DE10110053A1 - Neue für das oxyR-Gen kodierende Nukleotidsequenzen - Google Patents

Neue für das oxyR-Gen kodierende Nukleotidsequenzen

Info

Publication number
DE10110053A1
DE10110053A1 DE10110053A DE10110053A DE10110053A1 DE 10110053 A1 DE10110053 A1 DE 10110053A1 DE 10110053 A DE10110053 A DE 10110053A DE 10110053 A DE10110053 A DE 10110053A DE 10110053 A1 DE10110053 A1 DE 10110053A1
Authority
DE
Germany
Prior art keywords
gene
polynucleotide
sequence
coding
oxyr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10110053A
Other languages
English (en)
Inventor
Achim Marx
Mike Farwick
Thomas Hermann
Natalie Schischka
Brigitte Bathe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Priority to DE10110053A priority Critical patent/DE10110053A1/de
Priority to PCT/EP2001/008388 priority patent/WO2002018431A1/en
Priority to AU2001289706A priority patent/AU2001289706A1/en
Priority to EP01969448A priority patent/EP1313758A1/de
Priority to US09/938,641 priority patent/US6916636B2/en
Publication of DE10110053A1 publication Critical patent/DE10110053A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft ein isoliertes Polynukleotid, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe DOLLAR A a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält, DOLLAR A b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2, DOLLAR A c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und DOLLAR A d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c), DOLLAR A und ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung von coryneformen Bakterien, in denen zumindest das oxyR-Gen verstärkt vorliegt, und die Verwendung der Polynukleotidsequenzen als Hybridisierungssonden.

Description

Gegenstand der Erfindung sind für das oxyR-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren, und ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, unter Verwendung von Bakterien, in denen das oxyR-Gen verstärkt wird. Das oxyR-Gen kodiert für den Transkriptionsregulator OxyR, welcher zur LysR-Familie gehört.
Stand der Technik
L-Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung, Anwendung.
Es ist bekannt, dass Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der grossen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Massnahmen wie zum Beispiel Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie zum Beispiel die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch zum Beispiel Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z. B. das Lysin-Analogon S-(2-Aminoethyl)-Cystein oder auxotroph für regulatorisch bedeutsame Metabolite sind und L-Lysin produzieren.
Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht.
Aufgabe der Erfindung
Die Erfinder haben sich zur Aufgabe gestellt, neue Massnahmen zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, bereitzustellen.
Beschreibung der Erfindung
Werden im folgenden L-Aminosäuren oder Aminosäuren erwähnt, sind damit eine oder mehrere Aminosäuren einschliesslich ihrer Salze, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin gemeint.
Werden im folgenden L-Lysin oder Lysin erwähnt, sind damit auch die Salze wie z. B. Lysin-Monohydrochlorid oder Lysin- Sulfat gemeint.
Gegenstand der Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das oxyR-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No.2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
wobei das Polypeptid bevorzugt die Aktivität des Transkriptionsregulators OxyR aufweist.
Gegenstand der Erfindung ist ebenfalls das oben genannte Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No.1; oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutralen Sinnmutationen in (i), die die Aktivität des Proteins/Polypeptides nicht verändern
Weitere Gegenstände sind
  • a) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 1 und 490;
  • b) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 491 und 1471; und
  • c) Polynukleotide enthaltend mindestens 15 aufeinanderfolgende Nukleotide ausgewählt aus der Nukleotidsequenz von SEQ ID No. 1 zwischen den Positionen 1472 und 1675.
Weitere Gegenstände sind
ein replizierbares Polynukleotid, insbesondere DNA, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt;
ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält;
ein Vektor, enthaltend die für das oxyR-Gen kodierende DNA-Sequenz von C. glutamicum, hinterlegt in Corynebacterium glutamicum als pT-oxyRexp unter DSM 13457, und
als Wirtszelle dienende coryneforme Bakterien, die den Vektor enthalten oder in denen das oxyR-Gen verstärkt ist.
Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank eines coryneformen Bakteriums, die das vollständige Gen oder Teile davon enthält, mit einer Sonde, die die Sequenz des erfindungsgemässen Polynukleotids gemäss SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten Polynukleotidsequenz.
Polynukleotidsequenzen gemäss der Erfindung sind als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um Nukleinsäuren bzw. Polynukleotide oder Gene in voller Länge zu isolieren, die für den Transkriptionsregulator OxyR kodieren, oder um solche Nukleinsäuren bzw. Polynukleotide oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des oxyR-Gens aufweisen. Sie sind ebenso zum Einbau in sogenannte "arrays", "micro arrays" oder "DNA chips" geeignet, um die entsprechenden Polynukleotide zu detektieren und zu bestimmen.
Polynukleotidsequenzen gemäss der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase- Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für den Transkriptionsregulator OxyR kodieren.
Solche als Sonden oder Primer dienende Oligonukleotide, enthalten mindestens 25, 26, 27, 28, 29 oder 30, bevorzugt mindestens 20, 21, 22, 23 oder 24, ganz besonders bevorzugt mindestens 15, 16, 17, 18 oder 19 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 31, 32, 33, 34, 35, 36, 37, 38, 39 oder 40, oder mindestens 41, 42, 43, 44, 45, 46, 47, 48, 49 oder 50 Nukleotiden. Gegebenenfalls sind auch Oligonukleotide mit einer Länge von mindestens 100, 150, 200, 250 oder 300 Nukleotiden geeignet.
"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.
"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.
Die Polynukleotide gemäss Erfindung schliessen ein Polynukleotid gemäss SEQ ID No. 1 oder ein daraus hergestelltes Fragment und auch solche ein, die zu wenigstens besonders 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polynukleotid gemäß SEQ ID No. 1 oder eines daraus hergestellten Fragmentes.
Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.
Die Polypeptide gemäss Erfindung schliessen ein Polypeptid gemäss SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität der Transkriptionsregulator OxyR und auch solche ein, die zu wenigstens 70% bis 80%, bevorzugt zu wenigstens 81% bis 85%, besonders bevorzugt zu wenigstens 86% bis 90%, und ganz besonders bevorzugt zu wenigstens 91%, 93%, 95%, 97% oder 99% identisch sind mit dem Polypeptid gemäss SEQ ID No. 2 und die genannte Aktivität aufweisen.
Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits Aminosäuren produzieren und in denen die für das oxyR-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise die Kopienzahl des Gens bzw. der Gene erhöht, einen starken Promotor verwendet oder ein Gen oder Allel verwendet, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert und gegebenenfalls diese Massnahmen kombiniert.
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren, insbesondere L-Lysin aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.
Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum (C. glutamicum), sind besonders die bekannten Wildtypstämme
Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020
und daraus hergestellte L-Lysin produzierende Mutanten bzw. Stämme, wie beispielsweise
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464 und
Corynebacterium glutamicum DSM5715.
Den Erfindern gelang es, das neue, für den Transkriptionsregulator OxyR kodierende oxyR-Gen von C. glutamicum zu isolieren.
Zur Isolierung des oxyR-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in Escherichia coli (E. coli) angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252: 255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16: 1563-1575) angelegt wurde.
Börmann et al. (Molecular Microbiology 6(3), 317-326) (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)). Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Viera et al., 1982, Gene, 19: 259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli- Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschliessend wiederum in gängige für die Sequenzierung geeignete Vektoren subkloniert und anschliessend sequenziert werden, so wie es z. B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.
Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z. B. dem von Staden (Nucleic Acids Research 14, 217-232 (1986)), dem von Marck (Nucleic Acids Research 16, 1829-1836 (1988)) oder dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) untersucht werden.
Auf diese Weise wurde die neue für das Gen oxyR kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des oxyR-Genproduktes dargestellt. Es ist bekannt, daß wirtseigene Enzyme die N-terminale Aminosäure Methionin bzw. Formylmethionin des gebildeten Proteins abspalten können.
Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. In der Fachwelt sind weiterhin konservative Aminosäureaustausche wie z. B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" ("sense mutations") bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Weiterhin ist bekannt, dass Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Bio/Technology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.
In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schliesslich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.
Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Die Hybridisierung findet unter stringenten Bedingungen statt, das heisst, es werden nur Hybride gebildet, bei denen Sonde und Zielsequenz, d. h. die mit der Sonde behandelten Polynukleotide, mindestens 70% identisch sind. Es ist bekannt, dass die Stringenz der Hybridisierung einschliesslich der Waschschritte durch Variieren der Pufferzusammensetzung, der Temperatur und der Salzkonzentration beeinflusst bzw. bestimmt wird. Die Hybridisierungsreaktion wird vorzugsweise bei relativ niedriger Stringenz im Vergleich zu den Waschschritten durchgeführt (Hybaid Hybridisation Guide, Hybaid Limited, Teddington, UK, 1996).
Für die Hybridisierungsreaktion kann beispielsweise ein 5x SSC-Puffer bei einer Temperatur von ca. 50-68°C eingesetzt werden. Dabei können Sonden auch mit Polynukleotiden hybridisieren, die weniger als 70% Identität zur Sequenz der Sonde aufweisen. Solche Hybride sind weniger stabil und werden durch Waschen unter stringenten Bedingungen entfernt. Dies kann beispielsweise durch Senken der Salzkonzentration auf 2x SSC und nachfolgend 0,5x SSC (The DIG System Users Guide for Filter Hybridisation, Boehringer Mannheim, Mannheim, Deutschland, 1995) erreicht werden, wobei eine Temperatur von ca. 50-68°C eingestellt wird. Es ist gegebenenfalls möglich die Salzkonzentration bis auf 0,1x SSC zu senken. Durch schrittweise Erhöhung der Hybridisierungstemperatur in Schritten von ca. 1-2°C können Polynukleotidfragmente isoliert werden, die beispielsweise mindestens 70% oder mindestens 80% oder mindestens 90% bis 95% Identität zur Sequenz der eingesetzten Sonde besitzen. Weitere Anleitungen zur Hybridisierung sind in Form sogenannter Kits am Markt erhältlich (z. B. DIG Easy Hyb von der Firma Roche Diagnostics GmbH, Mannheim, Deutschland, Catalog No. 1603558).
Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: A Practical Approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).
Es wurde gefunden, dass coryneforme Bakterien nach Überexpression des oxyR-Gens in verbesserter Weise Aminosäuren, insbesondere L-Lysin produzieren.
Zur Erzielung einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Lysin-Produktion zu steigern. Durch Massnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Weiterhin wird durch Verhinderung des Abbaus des Enzymproteins ebenfalls die Enzymaktivität verstärkt. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann weiterhin eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60: 512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
Zur Verstärkung wurde das erfindungsgemässe oxyR-Gen beispielhaft mit Hilfe von episomalen Plasmiden überexprimiert. Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert werden. Zahlreiche bekannte Plasmidvektoren wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z. B. solche, die auf pCG4 (US-A 4,489,160) oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)) oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.
Ein Beispiel für ein Plasmid, mit Hilfe dessen das oxyR-Gen überexprimiert werden kann, ist der E.coli-C.glutamicum Shuttle Vektor pT-oxyRexp. Er enthält die Replikationsregion rep des Plasmides pGA1 einschliesslich des Replikationseffectors per (US-A- 5,175,108; Nesvera et al., Journal of Bacteriology 179, 1525-1532 (1997)), das Tetracyclinresistenz vermittelnde tetA(Z)-Gen des Plasmids pAG1 (US-A- 5,158,891; Genbank-Eintrag beim National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) mit der accession number AF121000, den Replikationsursprung oriV des Plasmids pMB1 (Sutcliffe, Cold Spring Harbor Symposium on Quantitative Biology 43, 77-90 (1979)), das lacZα Genfragment einschliesslich des lac-Promotors und einer Mehrfachklonierschnittstelle ("multiple cloning site", mcs) (Norrander, J. M. et al. Gene 26, 101-106 (1983)) und die mob-Region des Plasmids RP4 (Simon et al.,(1983) Bio/Technology 1: 784-791).
Das Plasmid pT-oxyRexp ist in Fig. 2 dargestellt.
Weiterhin eignen sich auch solche Plasmidvektoren mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen beispielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269: 32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)), pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510-4516) oder pBGS8 (Spratt et al., 1986, Gene 41: 337-342) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschliessend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"- Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.
Zusätzlich kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben dem oxyR-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Pentosephosphat-Zyklus, des Zitronensäure-Zyklus oder des Aminosäure-Exports und gegebenenfalls regulatorische Proteine zu verstärken.
So kann beispielsweise für die Herstellung von Aminosäuren, insbesondere L-Lysin, eines oder mehrere Gene, ausgewählt aus der Gruppe
  • - das für die Dihydrodipicolinat-Synthase kodierende Gen dapA (EP-B 0 197 335),
  • - das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende Gen gap (Eikmanns (1992). Journal of Bacteriology 174: 6076-6086),
  • - das für die Triosephosphat Isomerase kodierende Gen tpi (Eikmanns (1992). Journal of Bacteriology 174: 6076-6086),
  • - das für die 3-Phosphoglycerat Kinase kodierende Gen pgk (Eikmanns (1992). Journal of Bacteriology 174: 6076-6086),
  • - das für die Pyruvat Carboxylase kodierende Gen pyc (Peters-Wendisch et al. (Microbiology 144, 915-927 (1998)),
  • - das für eine feed back resistente Aspartatkinase kodierende Gen lysC (EP-B-0387527; EP-A-0699759; WO 00/63388)
  • - das für den Lysin-Export kodierende Gen lysE (DE-A-195 48 222)
  • - das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo (Molenaar et al. (1998), European Journal of Biochemistry 254: 395-403),
  • - das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf (JP-A-09224661),
  • - das für die 6-Phosphogluconat Dehydrogenase kodierende Gen gnd (US: 09/531,265),
  • - das für die Superoxid-Dismutase kodierende Gen sod (US: 09/373,731),
  • - das für das Zwa1-Protein kodierende Gen zwa1 (DE: 199 59 328.0, DSM 13115)
verstärkt, insbesondere überexprimiert werden.
Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, zusätzlich zur Verstärkung des oxyR-Gens eines oder mehrere Gene ausgewählt aus der Gruppe
  • - das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck (DE: 199 50 409.1, DSM 13047),
  • - das für die Glucose-6-Phosphat Isomerase kodierende Gen pgi (US: 09/396,478, DSM 12969),
  • - das für die Pyruvat-Oxidase kodierende Gen poxB (DE: 199 51 975.7, DSM 13114),
  • - das für das Zwa2-Protein kodierende Gen zwa2 (DE: 199 59 327.2, DSM 13113)
abzuschwächen, insbesondere die Expression zu verringern.
Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.
Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben der Überexpression des oxyR-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
Die erfindungsgemäss hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren, insbesondere L-Lysin, kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
Das zu verwendende Kulturmedium muss in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen.
Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D. C., USA, 1981) enthalten.
Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden.
Als Stickstoffquelle können organische Stickstoff haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden.
Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muss weiterhin Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schliesslich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum an Lysin gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann zum Beispiel so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Ionenaustausch-Chromatographie mit anschließender Ninhydrin-Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.
Eine Reinkultur des Stammes Corynebacterium glutamicum DSM5715/pT-oxyRexp wurde am 13. April 2000 als DSM 13457 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäss Budapester Vertrag hinterlegt.
Eine Reinkultur des Stammes Escherichia coli DH5α/pEC- T18mob2 wurde am 25. Januar 2000 als DSM 13244 bei der Deutschen Sammlung für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäss Budapester Vertrag hinterlegt.
Das erfindungsgemässe Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin.
Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.
Die Isolierung von Plasmid-DNA aus Escherichia coli sowie alle Techniken zur Restriktion, Klenow- und alkalische Phosphatasebehandlung wurden nach Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratory Press, Cold Spring Harbor, NY, USA) durchgeführt. Methoden zur Transformation von Escherichia coli sind ebenfalls in diesem Handbuch beschrieben.
Die Zusammensetzung gängiger Nährmedien wie LB- oder TY-Medium kann ebenfalls dem Handbuch von Sambrook et al. entnommen werden.
Beispiel 1 Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032
Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al. (1995, Plasmid 33: 168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84: 2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert.
Anschliessend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Das Ligationsgemisch wurde anschliessend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt.
Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16: 1563-1575) wurden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 100 mg/l Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.
Beispiel 2 Isolierung und Sequenzierung des oxyR-Gens
Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Grössenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).
Die DNA des Sequenziervektors pZero-1, bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01), wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschliessend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U. S. A., 87: 4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123: 343-7) und auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 50 mg/l Zeocin ausplattiert.
Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences U. S. A., 74: 5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18: 1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29 : 1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).
Die erhaltenen Roh-Sequenzdaten wurden anschliessend unter Anwendung des Staden-Programmpakets (1986, Nucleic Acids Research, 14: 217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZero1-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14: 217-231) angefertigt.
Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 981 Basenpaaren, welches als oxyR-Gen bezeichnet wurde. Das oxyR-Gen kodiert für ein Protein von 327 Aminosäuren.
Beispiel 3 Herstellung eines Shuttlevektors pT-oxyRexp zur Verstärkung des oxyR-Gens in C. glutamicum 3.1. Klonierung des oxyR Gens
Aus dem Stamm ATCC 13032 wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817-1828 (1994)) chromosomale DNA isoliert. Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des oxyR Gens wurden die folgenden Oligonukleotide für die Polymerase Kettenreaktion ausgewählt (siehe SEQ ID No. 3 und SEQ ID No. 4).
OxyR (oxy-exp):
5' GAT CGA GAA TTC AAA GGA AGA TCA GCT TAG 3'
OxyR (oxy R2):
5' GGA AAA CCT CTA GAA AAA CT 3'
Die dargestellten Primer wurden von der Firma ARK Scientific GmbH Biosystems (Darmstadt, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR protocols. A guide to methods and applications, 1990, Academic Press) mit Pwo-Polymerase der Firma Roche Diagnostics GmbH (Mannheim, Deutschland) die PCR Reaktion durchgeführt. Mit Hilfe der Polymerase-Kettenreaktion ermöglichen die Primer die Amplifikation eines ca. 1,43 kb grossen DNA-Fragmentes, welches das oxyR Gen trägt.
Ausserdem enthält der Primer OxyR (oxy-exp) die Sequenz für die Schnittstelle der Restriktionsendonuklease EcoRI, und der Primer OxyR (oxy R2) die Schnittstelle der Restriktionsendonuklease XbaI, die in der oben dargestellten Nukleotidabfolge durch Unterstreichen markiert sind.
Das amplifizierte DNA Fragment von ca. 1,43 kb, welches das oxyR Gen trägt, wurde mit dem Zero Blunt™ Kit der Firma Invitrogen Corporation (Carlsbad, CA, USA Katalog Nummer K2700-20) in den Vektor pCR®Blunt II (Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) ligiert. Anschliessend wurde der E. coli Stamm Top10 (Grant et al., Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) mit dem Ligationsansatz nach Angaben des Kit-Herstellers (Firma Invitrogen Corporation, Carlsbad, CA, USA) transformiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB Agar (Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y., 1989), der mit 25 mg/l Kanamycin supplementiert worden war.
Plasmid-DNA wurde aus einer Transformante mit Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen (Hilden, Deutschland) isoliert und durch Behandlung mit den Restriktionsenzym XbaI und EcoRI mit anschliessender Agarosegel-Elektrophorese (0,8%) überprüft. Die DNA Sequenz des amplifizierten DNA Fragmentes wurde durch Sequenzierung überprüft. Das Plasmid wurde pCR-oxyRexp genannt. Der Stamm wurde als E. coli Top10/pCR-oxyRexp bezeichnet.
3.2. Herstellung des E. coli - C. glutamicum Shuttle Vektors pEC-T18mob2
Nach dem Stand der Technik wurde der E. coli - C. glutamicum Shuttle-Vektor konstruiert. Der Vektor enthält die Replikationsregion rep des Plasmids pGA1 einschliesslich des Replikationseffectors per (US-A-5,175,108; Nesvera et al., Journal of Bacteriology 179, 1525-1532 (1997)), das Tetracyclinresistenz vermittelnde tetA(Z)-Gen des Plasmids pAG1 (US-A- 5,158,891; Genbank- Eintrag beim National Center for Biotechnology Information (NCBI, Bethesda, MD, USA) mit der accession number AF121000), die Replikationsregion oriV des Plasmids pMB1 (Sutcliffe, Cold Spring Harbor Symposium on Quantitative Biology 43, 77-90 (1979)), das lacZα Genfragment einschliesslich des lac-Promotors und einer Mehrfachklonierschnittstelle (multiple cloning site, mcs) (Norrander, J. M. et al. Gene 26, 101-106 (1983)) und die mob-Region des Plasmids RP4 (Simon et al.,(1983) Bio/Technology 1: 784-791). Der konstruierte Vektor wurde in den E. coli Stamm DH5α (Hanahan, In: DNA cloning. A Practical Approach. Vol. I. IRL-Press, Oxford, Washington DC, USA) transformiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB Agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.), der mit 5 mg/l Tetracyclin supplementiert worden war. Plasmid-DNA wurde aus einer Transformante mit Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen isoliert und durch Restriktion mit dem Restriktionsenzym EcoRI und HindIII anschliessender Agarosegel-Elektrophorese (0,8%) überprüft. Das Plasmid wurde pEC-T18mob2 genannt und ist in Fig. 1 dargestellt.
3.3. Klonierung von oxyR im E. coli-C. glutamicum Shuttle Vektor pEC-T18mob2
Als Vektor wurde der in Beispiel 3.2 beschriebene E. coli - C. glutamicum Shuttle-Vektor pEC-T18mob2 verwendet. DNA dieses Plasmids wurde mit den Restriktionsenzymen EcoRI und XbaI vollständig gespalten und anschliessend mit shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert.
Aus dem in Beispiel 3.1. beschriebenen Plasmid pCR-oxyRexp wurde das oxyR Gen durch vollständige Spaltung mit den Enzymen EcoRI und XbaI isoliert. Das ca. 1400bp grosse oxyR Fragment wurde aus dem Agarosegel mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) isoliert.
Das auf diese Weise gewonnene oxyR-Fragment wurde mit dem vorbereiteten Vektor pEC-T18mob2 gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Der Ligationsansatz wurde in den E. coli Stamm DH5α (Hanahan, In: DNA cloning. A Practical Approach. Vol. I. IRL-Press, Oxford, Washington DC, USA) transformiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 5 mg/l Tetracyclin. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert. Plasmid DNA wurde aus einer Transformante mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit den Restriktionsenzymen EcoRI und Xbal gespalten, um das Plasmid durch anschliessende Agarosegel-Elektrophorese zu überprüfen. Das erhaltene Plasmid wurde pT-oxyRexp genannt. Es ist in Fig. 2 dargestellt.
Beispiel 4 Transformation des Stammes DSM5715 mit dem Plasmid pT- oxyRexp
Der Stamm DSM5715 wurde mit dem Plasmid pT-oxyRexp unter Anwendung der von Liebl et al., (FEMS Microbiology Letters, 53: 299-303 (1989)) beschriebenen Elektroporationsmethode transformiert. Die Selektion der Transformanten erfolgte auf LBHIS Agar bestehend aus 18,5 g/l Brain-Heart Infusion Boullion, 0,5 M Sorbitol, 5 g/l Bacto-Trypton, 2,5 g/l Bacto-Yeast-Extract, 5 g/l NaCl und 18 g/l Bacto-Agar, der mit 5 mg/l Tetracyclin supplementiert worden war. Die Inkubation erfolgte für 2 Tage bei 33°C.
Plasmid DNA wurde aus einer Transformante nach den üblichen Methoden isoliert (Peters-Wendisch et al., 1998, Microbiology, 144, 915-927), mit den Restriktionsendonukleasen EcoRI und XbaI geschnitten und das Plasmid durch anschliessende Agarosegel-Elektrophorese überprüft. Der erhaltene Stamm wurde DSM5715/pT-oxyRexp genannt.
Beispiel 5 Herstellung von Lysin
Der in Beispiel 4 erhaltene C. glutamicum Stamm DSM5715/pT­ oxyRexp wurde in einem zur Produktion von Lysin geeigneten Nährmedium kultiviert und der Lysingehalt im Kulturüberstand bestimmt.
Dazu wurde der Stamm zunächst auf Agarplatte mit dem entsprechenden Antibiotikum (Hirn-Herz-Agar mit Tetracyclin (5 mg/l)) für 24 Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wurde eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkultur wurde das Vollmedium CgIII verwendet.
Medium Cg III
NaCl 2,5 g/l
Bacto-Pepton 10 g/l
Bacto-Yeast-Extrakt 10 g/l
Glucose (getrennt autoklaviert) 2% (w/v)
Der pH-Wert wurde auf pH 7.4 eingestellt
Diesem wurde Tetracyclin (5 mg/l) zugesetzt. Die Vorkultur wurde 16 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert. Von dieser Vorkultur wurde eine Hauptkultur angeimpft, so dass die Anfangs-OD (660 nm) der Hauptkultur 0,05 betrug. Für die Hauptkultur wurde das Medium mm verwendet.
Medium mm
CSL (Corn Steep Liquor) 5 g/l
MOPS (Morpholinopropansulfonsäure) 20 g/l
Glucose (getrennt autoklaviert) 50 g/l
(NH4)2SO4 25 g/l
KH2PO4 0,1 g/l
MgSO4.7 H2O 1,0 g/l
CaCl2.2 H2O 10 mg/l
FeSO4.7 H2O 10 mg/l
MnSO4.H2O 5,0 mg/l
Biotin (sterilfiltriert) 0,3 mg/l
Thiamin.HCl (sterilfiltriert) 0,2 mg/l
L-Leucin (sterilfiltriert) 0,1 g/l
CaCO3 25 g/l
CSL, MOPS und die Salzlösung wurden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschliessend wurden die sterilen Substrat- und Vitaminlösungen zugesetzt, sowie das trocken autoklavierte CaCO3.
Die Kultivierung erfolgt in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Es wurde Tetracyclin (5 mg/l) zugesetzt. Die Kultivierung erfolgte bei 33°C und 80% Luftfeuchte.
Nach 72 Stunden wurde die OD bei einer Messwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH, München) ermittelt. Die gebildete Lysinmenge wurde mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik (Hamburg, Deutschland) durch Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.
In Tabelle 1 ist das Ergebnis des Versuchs dargestellt.
Tabelle 1
Folgende Figuren sind beigefügt:
Fig. 1 Karte des Plasmids pEC-T18mob2
Fig. 2 Karte des Plasmids pT-oxyRexp
Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung:
per: Gen zur Kontrolle der Kopienzahl aus pGA1
oriV: ColE1-ähnlicher Origin aus pMB1
rep: Plasmidkodierte Replikationsregion aus C. glutamicum Plasmid pGA1
RP4mob: RP4-Mobilisierungs-Site
lacZ-alpha: lacZ-Genfragment aus E.coli
Tet: Resistenzgen für Tetracyclin
oxyR: oxyR-Gen von C. glutamicum
EcoRI: Schnittstelle des Restriktionsenzyms EcoRI
Echl136II: Schnittstelle des Restriktionsenzyms Echl136II
HindIII: Schnittstelle des Restriktionsenzyms HindIII
KpnI: Schnittstelle des Restriktionsenzyms KpnI
SalI: Schnittstelle des Restriktionsenzyms SalI
SmaI: Schnittstelle des Restriktionsenzyms SmaI
PstI: Schnittstelle des Restriktionsenzyms PstI
BamHI: Schnittstelle des Restriktionsenzyms BamHI
XbaI: Schnittstelle des Restriktionsenzyms XbaI
XmaI: Schnittstelle des Restriktionsenzyms XmaI
XhoI: Schnittstelle des Restriktionsenzyms XhoI
PstI; Schnittstelle des Restriktionsenzyms PstI
SEQUENZPROTOKOLL

Claims (22)

1. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
wobei das Polypeptid bevorzugt die Aktivität des Transkriptionsregulators OxyR aufweist.
2. Polynukleotid gemäss Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
3. Polynukleotid gemäss Anspruch 1, wobei das Polynukleotid eine RNA ist.
4. Polynukleotid gemäss Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
5. Replizierbare DNA gemäss Anspruch 2, enthaltend
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Sinnmutationen in (i).
6. Polynukleotidsequenz gemäss Anspruch 2, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
7. Coryneforme Bakterien, in denen das oxyR-Gen verstärkt, insbesondere überexprimiert wird.
8. Plasmidvektor pT-oxyRexp, der
  • 1. ein 1400 bp großes internes Fragment der das oxyR-Gen trägt,
  • 2. dessen Restriktionskarte in Fig. 2 wiedergegeben wird, und
  • 3. der in dem Corynebacterium glutamicum Stamm DSM5715/pT-oxyRexp unter der Nr. DSM 13457 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen hinterlegt ist.
9. Verfahren zur fermentativen Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet, dass man folgende Schritte durchführt:
  • a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das oxyR-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert;
  • b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
  • c) Isolieren der L-Aminosäure.
10. Verfahren gemäss Anspruch 8, dadurch gekennzeichnet, dass man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
11. Verfahren gemäss Anspruch 8, dadurch gekennzeichnet, dass man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
12. Verfahren gemäss Anspruch 8, dadurch gekennzeichnet, dass man die Expression des Polynukleotides, das für das oxyR-Gen kodiert verstärkt, insbesondere überexprimiert.
13. Verfahren gemäss Anspruch 12, dadurch gekennzeichnet, dass man einen mit einem Plasmidvektor transformierten Stamm einsetzt, und der Plasmidvektor die für das oxyR-Gen kodierende Nukleotidsequenz trägt.
14. Verfahren gemäss Anspruch 8, dadurch gekennzeichnet, dass man die regulatorischen Eigenschaften des Polypetids (Enzymprotein) erhöht, für das das Polynukleotid oxyR kodiert.
15. Verfahren gemäss Anspruch 8, dadurch gekennzeichnet, dass man zur Herstellung von L-Aminosäuren, insbesondere L-Lysin, coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • 1. 15.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA,
  • 2. 15.2 das für die Glycerinaldehyd-3-Phosphat Dehydrogenase kodierende Gen gap,
  • 3. 15.3 das für die Triosephosphat Isomerase kodierende Gen tpi,
  • 4. 15.4 das für die 3-Phosphoglycerat Kinase kodierende Gen pgk,
  • 5. 15.5 das für die Pyruvat-Carboxylase kodierende Gen pyc,
  • 6. 15.6 das für den Lysin-Export kodierende Gen lysE,
  • 7. 15.7 das das für die Malat-Chinon-Oxidoreduktase kodierende Gen mqo,
  • 8. 15.8 das für die Glucose-6-Phosphat Dehydrogenase kodierende Gen zwf,
  • 9. 15.9 das für die 6-Phosphogluconat Dehydrogenase kodierende Gen gnd,
  • 10. 15.10 das für die Superoxid-Dismutase kodierende Gen sod,
  • 11. 15.11 das für das Zwa1-Protein kodierende Gen zwa1,
  • 12. 15.12 das für eine feed back resistente Aspartatkinase kodierende Gen lysC,
verstärkt bzw. überexprimiert.
16. Verfahren gemäss Anspruch 8, dadurch gekennzeichnet, dass man zur Herstellung von L-Aminosäuren, insbesondere L-Lysin, coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • 1. 16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
  • 2. 16.2 das für die Glucose-6-Phosphat6 Isomerase kodierende Gen pgi
  • 3. 16.3 das für die Pyruvat-Oxidase kodierende Gen poxB,
  • 4. 16.4 das für das Zwa2-Protein kodierende Gen zwa2
abschwächt.
17. Coryneforme Bakterien, die einen Vektor enthalten, der ein Polynukleotid gemäss Anspruch 1 trägt.
18. Verfahren gemäss einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man Mikroorganismen der Gattung Corynebacterium einsetzt.
19. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für den Tranksriptionsregulator OxyR kodieren oder eine hohe Ähnlichkeit mit der Sequenz des oxyR-Gens aufweisen, dadurch gekennzeichnet, dass man die Polynukleotidsequenzen gemäss Anspruch 1, 2, 3 oder 4 als Hybridisierungssonden einsetzt.
20. Verfahren gemäss Anspruch 18, dadurch gekennzeichnet, dass die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
21. Verfahren gemäß Anspruch 18, dadurch gekennzeichnet, daß man arrays, micro arrays oder DNA-chips einsetzt.
22. Corynebacterium glutamicum Stamm DSM5715/pT-oxyRexp als DSM 13457 hinterlegt bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen, Braunschweig, Deutschland.
DE10110053A 2000-08-26 2001-03-02 Neue für das oxyR-Gen kodierende Nukleotidsequenzen Withdrawn DE10110053A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10110053A DE10110053A1 (de) 2000-08-26 2001-03-02 Neue für das oxyR-Gen kodierende Nukleotidsequenzen
PCT/EP2001/008388 WO2002018431A1 (en) 2000-08-26 2001-07-20 Nucleotide sequences which code for the oxyr gene
AU2001289706A AU2001289706A1 (en) 2000-08-26 2001-07-20 Nucleotide sequences which code for the oxyr gene
EP01969448A EP1313758A1 (de) 2000-08-26 2001-07-20 Nukleotidsequenzen die das oxyr gen kodieren
US09/938,641 US6916636B2 (en) 2000-08-26 2001-08-27 Nucleotide sequences which code for the oxyR gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10042052 2000-08-26
DE10110053A DE10110053A1 (de) 2000-08-26 2001-03-02 Neue für das oxyR-Gen kodierende Nukleotidsequenzen

Publications (1)

Publication Number Publication Date
DE10110053A1 true DE10110053A1 (de) 2002-03-07

Family

ID=7653939

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10110053A Withdrawn DE10110053A1 (de) 2000-08-26 2001-03-02 Neue für das oxyR-Gen kodierende Nukleotidsequenzen

Country Status (1)

Country Link
DE (1) DE10110053A1 (de)

Similar Documents

Publication Publication Date Title
EP1136559B1 (de) Für das dapC-Gen kodierende Nukleotidsequenzen und Verfahren zur Herstellung von L-Lysin
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
EP1186657A1 (de) Die Nukleotidsequenz des Corynebacterium lldD2-Gens, das für die L-Lactat-Dehydrogenase kodiert
DE60127116T2 (de) Für das glbo-gen kodierende nukleotidsequenzen aus corynebacterium glutamicum
DE60132341T2 (de) Isolierung und sequenzierung vom gen ptsi aus c. glutamicum
EP1239040A2 (de) Mutationen im rpoB-Gen L-Lysin produzierender Corynebacterium glutamicum-Stämme und Verfahren zur Herstellung von L-Lysin
DE10045497A1 (de) Neue für das ppsA-Gen kodierende Nukleotidsequenzen
DE10162386A1 (de) Für das rpsL-Gen kodierende Nukleotidsequenzen
DE10046623A1 (de) Neue für das dps-Gen kodierende Nukleotidsequenzen
DE10045487A1 (de) Neue für das ccsB-Gen kodierende Nukleotidsequenzen
EP1205553A1 (de) Für das sigD-Gen kodierende Nukleotidsequenzen
DE10045579A1 (de) Neue für das atr61-Gen kodierende Nukleotidsequenzen
DE10047403A1 (de) Neue für das ppgK-Gen kodierende Nukleotidsequenzen
EP1106622A2 (de) Neue für das pfkA-Gen codierende Nukleotidsequenzen
EP1106694A1 (de) Für das glk-Gen codierende Nukleotidsequenzen
DE10047866A1 (de) Neue für das dep67-Gen kodierende Nukleotidsequenzen
DE60115913T2 (de) Nukleotid sequenzen kodierend für das csta gen aus corynebacterium glutamicum
DE60120724T2 (de) Rekombinante coryneformbakterie die glyceraldehyde-3-phosphate dehydrogenase -2 überexprimieren , und verfahren zur herstellung von l-lysine
DE10046625A1 (de) Neue für das ndkA-Gen kodierende Nukleotidsequenzen
DE10132947A1 (de) Für das rodA-Gen kodierte Nukleotidsequenzen
DE10145585A1 (de) Für die Gene hemD und hemB kodierende Nukleotidsequenzen
DE10110053A1 (de) Neue für das oxyR-Gen kodierende Nukleotidsequenzen
DE10108828A1 (de) Neue für das pepC-Gen kodierende Nukleotidsequenzen
DE10126422A1 (de) Für das sigE-Gen kodierende Nukleotidsequenzen
DE10132724A1 (de) Für das dctA-Gen kodierende Nukleotidsequenzen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee