DE10021828A1 - Neue für das cdsA-Gen kodierende Nukleotidsequenzen - Google Patents

Neue für das cdsA-Gen kodierende Nukleotidsequenzen

Info

Publication number
DE10021828A1
DE10021828A1 DE10021828A DE10021828A DE10021828A1 DE 10021828 A1 DE10021828 A1 DE 10021828A1 DE 10021828 A DE10021828 A DE 10021828A DE 10021828 A DE10021828 A DE 10021828A DE 10021828 A1 DE10021828 A1 DE 10021828A1
Authority
DE
Germany
Prior art keywords
gene
polynucleotide
sequence
amino acid
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10021828A
Other languages
English (en)
Inventor
Madhavan Nampoothiri
Bettina Moeckel
Walter Pfefferle
Lothar Eggeling
Hermann Sahm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Evonik Operations GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Degussa GmbH filed Critical Forschungszentrum Juelich GmbH
Priority to DE10021828A priority Critical patent/DE10021828A1/de
Priority to EP01933786A priority patent/EP1278861A2/de
Priority to AU2001260174A priority patent/AU2001260174A1/en
Priority to PCT/EP2001/003704 priority patent/WO2001083765A2/en
Priority to KR1020027014698A priority patent/KR20020097245A/ko
Priority to US09/853,641 priority patent/US20040092710A1/en
Publication of DE10021828A1 publication Critical patent/DE10021828A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine

Abstract

Die Erfindung betrifft ein gentechnisch modifiziertes coryneformes Bakterium, dessen cdsA-Gen verstärkt ist, sowie ein isoliertes Polynukleotid, das für die Phosphatidat-Cytidylyltransferase aus coryneformen Bakterien kodiert, wie auch ein Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verstärkung des cdsA-Gens in den Bakterien und die Verwendung des Polynukleotids als Primer oder Hybridisierungssonde.

Description

Gegenstand der Erfindung sind gentechnisch veränderte coryneforme Bakterien, für die Phosphatidat- Cytidylyltransferase kodierende Nukleotidsequenzen und Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, unter Verwendung von coryneformen Bakterien, in denen das cdsA-Gen, das für die Phosphatidat- Cytidylyltransferase kodiert, verstärkt wird.
Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin und in der pharmazeutischen Industrie, insbesondere aber in der Tierernährung, Anwendung.
Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensverbesserungen können fermentationstechnische Maßnahmen wie z. B. Rühren und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie z. B. die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch z. B. Ionenaustauschchromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.
Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite wie z. B. das Lysin-Analogon S-(2-Aminoethyl)-Cystein oder auxotroph für regulatorisch bedeutsame Metabolite sind und L-Aminosäuren wie z. B. L-Lysin produzieren.
Seit einigen Jahren werden außerdem Methoden der rekombinanten DNA-Technik zur Stammverbesserung Aminosäure produzierender Stämme von Corynebacterium eingesetzt, indem man einzelne Aminosäure-Biosynthesegene amplifiziert und die Auswirkung auf die Aminosäure-Produktion untersucht. Übersichtsartikel hierzu findet man unter anderem bei Kinoshita ("Glutamic Acid Bacteria", in: Biology of Industrial Microorganisms, Demain and Solomon (EdsT), Benjamin Cummings, London, OK, 1985, 115-142), Hilliger (BioTec 2, 40-44 (1991)), Eggeling (Amino Acids 6: 261-272 (1994)), Jetten und Sinskey (Critical Reviews in Biotechnology 15, 73-103 (1995)) und Sahm et al. (Annuals of the New York Academy of Science 782, 25-39 (1996)).
Aufgabe der vorliegenden Erfindung war es, neue Hilfsmittel zur verbesserten fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin, bereitzustellen.
Diese Aufgabe wird gelöst durch ein gentechnisch verändertes coryneformes Bakterium, dessen Gen cdsA, das für die Phosphatidat-Cytidylyltransferase kodiert, verstärkt ist.
Aminosäuren, insbesondere L-Lysin, finden in der Humanmedizin, in der pharmazeutischen Industrie und insbesondere in der Tierernährung Anwendung. Es besteht daher ein allgemeines Interesse daran, neue verbesserte Verfahren zur Herstellung von Aminosäuren, insbesondere L- Lysin, bereitzustellen.
Wenn im folgenden L-Lysin oder Lysin erwähnt werden, sind damit nicht nur die Base, sondern auch die Salze wie z. B. Lysin-Monohydrochlorid oder Lysin-Sulfat gemeint.
Gegenstand der Erfindung ist ein gentechnisch verändertes coryneformes Bakterium, in dem dessen Gen cdsA, das die Phosphatidat-Cytidylyltransferase kodiert, verstärkt ist.
Der Begriff "Verstärkung" beschreibt in diesem Zusammenhang die Erhöhung der intrazellulären Aktivität eines oder mehrerer Enzyme in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden.
Die Verstärkung kann mit Hilfe verschiedener Manipulationen der Bakterienzelle erreicht werden.
Zur Erzielung einer Verstärkung, insbesondere einer Überexpression kann die Kopienzahl der entsprechenden Gene erhöht werden, man kann einen starken Promotor verwenden, oder es kann die Promotor- und Regulationsregion oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, mutiert werden. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zusätzlich möglich, die Expression im Verlaufe der fermentativen L-Lysin-Produktion zu steigern. Es kann auch ein Gen verwendet werden, das für ein entsprechendes Enzym mit einer hohen Aktivität kodiert. Durch Maßnahmen zur Verlängerung der Lebensdauer der m-RNA wird ebenfalls die Expression verbessert. Außerdem wird durch Verhinderung des Abbaus des Enzyms ebenfalls die Enzymaktivität insgesamt erhöht. Gegebenenfalls können diese Maßnahmen auch beliebig kombiniert werden.
Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können L-Aminosäuren, insbesondere L-Lysin, aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.
Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind die zum Beispiel bekannten Wildtypstämme
Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium thermoaminogenes FERM BP-1539
Corynebacterium melassecola ATCC17965
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und
Brevibacterium divaricatum ATCC14020
und daraus hergestellte L-Lysin produzierende Mutanten bzw. Stämme, wie beispielsweise
Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464 und
Corynebacterium glutamicum DSM5715.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% homolog ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% homolog ist mit der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c).
"Homolog" im Rahmen der vorliegenden Anmeldung ist eine Polynukleotidsequenz zu der erfindungsgemäßen Sequenz dann, wenn sie in ihrer Basenzusammensetzung und -sequenz wenigstens zu 70%, bevorzugt wenigstens 80%, besonders bevorzugt wenigstens 90% mit der erfindungsgemäßen Sequenz übereinstimmt. Unter einem "homologen Protein" sollen gemäß der vorliegenden Erfindung Proteine verstanden werden, die eine Aminosäuresequenz aufweisen, die mit der Aminosäuresequenz, die durch das Gen cdsA (SEQ ID Nr. 1) kodiert wird zu wenigstens 70%, bevorzugt wenigstens 80%, besonders bevorzugt wenigstens 90% übereinstimmen, wobei "übereinstimmen" so zu verstehen ist, daß die sich entsprechenden Aminosäuren entweder identisch sind, oder es sich um zueinander homologe Aminosäuren handelt. Als "homologe Aminosäuren" werden solche bezeichnet, die sich in ihren Eigenschaften, insbesondere hinsichtlich Ladung, Hydrophobizität, sterischen Eigenschaften usw. entsprechen.
Gegenstand der Erfindung ist außerdem ein wie oben beschriebenes Polynukleotid, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) im Rahmen der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Mutationen in (i), die zu derselben oder einer homologen Aminosäure führen.
Weitere Gegenstände sind
ein in coryneformen Bakterien replizierbares, bevorzugt rekombinantes Polynukleotid, das die Nukleotidsequenz SEQ ID No. 1 umfaßt,
ein Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz SEQ ID No. 2 umfaßt,
ein Vektor, enthaltend die für das cdsA-Gen kodierende DNA- Sequenz von C. glutamicum, enthalten in dem Vektor pJC1cdsA, hinterlegt in Corynebacterium glutamicum unter der Nummer 13252,
und als Wirtszelle dienende coryneforme Bakterien, die den Vektor enthalten oder in denen das cdsA-Gen verstärkt wird.
Gegenstand der Erfindung sind ebenso Polynukleotide, die das vollständige Gen mit der Polynukleotidsequenz entsprechend SEQ ID No. 1 oder Fragmente davon enthalten, und die durch Screening mittels Hybridisierung einer entsprechenden Genbank mit einer Sonde, die die Sequenz des genannten Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält, und Isolierung der genannten DNA- Sequenz erhältlich sind.
Polynukleotidsequenzen gemäß der Erfindung sind auch als Hybridisierungs-Sonden für RNA, cDNA und DNA geeignet, um cDNA in voller Länge zu isolieren, die für die Phosphatidat-Cytidylyltransferase kodieren und solche cDNA oder Gene zu isolieren, die eine hohe Ähnlichkeit mit der Sequenz der Phosphatidat-Cytidylyltransferase aufweisen.
Polynukleotidsequenzen gemäß der Erfindung sind außerdem geeignet als Primer für die Polymerase-Kettenreaktion (PCR) zur Herstellung von DNA, die für die Phosphatidat- Cytidylyltransferase kodiert.
Solche als Sonden oder Primer dienende Oligonukleotide können mehr als 30, bevorzugt bis zu 30, besonders bevorzugt bis zu 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide enthalten. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Nukleotiden.
"Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.
"Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.
Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.
Die Polypeptide gemäß Erfindung schließen ein Polypeptid gemäß SEQ ID No. 2 ein, insbesondere solche mit der biologischen Aktivität der Phosphatidat- Cytidylyltransferase und auch solche, die zu wenigstens 70% homolog sind mit dem Polypeptid gemäß SEQ ID No. 2, bevorzugt zu wenigstens 80% und besonders die zu wenigstens 90% bis 95% Homologie mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.
Die Erfindung betrifft außerdem ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L- Lysin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits eine Aminosäure produzieren, und in denen die für das cdsA-Gen kodierenden Nukleotidsequenzen verstärkt, insbesondere überexprimiert werden.
In der vorliegenden Erfindung wird erstmals das für die Phosphatidat-Cytidylyltransferase kodierende cdsA-Gen von C. glutamicum gezeigt.
Zur Isolierung des cdsA-Gens oder auch anderer Gene von C. gluta­ micum wird zunächst eine Genbank dieses Mikroorganismus in E. coli angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495-508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252: 255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84: 2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16: 1563-1575) angelegt wurde. Börmann et al. (Molecular Microbiology 6(3), 317-326 (1992)) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)). Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19: 259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli- Stämme, die restriktions- und rekombinationsdefekt sind. Ein Beispiel hierfür ist der Stamm DH5αmcr, der von Grant et al. (Proceedings of the National Academy of Sciences USA, 87 (1990) 4645-4649) beschrieben wurde. Die mit Hilfe von Cosmiden klonierten langen DNA-Fragmente können anschließend wiederum in gängige, für die Sequenzierung geeignete Vektoren subkloniert und anschließend sequenziert werden, so wie es z. B. bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America, 74: 5463-5467, 1977) beschrieben ist.
Auf diese Weise wurde die neue für das Gen cdsA kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Außerdem wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des cdsA-Genproduktes dargestellt.
Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Kodes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. In der Fachwelt sind außerdem konservative Aminosäureaustausche wie z. B. Austausch von Glycin gegen Alanin oder von Asparaginsäure gegen Glutaminsäure in Proteinen als "Sinnmutationen" (sense mutations) bekannt, die zu keiner grundsätzlichen Veränderung der Aktivität des Proteins führen, d. h. funktionsneutral sind. Außerdem ist bekannt, daß Änderungen am N- und/oder C-Terminus eines Proteins dessen Funktion nicht wesentlich beeinträchtigen oder diese sogar stabilisieren können. Angaben hierzu findet der Fachmann unter anderem bei Ben-Bassat et al. (Journal of Bacteriology 169: 751-757 (1987)), bei O'Regan et al. (Gene 77: 237-251 (1989)), bei Sahin-Toth et al. (Protein Sciences 3: 240-247 (1994)), bei Hochuli et al. (Bio/Technology 6: 1321-1325 (1988)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie. Aminosäuresequenzen, die sich in entsprechender Weise aus SEQ ID No. 2 ergeben, sind ebenfalls Bestandteil der Erfindung.
In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren, Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Oligonukleotid-Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben. Derartige Oligonukleotide haben typischerweise eine Länge von mindestens 15 Nukleotiden.
Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-260). Anleitungen zur Amplifikation von DNA- Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: a practical approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).
Bei der Arbeit an der vorliegenden Erfindung konnte festgestellt werden, daß coryneforme Bakterien nach Verstärkung des cdsA-Gens in verbesserter Weise Aminosäuren, insbesondere L-Lysin, produzieren.
Die betrachteten Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im Chromosom integriert und amplifiziert sein. Alternativ kann außerdem eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al. (Bio/Technology 5, 137-146 (1987)), bei Guerrero et al. (Gene 138, 35-41 (1994)), Tsuchiya und Morinaga (Bio/Technology 6, 428-430 (1988)), bei Eikmanns et al. (Gene 102, 93-98 (1991)), in der Europäischen Patentschrift EPS 0 472 869, im US Patent 4,601,893, bei Schwarzer und Pühler (Bio/Technology 9, 84-87 (1991), bei Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)), bei LaBarre et al. (Journal of Bacteriology 175, 1001-1007 (1993)), in der Patentanmeldung WO 96/15246, bei Malumbres et al. (Gene 134, 15-24 (1993)), in der japanischen Offenlegungsschrift JP-A-10-229891, bei Jensen und Hammer (Biotechnology and Bioengineering 58, 191-195 (1998)), bei Makrides (Microbiological Reviews 60: 512-538 (1996)) und in bekannten Lehrbüchern der Genetik und Molekularbiologie.
Beispielhaft wurde das erfindungsgemäße cdsA-Gen mit Hilfe von Plasmiden überexprimiert.
Als Plasmide eignen sich solche, die in coryneformen Bakterien repliziert und exprimiert werden. Zahlreiche bekannte Plasmidvektoren wie z. B. pZ1 (Menkel et al., Applied and Environmental Microbiology (1989) 64: 549-554), pEKEx1 (Eikmanns et al., Gene 102: 93-98 (1991)) oder pHS2-1 (Sonnen et al., Gene 107: 69-74 (1991)) beruhen auf den kryptischen Plasmiden pHM1519, pBL1 oder pGA1. Andere Plasmidvektoren wie z. B. solche, die auf pCG4 (US-A 4,489,160), oder pNG2 (Serwold-Davis et al., FEMS Microbiology Letters 66, 119-124 (1990)), oder pAG1 (US-A 5,158,891) beruhen, können in gleicher Weise verwendet werden.
Ein Beispiel für ein Plasmid, mit Hilfe dessen das cdsA-Gen überexprimiert werden kann, ist pJC1cdsA (Fig. 1), welches auf dem E. coli - C. glutamicum Shuttle-Vektor pJC1 (Cremer et al., 1990, Molecular and General Genetics 220: 478-480) basiert und die für das cdsA-Gen kodierende DNA- Sequenz von C. glutamicum enthält. Es ist in dem Stamm DSM5715/pJC1cdsA enthalten.
Außerdem eignen sich solche Plasmidvektoren, mit Hilfe derer man das Verfahren der Genamplifikation durch Integration in das Chromosom anwenden kann, so wie es beispielsweise von Remscheid et al. (Applied and Environmental Microbiology 60, 126-132 (1994)) zur Duplikation bzw. Amplifikation des hom-thrB-Operons beschrieben wurde. Bei dieser Methode wird das vollständige Gen in einen Plasmidvektor kloniert, der in einem Wirt (typischerweise E. coli), nicht aber in C. glutamicum replizieren kann. Als Vektoren kommen bespielsweise pSUP301 (Simon et al., Bio/Technology 1, 784-791 (1983)), pK18mob oder pK19mob (Schäfer et al., Gene 145, 69-73 (1994)), pGEM-T (Promega corporation, Madison, WI, USA), pCR2.1-TOPO (Shuman (1994). Journal of Biological Chemistry 269: 32678-84; US-A 5,487,993), pCR®Blunt (Firma Invitrogen, Groningen, Niederlande; Bernard et al., Journal of Molecular Biology, 234: 534-541 (1993)) oder pEM1 (Schrumpf et al. 1991, Journal of Bacteriology 173: 4510-4516) in Frage. Der Plasmidvektor, der das zu amplifizierende Gen enthält, wird anschließend durch Konjugation oder Transformation in den gewünschten Stamm von C. glutamicum überführt. Die Methode der Konjugation ist beispielsweise bei Schäfer et al. (Applied and Environmental Microbiology 60, 756-759 (1994)) beschrieben. Methoden zur Transformation sind beispielsweise bei Thierbach et al. (Applied Microbiology and Biotechnology 29, 356-362 (1988)), Dunican und Shivnan (Bio/Technology 7, 1067-1070 (1989)) und Tauch et al. (FEMS Microbiological Letters 123, 343-347 (1994)) beschrieben. Nach homologer Rekombination mittels eines "cross over"-Ereignisses enthält der resultierende Stamm mindestens zwei Kopien des betreffenden Gens.
Zusätzlich kann es für die Produktion von Aminosäuren, insbesondere L-Lysin vorteilhaft sein, neben dem cdsA-Gen eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensäure-Zyklus oder des Aminosäure-Exports zu verstärken oder zu überexprimieren.
So kann beispielsweise für die Herstellung von L-Lysin gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • - das für die Dihydrodipicolinat-Synthase kodierende dapA- Gen (EP-B 0 197 335), oder
  • - das für die Succinyldiaminopimelat-Desuccinylase kodierende dapE-Gen, oder
  • - das für eine feed back resistente Aspartatkinase kodierende lysC-Gen (Kalinowski et al. (1990), Molecular and General Genetics 224, 317-324), oder
  • - das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086), oder
  • - das für die Triosephosphat Isomerase kodierende tpi-Gen (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086), oder
  • - das für die 3-Phosphoglycerat Kinase kodierende pgk-Gen (Eikmanns (1992), Journal of Bacteriology 174: 6076-6086), oder
  • - das für die Pyruvat Carboxylase kodierende pyc-Gen (DE-A-198 31 609), oder
  • - das für die Malat-Chinon-Oxidoreduktase kodierende mqo- Gen (Molenaar et al., European Journal of Biochemistry 254, 395-403 (1998)), oder
  • - das für den Lysin-Export kodierende lysE-Gen (DE-A-195 48 222)
verstärkt, insbesondere überexprimiert oder amplifiziert werden.
Außerdem kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben der Verstärkung des cdsA-Gens gleichzeitig
  • - das für die Phosphoenolpyruvat-Carboxykinase kodierende pck-Gen (DE 199 50 409.1, DSM13047) und/oder
  • - das für die Glucose-6-Phosphat Isomerase kodierende pgi- Gen (US 09/396,478, DSM12969) und/oder
  • - das für die Pyruvat-Oxidase kodierende poxB-Gen (DE 199 51 975.7)
abzuschwächen.
Außerdem kann es für die Produktion von Aminosäuren, insbesondere L-Lysin, vorteilhaft sein, neben der Überexpression des cdsA-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Microorganisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).
Die erfindungsgemäß hergestellten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch-Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von Aminosäuren, insbesondere L-Lysin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.
Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology" der American Society for Bacteriology (Washington D. C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z. B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnußöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoff haltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium-haltigen Salze verwendet werden. Das Kulturmedium muß außerdem Salze von Metallen enthalten wie z. B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.
Zur pH-Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z. B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe wie z. B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten, werden Sauerstoff oder Sauerstoff- haltige Gasmischungen wie z. B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt, bis sich ein Maximum an Lysin gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.
Die Analyse von L-Lysin kann durch Anionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben.
Folgender Mikroorganismus wurde bei der Deutschen Sammlung für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag hinterlegt:
  • - Corynebacterium glutamicum Stamm DSM5715/pJC1cdsA als DSM13252
Das erfindungsgemäße Verfahren dient zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin.
Legende zu den Figuren Fig. 1: Karte des Plasmids pJC1cdsA
Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung.
Orf2,rep: Plasmidkodierter Replikationsursprung C. gluta­ micum (von pHM1519)
cdsA: cdsA (Phosphatidat-Cytidylyltransferase) Gen aus C. glutamicum ATCC13032
Kan: Kanamycin-Resistenzgen
NarI: Schnittstelle des Restriktionsenzyms NarI
SalI: Schnittstelle des Restriktionsenzyms SalI
SgrAI: Schnittstelle des Restriktionsenzyms SgrAI
Bst1107: Schnittstelle des Restriktionsenzyms Bst1107
NheI: Schnittstelle des Restriktionsenzyms NheI
XhoI: Schnittstelle des Restriktionsenzyms XhoI
ClaI: Schnittstelle des Restriktionsenzyms ClaI
BstEII: Schnittstelle des Restriktionsenzyms BstEII
EcoRI: Schnittstelle des Restriktionsenzyms EcoRI
Fig. 2
Wachstum von C. glutamicum ATCC 13032 und ATCC 13032/pJCcdsA bei 40°C.
OD: optische Dichte
Beispiele
Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.
Beispiel 1 Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032
Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al. (1995, Plasmid 33: 168-179) beschrieben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit Shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84: 2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym XbaI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung XbaI, Code no. 27-0948-02) gespalten und ebenfalls mit Shrimp alkalischer Phosphatase dephosphoryliert. Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC 13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt. Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Research 16: 1563-1575) wurden die Zellen in 10 mM MgSO4 aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 100 mg/l Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektiert.
Beispiel 2 Isolierung und Sequenzierung des cdsA-Gens
Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3AI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3AI, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit Shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bis 2000 bp mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany). Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences USA, 87: 4645-4649) mittels Elektroporation transformiert (Tauch et al. 1994, FEMS Microbiol Letters, 123: 343-7) und auf LB- Agar (Lennox, 1955, Virology, 1: 190) mit 50 mg/l Zeocin ausplattiert. Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Didesoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academy of Sciences USA, 74: 5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18: 1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems (Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29: 1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).
Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programmpakets (1986, Nucleic Acids Research, 14: 217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZero1-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurde mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14: 217-231) angefertigt. Weitere Analysen wurden mit den "BLAST search programs" (Altschul et al., 1997, Nucleic Acids Research, 25: 3389-3402), gegen die non-redundant Datenbank des "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA) durchgeführt.
Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 891 Basenpaaren, welches als cdsA- Gen bezeichnet wurde. Das cdsA-Gen kodiert für ein Protein von 297 Aminosäuren.
Beispiel 3 Klonierung des cdsA Gens im Vektor pJC1
Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al. (1995, Plasmid 33: 168-179) beschrieben isoliert. Mit Hilfe der Polymerasekettenreaktion wurde ein DNA Fragment amplifiziert, das das cdsA Gen trägt. Dazu wurden die folgenden Primer verwendet:
5'-CGC GGA TCC GTG GCC CAA GCT TTA CGA CGG ATA C-3'
5'-CGC GGA TCC GGC TCG CAA GGA AAA GGA ACT GAT-3'
Beide Oligonukleotide tragen die Sequenz für die Spaltungsstelle des Restriktionsenzyms BamHI (unterstrichene Nukleotide). Die dargestellten Primer wurden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und damit nach der Standard-PCR-Methode von Innis et al., (PCR protocol. A guide to methods and applications, 1990, Academic Press) die PCR Reaktion durchgeführt. Die Primer ermöglichen die Amplifizierung eines 1095 bp großen DNA-Fragmentes, welches das cdsA Gen aus Corynebacterium glutamicum trägt.
Nach gelelektrophoretischer Auftrennung erfolgte die Isolierung des PCR-Fragmentes aus dem Agarosegel mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany).
Das auf diese Weise gewonnene PCR Fragment wurde mit dem Restriktionsenzym BamHI vollständig gespalten. Das 1087 bp große cdsA Fragment wurde aus dem Agarosegel mit dem QiaExII Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany) isoliert.
Als Vektor wurde der E. coli - C. glutamicum Shuttle-Vektor pJC1 (Cremer et al., 1990, Molecular and General Genetics 220: 478-480) verwendet. Dieses Plasmid wurde ebenfalls mit dem Restriktionsenzym BamHI vollständig gespalten und anschließend mit Shrimp alkalischer Phosphatase (Roche Diagnostics GmbH, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert.
Das auf diese Weise gewonnene cdsA-Fragment wurde mit dem vorbereiteten Vektor pJC1 gemischt und der Ansatz mit T4- DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no. 27-0870-04) behandelt. Der Ligationsansatz wurde in den E. coli Stamm DH5α (Hanahan, In: DNA cloning. A practical approach. Vol. I. IRL-Press, Oxford, Washington DC, USA) transformiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB-Agar (Lennox, 1955, Virology, 1: 190) mit 50 mg/l Kanamycin. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektiert. Plasmid DNA wurde aus einer Transformante mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym BamHI gespalten, um das Plasmid durch anschließende Agarosegel-Elektrophorese zu überprüfen. Das erhaltene Plasmid wurde pJC1cdsA genannt.
Beispiel 4 Transformation des Stammes DSM5715 mit dem Plasmid pJC1cdsA
Der Stamm DSM5715 wurde mit dem Plasmid pJC1cdsA unter Anwendung der von Liebl et al., (FEMS Microbiology Letters, 53: 299-303 (1989)) beschriebenen Elektroporationsmethode transformiert. Die Selektion der Transformanten erfolgte auf LBHIS Agar bestehend aus 18,5 g/l Brain-Heart Infusion Boullion, 0,5 M Sorbitol, 5 g/l Bacto-Trypton, 2,5 g/l Bacto-Yeast-Extract, 5 g/l NaCl und 18 g/l Bacto-Agar, der mit 25 mg/l Kanamycin supplementiert worden war. Die Inkubation erfolgte für 2 Tage bei 33°C.
Plasmid DNA wurde aus einer Transformante nach den üblichen Methoden isoliert (Peters-Wendisch et al., 1998, Microbiology, 144, 915-927), mit der Restriktionsendonuklease BamHI geschnitten, um das Plasmid durch anschließende Agarosegel-Elektrophorese zu überprüfen. Der erhaltene Stamm wurde DSM5715/pJC1cdsA genannt und bei der Deutschen Sammlung für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag als DSM13252 hinterlegt.
Beispiel 5 Herstellung von Lysin
Der in Beispiel 5 erhaltene C. glutamicum Stamm DSM5715/pJC1cdsA wurde in einem zur Produktion von L-Lysin geeigneten Nährmedium kultiviert und der L-Lysingehalt im Kulturüberstand bestimmt.
Dazu wurde der Stamm zunächst auf Agarplatte mit dem entsprechenden Antibiotikum (Hirn-Herz Agar mit Kanamycin (50 mg/l)) für 24 Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wurde eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkultur wurde das Vollmedium CgIII verwendet.
Medium CgIII
NaCl 2,5 g/l
Bacto-Pepton 10 g/l
Bacto-Yeast-Extrakt 10 g/l
Glucose (getrennt autoklaviert) 2% (w/v)
Der pH-Wert wurde auf pH 7.4 eingestellt.
Diesem wurde Kanamycin (25 mg/l) zugesetzt. Die Vorkultur wurde 16 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert. Von dieser Vorkultur wurde eine Hauptkultur angeimpft, so daß die Anfangs-OD (660 nm) der Hauptkultur 0,1 betrug. Für die Hauptkultur wurde das Medium MM verwendet.
Medium MM
CSL (Corn Steep Liquor) 5 g/l
MOPS (Morpholinopropansulfonsäure) 20 g/l
Glucose (getrennt autoklaviert) 50 g/l
(NH4)2SO4 25 g/l
KH2PO4 0,1 g/l
MgSO4.7 H2O 1,0 g/l
CaCl2.2 H2O 10 mg/l
FeSO4.7 H2O 10 mg/l
MnSO4.H2O 5,0 mg/l
Biotin (sterilfiltriert) 0,3 mg/l
Thiamin.HCl (sterilfiltriert) 0,2 mg/l
L-Leucin 0,1 g/l
CaCO3 25 g/l
CSL, MOPS und die Salzlösung wurden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend wurden die sterilen Substrat- und Vitaminlösungen zugesetzt, sowie das trocken autoklavierte CaCO3.
Die Kultivierung erfolgte in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Es wurde Kanamycin (25 mg/l) zugesetzt. Die Kultivierung erfolgte bei 33°C und 80% Luftfeuchte.
Nach 48 Stunden wurde die OD bei einer Meßwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH, München) ermittelt. Die gebildete Lysinmenge wurde mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik (Hamburg, Deutschland) durch Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.
In Tabelle 1 ist das Ergebnis des Versuchs dargestellt.
Tabelle 1
Beispiel 6 Verbesserung der Wuchseigenschaften
Das in Beispiel 3 erhaltene Plasmid pJCcdsA wurde zur Transformation von C. glutamicum Stamm ATCC 13032 benutzt. Dieser Stamm wurde wie in Beispiel 4 beschrieben transformiert und durch Restriktionsverdau und Agarose- Gelelektrophorese wie in Beispiel 4 beschrieben überprüft. Der Stamm erhaltene ATCC 13032/pJCcdsA wurde in einem zur Wachstumsbestimmung geeigneten Nährmedium kultiviert und das Wachstum bei verschiedenen Temperaturen bestimmt.
Dazu wurde der Stamm wie in Beispiel 5 beschrieben zunächst auf Agarplatte mit dem entsprechenden Antibiotikum (Hirn- Herz Agar mit Kanamycin (50 mg/l)) für 24 Stunden bei 30°C inkubiert. Ausgehend von dieser Agarplattenkultur wurde eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkultur wurde das in Beispiel 5 angegebene Vollmedium CgIII verwendet. Diesem wurde Kanamycin (25 mg/l) zugesetzt. Die Vorkultur wurde 16 Stunden bei 30°C bei 240 rpm auf dem Schüttler inkubiert. Von dieser Vorkultur wurde eine Hauptkultur angeimpft, so daß die Anfangs-OD (600 nm) der Hauptkultur 0,7 betrug. Für die Hauptkultur wurde das Medium MM verwendet.
Medium MM
MOPS (Morpholinopropansulfonsäure) 42 g/l
Glucose(getrennt autoklaviert) 40 g/l
(NH4)2SO4 20 g/l
KH2PO4 1,0 g/l
K2HPO4 1,0 g/l
MgSO4.7 H2O 0,25 g/l
CaCl2.2 H2O 10 mg/l
FeSO4.7 H2O 10 mg/l
MnSO4.H2O 10 mg/l
ZnSO4.H2O 1 mg/l
CuSO4 0,2 mg/l
NiCl2.6 H2O 0,02 mg/l
Biotin (sterilfiltriert) 0,2 mg/l
Protokatechusäure (sterilfiltriert) 30 mg/l
MOPS und die Salzlösung wurden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend wurden die sterilen Substrat- und Vitaminlösungen zugesetzt.
Die Kultivierung erfolgte in 60 ml Volumen in einem 500 ml Erlenmeyerkolben mit Schikanen. Es wurde Kanamycin (25 mg/l) zugesetzt. Die Kultivierung erfolgte bei 40°C. Die OD wurde bei einer Meßwellenlänge von 600 nm mit dem Ultrospec 3000 (Pharmacia Biotech, Upsala, Schweden) ermittelt. Das Ergebnis des Versuchs ist in Fig. 2 gezeigt.
SEQUENZPROTOKOLL

Claims (19)

1. Gentechnisch verändertes coryneformes Bakterium, dadurch gekennzeichnet, daß dessen Gen cdsA, das für die Phosphatidat-Cytidylyltransferase kodiert, verstärkt ist.
2. Gentechnisch verändertes coryneformes Bakterium nach Anspruch 1, dadurch gekennzeichnet, daß das Ausgangs- Bakterium (Wildtyp) ausgewählt ist aus der Gruppe Corynebacterium glutamicum (ATCC13032), Corynebacterium acetoglutamicum (ATCC15806), Corynebacterium acetoacidophilum (ATCC13870), Corynebacterium thermoaminogenes (FERM BP-1539), Corynebacterium melassecola (ATCC17965), Brevibacterium flavum (ATCC14067), Brevibacterium lactofermentum (ATCC13869) und Brevibacterium divaricatum (ATCC14020), oder ausgewählt ist aus der Gruppe Corynebacterium glutamicum FERM-P 1709, Brevibacterium flavum FERM-P 1708, Brevibacterium lactofermentum FERM-P 1712, Corynebacterium glutamicum FERM-P 6463, Corynebacterium glutamicum FERM-P 6464 und Corynebacterium glutamicum DSM5715.
3. Gentechnisch verändertes coryneformes Bakterium nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkung des cdsA-Gens durch Überexpression des Gens, insbesondere durch Erhöhung der Kopienzahl des Gens, durch Auswahl eines starken Promotors oder einer Regulationsregion oberhalb des Leserasters, durch Mutation des Promotors, der Regulationsregion oder der Ribosomenbindungsstelle, durch Einbau einer geeigneten Expressionskassette oberhalb des Strukturgens oder durch Einbau von induzierbaren Promotoren, durch die Verlängerung der Lebensdauer der entsprechenden mRNA, durch einen verminderten Abbau der exprimierten Proteine, oder durch die Kombination mehrerer dieser Möglichkeiten erfolgt.
4. Gentechnisch verändertes coryneformes Bakterium nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Stamm mit einem Plasmidvektor transformiert ist und der Plasmidvektor die für das cdsA-Gen kodierende Nukleotidsequenz trägt.
5. Gentechnisch verändertes coryneformes Bakterium nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es genotypisch dem Stamm Corynebacterium glutamicum DSM13252 entspricht.
6. Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
  • a) Polynukleotid, das mindestens zu 70% homolog ist zu einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 umfaßt, oder aus dieser besteht,
  • b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz umfaßt, die zu mindestens 70% homolog ist zu der Aminosäuresequenz von SEQ ID No. 2,
  • c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
  • d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c).
7. Polynukleotid gemäß Anspruch 6, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
8. Polynukleotid gemäß Anspruch 6, wobei das Polynukleotid eine RNA ist.
9. Replizierbare DNA gemäß Anspruch 7, enthaltend
  • a) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
  • b) mindestens eine Sequenz, die der Sequenz (i) im Rahmen der Degeneration des genetischen Kodes entspricht, oder
  • c) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
  • d) funktionsneutrale Mutationen in (i), die zu homologen Aminosäuren führen.
10. Polynukleotidsequenz gemäß Anspruch 7, 8 oder 9, das für ein Polypeptid kodiert, das die Aminosäuresequenz SEQ ID No. 2 hat, umfaßt.
11. Verfahren zur fermentativen Herstellung von L- Aminosäuren, dadurch gekennzeichnet, daß man folgende Schritte durchführt:
  • a) Fermentation von L-Aminosäure produzierenden coryneformen Bakterien, in denen zumindest das cdsA-Gen oder dafür kodierende Nukleotidsequenzen verstärkt, insbesondere überexprimiert ist,
  • b) Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien und
  • c) Isolieren von der L-Aminosäure.
12. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, daß man einen Stamm gemäß einem der Ansprüche 1 bis 5 einsetzt.
13. Verfahren gemäß Anspruch 11 oder 12, dadurch gekennzeichnet, daß zusätzlich weitere Gene, die ein Protein des Biosyntheseweges der gewünschten L-Aminosäure kodieren, in den Bakterien verstärkt sind.
14. Verfahren gemäß einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß Stoffwechselwege, die die Bildung der gewünschten Aminosäure verringern, in den Bakterien zumindest teilweise ausgeschaltet sind.
15. Verfahren gemäß einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, daß es sich bei der hergestellten Aminosäure um L- Lysin handelt.
16. Verfahren gemäß einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß man für die Herstellung von Lysin Bakterien fermentiert, in denen gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • a) das für die Dihydrodipicolinat-Synthase kodierende dapA-Gen,
  • b) das Gen für die Succinyldiaminopimelat- Desuccinylase kodierende dapE-Gen,
  • c) das für eine feed back resistente Aspartatkinase kodierende lysC-Gen,
  • d) das für die Triosephosphat Isomerase kodierende tpi-Gen,
  • e) das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen,
  • f) das für die 3-Phosphoglycerat Kinase kodierende pgk-Gen,
  • g) das für die Pyruvat-Carboxylase kodierende pyc-Gen,
  • h) das für die Malat : Chinon Oxidoreduktase kodierende mqo-Gen,
  • i) das für den Lysin-Export kodierende lysE-Gen,
gleichzeitig verstärkt, insbesondere überexprimiert oder amplifiziert ist.
17. Verfahren gemäß einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, daß für die Herstellung von L-Lysin Bakterien fermentiert werden, in denen gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
  • a) das für die Phosphoenolpyruvat-Carboxykinase kodierende pck-Gen,
  • b) das für die Glucose-6-Phosphat Isomerase kodierende pgi-Gen,
  • c) das für die Pyruvat-Oxidase kodierende poxB-Gen
abgeschwächt ist.
18. Verwendung von Polynukleotidsequenzen oder Teilen davon gemäß Anspruch 6 als Primer zur Herstellung der DNA von Genen, die für Phosphatidat- Cytidylyltransferase kodieren, durch die Polymerase- Kettenreaktion.
19. Verwendung von Polynukleotidsequenzen gemäß Anspruch 6 als Hybridisierungssonden zur Isolierung von cDNA oder Genen, die eine hohe Homologie mit der Sequenz des cdsA-Gens aufweisen.
DE10021828A 2000-05-04 2000-05-04 Neue für das cdsA-Gen kodierende Nukleotidsequenzen Withdrawn DE10021828A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE10021828A DE10021828A1 (de) 2000-05-04 2000-05-04 Neue für das cdsA-Gen kodierende Nukleotidsequenzen
EP01933786A EP1278861A2 (de) 2000-05-04 2001-03-31 Für das cdsa-gen codierende nukleotidsequenzen
AU2001260174A AU2001260174A1 (en) 2000-05-04 2001-03-31 Novel nucleotide sequences coding for the cdsa gene
PCT/EP2001/003704 WO2001083765A2 (en) 2000-05-04 2001-03-31 Nucleotides sequences coding for the cdsa gene
KR1020027014698A KR20020097245A (ko) 2000-05-04 2001-03-31 cdsA 유전자를 암호화하는 뉴클레오타이드 서열
US09/853,641 US20040092710A1 (en) 2000-05-04 2001-05-14 Nucleotide sequences coding for the cdsA gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10021828A DE10021828A1 (de) 2000-05-04 2000-05-04 Neue für das cdsA-Gen kodierende Nukleotidsequenzen

Publications (1)

Publication Number Publication Date
DE10021828A1 true DE10021828A1 (de) 2001-11-08

Family

ID=7640835

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10021828A Withdrawn DE10021828A1 (de) 2000-05-04 2000-05-04 Neue für das cdsA-Gen kodierende Nukleotidsequenzen

Country Status (5)

Country Link
EP (1) EP1278861A2 (de)
KR (1) KR20020097245A (de)
AU (1) AU2001260174A1 (de)
DE (1) DE10021828A1 (de)
WO (1) WO2001083765A2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100653742B1 (ko) * 2004-12-30 2006-12-05 씨제이 주식회사 신규한 l-라이신-유도성 프로모터
KR100973056B1 (ko) * 2009-09-28 2010-07-29 정충호 청소 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4130867A1 (de) * 1991-09-17 1993-03-18 Degussa Verfahren zur fermentativen herstellung von aminosaeuren
JP3716427B2 (ja) * 1994-06-14 2005-11-16 味の素株式会社 α−ケトグルタル酸デヒドロゲナーゼ遺伝子
CA2383865A1 (en) * 1999-06-25 2001-01-04 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding metabolic pathway proteins
TR200607443T2 (tr) * 1999-06-25 2007-10-22 Basf Aktiengesellschaft Membran sentezi ve membran nakli dahilinde corynebacterium glutamicum kodlayan proteinler
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド

Also Published As

Publication number Publication date
AU2001260174A1 (en) 2001-11-12
WO2001083765A2 (en) 2001-11-08
WO2001083765A3 (en) 2002-04-04
EP1278861A2 (de) 2003-01-29
KR20020097245A (ko) 2002-12-31

Similar Documents

Publication Publication Date Title
EP1111062B1 (de) Für das zwa1-Gen codierende Nukleotidsequenzen
DE60022612T3 (de) Tal gen nukleotidsequenzen
EP1090998A1 (de) Für das eno-Gen codierende Nukleotidsequenzen
EP1136559B1 (de) Für das dapC-Gen kodierende Nukleotidsequenzen und Verfahren zur Herstellung von L-Lysin
DE10162387A1 (de) Für das rpoB-Gen kodierende Nukleotidsequenzen
DE10044681A1 (de) Neue für das lldD2-Gen kodierende Nukleotidsequenzen
DE60127116T2 (de) Für das glbo-gen kodierende nukleotidsequenzen aus corynebacterium glutamicum
EP1239040A2 (de) Mutationen im rpoB-Gen L-Lysin produzierender Corynebacterium glutamicum-Stämme und Verfahren zur Herstellung von L-Lysin
DE10045496A1 (de) Neue für das ptsi-Gen kodierende Nukleotidsequenzen
DE10045497A1 (de) Neue für das ppsA-Gen kodierende Nukleotidsequenzen
EP1118666A2 (de) Für das ptsH-Gen codierende Nukleotidsequenzen aus Corynebacterium glutamicum
DE10162386A1 (de) Für das rpsL-Gen kodierende Nukleotidsequenzen
DE10045487A1 (de) Neue für das ccsB-Gen kodierende Nukleotidsequenzen
DE10043331A1 (de) Neue für das sigD-Gen kodierende Nukleotidsequenzen
EP1106694A1 (de) Für das glk-Gen codierende Nukleotidsequenzen
EP1106622A2 (de) Neue für das pfkA-Gen codierende Nukleotidsequenzen
DE10055869A1 (de) Neue für das nadA-Gen kodierende Nukleotidsequenzen
DE10023400A1 (de) Neue für das acp-Gen kodierende Nukleotidsequenzen
EP1103613A1 (de) Für das pfk-Gen codierende Nukleotidsequenzen
DE10021828A1 (de) Neue für das cdsA-Gen kodierende Nukleotidsequenzen
DE10032173A1 (de) Neue für das plsC-Gen kodierende Nukleotidsequenzen
DE10055870A1 (de) Neue für das nadC-Gen kodierende Nukleotidsequenzen
DE10046625A1 (de) Neue für das ndkA-Gen kodierende Nukleotidsequenzen
DE19958160A1 (de) Neue für das gpm-Gen codierende Nukleotidsequenzen
DE60120724T2 (de) Rekombinante coryneformbakterie die glyceraldehyde-3-phosphate dehydrogenase -2 überexprimieren , und verfahren zur herstellung von l-lysine

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee