CZ307224B6 - Elektrický systém větrné turbíny s nízkonapěťovým vyrovnávacím regulátorem - Google Patents
Elektrický systém větrné turbíny s nízkonapěťovým vyrovnávacím regulátorem Download PDFInfo
- Publication number
- CZ307224B6 CZ307224B6 CZ2005-478A CZ2005478A CZ307224B6 CZ 307224 B6 CZ307224 B6 CZ 307224B6 CZ 2005478 A CZ2005478 A CZ 2005478A CZ 307224 B6 CZ307224 B6 CZ 307224B6
- Authority
- CZ
- Czechia
- Prior art keywords
- wind turbine
- generator
- electrical system
- power
- controller
- Prior art date
Links
- 230000004044 response Effects 0.000 claims abstract description 7
- 230000007704 transition Effects 0.000 claims abstract description 7
- 239000003990 capacitor Substances 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 claims 1
- 230000008030 elimination Effects 0.000 description 9
- 238000003379 elimination reaction Methods 0.000 description 9
- PTVWPYVOOKLBCG-ZDUSSCGKSA-N levodropropizine Chemical compound C1CN(C[C@H](O)CO)CCN1C1=CC=CC=C1 PTVWPYVOOKLBCG-ZDUSSCGKSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/10—Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/028—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
- F03D7/0284—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/007—Control circuits for doubly fed generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/107—Purpose of the control system to cope with emergencies
- F05B2270/1071—Purpose of the control system to cope with emergencies in particular sudden load loss
- F05B2270/10711—Purpose of the control system to cope with emergencies in particular sudden load loss applying a low voltage ride through method
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/15—Special adaptation of control arrangements for generators for wind-driven turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Emergency Management (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Description
Vynález se týká elektrického systému větrných turbín. Podrobněji se vynález týká podpory nízkonapěťového vyrovnání generátorů větrných turbín spojených s energetickou rozvodnou sítí.
Dosavadní stav techniky
Z historického hlediska větrné turbíny přispívaly k celkové výrobě energie do napájecích elektrických sítí velice málo. Nízký jednotkový výkon (<100 kW) a nejistá dostupnost větrných zdrojů způsobovaly, že generátory větrných turbín byly ignorovány, když provozovatelé energetických sítí zvažovali spolehlivost sítě. Nyní jsou však dostupné generátory větrných turbín s výkonem 1,5 MW nebo více. Navíc mnozí projektanti výroby energie zavádějí větrné farmy obsahující sto nebo více generátorů větrných turbín. „Blok energie dostupný z větrných farem s 1,5 MW generátory větrných turbín je srovnatelný s moderním generátorem plynové turbíny. Generátory větrných turbín jsou tudíž stále přijatelnější zdroje energie pro energetickou síť.
Pro spolehlivou dodávku energie do energetické sítě musí generátory větrných turbín (stejně jako jiné typy generátorů) vyhovovat normám propojení energetických sítí, které definují požadavky kladené na dodavatele energie a četné odběratele energie. Podrobněji, požadavek nízkonapěťového vyrovnání (LVRT, z angl. low voltage ride through) typicky vyžaduje, že energetická výrobní jednotka musí zůstat zapojená a synchronizovaná se sítí, když napětí na svorkách výrobní jednotky poklesne na předepsanou úroveň.
Požadavek nízkonapěťového vyrovnání byl v generátorových zařízeních s parními a plynovými turbínami vyřešen pomocí vitálních elektrických uzlů, které jsou napájeny zdroji stejnosměrného napětí, a pomocných uzlů připojených na generátory. Tyto typy generátorů jsou obecně více odolnější vůči kolísání napětí než generátory větrných turbín.
V minulosti bylo generátorům větrných turbín v případě poklesu napětí umožněno vypnutí offline. Například nejběžnějším bezpečnostním konceptem generátorů větrných turbín je nakláněcí systém na záložní baterie, který typicky obsahuje tři nezávislé bateriové moduly. U tohoto typu systému je možné sklonit listy větrné turbíny z pracovní polohy do parkovací polohy, když není dostupná energie generátoru.
Během výpadku dodávky energie se pohony naklánění přepnou z pohonu napájeného z generátoru na pohon napájený baterií, dokud listy nedosáhnou parkovací polohy. K pohybu listů do parkovací polohy dojde automaticky v důsledku napěťové nebo frekvenční chyby. Toto však nesplňuje požadavek nízkonapěťového vyrovnání, protože generátoru větrné turbíny je umožněno vypnutí offline.
V současné době předpisy generátorů větrných turbín mohou vyžadovat připojení a synchronizaci s energetickou sítí až po úroveň 70 % jmenovitého napětí. Tyto požadavky lze uspokojit např. zvýšenou kapacitou různých komponent (motorů, generátorů, měničů, atd.) a použitím bezvýpadkových záložních zdrojů (UPS) pro citlivé řídicí obvody. Avšak závažnější kolísání napětí, např. napětí okolo 15 % jmenovitého napětí, nelze uspokojit pomocí těchto technik.
Podstata vynálezu
Techniky zde popsané umožňují opatřit generátor větrné turbíny jedním nebo více následujícími znaky: 1) zůstat v synchronizaci s energetickou sítí během závažných kolísání napětí, 2) zachovat
- 1 CZ 307224 B6 fungování nakláněcího systému listů i přes nedostatek napětí na svorkách generátoru, 3) chránit převodník energie a generátor před vysokými napětími a proudy během kolísání napětí a 4) dočasně odstavit nevitální subsystémy, které by mohly být poškozeny vystavením vlivu vysokého napětí nebo by mohly být vypnuty buďto zásahem přerušovače obvodu, nebo činností pojistky.
Předmětem tohoto vynálezu je elektrický systém větrné turbíny, obsahující generátor, převodník energie spojený s generátorem, přičemž převodník energie obsahuje invertor připojený pro přijímání energie z generátoru, jehož podstatou je, že převodník energie dále obsahuje regulátor převodníku spojený s invertorem pro monitorování průtoku proudu v invertoru, přičemž regulátor převodníku je spojený pro přijímání energie z bezvýpadkového záložního zdroje během události poklesu napětí, a obvod, spojený se vstupem invertoru a s regulátorem převodníku pro odvádění proudu z invertoru a rotoru generátoru odezvou na řídicí signál z regulátoru převodníku.
Obvod výhodně obsahuje obvod pro eliminaci přepětí. Regulátor převodníku je výhodně spojený s generátorem pro přijímání energie během prvního režimu provozu a s bezvýpadkovým záložním zdrojem pro přijímání energie během události poklesu napětí. V dalším výhodném provedení bezvýpadkový záložní zdroj obsahuje bateriové napájení. Bezvýpadkový záložní zdroj výhodně obsahuje fotočlánkové napájení. Bezvýpadkový záložní zdroj výhodně obsahuje jeden nebo více kondenzátorů.
Ve výhodném provedení elektrický systém větrné turbíny dále obsahuje řídicí systém naklánění listů pro změnu náklonu jednoho nebo více listů, a regulátor turbíny spojený s řídicím systémem naklánění listů, přičemž regulátor turbíny je uspořádaný pro detekování přechodu z prvního režimu provozu do druhého režimu provozu, který obsahuje událost poklesu napětí, a pro způsobování změny náklonu jednoho nebo více listů řídicím systémem naklánění listů odezvou na přechod.
Ve výhodném provedení událost poklesu napětí obsahuje napětí na výstupních svorkách generátoru nižší než 75 % jmenovitého napětí generátoru. Událost poklesu napětí výhodně probíhá až 3 sekundy. Během události poklesu napětí generátor výhodně zůstává připojený do energetické sítě.
Objasnění výkresů
Vynález bude blíže vysvětlen prostřednictvím konkrétních příkladů provedení znázorněných na výkresech, na kterých představuje obr. 1 graf napětí a času pro vzorovou událost zakolísání napětí;
obr. 2 schematické znázornění jednoho provedení generátoru větrné turbíny;
obr. 3 blokové schéma jednoho provedení elektrického systému generátoru větrné turbíny;
obr. 4 blokové schéma jednoho provedení převodníku energie majícího funkci reagovat na nízkonapěťovou událost;
obr. 5 blokové schéma jednoho provedení regulátoru turbíny a příslušných komponent pro použití v generátoru větrné turbíny;
obr. 6 vývojový diagram jednoho provedení postupu pro nízkonapěťové vyrovnání v generátoru větrné turbíny.
-2CZ 307224 B6
Příklady uskutečnění vynálezu
Obr. 1 je graf napětí a času pro vzorovou událost zakolísání napětí. V příkladu na obr. 1 napětí padá ze 100 % jmenovitého napětí výrobní jednotky na 15 % jmenovitého napětí výrobní jednotky. Po zakolísání se napětí vrací na vyšší úroveň. Během tohoto zakolísání napětí musí generátor větrné turbíny zůstat připojený a synchronizovaný s energetickou sítí, aby splnil předpisy nízkonapěťového vyrovnání.
Obr. 2 je schematické znázornění jednoho provedení generátoru větrné turbíny. Vítr přenáší na listy 200 připojené k rotoru 205. Natočení listů 200 lze měnit pomocí řídicích přístrojů (na obr. 2 nejsou znázorněny). Jak se mění rychlost větru, řídicí systém naklánění mění sklon listů 200, aby řídil rychlosti rotoru a zabránil překročení otáček. Typické rychlosti rotoru se pohybují v rozsahu 10 až 20 otáček za minutu, mohou však být podporovány i jiné rozsahy rychlostí rotoru. Naklánění listů je v oboru dobře známé.
Rotor 205 je připojen k převodové skříni 210, která zvyšuje rychlost hřídele na požadovaný rozsah. Typické převodové poměry jsou v rozsahu 100:1, takže rychlosti rotoru 10 až 20 otáček za minutu vyústí na vysokorychlostní hřídeli 215 v 1000 až 2000 otáček za minutu. Lze též použít jiné převodové poměry a jiné rychlosti. Vysokorychlostní hřídel 215 pohání generátor 220 variabilními rychlostmi v závislosti na rychlosti větru.
Generátor 220 vytváří točivý moment, který vyvažuje točivý moment vytvářený rotorem 205. Bez dalších komponent by generátor vytvářel výstupní výkon s proměnným kmitočtem, který by byl nevhodný pro připojení do energetické sítě.
Převodník 230 energie, který obsahuje antiparalelně zapojené invertory 235 a 240, dodává rotoru generátoru 220 výkon s proměnným kmitočtem. Kombinace proměnné rychlosti rotoru a výkonu s proměnným kmitočtem pro rotor generátoru umožňuje generátoru vytvářet výkon s konstantním kmitočtem při napěťových úrovních vhodných pro energetickou síť (např. 575 V střídavého proudu). V jednom provedení jsou invertory 235 a 240 výkonové invertory bipolámího tranzistoru s izolovaným hradlem (1GBT). Výkonové invertory pro použití v generátorech větrných turbín jsou v oboru známé a lze použít libovolné vhodné výkonové invertory.
Transformátor 250 upravuje výstup generátoru větrné turbíny na napětí lokální energetické sítě. Celkové řízení větrné turbíny 275 provádí regulátor, který ovládá různé systémy větrné turbíny 275. Tyto systémy zahrnují např. převodník 230 energie, nakláněcí, mazací a chladicí systémy (na obr. 2 nejsou znázorněny) a otáčecí systém. Mnohé z těchto systémů jsou citlivé na kolísání napětí a mohou být poškozeny, pokud jsou napětí elektrického systému větrné turbíny příliš vysoká nebo příliš nízká. Konkrétně regulátor turbíny monitoruje rychlost větru a vydává momentové příkazy převodníku 230 energie a nakláněcí příkazy nakláněcímu systému tak, že výkon na výstupu větrné turbíny 275 odpovídá povětrnostním podmínkám a rychlost rotoru se drží pod mezí překročení otáček.
Jak je podrobněji popsáno v souvislosti s obr. 4, použití převodníkového regulátoru, který monitoruje proud v jednom nebo obou invertorech, k selektivní aktivaci obvodu pro proudové omezení může ochránit před poškozením, které může být způsobeno vysokými proudy během nízkonapěťové události. V jednom provedení se selektivně aktivuje obvod pro eliminaci přepětí, aby odvedl proud pryč z invertoru a/nebo jiných komponent, které by mohly být poškozeny nepřiměřenými proudy.
Obr. 3 je blokové schéma jednoho provedení elektrického systému generátoru větrné turbíny. Příklad na obr. 3 uvádí specifická napětí, která jsou typická pro generátory větrných turbín ve třídě 1,5 MW pro použití ve Spojených Státech. Pro 50Hz generátory větrných turbín lze použít jiná podobná napětí. Vyšší napětí se obecně používají pro vyšší stanovení výkonu a nižší napětí
-3 CZ 307224 B6 se používají pro nižší stanovení výkonu. Celková architektura je však aplikovatelná pro mnoho různých typů a velikostí větrných turbín.
Generátor 310 dodává energii střídavého proudu do energetické sítě, jakož i do ostatních komponent elektrického systému větrné turbíny 300. V jednom provedení generátor 310 dodává 575 V (což je jmenovité napětí generátoru), ale může dodávat libovolné jiné napětí. Generátor 310 také dodává energii do převodníku 315 energie, který funguje, jak bylo popsáno výše v souvislosti s obr. 2, a do nízkonapěťové rozvodové desky (LVDP) 320.
V jednom provedení LVDP 320 zahrnuje transformátor pro transformaci 575V energie přijímané z generátoru 310 na 120V, 230V a 400V energii pro použití ve větrné turbíně (120V systémy 350, 230V systémy 360, resp. 400V systémy 370). Podle potřeby lze poskytnout i jiné a/nebo dodatečné napájecí úrovně. Systémy generátoru větrné turbíny připojené na LVDP 320 zahrnují např. řízení a motory nakláněcího systému, řízení a motory otáčecího systému, různé mazací a chladicí systémy, elektrické zásuvky a světla, topná tělesa a různé vybavení.
V jednom provedení LVDP 320 dodává energii 24V stejnosměrného proudu do regulátoru 340 turbíny skrze bezvýpadkový záložní zdroj 330 (UPS). Bezvýpadkový záložní zdroj 330 (UPS) dodává energii regulátoru 340 turbíny v případě, že LVDP 320 není schopna dodat regulátoru 340 turbíny potřebnou energii. Bezvýpadkový záložní zdroj 330 (UPS) může být libovolný typ bezvýpadkového záložního zdroje známého v oboru, např. bateriový systém, fotočlánkový systém nebo libovolný jiný energetický zásobní systém známý v oboru. V jednom provedení bezvýpadkový záložní zdroj 330 (UPS) nemá dostatečnou kapacitu na dodání energie všem elektrickým zátěžím obsluhovaným LVDP 320.
Některé z komponent v konfiguracích na obr. 2 a 3 jsou náchylné k poškození způsobenému kolísáním napětí ve vysokonapěťovém (575 V) napájení. Vyšší napětí mohou způsobit poruchy jako např. průraz izolace a vysoké proudy v určitých komponentách. Nízká napětí mohou způsobit, že komponenty jako např. motory odčerpávají nepřiměřený proud, aby vyvážily nižší napětí. Vyšší proudy mohou vést ke spáleným pojistkám, vypnutým přerušovačům obvodů nebo k nadměrnému zahřátí, pokud stav poklesu napětí přetrvá.
Převodníky energie a generátory jsou obzvláště citlivé na kolísání napětí. Generátory mohou akumulovat magnetickou energii, která se může přeměnit na vysoké proudy, když se napětí generátorových svorek rychle snižuje. Tyto proudy mohou způsobit poruchu polovodičových zařízení převodníků energie propojených s generátory.
Když napětí spadne na úrovně, jak je znázorněno na obr. 1, je pravděpodobné, že se budou vyskytovat poruchy, které zabrání generátoru větrné turbíny vyvážení energie do energetické sítě. Jestliže vítr bude dále předávat energii rotoru turbíny, generátor větrné turbíny jako celek absorbuje energii, která může být akumulována pouze jako rotační kinetická energie v podobě zvýšených rychlostí rotoru. Pokud se nepodniknou specifická opatření, může rotor dosáhnout meze překročení otáček a způsobit vypnutí offline generátoru větrné turbíny. V jednom se používá bezvýpadkový záložní zdroj 330 k dodávce energie do regulátoru 340 turbíny a/nebo ostatních komponent větrné turbíny během nízkonapěťových událostí.
Jak je podrobněji popsáno níže, pro ochranu generátoru větrné turbíny proti nízkonapěťovým událostem je převodník 315 energie napájen bezvýpadkovým záložním zdrojem a obsahuje ochranný obvod, který udržuje proudy v přípustném rozsahu. Regulátor převodníku selektivně aktivuje a deaktivuje ochranný obvod, aby udržel tok proudu v přípustném rozsahu. Regulátor 340 turbíny je také napájen bezvýpadkovým záložním zdrojem a působí proto, aby zabránil vypnutím z překročení otáček. V případě potřeby se jedna nebo více nevitálních zátěží při nízkonapěťové události odpojí od napětí, aby se tyto komponenty ochránily před potenciálním poškozením.
-4CZ 307224 B6
Obr. 4 je blokové schéma jednoho provedení převodníku energie majícího funkci reagovat na nízkonapěťovou událost. V jednom provedení převodník 400 energie obsahuje invertory 410 a 420, regulátor 430 převodníku a obvod 440 pro eliminaci přepětí. Do převodníku 400 energie mohou být zahrnuty i další komponenty.
Invertor 410 je spojen s generátorem (na obr. 4 není zobrazen) a s invertorem 420, který je spojen s energetickou sítí. Obvod 440 pro eliminaci přepětí je spojen s výstupem rotoru generátoru. Regulátor 430 převodníku je zapojen tak, aby přijímal data indikující průtok proudu v invertoru 410 a reguloval obvod 440 pro eliminaci přepětí. V jednom provedení regulátor 430 převodníku selektivně aktivuje a deaktivuje ochranný obvod 440 pro eliminaci přepětí, aby udržel proud v invertoru 410 v přípustném rozsahu.
Obvody pro eliminaci přepětí jsou v oboru dobře známé a lze použít libovolný vhodný (tj. obvod s dostatečným stanovením výkonu) obvod pro eliminaci přepětí. Obvod 440 pro eliminaci přepětí obecně funguje proto, aby odvedl proud z rotoru generátoru a z invertoru 410 a aby udržel proudy v invertoru na bezpečných úrovních. Během normálního provozu je tedy obvod 440 pro eliminaci přepětí neaktivní. Během nízkonapěťové události regulátor 430 převodníku selektivně aktivuje obvod 440 pro eliminaci přepětí, aby udržel úrovně proudu v bezpečném rozsahu. Obvod 440 pro eliminaci přepětí a regulátor 430 převodníku jsou tedy součástí systému, který umožňuje generátoru větrné turbíny vyrovnávat nízkonapěťové události a zůstat v synchronizaci s energetickou sítí.
Pro regulaci obvodu 440 pro eliminaci přepětí regulátor 430 převodníku monitoruje rotorové boční proudy (např. proud v invertoru 410) a selektivně aktivuje a deaktivuje obvod 440 pro eliminaci přepětí, když se detekují úrovně proudu, které jsou nebezpečné pro polovodičové komponenty převodníku 400 energie. Regulátor 430 převodníku a obvod 440 pro eliminaci přepětí tedy fungují, aby ochránily převodník 400 energie před poškozením vzniklým následkem nízkonapěťové události.
Obr. 5 je blokové schéma jednoho provedení regulátoru turbíny a příslušných komponent pro použití v generátoru větrné turbíny. V jednom provedení je regulátor turbíny implementován v podobě programovatelného logického automatu (PLC), lze však použít i jiné implementace.
V jednom provedení regulátor turbíny startuje turbínu při její minimální rychlosti větru (řadicí rychlost), přizpůsobuje výstupní výkon generátoru rychlosti větru, řídí náklon listů pro přizpůsobení se rychlosti větru a vyhnutí se vypnutí z překročení otáček, vypíná turbínu při její maximální rychlosti větru (odpojovači rychlost) a otáčí generátor větrné turbíny do větru pomocí otáčecího systému. Regulátor turbíny může také zajišťovat jiné funkce, např. ovládat topná tělesa, osvětlení, systém dálkového řízení a přístrojové desky (SCADA).
Pro podporu schopnosti nízkonapěťového vyrovnání regulátor 500 turbíny detekuje nízkonapěťovou událost a na událost zareaguje. Regulátor 500 turbíny je spojen se systémovými senzory 510, které poskytují data indikující stav různých systémových komponent generátoru větrné turbíny, např. otáčky rotoru a výstupní napětí generátoru. Regulátor 500 turbíny zpracovává tato data, aby určil, zda došlo k nízkonapěťové události.
V jednom provedení odezvou na nízkonapěťovou událost regulátor 500 turbíny přepne řídicí systém 520 naklánění z aktivního řízení, ve kterém jsou elektronika a motory napájeny z LVDP 540, do režimu, v němž jsou motory napájeny z bezvýpadkového záložního zdroje 530.
V jednom provedení jsou nakláněcí motory napájeny z bezvýpadkového záložního zdroje 530, aby se zajistilo, že bude energie pro náklon listů do praporové polohy. Energie z bezvýpadkového záložního zdroje 530 umožňuje regulátoru 500 turbíny a řídicímu systému 520 naklánění regulovat náklon listů během nízkonapěťové události. Např. řídicí systém 520 naklánění může nastavit listy do praporu, aby zpomalil nebo zastavil rotaci rotorové hřídele. Bezvýpadkový záložní zdroj 530 také může umožnit řídicímu systému 520 naklánění fungovat během události přechodného napětí, dokud není obnoveno plné napájení.
-5CZ 307224 B6
V jednom provedení bezvýpadkový záložní zdroj 530 během nízkonapěťové události také napájí jeden nebo více senzorů. Bezvýpadkový záložní zdroj 530 může např. napájet senzory otáček rotoru tak, aby regulátor 500 turbíny mohl monitorovat otáčky rotoru během nízkonapěťové události. Regulátor 500 turbíny může používat data ze senzoru k určování, zda dojde k překročení otáček, a odpovídajícím způsobem zareagovat.
V jednom provedení regulátor 500 turbíny obsahuje řídicí obvody pro vypnutí napájení nekritických systémů v generátoru větrné turbíny odezvou na nízkonapěťovou událost. Zátěže mohou zahrnovat např. otáčecí systém a další zátěže, které by mohly způsobit průraz pojistek a/nebo sepnutí přerušovačů obvodů. Tyto zátěže typicky obsahují motory, které při nízkonapěťových událostech odebírají vysoký proud, aby si udržely výkon. Ostatní nekritické zátěže, např. topná tělesa a světla, jsou odolnější vůči poškození vzniklému v důsledku nízkonapěťové události a lze je ponechat připojené k LVDP 540.
Bezvýpadkový záložní zdroj 530 také napájí regulátor převodníku (na obr. 5 není zobrazen), aby regulátoru převodníku umožnil ochranu před nepřiměřenými proudy v invertorech, jak bylo popsáno v souvislosti s obr. 4. V jednom provedení je regulátor převodníku napájen z kondenzátorů, které akumulují energii, která se používá při nízkonapěťové události.
Obr. 6 je vývojový diagram jednoho provedení postupu nízkonapěťového vyrovnání v generátoru větrné turbíny. Postup na obr. 6 je představen ve specifickém pořadí pouze jako příklad. Pořadí určitých částí postupu lze zaměnit bez odchýlení se od vynálezu.
Detekuje se nízkonapěťová událost, krok 600. Konkrétní napětí, která nízkonapěťovou událost spouštějí, jsou specifická pro každé zařízení. V jednom provedení je prahové napětí, které se považuje za přechod do nízkonapěťové události, definováno jako procento jmenovitého napětí. Např. napětí menší než 75 % jmenovitého napětí generátoru lze považovat za nízkonapěťovou událost. V jiném příkladě lze za nízkonapěťovou událost považovat napětí, které je 50 % jmenovitého napětí generátoru, nebo napětí, které je mezi 15 a 50 % jmenovitého napětí generátoru. Nízkonapěťové události lze též definovat ve smyslu času, např. napětí 75 % jmenovitého napětí generátoru po více než 0,5 sekund lze považovat za nízkonapěťovou událost. K definování nízkonapěťové události lze použít i jiné rozsahy a/nebo napětí.
Když se detekuje nízkonapěťová událost, vybraným komponentám se aktivuje záložní napájení, krok 610. V jednom provedení zajišťuje napájení komponent větrné turbíny bezvýpadkový záložní zdroj, např. bateriový zdroj, aby generátor větrné turbíny zůstal připojený a synchronizovaný s energetickou sítí během nízkonapěťové události. Napájení lze např. dodávat všem nebo části převodníku energie, regulátoru turbíny a/nebo řídicímu systému naklánění listů.
V jednom provedení se pro zamezení podmínkám překročení otáček rotoru zajišťuje napájení z bezvýpadkového záložního zdroje, aby se monitorovaly otáčky rotoru a řídily motory nakláněcího systému listů.
Deaktivuje se napájení nedůležitých prvků nebo prvků, které by mohly být poškozeny v podmínkách poklesu napětí, vysokého proudu, krok 620. Během nízkonapěťové události lze např. deaktivovat motory a další komponenty otáčecího systému.
Regulátor v převodníku energie monitoruje proud z rotoru generátoru do invertoru, krok 630. Pokud proud překročí prahovou hodnotu, regulátor převodníku aktivuje obvod pro proudové omezení, krok 640. Obvod pro proudové omezení je v jednom provedení obvod pro eliminaci přepětí. Prahová hodnota proudu je určena průtokem proudu, který by poškodil polovodičové komponenty převodníku napětí. Když skončí nízkonapěťová událost, obnoví se napájení z generátoru a komponenty větrné turbíny fungují v normálních podmínkách, krok 650.
-6CZ 307224 B6
Odkaz na jedno provedení nebo na provedení v tomto popisu znamená, že konkrétní znak, struktura nebo charakteristika popisovaná v souvislosti s provedením je zahrnuta v alespoň jednom provedení vynálezu. Výskyty výrazu v jednom provedení na různých místech popisu se nemusí nutně vztahovat ke stejnému provedení.
V předchozím popisu byl popsán vynález s odkazem na jeho konkrétní provedení. Je však zřejmé, že odborníci mohou provádět různé jeho modifikace a obměny, aniž by se odchýlili od širší podstaty a rozsahu vynálezu. Popis a obrázky mají být tudíž chápány spíše v ilustrativním než v omezujícím smyslu.
Claims (10)
1. Elektrický systém větrné turbíny (300), obsahující generátor (310), převodník (400) energie spojený s generátorem (310), přičemž převodník (400) energie obsahuje invertor (410, 420) připojený pro přijímání energie z generátoru (310), vyznačující se tím, že převodník (400) energie dále obsahuje regulátor (430) převodníku spojený s invertorem (410, 420) pro monitorování průtoku proudu v invertoru (410, 420), přičemž regulátor (430) převodníku je spojený pro přijímání energie z bezvýpadkového záložního zdroje (330) během události poklesu napětí, a obvod (440), spojený se vstupem invertoru (410, 420) a s regulátorem (430) převodníku pro odvádění proudu z invertoru (410, 420) a rotoru generátoru (310) odezvou na řídicí signál z regulátoru (430) převodníku.
2. Elektrický systém větrné turbíny (300) podle nároku 1, vyznačující se tím, že obvod (440) obsahuje obvod pro eliminaci přepětí typu crowbar.
3. Elektrický systém větrné turbíny (300) podle nároku 1, vyznačující se tím, že regulátor (430) převodníku je spojený s generátorem (310) pro přijímání energie během prvního režimu provozu a s bezvýpadkovým záložním zdrojem (330) pro přijímání energie během události poklesu napětí.
4. Elektrický systém větrné turbíny (300) podle nároku 1, vyznačující se tím, že bezvýpadkový záložní zdroj (330) obsahuje bateriové napájení.
5. Elektrický systém větrné turbíny (300) podle nároku 1, vyznačující se tím, že bezvýpadkový záložní zdroj (330) obsahuje fotočlánkové napájení.
6. Elektrický systém větrné turbíny (300) podle nároku 1, vyznačující se tím, že bezvýpadkový záložní zdroj (330) obsahuje jeden nebo více kondenzátorů.
7. Elektrický systém větrné turbíny (300) podle kteréhokoli z předchozích nároků, vyznačující se tím, že dále obsahuje řídicí systém (520) naklánění listů pro změnu náklonu jednoho nebo více listů (200), a regulátor (500) turbíny spojený s řídicím systémem (520) naklánění listů, přičemž regulátor (500) turbíny je uspořádaný pro detekování přechodu z prvního režimu provozu do druhého režimu provozu, který obsahuje událost poklesu napětí, a pro způsobování změny náklonu jednoho nebo více listů (200) řídicím systémem (520) naklánění listů odezvou na přechod.
8. Elektrický systém větrné turbíny (300) podle nároku 1, vyznačující se tím, že událost poklesu napětí obsahuje napětí na výstupních svorkách generátoru (310) nižší než 75 % jmenovitého napětí generátoru (310).
-7CZ 307224 B6
9. Elektrický systém větrné turbíny (300) podle nároku 8, vyznačující se tím, že událost poklesu napětí probíhá až 3 sekundy.
10. Elektrický systém větrné turbíny (300) podle kteréhokoli z předchozích nároků, vyznačující se tím, že generátor (310) zůstává během události poklesu napětí připojený do energetické sítě.
6 výkresů
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/350,452 US6921985B2 (en) | 2003-01-24 | 2003-01-24 | Low voltage ride through for wind turbine generators |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ2005478A3 CZ2005478A3 (cs) | 2006-01-11 |
CZ307224B6 true CZ307224B6 (cs) | 2018-04-11 |
Family
ID=32735561
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2005-478A CZ307224B6 (cs) | 2003-01-24 | 2004-01-23 | Elektrický systém větrné turbíny s nízkonapěťovým vyrovnávacím regulátorem |
CZ2016-28A CZ307397B6 (cs) | 2003-01-24 | 2004-01-23 | Větrná turbína s nízkonapěťovým vyrovnávacím regulátorem |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ2016-28A CZ307397B6 (cs) | 2003-01-24 | 2004-01-23 | Větrná turbína s nízkonapěťovým vyrovnávacím regulátorem |
Country Status (10)
Country | Link |
---|---|
US (1) | US6921985B2 (cs) |
EP (4) | EP1590567B1 (cs) |
CN (1) | CN100425827C (cs) |
AU (1) | AU2004208135B2 (cs) |
BR (2) | BR122015007892B1 (cs) |
CA (1) | CA2514264C (cs) |
CZ (2) | CZ307224B6 (cs) |
DK (2) | DK1590567T3 (cs) |
ES (2) | ES2861798T3 (cs) |
WO (1) | WO2004067958A1 (cs) |
Families Citing this family (129)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9714775A (pt) * | 1996-12-03 | 2001-10-30 | Elliott Energy Systems Inc | Sistema elétrico para turbina/alternador sobreum eixo comum |
DE10109553B4 (de) * | 2001-02-28 | 2006-03-30 | Wobben, Aloys, Dipl.-Ing. | Luftdichteabhängige Leistungsregelung |
PT2256340T (pt) * | 2001-04-20 | 2016-10-05 | Wobben Properties Gmbh | Processo para a operação de um aerogerador |
DE10119624A1 (de) | 2001-04-20 | 2002-11-21 | Aloys Wobben | Verfahren zum Betreiben einer Windenergieanlage |
US6921985B2 (en) | 2003-01-24 | 2005-07-26 | General Electric Company | Low voltage ride through for wind turbine generators |
US7233129B2 (en) * | 2003-05-07 | 2007-06-19 | Clipper Windpower Technology, Inc. | Generator with utility fault ride-through capability |
US7042110B2 (en) * | 2003-05-07 | 2006-05-09 | Clipper Windpower Technology, Inc. | Variable speed distributed drive train wind turbine system |
DE10338127C5 (de) * | 2003-08-15 | 2015-08-06 | Senvion Se | Windenergieanlage mit einem Rotor |
US7528496B2 (en) * | 2003-09-03 | 2009-05-05 | Repower Systems Ag | Method for operating or controlling a wind turbine and method for providing primary control power by means of wind turbines |
US7170262B2 (en) * | 2003-12-24 | 2007-01-30 | Foundation Enterprises Ltd. | Variable frequency power system and method of use |
US7126236B2 (en) * | 2005-03-15 | 2006-10-24 | General Electric Company | Methods and apparatus for pitch control power conversion |
ES2265771B1 (es) * | 2005-07-22 | 2008-01-16 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Metodo para mantener operativos los componentes de una turbina eolica y una turbina eolica con componentes que permitan el mantenimiento operativo. |
EP1752660B1 (en) * | 2005-08-12 | 2013-04-03 | General Electric Company | Wind turbine over-voltage protection |
DE102005038558A1 (de) † | 2005-08-12 | 2007-02-15 | Repower Systems Ag | Verfahren zum Betrieb eines Windenergieanlagenparks sowie Windenergieanlagenpark |
US7740448B2 (en) * | 2005-09-09 | 2010-06-22 | General Electric Company | Pitch control battery backup methods and system |
US7233079B1 (en) * | 2005-10-18 | 2007-06-19 | Willard Cooper | Renewable energy electric power generating system |
ES2296483B1 (es) | 2005-11-21 | 2009-03-01 | Ingeteam Technology, S.A. | Un sistema de control y proteccion ante faltas simetricas y asimetricas, para generadores de tipo asincrono. |
AU2006336347B2 (en) * | 2006-01-20 | 2011-09-22 | Southwest Windpower, Inc. | Stall controller and triggering condition control features for a wind turbine |
US7352075B2 (en) | 2006-03-06 | 2008-04-01 | General Electric Company | Methods and apparatus for controlling rotational speed of a rotor |
US7425771B2 (en) * | 2006-03-17 | 2008-09-16 | Ingeteam S.A. | Variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
CN101401294B (zh) * | 2006-03-17 | 2013-04-17 | 英捷电力技术有限公司 | 具有激励器设备和不连接至电网的功率变换器的变速风机 |
US7218012B1 (en) * | 2006-05-31 | 2007-05-15 | General Electric Company | Emergency pitch drive power supply |
US7602075B2 (en) * | 2006-07-06 | 2009-10-13 | Acciona Windpower, S.A. | Systems, methods and apparatuses for a wind turbine controller |
CN101517228B (zh) * | 2006-09-14 | 2012-10-03 | 维斯塔斯风力系统有限公司 | 控制连接到市电网的风力涡轮机的方法、风力涡轮机与风电厂 |
WO2008031434A2 (en) * | 2006-09-14 | 2008-03-20 | Vestas Wind Systems A/S | Method for controlling a wind turbine connected to the utility grid, wind turbine and wind park |
JP4365394B2 (ja) | 2006-09-20 | 2009-11-18 | 株式会社日立製作所 | 風力発電システムおよびその運転方法 |
US7629705B2 (en) * | 2006-10-20 | 2009-12-08 | General Electric Company | Method and apparatus for operating electrical machines |
WO2008070151A2 (en) * | 2006-12-06 | 2008-06-12 | Windtronix Energy, Inc. | Improved renewable energy apparatus and method for operating the same |
US7622815B2 (en) | 2006-12-29 | 2009-11-24 | Ingeteam Energy, S.A. | Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
EP1965487A1 (en) * | 2007-02-28 | 2008-09-03 | Gamesa Innovation & Technology, S.L. | Uninterruptible power supply, connected to a grid |
US7772716B2 (en) | 2007-03-27 | 2010-08-10 | Newdoll Enterprises Llc | Distributed maximum power point tracking system, structure and process |
JP4501958B2 (ja) | 2007-05-09 | 2010-07-14 | 株式会社日立製作所 | 風力発電システムおよびその制御方法 |
US20080307817A1 (en) * | 2007-06-18 | 2008-12-18 | General Electric Company | System for integrated thermal management and method for the same |
WO2009008863A1 (en) * | 2007-07-12 | 2009-01-15 | Mls Electrosystem Llc | Method and apparatus for grid loss ride-through for wind turbine pitch control system |
US8013738B2 (en) | 2007-10-04 | 2011-09-06 | Kd Secure, Llc | Hierarchical storage manager (HSM) for intelligent storage of large volumes of data |
WO2009045218A1 (en) | 2007-10-04 | 2009-04-09 | Donovan John J | A video surveillance, storage, and alerting system having network management, hierarchical data storage, video tip processing, and vehicle plate analysis |
KR100947075B1 (ko) | 2007-11-22 | 2010-03-10 | 주식회사 플라스포 | 계통 저전압 보상 방법 및 상기 방법을 수행하기 위한 풍력발전기 |
US7745948B2 (en) * | 2007-11-28 | 2010-06-29 | General Electric Company | Emergency pitch drive unit for a wind turbine |
US8222758B2 (en) * | 2007-12-14 | 2012-07-17 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator |
EP2227848B1 (en) * | 2007-12-28 | 2013-06-19 | Vestas Wind Systems A/S | Apparatus and method for operating a wind turbine under low utility grid voltage conditions |
US20100308586A1 (en) * | 2008-02-29 | 2010-12-09 | Efficient Drivetrains, Inc | Wind Turbine Systems Using Continuously Variable Transmissions and Controls |
US7952232B2 (en) * | 2008-03-13 | 2011-05-31 | General Electric Company | Wind turbine energy storage and frequency control |
EP2107237A1 (en) * | 2008-03-31 | 2009-10-07 | AMSC Windtec GmbH | Wind energy converter comprising a superposition gear |
DE102008017715A1 (de) | 2008-04-02 | 2009-10-15 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine sowie Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine |
ES2327488B1 (es) * | 2008-04-15 | 2010-06-18 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Un sistema de evaluacion y control del rendimiento de un aerogenerador. |
ES2333393B1 (es) * | 2008-06-06 | 2011-01-07 | Accioona Windpower, S.A | Sistema y metodo de control de un aerogenerador. |
ES2345645B1 (es) * | 2008-06-09 | 2011-07-13 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Instalacion de energia eolica y procedimiento de modificacion del paso de pala en una instalacion de energia eolica. |
US8008794B2 (en) * | 2008-07-16 | 2011-08-30 | General Electric Company | Use of pitch battery power to start wind turbine during grid loss/black start capability |
US8070446B2 (en) * | 2008-09-10 | 2011-12-06 | Moog Japan Ltd. | Wind turbine blade pitch control system |
US20100090463A1 (en) * | 2008-10-10 | 2010-04-15 | Jacob Johannes Nies | Combined environmental monitoring and power supply device |
US20100133852A1 (en) * | 2008-11-21 | 2010-06-03 | Preus Robert W | Vertical axis wind turbine with variable area |
WO2010085988A2 (en) * | 2009-01-30 | 2010-08-05 | Dewind, Inc. | Wind turbine with lvrt capabilities |
CN101800510B (zh) * | 2009-02-10 | 2013-09-18 | 株式会社日立制作所 | 风力发电系统 |
GB0902917D0 (en) | 2009-02-20 | 2009-04-08 | Reckitt Benckiser Nv | Composition |
US8796872B2 (en) * | 2009-02-20 | 2014-08-05 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator |
CN102112737B (zh) * | 2009-02-20 | 2013-07-17 | 三菱重工业株式会社 | 风力发电装置及其控制方法 |
WO2010109262A2 (en) * | 2009-03-27 | 2010-09-30 | Clipper Windpower, Inc. | A redundant, supercapacitor, back-up power supply for wind turbine conversion and control systems |
DE102009003691A1 (de) * | 2009-03-27 | 2010-09-30 | Ssb Wind Systems Gmbh & Co. Kg | Blattwinkelverstellantrieb für eine Windkraftanlage |
US8022572B2 (en) * | 2009-04-22 | 2011-09-20 | General Electric Company | Genset system with energy storage for transient response |
US8912672B2 (en) | 2009-05-20 | 2014-12-16 | Cummins Power Generator IP, Inc. | Control of an engine-driven generator to address transients of an electrical power grid connected thereto |
CA2714855A1 (en) * | 2009-06-05 | 2010-12-05 | Mitsubishi Heavy Industries, Ltd. | Wind turbine generator, method of controlling the same, and wind turbine generating system |
US8228697B2 (en) * | 2009-07-20 | 2012-07-24 | General Electric Company | Systems, methods, and apparatus for operating a power converter |
US8358033B2 (en) * | 2009-07-20 | 2013-01-22 | General Electric Company | Systems, methods, and apparatus for converting DC power to AC power |
US8576598B2 (en) * | 2009-07-20 | 2013-11-05 | General Electric Company | Systems, methods, and apparatus for converting direct current (DC) power to alternating current (AC) power |
US8154142B2 (en) * | 2009-07-30 | 2012-04-10 | General Electric Company | Communicating energy storages with different functions |
CN102574166B (zh) | 2009-08-14 | 2015-06-10 | 纽道尔企业有限责任公司 | 增强的太阳能面板、流体传送系统和用于太阳能系统的相关过程 |
US20160065127A1 (en) | 2009-08-14 | 2016-03-03 | Newdoll Enterprises Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
WO2011019321A2 (en) | 2009-08-14 | 2011-02-17 | Vestas Wind Systems A/S | A variable speed wind turbine, and a method for operating the variable speed wind turbine during a power imbalance event |
US8154833B2 (en) * | 2009-08-31 | 2012-04-10 | General Electric Company | Line side crowbar for energy converter |
CN102251925A (zh) * | 2009-09-04 | 2011-11-23 | 湘电风能有限公司 | 一种风力发电机组低电压运行的控制方法 |
US8860236B2 (en) * | 2009-10-19 | 2014-10-14 | Uwm Research Foundation, Inc. | Wind energy power conversion system reducing gearbox stress and improving power stability |
US8303251B2 (en) * | 2009-10-29 | 2012-11-06 | General Electric Company | Systems and methods for assembling a pitch assembly for use in a wind turbine |
US8046109B2 (en) * | 2009-12-16 | 2011-10-25 | General Electric Company | Method and systems for operating a wind turbine |
US20110153096A1 (en) * | 2009-12-22 | 2011-06-23 | Sujan Kumar Pal | Method and system for monitoring operation of a wind farm |
EP2536944B1 (en) | 2010-02-02 | 2020-09-09 | Vestas Wind Systems A/S | Test system for wind turbine dump load |
KR101487697B1 (ko) * | 2010-03-10 | 2015-01-29 | 에스에스비 윈드 시스템즈 게엠베하 운트 코 카게 | 여분성 피치 시스템 |
US8362647B2 (en) | 2010-05-13 | 2013-01-29 | Eaton Corporation | Uninterruptible power supply systems and methods supporting high-efficiency bypassed operation with a variably available power source |
US8410638B2 (en) | 2010-05-13 | 2013-04-02 | Eaton Corporation | Uninterruptible power supply systems and methods supporting load balancing |
US20120074786A1 (en) | 2010-05-13 | 2012-03-29 | Eaton Corporation | Uninterruptible power supply systems and methods using isolated interface for variably available power source |
DE102010023038A1 (de) * | 2010-06-08 | 2011-12-08 | Repower Systems Ag | Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage |
WO2012001739A1 (ja) | 2010-06-30 | 2012-01-05 | 株式会社 日立製作所 | 風力発電システム及び風力発電システムの制御方法 |
JP5520715B2 (ja) * | 2010-07-01 | 2014-06-11 | ナブテスコ株式会社 | 風車用ピッチ制御装置 |
US8471534B2 (en) | 2010-08-26 | 2013-06-25 | General Electric Company | Fault ride through switch for power generation system |
CN101917156B (zh) * | 2010-08-30 | 2012-11-14 | 南车株洲电力机车研究所有限公司 | 应对电网电压短时间跌落的风力发电机组防护方法及装置 |
CN101964533B (zh) * | 2010-09-03 | 2012-10-24 | 国电联合动力技术有限公司 | 一种双馈式风力发电机组低电压穿越变桨控制系统 |
KR101243181B1 (ko) * | 2010-11-04 | 2013-03-14 | 한국전기연구원 | 궤환선형화 방법을 이용한 권선형유도발전기 제어장치 |
CN102465832B (zh) * | 2010-11-17 | 2013-08-07 | 三一电气有限责任公司 | 低电压穿越的分布式供电系统及风力发电机组 |
US20120147637A1 (en) | 2010-12-13 | 2012-06-14 | Northern Power Systems, Inc. | Methods, Systems, and Software for Controlling a Power Converter During Low (Zero)-Voltage Ride-Through Conditions |
CN102122827A (zh) * | 2011-01-21 | 2011-07-13 | 邵诗逸 | 一种高电压冗余的双馈风力发电机变流器及其低电压穿越控制方法 |
EP2680424B1 (en) | 2011-02-23 | 2019-08-14 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device |
CN103384958B (zh) | 2011-02-23 | 2016-07-06 | 东芝三菱电机产业系统株式会社 | 功率转换装置 |
WO2012114469A1 (ja) | 2011-02-23 | 2012-08-30 | 東芝三菱電機産業システム株式会社 | 太陽光発電システム |
CN103518060A (zh) | 2011-04-25 | 2014-01-15 | 株式会社日立制作所 | 风力发电系统、利用风力发电系统的装置以及它们的运转方法 |
DE102011105854B4 (de) | 2011-06-03 | 2013-04-11 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage bei Auftreten eines Netzfehlers sowie eine solche Windenergieanlage |
DE102011111210A1 (de) | 2011-08-20 | 2013-02-21 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage bei Auftreten eines Netzfehlers mit einem Spannungsrückgang sowie eine solche Windenergieanlage |
EP2565443A1 (en) * | 2011-09-05 | 2013-03-06 | XEMC Darwind B.V. | Generating auxiliary power for a wind turbine |
US20130057236A1 (en) * | 2011-09-06 | 2013-03-07 | Che-Wei Hsu | Low voltage ride-through control method for grid-connected converter of distributed energy resources |
JP2013087631A (ja) | 2011-10-13 | 2013-05-13 | Mitsubishi Heavy Ind Ltd | 風力発電装置及びその方法並びにプログラム |
JP2013087703A (ja) | 2011-10-19 | 2013-05-13 | Mitsubishi Heavy Ind Ltd | 風力発電装置及びその方法並びにプログラム |
CN103187734A (zh) * | 2011-12-27 | 2013-07-03 | 北京能高自动化技术股份有限公司 | 全功率风电机组并网变流器低电压穿越控制方法 |
CA2860009A1 (en) | 2012-01-18 | 2013-07-25 | Hitachi, Ltd. | A wind turbine system with dc converter control |
US8451573B1 (en) * | 2012-02-24 | 2013-05-28 | General Electric Company | Overvoltage protection device for a wind turbine and method |
US9450415B2 (en) | 2012-08-31 | 2016-09-20 | General Electric Company | System and method for controlling a dual-fed induction generator in response to high-voltage grid events |
US9337657B2 (en) | 2012-11-28 | 2016-05-10 | General Electric Company | Power unit control system |
US8872372B2 (en) | 2012-11-30 | 2014-10-28 | General Electric Company | Method and systems for operating a wind turbine when recovering from a grid contingency event |
US9671442B2 (en) | 2012-11-30 | 2017-06-06 | General Electric Company | System and method for detecting a grid event |
US9513614B2 (en) * | 2013-09-11 | 2016-12-06 | General Electric Company | Auxiliary electric power system and method of regulating voltages of the same |
EP2919354A1 (en) * | 2014-03-14 | 2015-09-16 | Siemens Aktiengesellschaft | Power supply arrangement of a wind farm |
US20150349687A1 (en) * | 2014-05-30 | 2015-12-03 | Abb Technology Ag | Electric Power Generation and Distribution for Islanded or Weakly-Connected Systems |
DK3051124T3 (en) * | 2015-01-30 | 2018-10-15 | Adwen Gmbh | Procedure for operating a wind turbine without mains connection and a wind turbine |
CN105402087B (zh) * | 2015-12-18 | 2018-05-04 | 中国大唐集团科学技术研究院有限公司 | 风电机组变桨距切换控制方法 |
CN106020308B (zh) * | 2016-07-05 | 2017-12-29 | 国网天津市电力公司 | 一种提高给煤机低电压穿越能力的方法 |
US10316822B2 (en) * | 2016-11-01 | 2019-06-11 | General Electric Company | System and method for improved overspeed monitoring of a wind turbine operating at reduced rotor speeds |
US11168663B2 (en) * | 2017-06-22 | 2021-11-09 | General Electric Company | Blade pitch system including power source for wind turbine |
CN108631291B (zh) * | 2018-05-03 | 2021-03-26 | 天津瑞源电气有限公司 | 变桨系统轴驱动器的直流母线电压均衡控制装置及其方法 |
CN112567131B (zh) | 2018-07-10 | 2024-09-24 | 维斯塔斯风力系统集团公司 | 风力涡轮机功率消耗控制 |
US11936074B2 (en) | 2018-08-22 | 2024-03-19 | Alumapower Corporation | Rapid electrolyte replenishment system for aerial drones |
EP3841636A4 (en) | 2018-08-22 | 2022-06-01 | Alumapower Corporation | METAL-AIR BATTERY DEVICE |
CN109038598B (zh) * | 2018-09-11 | 2023-06-02 | 广东电网有限责任公司 | 一种输电线路的电能质量控制装置及其控制方法 |
US10998760B2 (en) * | 2018-09-27 | 2021-05-04 | General Electric Company | System and method for controlling uninterruptible power supply of electrical power systems |
US11035300B2 (en) * | 2019-03-29 | 2021-06-15 | Rolls-Royce Corporation | Control of a gas turbine driving a generator of an electrical system based on faults detected in the electrical system |
DK3719301T3 (da) | 2019-04-03 | 2023-02-06 | Nordex Energy Se & Co Kg | Fremgangsmåde til drift af en vindmølle med mindst eet rotorblad med indstillelig bladvinkel |
CN110794231A (zh) * | 2019-10-25 | 2020-02-14 | 上海电气集团股份有限公司 | 一种用于风电变桨系统的高低电压穿越试验装置 |
US11378059B2 (en) | 2019-11-11 | 2022-07-05 | General Electric Company | System and method for controlling a generator of a wind turbine using electrical current |
US10833616B1 (en) * | 2019-11-22 | 2020-11-10 | Rolls-Royce Marine North America Inc. | Gas turbine engine generator power management control system |
CN111509773B (zh) * | 2020-04-24 | 2021-08-17 | 浙江运达风电股份有限公司 | 适用于弱电网的电压源型风电机组故障穿越控制方法 |
EP4150208A1 (en) | 2020-05-12 | 2023-03-22 | Vestas Wind Systems A/S | Yaw system with yaw control based on control signal |
US11754056B1 (en) | 2021-03-26 | 2023-09-12 | Hawk Spider Energy Corp. | Dynamic mass torque generator |
EP4261409A1 (en) | 2022-04-12 | 2023-10-18 | Siemens Gamesa Renewable Energy Innovation & Technology S.L. | Method for controlling the operation of a wind turbine and wind turbine |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2023237A (en) * | 1978-06-15 | 1979-12-28 | United Technologies Corp | Wind turbine generator control |
US4331881A (en) * | 1980-10-03 | 1982-05-25 | The United States Of America As Represented By The Secretary Of Agriculture | Field control for wind-driven generators |
US4525633A (en) * | 1982-09-28 | 1985-06-25 | Grumman Aerospace Corporation | Wind turbine maximum power tracking device |
WO1993011604A1 (en) * | 1991-11-27 | 1993-06-10 | U.S. Windpower, Inc. | Variable speed wind turbine with reduced power fluctuation and a static var mode of operation |
WO1999023384A1 (de) * | 1997-11-04 | 1999-05-14 | Gerald Hehenberger | Verstellungsantrieb für rotorblätter von windkraftanlagen |
WO2001073518A1 (en) * | 2000-03-29 | 2001-10-04 | Abb Research Ltd. | Wind power plant having fixed-speed and variable-speed windmills |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4565929A (en) * | 1983-09-29 | 1986-01-21 | The Boeing Company | Wind powered system for generating electricity |
US4700081A (en) * | 1986-04-28 | 1987-10-13 | United Technologies Corporation | Speed avoidance logic for a variable speed wind turbine |
US4764838A (en) * | 1986-08-15 | 1988-08-16 | Marathon Electric Manufacturing Corp. | Regulated alternator with positive fault related shut down apparatus |
US4812729A (en) | 1986-08-19 | 1989-03-14 | Hitachi Ltd. | Protecting apparatus for secondary excitation type variable speed AC generator/motor |
US4777376A (en) * | 1987-12-18 | 1988-10-11 | Sundstrand Corporation | Lightweight starting system for an electrically compensated constant speed drive |
US5028804A (en) * | 1989-06-30 | 1991-07-02 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Brushless doubly-fed generator control system |
US5083039B1 (en) * | 1991-02-01 | 1999-11-16 | Zond Energy Systems Inc | Variable speed wind turbine |
JP3100805B2 (ja) | 1993-08-24 | 2000-10-23 | 東京電力株式会社 | 可変速揚水発電システムの過電圧保護装置 |
US5907192A (en) | 1997-06-09 | 1999-05-25 | General Electric Company | Method and system for wind turbine braking |
DE19735742B4 (de) | 1997-08-18 | 2007-11-08 | Siemens Ag | Über- und untersynchrone Stromrichterkaskade |
ATE311027T1 (de) * | 1998-04-02 | 2005-12-15 | Capstone Turbine Corp | Energiesteuerung |
US6265785B1 (en) * | 1998-11-30 | 2001-07-24 | Zond Systems, Inc. | Non-volatile over speed control system for wind turbines |
US6285533B1 (en) | 1999-12-13 | 2001-09-04 | Kabushiki Kaisha Toshiba | Method of and apparatus for controlling the operation of variable speed gearing |
DE10033029B4 (de) | 2000-07-07 | 2004-03-18 | Wobben, Aloys, Dipl.-Ing. | Notstromversorgungseinrichtung |
CA2428501C (en) * | 2000-11-14 | 2006-08-08 | Aloys Wobben | Wind energy turbine |
DE20020232U1 (de) | 2000-11-29 | 2002-01-17 | Siemens AG, 80333 München | Windkraftanlage mit Hilfsenergieeinrichtung zur Verstellung von Rotorblättern in einem Fehlerfall |
DE10105892A1 (de) * | 2001-02-09 | 2002-09-12 | Daimlerchrysler Rail Systems | Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage |
PT2256340T (pt) | 2001-04-20 | 2016-10-05 | Wobben Properties Gmbh | Processo para a operação de um aerogerador |
DE10119624A1 (de) * | 2001-04-20 | 2002-11-21 | Aloys Wobben | Verfahren zum Betreiben einer Windenergieanlage |
US6921985B2 (en) | 2003-01-24 | 2005-07-26 | General Electric Company | Low voltage ride through for wind turbine generators |
-
2003
- 2003-01-24 US US10/350,452 patent/US6921985B2/en not_active Expired - Lifetime
-
2004
- 2004-01-23 ES ES17178692T patent/ES2861798T3/es not_active Expired - Lifetime
- 2004-01-23 CA CA2514264A patent/CA2514264C/en not_active Expired - Lifetime
- 2004-01-23 EP EP04704812.9A patent/EP1590567B1/en not_active Revoked
- 2004-01-23 EP EP17178692.4A patent/EP3260698B1/en not_active Expired - Lifetime
- 2004-01-23 BR BR122015007892-0A patent/BR122015007892B1/pt active IP Right Grant
- 2004-01-23 CZ CZ2005-478A patent/CZ307224B6/cs not_active IP Right Cessation
- 2004-01-23 ES ES04704812.9T patent/ES2647012T3/es not_active Expired - Lifetime
- 2004-01-23 DK DK04704812.9T patent/DK1590567T3/da active
- 2004-01-23 WO PCT/US2004/001774 patent/WO2004067958A1/en active Application Filing
- 2004-01-23 CZ CZ2016-28A patent/CZ307397B6/cs unknown
- 2004-01-23 EP EP17178696.5A patent/EP3260699A1/en not_active Withdrawn
- 2004-01-23 DK DK17178692.4T patent/DK3260698T3/da active
- 2004-01-23 BR BRPI0406712-6A patent/BRPI0406712B1/pt active IP Right Grant
- 2004-01-23 AU AU2004208135A patent/AU2004208135B2/en not_active Expired
- 2004-01-23 EP EP21200980.7A patent/EP3985248A1/en active Pending
- 2004-01-23 CN CNB2004800050700A patent/CN100425827C/zh not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2023237A (en) * | 1978-06-15 | 1979-12-28 | United Technologies Corp | Wind turbine generator control |
US4331881A (en) * | 1980-10-03 | 1982-05-25 | The United States Of America As Represented By The Secretary Of Agriculture | Field control for wind-driven generators |
US4525633A (en) * | 1982-09-28 | 1985-06-25 | Grumman Aerospace Corporation | Wind turbine maximum power tracking device |
WO1993011604A1 (en) * | 1991-11-27 | 1993-06-10 | U.S. Windpower, Inc. | Variable speed wind turbine with reduced power fluctuation and a static var mode of operation |
WO1999023384A1 (de) * | 1997-11-04 | 1999-05-14 | Gerald Hehenberger | Verstellungsantrieb für rotorblätter von windkraftanlagen |
WO2001073518A1 (en) * | 2000-03-29 | 2001-10-04 | Abb Research Ltd. | Wind power plant having fixed-speed and variable-speed windmills |
Also Published As
Publication number | Publication date |
---|---|
EP1590567A1 (en) | 2005-11-02 |
CA2514264A1 (en) | 2004-08-12 |
CA2514264C (en) | 2011-09-13 |
AU2004208135A1 (en) | 2004-08-12 |
EP1590567B1 (en) | 2017-10-04 |
EP3260699A1 (en) | 2017-12-27 |
CN100425827C (zh) | 2008-10-15 |
WO2004067958A1 (en) | 2004-08-12 |
DK3260698T3 (da) | 2021-04-19 |
CZ2005478A3 (cs) | 2006-01-11 |
EP3985248A1 (en) | 2022-04-20 |
CN1754042A (zh) | 2006-03-29 |
ES2861798T3 (es) | 2021-10-06 |
EP3260698B1 (en) | 2021-01-13 |
AU2004208135B2 (en) | 2010-04-22 |
DK1590567T3 (da) | 2017-11-27 |
BRPI0406712A (pt) | 2005-12-20 |
BRPI0406712B1 (pt) | 2021-07-06 |
US20040145188A1 (en) | 2004-07-29 |
ES2647012T3 (es) | 2017-12-18 |
US6921985B2 (en) | 2005-07-26 |
CZ307397B6 (cs) | 2018-07-25 |
BR122015007892B1 (pt) | 2021-03-02 |
EP3260698A1 (en) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CZ307224B6 (cs) | Elektrický systém větrné turbíny s nízkonapěťovým vyrovnávacím regulátorem | |
EP2101392B1 (en) | Wind turbine energy storage and frequency control | |
US8120932B2 (en) | Low voltage ride through | |
CN102118037B (zh) | 与风力涡轮机电气控制和操作相关的系统和设备 | |
US10662923B2 (en) | Contingency autonomous yaw control for a wind turbine | |
US10107260B2 (en) | Wind turbine auxiliary circuit control | |
US20150311696A1 (en) | System and method for protecting electrical machines | |
US9825504B2 (en) | Energy storage module comprising a DC link | |
US8796872B2 (en) | Wind turbine generator | |
CN102465832B (zh) | 低电压穿越的分布式供电系统及风力发电机组 | |
EP2311165A1 (en) | Low voltage ride through | |
EP3418559B1 (en) | Blade pitch system incluidng power source for wind turbine | |
Akhmatov | An aggregated model of a large wind farm with variable-speed wind turbines equipped with doubly-fed induction generators | |
CA2901713A1 (en) | System and method for improving reactive current response time in a wind turbine | |
US20230175491A1 (en) | Method for operating a wind farm and a wind farm | |
CN116241414A (zh) | 用于操作风力涡轮的方法和风力涡轮 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4A | Patent expired |
Effective date: 20240123 |