpillar Inc. Method for transitioning between different operating modes of an internal combustion engine
US6119063A (en) * 1999-05-10 2000-09-12 Ford Global Technologies, Inc. System and method for smooth transitions between engine mode controllers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8099229B2 (en) 2008-03-03 2012-01-17 GM Global Technology Operations LLC Method and apparatus for limiting wheel slip
DE102009010653B4 (de) * 2008-03-03 2014-03-20 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren und Vorrichtung zur Radschlupfbegrenzung
DE102011120792A1 (de) * 2011-12-10 2013-06-13 Gm Global Technology Operations, Llc Verfahren zum Steuern und Steuerschaltung eines Verbrennungsmotors eines Kraftfahrzeuges
DE102017200296A1 (de) * 2017-01-10 2018-07-12 Volkswagen Aktiengesellschaft Motorsteuerung, Motorsteuerungsverfahren und entsprechendes Computerprogramm

Also Published As

Publication number Publication date
EP1277940B1 (de) 2008-05-28
JP2003049693A (ja) 2003-02-21
DE50212311D1 (de) 2008-07-10
EP1277940A2 (de) 2003-01-22
EP1277940A3 (de) 2006-05-03

Similar Documents

Publication Publication Date Title
DE4304779B4 (de) Vorrichtung zur Steuerung des von einer Antriebseinheit eines Fahrzeugs abzugebenden Drehmoments
DE4239711A1 (de) Verfahren und Vorrichtung zur Steuerung eines Fahrzeugs
EP1272752B1 (de) Verfahren und vorrichtung zur steuerung der antriebseinheit eines fahrzeugs
EP1412630B1 (de) Verfahren und vorrichtung zum betreiben eines antriebsmotors eines fahrzeugs
EP1277940B1 (de) Verfahren und Vorrichtung zum Betreiben eines Antriebmotors
DE10148343B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit
EP1432899B1 (de) Verfahren und vorrichtung zum betreiben eines antriebsmotors eines fahrzeugs
DE4405340B4 (de) Verfahren und Vorrichtung zur Einstellung der Drehzahl einer Antriebseinheit eines Fahrzeugs im Leerlauf
DE10048015A1 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
DE10114040B4 (de) Verfahren und Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs
EP1242732B1 (de) Verfahren und vorrichtung zur steuerung der antriebseinheit eines fahrzeugs
EP1005609B1 (de) Verfahren zur steuerung der abgasrückführung bei einer brennkraftmaschine
DE19807126C2 (de) Verfahren zur Einstellung der Antriebsleistung eines Kraftfahrzeuges
DE4426972B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE4223253A1 (de) Steuereinrichtung für ein Fahrzeug
DE19741565A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10039784A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10305092B4 (de) Verfahren zur automatischen Anpassung eines Drehmomentenmodells sowie Schaltungsanordnung
WO1997043533A1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE10253004B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, Computerprogramm, Speicher, Steuergerät und Brennkraftmaschine
EP1474598B1 (de) Vorrichtung zur steuerung des drehmoments einer antriebseinheit eines fahrzeugs
DE10148342A1 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit eines Fahrzeugs
DE10204083B4 (de) Verfahren zum Anpassen eines Drehmomentmodells und Anordnung
DE112004002079B4 (de) Verfahren zur Steuerung einer Antriebsmaschine für ein Fahrzeug
DE19931826B4 (de) Verfahren zum Steuern einer Brennkraftmaschine

Legal Events

Date Code Title Description
8141 Disposal/no request for examination