DE10115486A1 - Verschränkte-Photonen-Mikroskop - Google Patents

Verschränkte-Photonen-Mikroskop

Info

Publication number
DE10115486A1
DE10115486A1 DE10115486A DE10115486A DE10115486A1 DE 10115486 A1 DE10115486 A1 DE 10115486A1 DE 10115486 A DE10115486 A DE 10115486A DE 10115486 A DE10115486 A DE 10115486A DE 10115486 A1 DE10115486 A1 DE 10115486A1
Authority
DE
Germany
Prior art keywords
entangled
photon microscope
optical element
light
photons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10115486A
Other languages
English (en)
Inventor
Rafael Storz
Johann Engelhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems Heidelberg GmbH
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7646174&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE10115486(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Leica Microsystems Heidelberg GmbH, Leica Microsystems CMS GmbH filed Critical Leica Microsystems Heidelberg GmbH
Priority to DE10115486A priority Critical patent/DE10115486A1/de
Priority to DE50105513T priority patent/DE50105513D1/de
Priority to EP01112881A priority patent/EP1164401B1/de
Priority to US09/880,825 priority patent/US6567164B2/en
Priority to US09/881,049 priority patent/US6898367B2/en
Priority to JP2001183691A priority patent/JP2002062262A/ja
Publication of DE10115486A1 publication Critical patent/DE10115486A1/de
Priority to US10/964,034 priority patent/US7110645B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02376Longitudinal variation along fibre axis direction, e.g. tapered holes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/1256Generating the spectrum; Monochromators using acousto-optic tunable filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0056Optical details of the image generation based on optical coherence, e.g. phase-contrast arrangements, interference arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0064Optical details of the image generation multi-spectral or wavelength-selective arrangements, e.g. wavelength fan-out, chromatic profiling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/008Details of detection or image processing, including general computer control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02371Cross section of longitudinal structures is non-circular
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3528Non-linear optics for producing a supercontinuum
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/162Solid materials characterised by an active (lasing) ion transition metal
    • H01S3/1625Solid materials characterised by an active (lasing) ion transition metal titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1631Solid materials characterised by a crystal matrix aluminate
    • H01S3/1636Al2O3 (Sapphire)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Plasma & Fusion (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Endoscopes (AREA)
  • Vehicle Body Suspensions (AREA)
  • Polarising Elements (AREA)
  • Seal Device For Vehicle (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Semiconductor Lasers (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Die Erfindung offenbart ein Verschränkte-Photonen-Mikroskop (1) mit einer Lichtquelle (3) und einem Objektiv (31). Das Verschränkte-Photonen-Mikroskop (1) weist zwischen der Lichtquelle (3) und dem Objektiv (31) ein mikrostrukturiertes optisches Element (11) auf, indem verschränkte Photonen erzeugbar sind, wobei sich die verschränkten Photonen innerhalb und außerhalb des mikrostrukturierten optischen Elements in einem Strahl (15) ausbreiten.

Description

Die Erfindung betrifft ein Verschränkte-Photonen-Mikroskop mit einer Lichtquelle und einem Objektiv.
In der Scanmikroskopie wird eine Probe mit einem Lichtstrahl beleuchtet, um das von der Probe emittierte Reflexions- oder Fluoreszenzlicht zu beobachten. Der Fokus des Beleuchtungslichtstrahles wird mit Hilfe einer steuerbaren Strahlablenkeinrichtung, im Allgemeinen durch Verkippen zweier Spiegel, in einer Objektebene bewegt, wobei die Ablenkachsen meist senkrecht aufeinander stehen, so dass ein Spiegel in x-, der andere in y-Richtung ablenkt. Die Verkippung der Spiegel wird beispielsweise mit Hilfe von Galvanometer-Stellelementen bewerkstelligt. Die Leistung des vom Objekt kommenden Lichtes wird in Abhängigkeit von der Position des Abtaststrahles gemessen. Üblicherweise werden die Stellelemente mit Sensoren zur Ermittlung der aktuellen Spiegelstellung ausgerüstet.
Speziell in der konfokalen Scanmikroskopie wird ein Objekt mit dem Fokus eines Lichtstrahles in drei Raum-Dimensionen abgetastet.
Ein konfokales Rastermikroskop umfasst im Allgemeinen eine Lichtquelle, eine Fokussieroptik, mit der das Licht der Quelle auf eine Lochblende - die sog. Anregungsblende - fokussiert wird, einen Strahlteiler, eine Strahlablenkeinrichtung zur Strahlsteuerung, eine Mikroskopoptik, eine Detektionsblende und die Detektoren zum Nachweis des Detektions- bzw. Fluoreszenzlichtes. Das Beleuchtungslicht wird über einen Strahlteiler eingekoppelt. Das vom Objekt kommende Fluoreszenz- oder Reflexionslicht gelangt über die Strahlablenkeinrichtung zurück zum Strahlteiler, passiert diesen, um anschließend auf die Detektionsblende fokussiert zu werden, hinter der sich die Detektoren befinden. Detektionslicht, das nicht direkt aus der Fokusregion stammt, nimmt einen anderen Lichtweg und passiert die Detektionsblende nicht, so dass man eine Punktinformation erhält, die durch sequentielles Abtasten des Objekts zu einem dreidimensionalen Bild führt. Meist wird ein dreidimensionales Bild durch schichtweise Bilddatennahme erzielt.
In der Zweiphotonen-Rastermikroskopie werden die Fluoreszenzphotonen detektiert, die auf einen Zweiphotonenanregungsprozess zurückzuführen sind. Ein solcher Anregungsprozess kann dann stattfinden, wenn zufällig zwei Photonen geeigneter Wellenlänge innerhalb eines engen Zeitfensters, nämlich der Lebensdauer des virtuellen Zwischenzustandes, in der Probe zusammentreffen. Die Wahrscheinlichkeit eines solchen quasi gleichzeitigen Zusammentreffens ist daher vom Quadrat der Photonendichte abhängig, so dass in der Praxis hohe Anregungslichtleistungen erzielt werden müssen. Um hohe Lichtleistungen zu erzielen, ist es zweckmäßig, das Anregungslicht zu pulsen. Diese Technik ist weithin bekannt und wird sowohl mit Femtosekundenpulsen (US 5,034,613; Denk, Strickler, Webb), als auch mit Picosekundenpulsen (DE 44 14 940) praktiziert. Bei den derzeit üblicherweise verwendeten Pulslasern handelt es sich fast ausschließlich um modengekoppelte Titan-Saphir-Laser (Ti : Saphir-Laser) mit Pulsrepetitionsraten von 75 MHz-100 MHz. Durch die hohen Lichtleistungen kommt es zu unerwünschtem Ausbleichen und zu Schädigungen der Probe.
Es ist in der Mehrphotonenmikroskopie auch üblich, beispielsweise in einer Durchlichtanordnung, das Fluoreszenzlicht kondensorseitig zu detektieren, ohne dass der Detektionslichtstrahl über die Scanspiegel zum Detektor gelangt (Non-descan-Anordnung). Um, wie in der Descan-Anordnung, eine dreidimensionale Auflösung zu erzielen, wäre eine kondensorseitige Detektionsblende nötig. Im Falle der Zwei- oder Mehrphotonenanregung kann jedoch auf eine Detektionsblende verzichtet werden, da die Anregungswahrscheinlichkeit in den Nachbarregionen des Fokus so niedrig ist, dass von dort nahezu kein Fluoreszenzlicht ausgeht. Das zu detektierende Fluoreszenzlicht stammt daher mit großer Wahrscheinlichkeit zum aller größten Teil aus der Fokusregion, was eine weitere Differenzierung von Fluoreszenzphotonen aus dem Fokusbereich von Fluoreszenzphotonen aus den Nachbarbereichen mit einer Detektionsblende überflüssig macht.
In der Patentschrift US 5,796,477 ist ein Verschränkte-Photonen-Mikroskop offenbart, das die Vorteile der Mehrphotonenanregung aufweist, das jedoch extrem hohe Anregungslichtleistungen und die damit verbundenen Nachteile vermeidet. Anstelle von unabhängig voneinander entstandenen Photonen, werden verschränkte Photonen zur Anregung der Probe verwendet.
Zur Erzeugung von verschränkten Photonen ist in der genannten Patentschrift ein nichtlineares optisches Medium vorgeschlagen, das ein Kristall oder eine Oberfläche sein kann, in dem durch spontane parametrische Down-Conversion (spontaneous parametric downconversion) bei Beleuchtung mit einem Pumplichtstrahl zwei Strahlen verschränkter Photonen entstehen. Die beiden Strahlen werden beim Fokussieren in der Probe zusammen geführt, wobei die optische Länge der Strahlengänge genau aufeinander abgeglichen sein muss; was in der Praxis erhebliche Anforderungen an die Justiergenauigkeit und die mechanische Stabilität stellt.
Bei der spontanen parametrischen Down-Conversion oder parametrischen Fluoreszenz werden in einem Zwei-Photonen-Kaskadenübergang quasi gleichzeitig zwei Photonen emittiert. Da diese beiden Photonen eine gemeinsame Entstehungsursache, dem Übergang eines elektronisch angeregten Zustandes in den Grundzustand, haben und der Spin des Gesamtsystems, Atom und Strahlungsfeld, erhalten bleibt, müssen die Polarisationszustände beider Photonen aneinander gekoppelt sein.
Die Photonen befinden sich in einem sog. quantenmechanisch verschränkten Zustand. Die Wahrscheinlichkeit der Anregung eines Fluorophors in der Probe ist bei der Beleuchtung mit verschränkten Photonen linear von der Anregungslichtleistung und nicht, wie bei der bekannten Zweiphotonenanregung, vom Quadrat der Anregungslichtleistung abhängig; denn im Fokus passen bei geeigneten Randbedingungen verschränkte Photonen hinsichtlich Zeit und Ort prinzipiell immer zueinander.
Die Erzeugung von verschränkten Photonen mit Kristallen ist sehr ineffizient. Ferner hat die bekannte Anordnung den Nachteil, dass zwangsläufig zwei oder mehr Strahlen verschränkter Photonen entstehen, die getrennt voneinander geführt in der Probe zur zumindest teilweisen Überlappung gebracht werden müssen.
Der Erfindung liegt die Aufgabe zugrunde ein Verschränkte-Photonen-Mikroskop zu schaffen, das die aufgezeigten Nachteile vermeidet.
Die objektive Aufgabe wird durch ein Verschränkte-Photonen-Mikroskop gelöst, das die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 aufweist.
Die Erfindung hat den Vorteil, dass verschränkte Photonen mit höherer Effizienz, als mit den bekannten Mitteln erzeugt werden. Weiterhin hat die Erfindung den Vorteil, dass die verschränkten Photonen nicht in räumlich getrennten Strahlen geführt werden müssen.
In einer bevorzugten Ausgestaltung beinhaltet das Verschränkte-Photonen-Mikroskop ein mikrostrukturiertes optisches Element, das aus einer Vielzahl von mikrooptischen Strukturelementen aufgebaut ist, die zumindest zwei unterschiedliche optische Dichten aufweisen. Die mikrooptischen Strukturelemente sind vorzugsweise Kanülen, Stege, Waben, Röhren oder Hohlräume.
Besonders bevorzugt ist eine Ausgestaltung, bei der das optische Element einen ersten Bereich und einen zweiten Bereich beinhaltet, wobei der erste Bereich eine homogene Struktur aufweist und in dem zweiten Bereich eine mikroskopische Struktur aus mikrooptischen Strukturelementen gebildet ist. Von Vorteil ist es außerdem, wenn der erste Bereich den zweiten Bereich umschließt.
Das mikrostrukturierte optische Element besteht in einer anderen Ausgestaltung aus nebeneinander angeordnetem Glas- oder Kunststoffmaterial und Hohlräumen und ist als Lichtleitfaser ausgestaltet. Elemente dieser Art werden auch als "photonic band gap material" bezeichnet. Bei "Photonic band gap material" handelt es sich um mikrostrukturiertes durchsichtiges Material. Meist durch Zusammenfügen von verschiedenen Dielektrika lässt sich dem resultierenden Kristall eine Bandstruktur für Photonen aufprägen, die an die elektronische Bandstruktur von Halbleitern erinnert.
Die Technik ist auch in Form von Lichtleitfasern realisierbar. Die Fasern werden durch Ausziehen von strukturiert angeordneten Glasröhren oder Glasblöcken hergestellt, so dass eine Struktur entsteht, die nebeneinanderliegend Glas-, bzw. Kunststoffmaterial und Hohlräume aufweist. Den Fasern liegt eine besondere Struktur zugrunde:
In einer speziellen Ausgestaltungsform sind in Faserrichtung kleine Kanülen frei gelassen, die einen Abstand von etwa 2-3 µm und einen Durchmesser von ca. 1-2 µm haben und meist mit Luft gefüllt sind, wobei Kanülendurchmesser von 1,9 µm besonders geeignet sind. In der Mitte der Faser liegt meist keine Kanüle vor. Diese Art von Fasern sind auch als "photonic crystal fibres", "holey fibers" oder "microstructured fibers" bekannt.
Es sind auch Ausgestaltungen als sog. "Hollow fiber" bekannt, bei denen sich in der Mitte der Faser eine in der Regel luftgefüllte Röhre befindet, um die herum Kanülen angeordnet sind.
Eine ganz besonders bevorzugte und einfach zu realisierende Ausführungsvariante beinhaltet als mikrostrukturiertes optisches Element eine herkömmliche Lichtleitfaser mit einem Faserkern, die zumindest entlang eines Teilstücks eine Verjüngung aufweist. Lichtleitfasern dieser Art sind als sog. "tapered fibers" bekannt. Vorzugsweise ist die Lichtleitfaser insgesamt 1 m lang und weist eine Verjüngung auf einer Länge von 30 mm bis 90 mm auf. Der Durchmesser der Faser beträgt in einer bevorzugten Ausgestaltung 150 µm außerhalb des Bereich der Verjüngung und der des Faserkerns in diesem Bereich ca. 8 µm. Im Bereich der Verjüngung ist der Durchmesser der Faser auf ca. 2 µm reduziert. Der Faserkern Durchmesser liegt entsprechend im Nanometerbereich.
Ein besonderer Vorteil des erfindungsgemäßen Verschränkte-Photonen-Mikroskop ist es, dass Photonen unterschiedlicher Wellenlänge zur Wirkung kommen. Hierzu ist es von Vorteil die entsprechenden Wellenlängen mit Filteranordnungen auszuwählen. Licht nicht gewünschter Wellenlängen wird mit Filtern ausgeblendet.
In einer anderen Ausgestaltung sind Mittel zum Abgleich der optischen Weglängen für verschränkte Photonen unterschiedlicher Wellenlängen vorgesehen. Dies ist insbesondere dann von besonderem Interesse, wenn die verschränkten Photonen auf Grund von Dispersion in den optischen Komponenten des Verschränkte-Photonen-Mikroskops unterschiedliche Laufzeiten aufweisen. Als Mittel zum Abgleich sind Driftstrecken oder Prismen- oder Gitteranordnungen verwendbar.
Als Lichtquelle ist vorzugsweise ein Pulslaser zu verwenden; insbesondere sind modengekoppelte Pulslaser besonders geeignet. Aber auch einen kontinuierlichen Lichtstrahl erzeugende Laser oder Lampen sind verwendbar.
In einer Ausführungsvariante sind im Detektionsstrahlengang Filter vorgesehen, die nur das Licht, das auf einen 2-Photonen-Übergang zurück zu führen ist, zu dem Detektor gelangen lässt.
Das Scanmikroskop kann als Konfokalmikroskop ausgestaltet sein.
In der Zeichnung ist der Erfindungsgegenstand schematisch dargestellt und wird anhand der Figuren nachfolgend beschrieben. Dabei zeigen:
Fig. 1 ein erfindungsgemäßes Verschränkte-Photonen-Mikroskop,
Fig. 2 ein Verschränkte-Photonen-Mikroskop in Non-Descan-Anordnung,
Fig. 3 eine Ausgestaltung des mikrostrukturierten optischen Elements,
Fig. 4 eine weitere Ausgestaltung des mikrostrukturierten optischen Elements und
Fig. 5 eine weitere Ausgestaltung des mikrostrukturierten optischen Elements.
Fig. 1 zeigt ein Verschränkte-Photonen-Mikroskop 1, das eine Lichtquelle 3 zur Erzeugung eines Lichtstrahles 5 einer Wellenlänge von etwa 800 nm beinhaltet. Der Laser ist als modengekoppelter Ti : Saphir-Pulslaser 7 ausgeführt. Der Lichtstrahl 5 wird mit einer Einkoppeloptik 9 in das Ende eines mikrostrukturierten optischen Elements 11 fokussiert, das als Lichtleitfaser aus Photonic-Band-Gap-Material 13 ausgebildet ist. In dem mikrostrukturierten optischen Element 11 werden verschränkte Photonen erzeugt, die sich entlang der Lichtleitfaser aus Photonic-Band-Gap-Material 13 ausbreiten. Zum Kollimieren des aus der Lichtleitfaser aus Photonic-Band-Gap-Material 13 austretenden Strahles verschränkter Photonen 15 ist eine Auskoppeloptik 17 vorgesehen. Der Strahl verschränkter Photonen 15 durchläuft einen dielektrischen Filter 19, der Lichtanteile der ersten Wellenlänge blockiert, so dass gewährleistet ist, dass kein Licht unverschränkter Photonen der Lichtquelle 3 die Probe 33 erreicht. Anschließend gelangt der Strahl verschränkter Photonen 15 über den Hauptstrahlteiler 23 zum Scanspiegel 25, der den Strahl verschränkter Photonen 15 durch die Scanoptik 27, die Tubusoptik 29 und das Objektiv 31 hindurch über bzw. durch die Probe 33 führt. Das von der Probe 33 ausgehende Detektionslicht 35, das in der Zeichnung gestrichelt dargestellt ist, gelangt durch das Objektiv 31, die Tubusoptik 29 und die Scanoptik 27 hindurch zurück zum Scanspiegel 25 und dann zum Hauptstrahlteiler 23, passiert diesen und wird mit dem Detektor 37, der als Photomultiplier ausgeführt ist, detektiert.
Fig. 2 zeigt ein Verschränkte-Photonen-Mikroskop 1 in Non-Descan-Anordnung. In diesem Ausführungsbeispiel erzeugt eine Lichtquelle 3, die als Nd-YAG-Laser 39 ausgestaltet ist, einen Lichtstrahl 41 einer ersten Wellenlänge von z. B. 1064 nm, der, analog zur Anordnung in Fig. 1, auf das Ende eines mikrostrukturierten optischen Elements 11 fokussiert, das als Lichtleitfaser aus Photonic-Band-Gap-Material 13 ausgebildet ist. Die Beleuchtung und das Abscannen der Probe 33 mit dem Strahl verschränkter Photonen 15 erfolgt analog wie in der bei der in Fig. 1 gezeigten Anordnung, wobei anstelle des Hauptstrahlteilers 23 ein Spiegel 21 eingesetzt ist. Das von der Probe 33 ausgehende Detektionslicht 43, das in der Zeichnung gestrichelt dargestellt ist, gelangt durch einen Kondensor 45, direkt zu einem Detektor 47, der als Avalalanche-Photodiode ausgeführt ist.
Fig. 3 zeigt eine Ausführungsform des mikrostrukturierten optischen Elements 11 aus Photonic-Band-Gap-Material, das eine besondere wabenförmige Mikrostruktur 49 aufweist. Diese Mikrostruktur ist für die Erzeugung verschränkter Photonen besonders geeignet. Der Durchmesser der inneren Kanüle 51, die aus Glas besteht, beträgt ca. 1,9 µm. Die innere Kanüle 51 ist von Stegen 53 umgeben, die ebenfalls aus Glas bestehen. Die Stege 53 formen wabenförmige Hohlräume 55. Diese mikrooptischen Strukturelemente bilden gemeinsam einen zweiten Bereich 57, der von einem ersten Bereich 59, der als Glasmantel ausgeführt ist, umgeben ist.
Fig. 4 zeigt eine Ausführungsform des mikrostrukturierten optischen Elements 11, das als biegsame Lichtleitfaser ausgestaltet ist und aus einem Glaskörper 61 besteht, der mehrere hohle Kanülen 63 beinhaltet. Im Zentrum befindet sich bei dieser Ausgestaltungsform keine hohle Kanüle.
Fig. 5 zeigt eine weitere Ausgestaltungsform des mikrostrukturierten optischen Elements 11, das aus einem Kunststoffkörper 65 besteht, in dem sich hohle Kanülen 67 mit einem Innendurchmesser von 1,9 µm befinden. Im Zentrum des mikrostrukturierten optischen Elements 11 befindet sich eine hohle Kanüle 69, die einen Innendurchmesser von etwa 3 µm aufweist.
Die Erfindung wurde in Bezug auf eine besondere Ausführungsform beschrieben. Es ist jedoch selbstverständlich, dass Änderungen und Abwandlungen durchgeführt werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.
Bezugszeichenliste
1
Verschränkte-Photonen-Mikroskop
3
Lichtquelle
5
Lichtstrahl
7
Ti : Saphir-Pulslaser
9
Einkoppeloptik
11
mikrostrukturiertes optisches Element
13
Lichtleitfaser aus Photonic-Band-Gap-Material
15
Strahl verschränkter Photonen
16
Mittel zur Unterdrückung
17
Auskoppeloptik
19
dielektrischer Filter
21
Spiegel
23
Hauptstrahlteiler
25
Scanspiegel
27
Scanoptik
29
Tubusoptik
31
Objektiv
33
Probe
35
Detektionslicht
37
Detektor
39
Nd-YAG-Laser
41
Lichtstrahl
43
Detektionslicht
45
Kondensor
47
Detektor
49
Mikrostruktur
51
Kanüle
53
Stege
55
Hohlräume
57
zweiter Bereich
59
erster Bereich
61
Glaskörper
63
hohle Kanülen
65
Kunststoffkörper
67
hohle Kanülen
69
hohle Kanüle

Claims (11)

1. Verschränkte-Photonen-Mikroskop (1) mit einer Lichtquelle (3) und einem Objektiv (31), dadurch gekennzeichnet, dass zwischen der Lichtquelle (3) und dem Objektiv (31) ein mikrostrukturiertes optisches Element (11) angeordnet ist, in dem verschränkte Photonen erzeugbar sind, wobei sich die verschränkten Photonen innerhalb und außerhalb des mikrostrukturierten optischen Elements in einem Strahl (15) ausbreiten.
2. Verschränkte-Photonen-Mikroskop (1) nach Anspruch 1, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element (11) aus einer Vielzahl von mikrooptischen Strukturelementen aufgebaut ist, die zumindest zwei unterschiedliche optische Dichten aufweisen.
3. Verschränkte-Photonen-Mikroskop (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element (11) einen ersten Bereich (59) und einen zweiten Bereich (57) beinhaltet, wobei der erste Bereich (59) eine homogene Struktur aufweist und in dem zweiten Bereich (57) eine Mikrostruktur (49) aus mikrooptischen Strukturelementen gebildet ist.
4. Verschränkte-Photonen-Mikroskop (1) nach Anspruch 3, dadurch gekennzeichnet, dass der erste Bereich (59) den zweiten Bereich (57) umschließt.
5. Verschränkte-Photonen-Mikroskop (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element (11) aus nebeneinander angeordnetem Glas- oder Kunststoffmaterial und Hohlräumen (55) besteht.
6. Verschränkte-Photonen-Mikroskop (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mikrooptischen Strukturelemente Kanülen (51, 63, 67, 69), Stege (53), Waben, Röhren oder Hohlräume (55) sind.
7. Verschränkte-Photonen-Mikroskop (1) nach Anspruch 1, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element (11) aus Photonic-Band-Gap-Material besteht.
8. Verschränkte-Photonen-Mikroskop (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element (11) als Lichtleitfaser ausgestaltet ist.
9. Verschränkte Photonen-Mikroskop (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element (11) als Lichtleitfaser ausgestaltet ist, die eine Verjüngung aufweist.
10. Verschränkte-Photonen-Mikroskop (1) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Verschränkte-Photonen-Mikroskop (1) ein Konfokalmikroskop ist.
11. Verschränkte Photonen-Mikroskop (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet dass Filter zur Auswahl von Photonen verschiedenen Wellenlängen vorgesehen sind.
DE10115486A 2000-06-17 2001-03-29 Verschränkte-Photonen-Mikroskop Withdrawn DE10115486A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE10115486A DE10115486A1 (de) 2000-06-17 2001-03-29 Verschränkte-Photonen-Mikroskop
DE50105513T DE50105513D1 (de) 2000-06-17 2001-06-01 Verschränkte-Photonen-Mikroskop
EP01112881A EP1164401B1 (de) 2000-06-17 2001-06-01 Verschränkte-Photonen-Mikroskop
US09/880,825 US6567164B2 (en) 2000-06-17 2001-06-15 Entangled-photon microscope and confocal microscope
US09/881,049 US6898367B2 (en) 2000-06-17 2001-06-15 Method and instrument for microscopy
JP2001183691A JP2002062262A (ja) 2000-06-17 2001-06-18 インターレース光子型顕微鏡
US10/964,034 US7110645B2 (en) 2000-06-17 2004-10-13 Method and instrument for microscopy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10030013 2000-06-17
DE10115486A DE10115486A1 (de) 2000-06-17 2001-03-29 Verschränkte-Photonen-Mikroskop

Publications (1)

Publication Number Publication Date
DE10115486A1 true DE10115486A1 (de) 2001-12-20

Family

ID=7646174

Family Applications (13)

Application Number Title Priority Date Filing Date
DE10115509A Ceased DE10115509A1 (de) 2000-06-17 2001-03-29 Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE10115488A Ceased DE10115488A1 (de) 2000-06-17 2001-03-29 Verfahren und Vorrichtung zur Beleuchtung eines Objekts
DE10115589.1A Expired - Lifetime DE10115589B4 (de) 2000-06-17 2001-03-29 Konfokales Scanmikroskop
DE10115486A Withdrawn DE10115486A1 (de) 2000-06-17 2001-03-29 Verschränkte-Photonen-Mikroskop
DE10115487A Ceased DE10115487A1 (de) 2000-06-17 2001-03-29 Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop
DE10115590.5A Expired - Lifetime DE10115590B4 (de) 2000-06-17 2001-03-29 Scanmikroskop
DE10115577A Ceased DE10115577A1 (de) 2000-06-17 2001-03-29 Scanmikroskop mit mehrbandiger Beleuchtung und optisches Bauteil für ein Scanmikroskop mit mehrbandiger Beleuchtung
DE50105513T Expired - Lifetime DE50105513D1 (de) 2000-06-17 2001-06-01 Verschränkte-Photonen-Mikroskop
DE50115464T Expired - Lifetime DE50115464D1 (de) 2000-06-17 2001-06-01 Scanmikroskop zum Untersuchen mikroskopischer Präparate und Beleuchtungseinrichtung für ein Scanmikroskop
DE50115456T Expired - Lifetime DE50115456D1 (de) 2000-06-17 2001-06-01 Scanmikroskop mit mehrbandiger Beleuchtung und optisches Bauelement für ein Scanmikroskop mit mehrbandiger Beleuchtung
DE50114274T Expired - Lifetime DE50114274D1 (de) 2000-06-17 2001-06-01 Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE50114275T Expired - Lifetime DE50114275D1 (de) 2000-06-17 2001-06-09 Scanmikroskop
DE50114278T Expired - Lifetime DE50114278D1 (de) 2000-06-17 2001-06-15 Beleuchtungseinrichtung

Family Applications Before (3)

Application Number Title Priority Date Filing Date
DE10115509A Ceased DE10115509A1 (de) 2000-06-17 2001-03-29 Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE10115488A Ceased DE10115488A1 (de) 2000-06-17 2001-03-29 Verfahren und Vorrichtung zur Beleuchtung eines Objekts
DE10115589.1A Expired - Lifetime DE10115589B4 (de) 2000-06-17 2001-03-29 Konfokales Scanmikroskop

Family Applications After (9)

Application Number Title Priority Date Filing Date
DE10115487A Ceased DE10115487A1 (de) 2000-06-17 2001-03-29 Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop
DE10115590.5A Expired - Lifetime DE10115590B4 (de) 2000-06-17 2001-03-29 Scanmikroskop
DE10115577A Ceased DE10115577A1 (de) 2000-06-17 2001-03-29 Scanmikroskop mit mehrbandiger Beleuchtung und optisches Bauteil für ein Scanmikroskop mit mehrbandiger Beleuchtung
DE50105513T Expired - Lifetime DE50105513D1 (de) 2000-06-17 2001-06-01 Verschränkte-Photonen-Mikroskop
DE50115464T Expired - Lifetime DE50115464D1 (de) 2000-06-17 2001-06-01 Scanmikroskop zum Untersuchen mikroskopischer Präparate und Beleuchtungseinrichtung für ein Scanmikroskop
DE50115456T Expired - Lifetime DE50115456D1 (de) 2000-06-17 2001-06-01 Scanmikroskop mit mehrbandiger Beleuchtung und optisches Bauelement für ein Scanmikroskop mit mehrbandiger Beleuchtung
DE50114274T Expired - Lifetime DE50114274D1 (de) 2000-06-17 2001-06-01 Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE50114275T Expired - Lifetime DE50114275D1 (de) 2000-06-17 2001-06-09 Scanmikroskop
DE50114278T Expired - Lifetime DE50114278D1 (de) 2000-06-17 2001-06-15 Beleuchtungseinrichtung

Country Status (6)

Country Link
US (1) US7679822B2 (de)
EP (3) EP2045643B2 (de)
JP (1) JP5111480B2 (de)
AT (1) ATE407381T1 (de)
DE (13) DE10115509A1 (de)
DK (1) DK1184701T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060610A1 (de) * 2002-01-16 2003-07-24 Carl Zeiss Jena Gmbh Verfahren und anordnungen zur mikroskopischen abbildung
DE10211458A1 (de) * 2002-03-12 2003-09-25 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Erhöhung der Auflösung in einem Mikroskop
EP2492737A2 (de) 2011-02-24 2012-08-29 Leica Microsystems CMS GmbH Pulsvereiniger für die verschiedenen Spektralfarben eines Superkontinuum-Lasers

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10221365A1 (de) * 2002-05-08 2003-11-27 Jenoptik Laser Optik Sys Gmbh Optische Anordnung zur Erzeugung eines Breitbandspektrums
DE10227111B4 (de) * 2002-06-17 2007-09-27 Leica Microsystems Cms Gmbh Spektralmikroskop und Verfahren zur Datenaufnahme mit einem Spektralmikroskop
DE10313987B4 (de) * 2003-03-27 2007-07-12 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zur Beleuchtung eines Objekts
DE10314750A1 (de) * 2003-03-31 2004-11-04 Leica Microsystems Heidelberg Gmbh Rastermikroskop zur Detektion eines Objekts
DE10324478B3 (de) 2003-05-30 2004-12-09 Leica Microsystems Heidelberg Gmbh Vorrichtung zum Ermitteln der Lichtleistung eines Lichtstrahles und Scanmikroskop
DE10331906B4 (de) * 2003-07-15 2005-06-16 Leica Microsystems Heidelberg Gmbh Lichtquelle mit einem Mikrostruktuierten optischen Element und Mikroskop mit Lichtquelle
DE10340964A1 (de) * 2003-09-05 2005-03-31 Leica Microsystems Heidelberg Gmbh Lichtquelle mit einem mikrostrukturierten optischen Element
DE102004032463B4 (de) * 2004-06-30 2011-05-19 Jenoptik Laser Gmbh Verfahren und optische Anordnung zur Erzeugung eines Breitbandspektrums mittels modengekoppelter Picosekunden-Laserimpulse
CA2590746A1 (en) * 2004-12-08 2006-06-15 Frederic Zweig An optical device for producing light lines from quasi point-like light sources by way of slot-like cavities
DE102005010887A1 (de) * 2005-03-09 2006-09-14 Leica Microsystems (Schweiz) Ag Beleuchtungseinrichtung
DE102006004075B4 (de) * 2006-01-28 2008-01-03 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zur Verringerung des Intensitätsrauschens und Mikroskop mit Vorrichtung zur Verringerung des Intensitätsrauschens
DE102006053187A1 (de) 2006-11-09 2008-05-15 Leica Microsystems Cms Gmbh Akustooptisches Bauteil
DE102007024075B4 (de) 2007-05-22 2022-06-09 Leica Microsystems Cms Gmbh Durchstimmbares akusto-optisches Filterelement, einstellbare Lichtquelle, Mikroskop und akusto-optischer Strahlteiler
DE102007028337B4 (de) * 2007-06-15 2019-08-29 Leica Microsystems Cms Gmbh Strahlvereiniger und eine Lichtquelle mit einem derartigen Strahlvereiniger
DE102007039498B4 (de) 2007-08-21 2017-08-03 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zur Beleuchtung und/oder Bestrahlung eines Objekts oder einer Probe
DE102007053199A1 (de) 2007-11-06 2009-05-14 Leica Microsystems Cms Gmbh Vorrichtung und Verfahren zur Ansteuerung eines akustooptischen Bauteils
GB0800936D0 (en) 2008-01-19 2008-02-27 Fianium Ltd A source of optical supercontinuum generation having a selectable pulse repetition frequency
DE202009007789U1 (de) 2009-06-03 2009-08-20 Carl Zeiss Microimaging Gmbh Breitbandige Lichtquelle und Mikroskop
DE102009056092B4 (de) 2009-11-30 2013-02-28 PicoQuant GmbH. Unternehmen für optoelektronische Forschung und Entwicklung Lichtquelle mit einem Diodenlaser
US9229294B2 (en) 2010-05-06 2016-01-05 Leica Microsystems Cms Gmbh Apparatus and method for operating an acousto-optical component
DE102010026205A1 (de) * 2010-07-06 2012-01-12 Carl Zeiss Microlmaging Gmbh Mikroskop, insbesondere Fluoreszenzmikroskop, dichroitischer Strahlteiler und dessen Verwendung
US8385699B2 (en) 2010-07-29 2013-02-26 Jian Liu Amplified broadband fiber laser source
DE102013008075A1 (de) * 2013-05-10 2014-11-13 Volkswagen Aktiengesellschaft Leuchtvorrichtung mit nichtlinearem Lichtleiter für ein Kraftfahrzeug

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US659074A (en) * 1899-08-24 1900-10-02 Hippolyte Joseph La Force Journal-box.
US3720822A (en) 1971-01-29 1973-03-13 Xenotech Inc Xenon photography light
US4011403A (en) 1976-03-30 1977-03-08 Northwestern University Fiber optic laser illuminators
US4063106A (en) 1977-04-25 1977-12-13 Bell Telephone Laboratories, Incorporated Optical fiber Raman oscillator
CA1325537C (en) 1988-08-01 1993-12-28 Timothy Peter Dabbs Confocal microscope
DE3912914A1 (de) * 1989-04-20 1990-10-25 Douw Serge Vorrichtung zur definierten farb- und richtungsbeeinflussung eines weisslicht-laserstrahls
US5034613A (en) 1989-11-14 1991-07-23 Cornell Research Foundation, Inc. Two-photon laser microscopy
JP2516859Y2 (ja) 1990-04-23 1996-11-13 三菱電線工業株式会社 光ファイバ増幅器
US5127730A (en) * 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
US5272330A (en) 1990-11-19 1993-12-21 At&T Bell Laboratories Near field scanning optical microscope having a tapered waveguide
US5286971A (en) 1990-11-19 1994-02-15 At&T Bell Laboratories Data recording using a near field optical probe
US5286970A (en) 1990-11-19 1994-02-15 At&T Bell Laboratories Near field optical microscopic examination of a biological specimen
US5784162A (en) 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US5155792A (en) 1991-06-27 1992-10-13 Hughes Aircraft Company Low index of refraction optical fiber with tubular core and/or cladding
JP2777505B2 (ja) 1992-07-29 1998-07-16 株式会社日立製作所 自動分析電子顕微鏡および分析評価方法
US5283433A (en) 1992-10-05 1994-02-01 The Regents Of The University Of California Scanning confocal microscope providing a continuous display
US5394268A (en) 1993-02-05 1995-02-28 Carnegie Mellon University Field synthesis and optical subsectioning for standing wave microscopy
US5764845A (en) 1993-08-03 1998-06-09 Fujitsu Limited Light guide device, light source device, and liquid crystal display device
US5537247A (en) 1994-03-15 1996-07-16 Technical Instrument Company Single aperture confocal imaging system
DE4414940C2 (de) 1994-04-28 1998-07-02 Pekka Haenninen Lumineszenz-Rastermikroskop mit zwei Photonen Anregung
DE4446185C2 (de) 1994-08-25 1997-03-27 Leica Lasertechnik Vorrichtung zum Einkoppeln eines UV-Laserstrahls in ein konfokales Laser-Scanmikroskop
US5903688A (en) 1994-08-25 1999-05-11 Leica Lasertechnik Gmbh Device for feeding a UV laser into a confocal laser scanning microscope
US5541613A (en) 1994-11-03 1996-07-30 Hughes Aircraft Company, Hughes Electronics Efficient broadband antenna system using photonic bandgap crystals
JPH08211296A (ja) 1995-02-03 1996-08-20 Shimadzu Corp 共焦点走査型光学顕微鏡
US5784152A (en) 1995-03-16 1998-07-21 Bio-Rad Laboratories Tunable excitation and/or tunable detection microplate reader
US5861984A (en) 1995-03-31 1999-01-19 Carl Zeiss Jena Gmbh Confocal scanning microscope and beamsplitter therefor
KR100209608B1 (ko) 1995-09-15 1999-07-15 구자홍 광 출력검지 장치
CA2231222C (en) * 1995-09-19 2001-12-11 Cornell Research Foundation, Inc. Multi-photon laser microscopy
US5802236A (en) 1997-02-14 1998-09-01 Lucent Technologies Inc. Article comprising a micro-structured optical fiber, and method of making such fiber
DE19622359B4 (de) * 1996-06-04 2007-11-22 Carl Zeiss Jena Gmbh Vorrichtung zur Einkopplung der Strahlung von Kurzpulslasern in einem mikroskopischen Strahlengang
US6005709A (en) 1996-06-05 1999-12-21 Marine Biological Laboratory Microscope system for using transmitted light to observe living organisms
US6002522A (en) 1996-06-11 1999-12-14 Kabushiki Kaisha Toshiba Optical functional element comprising photonic crystal
DE69630025T2 (de) * 1996-07-16 2004-04-01 Perkin-Elmer Ltd., Beaconsfield Kontrolle eines Infrarotmikroskops
US5862287A (en) 1996-12-13 1999-01-19 Imra America, Inc. Apparatus and method for delivery of dispersion compensated ultrashort optical pulses with high peak power
DE19702753C2 (de) * 1997-01-27 2003-04-10 Zeiss Carl Jena Gmbh Laser-Scanning-Mikroskop
JPH10293094A (ja) * 1997-02-24 1998-11-04 Olympus Optical Co Ltd サイトメータ
US5796477A (en) 1997-02-27 1998-08-18 Trustees Of Boston University Entangled-photon microscopy, spectroscopy, and display
US5995281A (en) 1997-04-09 1999-11-30 Carl Zeiss Jena Gmbh Device for coupling the radiation of short-pulse lasers in an optical beam path of a microscope
US6108127A (en) 1997-05-15 2000-08-22 3M Innovative Properties Company High resolution confocal microscope
EP1970756A3 (de) 1997-06-18 2014-08-27 Nippon Telegraph and Telephone Corporation Optische Impulsquelle und Anwendungen
GB9713422D0 (en) 1997-06-26 1997-08-27 Secr Defence Single mode optical fibre
US5973316A (en) 1997-07-08 1999-10-26 Nec Research Institute, Inc. Sub-wavelength aperture arrays with enhanced light transmission
DE19733195B4 (de) * 1997-08-01 2006-04-06 Carl Zeiss Jena Gmbh Hoch-Kompaktes Laser Scanning Mikroskop mit integriertem Kurzpuls Laser
US6356088B1 (en) 1997-08-01 2002-03-12 Carl Zeiss Jena Gmbh Highly compact laser scanning microscope with integrated short-pulse laser
US5967653A (en) 1997-08-06 1999-10-19 Miller; Jack V. Light projector with parabolic transition format coupler
US6744555B2 (en) 1997-11-21 2004-06-01 Imra America, Inc. Ultrashort-pulse source with controllable wavelength output
US6154310A (en) 1997-11-21 2000-11-28 Imra America, Inc. Ultrashort-pulse source with controllable multiple-wavelength output
JPH11174332A (ja) 1997-12-11 1999-07-02 Nikon Corp レーザ顕微鏡
US6108474A (en) 1997-12-11 2000-08-22 Lucent Technologies Inc. Optical pulse compressor for optical communications systems
DE19906757B4 (de) 1998-02-19 2004-07-15 Leica Microsystems Heidelberg Gmbh Mikroskop
JP4406108B2 (ja) 1998-03-11 2010-01-27 オリンパス株式会社 多光子励起レーザ顕微鏡
US6404966B1 (en) 1998-05-07 2002-06-11 Nippon Telegraph And Telephone Corporation Optical fiber
DE19861383B4 (de) 1998-06-18 2008-03-27 Carl Zeiss Jena Gmbh Laserscanmikroskop
DE19829944C2 (de) * 1998-07-04 2002-03-28 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Gerätekonfiguration eines Fluoreszenz-Laserscanmikroskops
DE19829954A1 (de) 1998-07-04 2000-01-05 Zeiss Carl Jena Gmbh Strahlteiler in einem Laser-Scanning-Mikroskop
DE19829981C2 (de) 1998-07-04 2002-10-17 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur konfokalen Mikroskopie
KR100328291B1 (ko) 1998-07-14 2002-08-08 노베라 옵틱스 인코포레이티드 능동제어된파장별이득을갖는광증폭기및변화가능한출력스펙트럼을갖는광섬유광원
DE19835068A1 (de) 1998-08-04 2000-02-10 Zeiss Carl Jena Gmbh Mikroskop, insbesondere Laser-Scanning-Mikroskop
DE19840926B4 (de) 1998-09-08 2013-07-11 Hell Gravure Systems Gmbh & Co. Kg Anordnung zur Materialbearbeitung mittels Laserstrahlen und deren Verwendung
JP2000199855A (ja) 1998-11-02 2000-07-18 Olympus Optical Co Ltd 走査型光学顕微鏡装置
US6243522B1 (en) 1998-12-21 2001-06-05 Corning Incorporated Photonic crystal fiber
GB9903918D0 (en) * 1999-02-19 1999-04-14 Univ Bath Improvements in and relating to photonic crystal fibres
US6424665B1 (en) 1999-04-30 2002-07-23 The Regents Of The University Of California Ultra-bright source of polarization-entangled photons
US6097870A (en) * 1999-05-17 2000-08-01 Lucent Technologies Inc. Article utilizing optical waveguides with anomalous dispersion at vis-nir wavelenghts
US6252665B1 (en) 1999-05-20 2001-06-26 California Institute Of Technology Lithography using quantum entangled particles
US6236779B1 (en) 1999-05-24 2001-05-22 Spectra Physics Lasers, Inc. Photonic crystal fiber system for sub-picosecond pulses
GB0010950D0 (en) 2000-05-05 2000-06-28 Univ Bath A nonlinear optical device
US6885683B1 (en) 2000-05-23 2005-04-26 Imra America, Inc. Modular, high energy, widely-tunable ultrafast fiber source
EP1164402B1 (de) 2000-06-17 2010-04-28 Leica Microsystems CMS GmbH Scanmikroskop mit mehrbandiger Beleuchtung und optisches Bauelement für ein Scanmikroskop mit mehrbandiger Beleuchtung
EP1164401B1 (de) 2000-06-17 2005-03-09 Leica Microsystems Heidelberg GmbH Verschränkte-Photonen-Mikroskop
DE20122782U1 (de) 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh Beleuchtungseinrichtung
EP1164406B1 (de) 2000-06-17 2019-04-17 Leica Microsystems CMS GmbH Verfahren und Vorrichtung zur Beleuchtung eines Objekts
DE20122791U1 (de) 2000-06-17 2007-11-29 Leica Microsystems Cms Gmbh Scanmikroskop
EP1186929B2 (de) 2000-06-17 2009-09-30 Leica Microsystems CMS GmbH Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop
US6898367B2 (en) 2000-06-17 2005-05-24 Leica Microsystems Heidelberg Gmbh Method and instrument for microscopy
US6514784B1 (en) 2000-09-01 2003-02-04 National Research Council Of Canada Laser-induced bandgap shifting for photonic device integration
US6658183B1 (en) 2000-10-20 2003-12-02 Lucent Technologies Inc. Process for fabricating tapered microstructured fiber system and resultant system
US6369928B1 (en) 2000-11-01 2002-04-09 Optical Biopsy Technologies, Inc. Fiber-coupled, angled-dual-illumination-axis confocal scanning microscopes for performing reflective and two-photon fluorescence imaging
DE10139754B4 (de) 2001-08-13 2004-07-08 Leica Microsystems Heidelberg Gmbh Beleuchtungsverfahren für ein Scanmikroskop und Scanmikroskop
US6721476B2 (en) 2001-12-03 2004-04-13 Honeywell International Inc. Optical demultiplexer based on three-dimensionally periodic photonic crystals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060610A1 (de) * 2002-01-16 2003-07-24 Carl Zeiss Jena Gmbh Verfahren und anordnungen zur mikroskopischen abbildung
DE10211458A1 (de) * 2002-03-12 2003-09-25 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Erhöhung der Auflösung in einem Mikroskop
EP2492737A2 (de) 2011-02-24 2012-08-29 Leica Microsystems CMS GmbH Pulsvereiniger für die verschiedenen Spektralfarben eines Superkontinuum-Lasers
DE102011000905A1 (de) 2011-02-24 2012-08-30 Leica Microsystems Cms Gmbh Pulsvereiniger für die verschiedenen Spektralfarben eines Superkontinuum-Lasers
US8879148B2 (en) 2011-02-24 2014-11-04 Leica Microsystems Cms Gmbh Pulse combiner for the various spectral colors of a supercontinuum laser pulse

Also Published As

Publication number Publication date
DE50114275D1 (de) 2008-10-16
EP2045641A3 (de) 2009-10-28
DE10115589B4 (de) 2020-07-30
JP2010102345A (ja) 2010-05-06
DE50115464D1 (de) 2010-06-10
EP2045641A2 (de) 2009-04-08
EP2045643B1 (de) 2010-04-28
DE50114274D1 (de) 2008-10-16
DK1184701T3 (da) 2009-01-26
DE50114278D1 (de) 2008-10-16
DE10115589A1 (de) 2001-12-20
US7679822B2 (en) 2010-03-16
ATE407381T1 (de) 2008-09-15
DE10115577A1 (de) 2001-12-20
EP2045642A1 (de) 2009-04-08
DE10115488A1 (de) 2001-12-20
DE10115590B4 (de) 2020-11-05
EP2045643A1 (de) 2009-04-08
DE10115509A1 (de) 2001-12-20
JP5111480B2 (ja) 2013-01-09
DE10115487A1 (de) 2001-12-20
DE50115456D1 (de) 2010-06-10
DE10115590A1 (de) 2001-12-20
DE50105513D1 (de) 2005-04-14
EP2045643B2 (de) 2013-10-30
US20090086315A1 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
EP1164401B1 (de) Verschränkte-Photonen-Mikroskop
DE10115486A1 (de) Verschränkte-Photonen-Mikroskop
EP1184701B1 (de) Beleuchtungseinrichtung
EP1714187B1 (de) Mikroskop mit einer lichtquelle mit mehreren mikrostrukturierten optischen elementen
DE10120425C2 (de) Scanmikroskop
DE19520187C1 (de) Optik zum Herstellen einer scharfen Beleuchtungslinie aus einem Laserstrahl
EP1164406B1 (de) Verfahren und Vorrichtung zur Beleuchtung eines Objekts
EP1164403B1 (de) Scanmikroskop
EP1164400B1 (de) Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
EP1122574B1 (de) Mikroskop-Aufbau
EP1186929B1 (de) Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop
EP2784564A1 (de) Lichtmikroskop und Verfahren zum Untersuchen einer mikroskopischen Probe
DE10252005B4 (de) Rauscharmes Mikroskop
EP2492737B1 (de) Pulsvereiniger für die verschiedenen Spektralfarben eines Superkontinuum-Lasers
WO2006097070A1 (de) Mikroskop
DE20122785U1 (de) Vorrichtung zur Beleuchtung eines Objekts
DE20022256U1 (de) Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop

Legal Events

Date Code Title Description
8127 New person/name/address of the applicant

Owner name: LEICA MICROSYSTEMS CMS GMBH, 35578 WETZLAR, DE

8141 Disposal/no request for examination