CN1754042A - 具有低压克服控制器的风轮机发电机和控制风轮机组件的方法 - Google Patents
具有低压克服控制器的风轮机发电机和控制风轮机组件的方法 Download PDFInfo
- Publication number
- CN1754042A CN1754042A CNA2004800050700A CN200480005070A CN1754042A CN 1754042 A CN1754042 A CN 1754042A CN A2004800050700 A CNA2004800050700 A CN A2004800050700A CN 200480005070 A CN200480005070 A CN 200480005070A CN 1754042 A CN1754042 A CN 1754042A
- Authority
- CN
- China
- Prior art keywords
- generator
- wind turbine
- controller
- power
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 10
- 230000004044 response Effects 0.000 claims abstract description 11
- 230000008859 change Effects 0.000 claims description 9
- 239000003990 capacitor Substances 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims 4
- 230000007704 transition Effects 0.000 abstract description 3
- PTVWPYVOOKLBCG-ZDUSSCGKSA-N levodropropizine Chemical compound C1CN(C[C@H](O)CO)CCN1C1=CC=CC=C1 PTVWPYVOOKLBCG-ZDUSSCGKSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/10—Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/022—Adjusting aerodynamic properties of the blades
- F03D7/0224—Adjusting blade pitch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/028—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
- F03D7/0284—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P9/00—Arrangements for controlling electric generators for the purpose of obtaining a desired output
- H02P9/007—Control circuits for doubly fed generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/10—Purpose of the control system
- F05B2270/107—Purpose of the control system to cope with emergencies
- F05B2270/1071—Purpose of the control system to cope with emergencies in particular sudden load loss
- F05B2270/10711—Purpose of the control system to cope with emergencies in particular sudden load loss applying a low voltage ride through method
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2101/00—Special adaptation of control arrangements for generators
- H02P2101/15—Special adaptation of control arrangements for generators for wind-driven turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Emergency Management (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Abstract
一种风轮机。该风轮机包含用于改变一个或多个叶片的倾斜度的叶片倾斜控制系统,和与叶片倾斜控制系统相连的涡轮控制器;第一电源与涡轮控制器和叶片倾斜控制系统连接,在第一运行模式期间提供电力;不间断电源与涡轮控制器和叶片倾斜控制系统连接,在第二运行模式期间提供电力;涡轮控制器检测从第一运行模式到第二运行模式的转换,并响应于该转换而使得叶片倾斜控制系统改变一个或多个叶片的倾斜度。
Description
技术领域
本发明涉及风轮机发电机。更具体地说,本发明涉及支持与配电网连接的风轮机发电机克服低电压(low voltage ride through)。
背景技术
在历史上,风轮机为供电网的总发电量做出的贡献很小。低单位额定值(<100千瓦)和可用风力资源的不确定使得电网经营者在考虑电网安全时忽略了风轮机发电机。但是,现在开发出了可用的具有1.5MW或更高额定值的风轮机发电机。而且,许多发电开发商正在建立具有一百台或更多风轮机发电机的风田(wind farm)。具有1.5MW风轮机发电机的风田生产的电力“块”相当于一个现代燃气涡轮发电机。因此,风轮机发电机是越来越可行的电网电力源。
为了可靠地向电网供电,风轮机发电机(同其它类型发电机一样)必须符合电网互连标准,这些标准定义的要求供电商和大型电力消费者必须遵守。更具体地说,“克服低电压”(LVRT)要求通常要求当发电单元的端子头电压降到规定电平时,发电单元必须保持与电网的连接和同步。
蒸汽和燃气涡轮发电机通过使用由直流电源供电的关键电力总线和连接到发电机的辅助总线来满足LVRT要求。一般来说,与风轮机发电机相比,这些类型的发电对电压波动具有更强的抵抗力。
过去,风轮机发电机被允许在低电压事件中跳闸离线。举例来说,风轮机发电机的最常用的安全概念是电池缓冲倾斜系统,该系统典型地包含三个独立的电池组。通过使用这类系统,当发电机的电源被切断后,有可能将风轮机的叶片从工作位置转到停放位置。
在电源故障期间,倾斜驱动从发电机供电驱动切换到电池供电驱动,直到叶片到达停放位置。典型地,由终止限制开关判定停止位置,并断开发动机和电池的连接。电压或频率错误会引起叶片自动向停止位置运动。然而,这并没有满足LVRT要求,因为风轮机发电机被允许跳闸离线。
目前,风轮机发电机规格能够要求在电压降到额定电压的70%时仍与电网连接和同步。可以通过例如增加不同组件(发动机,发电机,变换器等)的容量(capacity)和在敏感控制电路使用不间断电源(UPS)的方法来满足这些要求。但是,使用上述技术不能调节更剧烈的电压波动,例如电压降到额定电压的15%。
附图说明
本发明通过举例的方式而非限制的方式示出,附图中相同参考数字代表相似的元素。
图1是电压相对于时间的曲线图,作为电压波动事件的例子。
图2的示意图示出了风轮机发电机的一个实施例。
图3的方框图示出了风轮机发电机的电力系统的一个实施例。
图4的方框图示出了具有响应低电压事件功能的电力变换器的一个实施例。
图5的方框图示出了用于风轮机发电机的涡轮控制器和相关组件的一个
实施例。
图6的流程图示出了用于使风轮机发电机克服低电压的过程的一个实施例。
具体实施方式
本文说明的技术允许风轮机发电机提供下列特性中的一个或多个:1)在剧烈的电压波动期间保持与电网的同步,2)即使在发电机接线头的电压不足时也能维持叶片倾斜系统的功能,3)在电压波动期间保护电力变换器和发电机免受高电压和高电流的损害,和4)暂时关闭可能因暴露在低电压下而受到损害或可能因电路断路器作用或熔丝操作而跳闸的非关键子系统。
图1是电压相对于时间的曲线图,作为电压波动事件的例子。在图1所示的例子中,电压从发电单元额定电压的100%下降到发电单元额定电压的15%。波动过后,电压返回到较高的电平。在这个电压波动期间,风轮机发电机必须保持与电网的连接和同步,以满足克服低电压的技术要求。
图2的示意图示出了风轮机发电机的一个实施例。风将能量给予到连接到转子205的叶片200。控制装置(没有在图2中示出)能够改变叶片200的倾斜度。倾斜控制系统根据风速的变化改变叶片200的倾斜度,以控制转子速率并防止超速。典型的转子速率范围为每分钟10-20次旋转;但是,其它的转子速率范围也能够支持。叶片的倾斜是本领域众所周知的。
转子205与齿轮箱210连接,齿轮箱将轴转速提高到期望的范围。典型的齿轮比例在100∶1的范围内,这能使每分钟10-20次旋转的转子速率提高到高速轴215处的每分钟1000-2000次旋转的速率。其它齿轮比例和其它速率也可以使用。高速轴215根据风速以不同速率驱动发电机220。
发电机220产生转矩以平衡转子205产生的转矩。没有其它组件,发电机220将产生不适合连接到电网的可变频率电力输出。
电力变换器230包含背靠背的变极器(inverter)235和240,向发电机220的转子提供可变频率的电力。可变转子速率和可变频率电力组合施加到发电机转子,允许发电机以适合电网(例如,575VAC)的电平产生恒定频率电力。在一个实施例中,变极器235和240是集成栅双极晶体管(IGBT)电力变极器。用于风轮机发电机的电力变极器在本领域是已知的,并且任何合适的电力变极器都可以使用。
变压器250使风轮机发电机的输出与本地电网的电压相匹配。对风轮机发电机275的总体控制由控制器管理,控制器操作风轮机发电机275的各种系统。这些系统包含例如电力变换器230,倾斜、润滑和冷却系统(没有在图2中示出),和侧转(yaw)系统。这些系统中,许多都对电压波动敏感,并且如果风轮机电力系统的电压过高或过低,许多系统都可能受到损害。更具体地说,涡轮控制器监视风速,并向电力变换器230发出转矩命令,向倾斜系统发出倾斜命令,以使得风轮机发电机275的电力输出与风力条件匹配,并且使转子速率保持在超速限制以下。
下面将参照图4更详细地说明变换器控制器的使用,变换器控制器有选择地监视一个或两个变极器的电流,以使得电流限制电路能够防止可能由于低电压事件中的高电流造成的损害。在一个实施例中,保安(crowbar)电路能够有选择地从变极器和/或其它可能被过大电流损害的组件分流电流。
图3的方框图示出了风轮机发电机电力系统的一个实施例。图3所示的例子提供了在美国使用的1.5MW量级的风轮机发电机的典型的具体电压。其它类似的电压可被用于50Hz风轮机发电机。一般来说,较高的电压用于较高额定功率的发电机,较低的电压用于较低额定功率的发电机。但是,本发明的总体结构适用于多种不同类型和规模的风轮机。
发电机310向电网和风轮机电力系统300的其它组件提供交流电力。在一个实施例中,发电机310提供575V(这是发电机的额定电压);但是,任何电压都能提供。发电机310还向电力变换器315和低电压配电盘(LVDP)320提供电力,其中,电力变换器315按照上述参照图2的说明运行。
在一个实施例中,LVDP 320包含变压器,用于将从发电机310接收到的575V电压转换成在风轮机各处(分别为120V系统350、230V系统360和400V系统370)使用的120V、230V和400V电力。也能构根据需要提供其它和/或附加的电源电平。连接到LDVP 320的风轮机发电机系统包含例如倾斜系统控制和发动机、侧转系统控制和发动机、各种润滑和冷却系统、电力插座和照明、加热器和各种设备。
在一个实施例中,LVDP 320通过不间断电源(UPS)330向涡轮控制器340提供24V直流电。当LVDP 320不能向涡轮控制器340提供必要的电力时,UPS330向涡轮控制器340提供电力。UPS 330可以是本领域已知的任何类型的不间断电源,例如,电池系统,光电系统或本领域已知的其它任何电力存储系统。在一个实施例中,UPS 330不具备足够的能力向LVDP 320服务的所有电力负载提供电压。
图2和图3所示结构中的一些组件很容易受到由高电压(575V)电源的电压波动所造成的损害。较高的电压能够导致例如绝缘体被击穿和在某些组件出现高电流的故障。如果低电压条件持续,高电流可能导致熔丝熔断、跳闸电路断路或过热。
电力变换器和发电机特别容易受到电压波动的影响。发电机能够存储磁能,当发电机接线头电压快速下降时,存储的磁能能够被转化成高电流。那些电流能够造成与发电机连接的电力变换器中的半导体器件失效。
当电压降到如图1所示的电平时,很可能出现故障阻碍风轮机发电机向电网输出能量。如果风力继续给予涡轮转子能量,作为整体,风轮机发电机吸收能量,而该能量只能作为转动动量以更高的转子速率的形式被存储。除非采取特殊的行动,否则转子会到达其超速极限,并导致风轮机发电机跳闸离线。在一个实施例中,在低电压事件期间,使用不间断电源330向涡轮控制器340和/或风轮机的其它组件提供电力。
下面将做更详细地说明。为了在低电压事件中保护风轮机发电机,电力变换器315由不间断电源供电,并包含一个保护电路,用于将电压维持在容许范围内。变换器控制器有选择地启动或停止保护电路,以使得电流维持在可接受的范围内。涡轮控制器340也由不间断电源供电,并且它的运行防止超速跳闸。在低电压事件中,如果必要则停止对一个或多个非关键负载的供电,以保护那些组件免受潜在损害。
图4的方框图示出了具有响应低电压事件功能的电力变换器的一个实施例。在一个实施例中,电力变换器400包含变极器410和420、变换器控制器430和保安电路440。电力变换器400也可以包含其它组件。
变极器410连接发电机(没有在图4中示出),变极器420连接电网。保安电路440与发电机转子的输出相连。变换器控制器430与变极器410相连,以接收指示变极器410中的电流的数据,并且变换器控制器430与保安电路440相连以对其进行控制。在一个实施例中,变换器控制器430有选择地启动或停止保安电路440,以便使变极器410中的电流维持在可接受的范围内。
保安电路在本领域中是已知的,并且任何合适的(例如具有充足额定功率的电路)保安电路都可以使用。一般来说,保安电路440运行以分流发电机转子和变极器410的电流,并将变极器电流维持在安全电平。因此,在正常工作期间,保安电路440是不工作的。在低电压事件期间,变换器控制器430有选择地启动保安电路440,以便使电流维持在安全范围内。因此,保安电路440和变换器控制器430是允许风轮机发电机克服低电压事件并保持与电网同步的系统中的一部分。
为了控制保安电路440,变换器控制器430监视转子一侧的电流(例如变极器410中的电流),并且在检测到对电力变换器400的半导体组件有危险的电流值时,有选择地启动和停止保安电路。这样,变换器控制器430和保安电路440运行以防止电力变换器400受到低电压事件造成的损害。
图5的方框图示出了用于风轮机发电机的涡轮控制器和相关组件的一个实施例。在一个实施例中,涡轮控制器以可编程逻辑控制器(PLC)的形式实现;但是,也可以使用其它实现。在一个实施例中,涡轮控制器以涡轮的最小风速(接通速率)启动涡轮,使发电机的电力输出与风速匹配,控制叶片倾斜度以使其与风速匹配并防止超速,在涡轮的最高风速(切断速率)关闭涡轮并指示朝向风的风轮机发电机使用侧转系统。涡轮控制器还能够提供其它功能,例如控制加热器、照明、监控和数据采集(SCADA)系统。
为了支持克服低电压的能力,涡轮控制器500检测低电压事件并对该事件做出响应。涡轮控制器500与系统传感器510相连,系统传感器510提供指示各种风轮机发电机系统组件的状态的数据,例如转子速率和发电机输出电压。涡轮控制器500处理这些数据以确定是否发生了低电压事件。
在一个实施例中,作为对低电压事件的响应,涡轮控制器500将倾斜控制系统520从电子组件和发动机由LVDP 540供电的有效控制切换到发动机由UPS 530供电的模式。在一个实施例中,UPS 530向倾斜发动机供电以保证其具有用于将叶片倾斜到横放位置的电力。UPS 530输出的电力允许涡轮控制器500和倾斜控制系统520在低电压事件中控制叶片的倾斜度。例如,倾斜控制系统520能够横放叶片以减缓或停止转轴的转动。UPS 530还能允许倾斜控制系统在短暂的电压事件中运行,直到恢复全电压。
在一个实施例中,UPS 530还在低电压事件中向一个或多个传感器提供电力。例如,UPS 530能够向转子速率传感器供电,以使得涡轮控制器500能够在低电压事件期间监视转子的速率。涡轮控制器500能够利用来自传感器的数据确定是否会发生超速情况并做出适当的响应。
在一个实施例中,涡轮控制器500包含控制电路,用以响应低电压事件切断风轮机发电机非关键系统的电源。负载可以包含例如侧转系统和可能导致熔丝熔断和/或电路断路器切换的其它负载。典型地,这些负载包含发动机,发动机在低电压事件期间拉到电流以维持性能。其它非关键负载,例如加热器和照明对低电压事件造成的损害具有较强的抵抗力,可以保持与LVDP 540的连接。
UPS 530还向变换器控制器(没有在图5中示出)提供电力,以便如上述参照图4所说明的,允许变换器控制器避免变极器中的过大电流。在一个实施例中,在低电压事件期间,变换器控制器由存储了能量的电容器供电。
图6的流程图示出了用于使风轮机发电机克服低电压的过程的一个实施例。图6所示的过程只是作为例子示出的一个具体顺序。可以改变该过程的某些部分的顺序而不背离本发明。
在步骤600,检测到一个低电压事件。具体的设备具有特定的触发低电压事件的电压值。在一个实施例中,被认为转换到低电压事件的门限电压以额定电压的百分比定义。例如,小于发电机额定电压75%的电压被认为是低电压事件。再例如,发电机额定电压的50%的电压或者在发电机额定电压的15%和50%之间的电压被认为是低电压事件。也可以根据时间定义低电压事件,例如,如果形成发电机额定电压的75%的电压的时间超过0.5秒,则认为是低电压事件。其它范围和/或时间也可以被用来定义低电压事件。
当检测到低电压事件时,在步骤610,被选组件的备用电源启动。在一个实施例中,例如电池电源的不间断电源向在低电压事件期间保持风轮机发电机与电网连接和同步所必需的风轮机组件提供电力。例如,可以向所有或者部分电力变换器、涡轮控制器和/或叶片倾斜控制系统提供电力。在一个实施例中,为了避免转子超速的情况,不间断电源提供电力以监视发动机转子速率并控制叶片倾斜系统发动机。
在步骤620,停止向非关键组件或可能被低电压、高电流情况损害的组件供电。例如,在低电压事件中可以停止发电机和侧转系统的其它组件。
在步骤630,电力变换器中的控制器监视从发电机转子流向变极器的电流。如果电流超过门限值,在步骤640,变换器控制器启动电流限制电路。在一个实施例中,电流限制电路是保安电路。门限电流值根据可能损害电力变换器中的半导体器件的电流确定。当低电压事件已经结束时,在步骤650,发电机输出的电力被重新加载,并且风轮机发电机在正常情况下运行。
说明书中提及的“一个实施例”或“实施例”的意思是,联系该实施例说明的某一特定的特征、结构或特性包含在本发明的至少一个实施例中。在说明书不同地方出现的短语“在一个实施例中”不是必需指代同一个实施例。
在前述说明书中,已经参考本发明的特定实施例对本发明进行了说明。但是,很明显的,在不脱离本发明的精神和范围的界线的情况下,可以对本发明进行各种修改和改变。因此,说明书和附图被应看作是说明性的,而非限制性的。
Claims (10)
1、一种风轮机发电机,包括:
叶片倾斜控制系统,用于改变一个或多个叶片的倾斜度;
涡轮控制器,与叶片控制系统相连;
发电机,与涡轮控制器和叶片倾斜控制系统连接,以在第一运行模式期间提供电力;和
不间断电源,与涡轮控制器和叶片倾斜控制系统连接,在低电压事件期间提供电力,其中,低电压单元当发电机的输出电压在预定时间长度内都处于相对于发电机额定电压的预定电平时存在;
其中,响应于检测到从第一运行模式进行的转换,涡轮控制器响应于该转换而使得叶片倾斜控制系统改变一个或多个叶片的倾斜。
2、如权利要求1所述的风轮机发电机,其中,所述预定时间长度最长为3秒。
3、如权利要求1所述的风轮机发电机,其中,所述预定电平小于发电机额定电压的50%。
4、如权利要求1所述的风轮机发电机,其中,所述预定电平在发电机额定电压的15%和50%之间。
5、如权利要求1所述的风轮机发电机,还包括与发电机相连的电力变换器,该电力变换器包括:
变极器,与发电机相连,接收来自发电机的电力;
变换器控制器,与变极器相连,监视变极器中的电流;
与变极器的输入端和变换器控制器相连的电路,该电路响应于来自变换器控制器的控制信号,对变极器输出的电流分流。
6、如权利要求5所述的风轮机发电机,其中,所述变换器控制器在第一运行模式期间连接到第一电源以接收电力,而在低电压事件期间连接到不间断电源而接收电力。
7、如权利要求1所述的风轮机发电机,其中,所述不间断电源包括从由电池电源、光电电源和一个或多个电容器构成的组合中选出的一个。
8、一种方法,包括:
使用风轮机的发电机向风轮机组件提供电力;
检测低电压事件;
接收不间断电源的电力,提供给风轮机组件的第一子集,其中,风轮机组件的第一子集包括叶片倾斜控制器,在低电压事件期间,有选择地为叶片倾斜控制器供电以维持转子速率低于预定超速限制,其中,低电压单元在发电机的输出电压在预定时间长度内都处于相对于发电机额定电压的预定电平时存在;和
在低电压事件期间断开风轮机组件的第二子集与发电机的连接。
9、如权利要求8所述的方法,其中,所述不间断电源包括从由电池电源、光电电源和一个或多个电容器构成的组合中选出的一个。
10、一种风轮机发电机,它包括:
叶片倾斜控制装置,用于改变一个或多个叶片的倾斜度;
涡轮控制器装置,与叶片倾斜控制装置连接,用以控制风轮机;
发电机装置,与涡轮控制器装置和叶片倾斜控制系统装置连接,用以在低电压事件期间提供电力,其中,低电压单元在发电机的输出电压在预定时间长度内都处于相对于发电机额定电压的预定电平时存在;
其中,响应于检测到从第一运行模式进行的转换,涡轮控制器装置响应于该转换而使得叶片倾斜控制系统改变一个或多个叶片的倾斜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/350,452 | 2003-01-24 | ||
US10/350,452 US6921985B2 (en) | 2003-01-24 | 2003-01-24 | Low voltage ride through for wind turbine generators |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1754042A true CN1754042A (zh) | 2006-03-29 |
CN100425827C CN100425827C (zh) | 2008-10-15 |
Family
ID=32735561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800050700A Expired - Lifetime CN100425827C (zh) | 2003-01-24 | 2004-01-23 | 具有低压克服控制器的风轮机发电机和控制风轮机组件的方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US6921985B2 (zh) |
EP (4) | EP3985248A1 (zh) |
CN (1) | CN100425827C (zh) |
AU (1) | AU2004208135B2 (zh) |
BR (2) | BR122015007892B1 (zh) |
CA (1) | CA2514264C (zh) |
CZ (2) | CZ307397B6 (zh) |
DK (2) | DK1590567T3 (zh) |
ES (2) | ES2647012T3 (zh) |
WO (1) | WO2004067958A1 (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101629553A (zh) * | 2008-07-16 | 2010-01-20 | 通用电气公司 | 发生网损时利用间距蓄电池功率启动风轮机/黑启动性能 |
CN102005716A (zh) * | 2009-08-31 | 2011-04-06 | 通用电气公司 | 用于能量转换器的线路侧短路器 |
CN102132486A (zh) * | 2009-02-20 | 2011-07-20 | 三菱重工业株式会社 | 风力发电装置 |
CN102165187A (zh) * | 2008-04-15 | 2011-08-24 | 歌美飒创新技术公司 | 用于估计和控制风轮机效率的系统 |
CN102251925A (zh) * | 2009-09-04 | 2011-11-23 | 湘电风能有限公司 | 一种风力发电机组低电压运行的控制方法 |
CN102301585A (zh) * | 2009-01-30 | 2011-12-28 | 德风公司 | 具有lvrt能力的风力涡轮机 |
CN102465832A (zh) * | 2010-11-17 | 2012-05-23 | 三一电气有限责任公司 | 低电压穿越的分布式供电系统及风力发电机组 |
CN101517229B (zh) * | 2006-09-14 | 2012-05-23 | 维斯塔斯风力系统有限公司 | 控制连接到市电网的风力涡轮机的方法、风力涡轮机与风电厂 |
CN101517228B (zh) * | 2006-09-14 | 2012-10-03 | 维斯塔斯风力系统有限公司 | 控制连接到市电网的风力涡轮机的方法、风力涡轮机与风电厂 |
CN101796295B (zh) * | 2007-07-12 | 2012-11-28 | Mls电子系统有限责任公司 | 用于风轮机倾角控制系统的网损穿越的方法和设备 |
CN101446269B (zh) * | 2007-11-28 | 2012-12-05 | 通用电气公司 | 用于风力涡轮机的紧急变桨驱动单元 |
CN101166010B (zh) * | 2006-10-20 | 2013-09-25 | 通用电气公司 | 用于操作电机的方法和设备 |
CN101809837B (zh) * | 2007-12-14 | 2013-10-16 | 三菱重工业株式会社 | 风力发电装置 |
CN101981310B (zh) * | 2009-06-05 | 2013-10-30 | 三菱重工业株式会社 | 风力发电装置及其控制方法、风力发电系统 |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002507377A (ja) * | 1996-12-03 | 2002-03-05 | エリオット・エナジー・システムズ・インコーポレイテッド | 共通軸上のタービン/オルタネータのための電気系統 |
DE10109553B4 (de) * | 2001-02-28 | 2006-03-30 | Wobben, Aloys, Dipl.-Ing. | Luftdichteabhängige Leistungsregelung |
DE10119624A1 (de) | 2001-04-20 | 2002-11-21 | Aloys Wobben | Verfahren zum Betreiben einer Windenergieanlage |
CZ299154B6 (cs) * | 2001-04-20 | 2008-05-07 | Zpusob provozu zarízení vetrné elektrárny a zarízení vetrné elektrárny | |
US6921985B2 (en) | 2003-01-24 | 2005-07-26 | General Electric Company | Low voltage ride through for wind turbine generators |
US7042110B2 (en) * | 2003-05-07 | 2006-05-09 | Clipper Windpower Technology, Inc. | Variable speed distributed drive train wind turbine system |
US7233129B2 (en) * | 2003-05-07 | 2007-06-19 | Clipper Windpower Technology, Inc. | Generator with utility fault ride-through capability |
DE10338127C5 (de) * | 2003-08-15 | 2015-08-06 | Senvion Se | Windenergieanlage mit einem Rotor |
US7528496B2 (en) * | 2003-09-03 | 2009-05-05 | Repower Systems Ag | Method for operating or controlling a wind turbine and method for providing primary control power by means of wind turbines |
US7170262B2 (en) * | 2003-12-24 | 2007-01-30 | Foundation Enterprises Ltd. | Variable frequency power system and method of use |
US7126236B2 (en) * | 2005-03-15 | 2006-10-24 | General Electric Company | Methods and apparatus for pitch control power conversion |
ES2265771B1 (es) * | 2005-07-22 | 2008-01-16 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Metodo para mantener operativos los componentes de una turbina eolica y una turbina eolica con componentes que permitan el mantenimiento operativo. |
DE102005038558A1 (de) † | 2005-08-12 | 2007-02-15 | Repower Systems Ag | Verfahren zum Betrieb eines Windenergieanlagenparks sowie Windenergieanlagenpark |
EP1752660B1 (en) * | 2005-08-12 | 2013-04-03 | General Electric Company | Wind turbine over-voltage protection |
US7740448B2 (en) * | 2005-09-09 | 2010-06-22 | General Electric Company | Pitch control battery backup methods and system |
US7233079B1 (en) * | 2005-10-18 | 2007-06-19 | Willard Cooper | Renewable energy electric power generating system |
ES2296483B1 (es) | 2005-11-21 | 2009-03-01 | Ingeteam Technology, S.A. | Un sistema de control y proteccion ante faltas simetricas y asimetricas, para generadores de tipo asincrono. |
JP2009523955A (ja) * | 2006-01-20 | 2009-06-25 | サウスウェスト ウィンドパワー インコーポレーテッド | 風力タービン用の失速コントローラおよびトリガー状態制御構成 |
US7352075B2 (en) | 2006-03-06 | 2008-04-01 | General Electric Company | Methods and apparatus for controlling rotational speed of a rotor |
US7425771B2 (en) * | 2006-03-17 | 2008-09-16 | Ingeteam S.A. | Variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
CN101401294B (zh) * | 2006-03-17 | 2013-04-17 | 英捷电力技术有限公司 | 具有激励器设备和不连接至电网的功率变换器的变速风机 |
US7218012B1 (en) * | 2006-05-31 | 2007-05-15 | General Electric Company | Emergency pitch drive power supply |
US7602075B2 (en) * | 2006-07-06 | 2009-10-13 | Acciona Windpower, S.A. | Systems, methods and apparatuses for a wind turbine controller |
JP4365394B2 (ja) | 2006-09-20 | 2009-11-18 | 株式会社日立製作所 | 風力発電システムおよびその運転方法 |
WO2008070151A2 (en) * | 2006-12-06 | 2008-06-12 | Windtronix Energy, Inc. | Improved renewable energy apparatus and method for operating the same |
US7622815B2 (en) | 2006-12-29 | 2009-11-24 | Ingeteam Energy, S.A. | Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid |
EP1965487A1 (en) * | 2007-02-28 | 2008-09-03 | Gamesa Innovation & Technology, S.L. | Uninterruptible power supply, connected to a grid |
US7772716B2 (en) | 2007-03-27 | 2010-08-10 | Newdoll Enterprises Llc | Distributed maximum power point tracking system, structure and process |
JP4501958B2 (ja) | 2007-05-09 | 2010-07-14 | 株式会社日立製作所 | 風力発電システムおよびその制御方法 |
US20080307817A1 (en) * | 2007-06-18 | 2008-12-18 | General Electric Company | System for integrated thermal management and method for the same |
US7382244B1 (en) | 2007-10-04 | 2008-06-03 | Kd Secure | Video surveillance, storage, and alerting system having network management, hierarchical data storage, video tip processing, and vehicle plate analysis |
US8013738B2 (en) | 2007-10-04 | 2011-09-06 | Kd Secure, Llc | Hierarchical storage manager (HSM) for intelligent storage of large volumes of data |
KR100947075B1 (ko) | 2007-11-22 | 2010-03-10 | 주식회사 플라스포 | 계통 저전압 보상 방법 및 상기 방법을 수행하기 위한 풍력발전기 |
ES2430046T3 (es) * | 2007-12-28 | 2013-11-18 | Vestas Wind Systems A/S | Aparato y procedimiento para hacer funcionar una turbina eólica en condiciones de voltaje de red de suministro bajo |
US20100308586A1 (en) * | 2008-02-29 | 2010-12-09 | Efficient Drivetrains, Inc | Wind Turbine Systems Using Continuously Variable Transmissions and Controls |
US7952232B2 (en) * | 2008-03-13 | 2011-05-31 | General Electric Company | Wind turbine energy storage and frequency control |
EP2107237A1 (en) * | 2008-03-31 | 2009-10-07 | AMSC Windtec GmbH | Wind energy converter comprising a superposition gear |
DE102008017715A1 (de) | 2008-04-02 | 2009-10-15 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine sowie Windenergieanlage mit einer doppelt gespeisten Asynchronmaschine |
ES2333393B1 (es) * | 2008-06-06 | 2011-01-07 | Accioona Windpower, S.A | Sistema y metodo de control de un aerogenerador. |
ES2345645B1 (es) * | 2008-06-09 | 2011-07-13 | GAMESA INNOVATION & TECHNOLOGY, S.L. | Instalacion de energia eolica y procedimiento de modificacion del paso de pala en una instalacion de energia eolica. |
US8070446B2 (en) * | 2008-09-10 | 2011-12-06 | Moog Japan Ltd. | Wind turbine blade pitch control system |
US20100090463A1 (en) * | 2008-10-10 | 2010-04-15 | Jacob Johannes Nies | Combined environmental monitoring and power supply device |
US8573937B2 (en) * | 2008-11-21 | 2013-11-05 | Xzeres Corp. | System for providing dynamic pitch control in a wind turbine |
CN103414412A (zh) * | 2009-02-10 | 2013-11-27 | 株式会社日立制作所 | 风力发电系统 |
EP2400151A4 (en) * | 2009-02-20 | 2014-01-22 | Mitsubishi Heavy Ind Ltd | WIND-ENHANCED GENERATOR AND CONTROL METHOD THEREOF |
GB0902917D0 (en) | 2009-02-20 | 2009-04-08 | Reckitt Benckiser Nv | Composition |
DE102009003691A1 (de) * | 2009-03-27 | 2010-09-30 | Ssb Wind Systems Gmbh & Co. Kg | Blattwinkelverstellantrieb für eine Windkraftanlage |
WO2010109262A2 (en) * | 2009-03-27 | 2010-09-30 | Clipper Windpower, Inc. | A redundant, supercapacitor, back-up power supply for wind turbine conversion and control systems |
US8022572B2 (en) * | 2009-04-22 | 2011-09-20 | General Electric Company | Genset system with energy storage for transient response |
US8912672B2 (en) | 2009-05-20 | 2014-12-16 | Cummins Power Generator IP, Inc. | Control of an engine-driven generator to address transients of an electrical power grid connected thereto |
US8358033B2 (en) * | 2009-07-20 | 2013-01-22 | General Electric Company | Systems, methods, and apparatus for converting DC power to AC power |
US8576598B2 (en) * | 2009-07-20 | 2013-11-05 | General Electric Company | Systems, methods, and apparatus for converting direct current (DC) power to alternating current (AC) power |
US8228697B2 (en) * | 2009-07-20 | 2012-07-24 | General Electric Company | Systems, methods, and apparatus for operating a power converter |
US8154142B2 (en) * | 2009-07-30 | 2012-04-10 | General Electric Company | Communicating energy storages with different functions |
EP2464465A4 (en) | 2009-08-14 | 2014-05-07 | Newdoll Entpr Llc | EXTENDED SOLAR COLLECTORS, LIQUID EXTRACTION SYSTEM AND CORRESPONDING METHODS FOR SOLAR ENERGY SYSTEMS |
US20160065127A1 (en) | 2009-08-14 | 2016-03-03 | Newdoll Enterprises Llc | Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems |
EP2464860B1 (en) | 2009-08-14 | 2015-04-22 | Vestas Wind Systems A/S | A variable speed wind turbine, and a method for operating the variable speed wind turbine during a power imbalance event |
US8860236B2 (en) * | 2009-10-19 | 2014-10-14 | Uwm Research Foundation, Inc. | Wind energy power conversion system reducing gearbox stress and improving power stability |
US8303251B2 (en) * | 2009-10-29 | 2012-11-06 | General Electric Company | Systems and methods for assembling a pitch assembly for use in a wind turbine |
US8046109B2 (en) * | 2009-12-16 | 2011-10-25 | General Electric Company | Method and systems for operating a wind turbine |
US20110153096A1 (en) * | 2009-12-22 | 2011-06-23 | Sujan Kumar Pal | Method and system for monitoring operation of a wind farm |
EP2536944B1 (en) | 2010-02-02 | 2020-09-09 | Vestas Wind Systems A/S | Test system for wind turbine dump load |
US9422919B2 (en) * | 2010-03-10 | 2016-08-23 | Ssb Wind Systems Gmbh & Co. Kg | Redundant pitch system |
US20120074786A1 (en) | 2010-05-13 | 2012-03-29 | Eaton Corporation | Uninterruptible power supply systems and methods using isolated interface for variably available power source |
US8410638B2 (en) | 2010-05-13 | 2013-04-02 | Eaton Corporation | Uninterruptible power supply systems and methods supporting load balancing |
US8362647B2 (en) | 2010-05-13 | 2013-01-29 | Eaton Corporation | Uninterruptible power supply systems and methods supporting high-efficiency bypassed operation with a variably available power source |
DE102010023038A1 (de) * | 2010-06-08 | 2011-12-08 | Repower Systems Ag | Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage |
WO2012001739A1 (ja) | 2010-06-30 | 2012-01-05 | 株式会社 日立製作所 | 風力発電システム及び風力発電システムの制御方法 |
JP5520715B2 (ja) * | 2010-07-01 | 2014-06-11 | ナブテスコ株式会社 | 風車用ピッチ制御装置 |
US8471534B2 (en) | 2010-08-26 | 2013-06-25 | General Electric Company | Fault ride through switch for power generation system |
CN101917156B (zh) * | 2010-08-30 | 2012-11-14 | 南车株洲电力机车研究所有限公司 | 应对电网电压短时间跌落的风力发电机组防护方法及装置 |
CN101964533B (zh) * | 2010-09-03 | 2012-10-24 | 国电联合动力技术有限公司 | 一种双馈式风力发电机组低电压穿越变桨控制系统 |
KR101243181B1 (ko) * | 2010-11-04 | 2013-03-14 | 한국전기연구원 | 궤환선형화 방법을 이용한 권선형유도발전기 제어장치 |
US20120147637A1 (en) | 2010-12-13 | 2012-06-14 | Northern Power Systems, Inc. | Methods, Systems, and Software for Controlling a Power Converter During Low (Zero)-Voltage Ride-Through Conditions |
CN102122827A (zh) * | 2011-01-21 | 2011-07-13 | 邵诗逸 | 一种高电压冗余的双馈风力发电机变流器及其低电压穿越控制方法 |
WO2012114468A1 (ja) | 2011-02-23 | 2012-08-30 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
ES2755073T3 (es) | 2011-02-23 | 2020-04-21 | Toshiba Mitsubishi Elec Ind | Dispositivo de conversión de energía |
JP5659290B2 (ja) | 2011-02-23 | 2015-01-28 | 東芝三菱電機産業システム株式会社 | 太陽光発電システム |
JP5619278B2 (ja) | 2011-04-25 | 2014-11-05 | 株式会社日立製作所 | 風力発電システム及び風力発電システムを用いた装置及びそれらの運転方法 |
DE102011105854B4 (de) | 2011-06-03 | 2013-04-11 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage bei Auftreten eines Netzfehlers sowie eine solche Windenergieanlage |
DE102011111210A1 (de) | 2011-08-20 | 2013-02-21 | Nordex Energy Gmbh | Verfahren zum Betreiben einer Windenergieanlage bei Auftreten eines Netzfehlers mit einem Spannungsrückgang sowie eine solche Windenergieanlage |
EP2565443A1 (en) * | 2011-09-05 | 2013-03-06 | XEMC Darwind B.V. | Generating auxiliary power for a wind turbine |
US20130057236A1 (en) * | 2011-09-06 | 2013-03-07 | Che-Wei Hsu | Low voltage ride-through control method for grid-connected converter of distributed energy resources |
JP2013087631A (ja) | 2011-10-13 | 2013-05-13 | Mitsubishi Heavy Ind Ltd | 風力発電装置及びその方法並びにプログラム |
JP2013087703A (ja) | 2011-10-19 | 2013-05-13 | Mitsubishi Heavy Ind Ltd | 風力発電装置及びその方法並びにプログラム |
CN103187734A (zh) * | 2011-12-27 | 2013-07-03 | 北京能高自动化技术股份有限公司 | 全功率风电机组并网变流器低电压穿越控制方法 |
WO2013108288A1 (ja) | 2012-01-18 | 2013-07-25 | 株式会社 日立製作所 | 風力発電システム |
US8451573B1 (en) * | 2012-02-24 | 2013-05-28 | General Electric Company | Overvoltage protection device for a wind turbine and method |
US9450415B2 (en) | 2012-08-31 | 2016-09-20 | General Electric Company | System and method for controlling a dual-fed induction generator in response to high-voltage grid events |
US9337657B2 (en) | 2012-11-28 | 2016-05-10 | General Electric Company | Power unit control system |
US8872372B2 (en) | 2012-11-30 | 2014-10-28 | General Electric Company | Method and systems for operating a wind turbine when recovering from a grid contingency event |
US9671442B2 (en) | 2012-11-30 | 2017-06-06 | General Electric Company | System and method for detecting a grid event |
US9513614B2 (en) * | 2013-09-11 | 2016-12-06 | General Electric Company | Auxiliary electric power system and method of regulating voltages of the same |
EP2919354A1 (en) * | 2014-03-14 | 2015-09-16 | Siemens Aktiengesellschaft | Power supply arrangement of a wind farm |
US20150349687A1 (en) * | 2014-05-30 | 2015-12-03 | Abb Technology Ag | Electric Power Generation and Distribution for Islanded or Weakly-Connected Systems |
EP3051124B1 (en) * | 2015-01-30 | 2018-06-27 | Adwen GmbH | Method of operating a wind turbine without grid connection and wind turbine |
CN105402087B (zh) * | 2015-12-18 | 2018-05-04 | 中国大唐集团科学技术研究院有限公司 | 风电机组变桨距切换控制方法 |
CN106020308B (zh) * | 2016-07-05 | 2017-12-29 | 国网天津市电力公司 | 一种提高给煤机低电压穿越能力的方法 |
US10316822B2 (en) * | 2016-11-01 | 2019-06-11 | General Electric Company | System and method for improved overspeed monitoring of a wind turbine operating at reduced rotor speeds |
US11168663B2 (en) * | 2017-06-22 | 2021-11-09 | General Electric Company | Blade pitch system including power source for wind turbine |
CN108631291B (zh) * | 2018-05-03 | 2021-03-26 | 天津瑞源电气有限公司 | 变桨系统轴驱动器的直流母线电压均衡控制装置及其方法 |
US11509141B2 (en) * | 2018-07-10 | 2022-11-22 | Vestas Wind Sysiems A/S | Wind turbine power consumption control |
EP3841636A4 (en) | 2018-08-22 | 2022-06-01 | Alumapower Corporation | METAL-AIR BATTERY DEVICE |
ES2974225T3 (es) | 2018-08-22 | 2024-06-26 | Alumapower Corp | Sistema rápido de repostaje de electrólito para drones aéreos |
CN109038598B (zh) * | 2018-09-11 | 2023-06-02 | 广东电网有限责任公司 | 一种输电线路的电能质量控制装置及其控制方法 |
US10998760B2 (en) | 2018-09-27 | 2021-05-04 | General Electric Company | System and method for controlling uninterruptible power supply of electrical power systems |
US11035300B2 (en) * | 2019-03-29 | 2021-06-15 | Rolls-Royce Corporation | Control of a gas turbine driving a generator of an electrical system based on faults detected in the electrical system |
EP3719301B1 (de) | 2019-04-03 | 2022-11-09 | Nordex Energy SE & Co. KG | Verfahren zum betrieb einer windenergieanlage mit mindestens einem in seinem blatteinstellwinkel verstellbaren rotorblatt |
CN110794231A (zh) * | 2019-10-25 | 2020-02-14 | 上海电气集团股份有限公司 | 一种用于风电变桨系统的高低电压穿越试验装置 |
US11378059B2 (en) | 2019-11-11 | 2022-07-05 | General Electric Company | System and method for controlling a generator of a wind turbine using electrical current |
US10833616B1 (en) * | 2019-11-22 | 2020-11-10 | Rolls-Royce Marine North America Inc. | Gas turbine engine generator power management control system |
CN111509773B (zh) * | 2020-04-24 | 2021-08-17 | 浙江运达风电股份有限公司 | 适用于弱电网的电压源型风电机组故障穿越控制方法 |
WO2021228337A1 (en) | 2020-05-12 | 2021-11-18 | Vestas Wind Systems A/S | Yaw system with yaw control based on control signal |
US11754056B1 (en) | 2021-03-26 | 2023-09-12 | Hawk Spider Energy Corp. | Dynamic mass torque generator |
EP4261409A1 (en) | 2022-04-12 | 2023-10-18 | Siemens Gamesa Renewable Energy Innovation & Technology S.L. | Method for controlling the operation of a wind turbine and wind turbine |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2922972C2 (de) | 1978-06-15 | 1986-11-13 | United Technologies Corp., Hartford, Conn. | Windturbinenregelsystem |
US4331881A (en) * | 1980-10-03 | 1982-05-25 | The United States Of America As Represented By The Secretary Of Agriculture | Field control for wind-driven generators |
US4525633A (en) * | 1982-09-28 | 1985-06-25 | Grumman Aerospace Corporation | Wind turbine maximum power tracking device |
US4565929A (en) * | 1983-09-29 | 1986-01-21 | The Boeing Company | Wind powered system for generating electricity |
US4700081A (en) * | 1986-04-28 | 1987-10-13 | United Technologies Corporation | Speed avoidance logic for a variable speed wind turbine |
US4764838A (en) * | 1986-08-15 | 1988-08-16 | Marathon Electric Manufacturing Corp. | Regulated alternator with positive fault related shut down apparatus |
US4812729A (en) | 1986-08-19 | 1989-03-14 | Hitachi Ltd. | Protecting apparatus for secondary excitation type variable speed AC generator/motor |
US4777376A (en) * | 1987-12-18 | 1988-10-11 | Sundstrand Corporation | Lightweight starting system for an electrically compensated constant speed drive |
US5028804A (en) * | 1989-06-30 | 1991-07-02 | The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University | Brushless doubly-fed generator control system |
US5083039B1 (en) * | 1991-02-01 | 1999-11-16 | Zond Energy Systems Inc | Variable speed wind turbine |
WO1993011604A1 (en) | 1991-11-27 | 1993-06-10 | U.S. Windpower, Inc. | Variable speed wind turbine with reduced power fluctuation and a static var mode of operation |
JP3100805B2 (ja) | 1993-08-24 | 2000-10-23 | 東京電力株式会社 | 可変速揚水発電システムの過電圧保護装置 |
US5907192A (en) * | 1997-06-09 | 1999-05-25 | General Electric Company | Method and system for wind turbine braking |
DE19735742B4 (de) | 1997-08-18 | 2007-11-08 | Siemens Ag | Über- und untersynchrone Stromrichterkaskade |
EP1029176B1 (de) * | 1997-11-04 | 2004-03-03 | WINDTEC Anlagenerrichtungs- und Consulting GmbH | Windkraftanlage |
CA2326192A1 (en) * | 1998-04-02 | 1999-10-14 | Capstone Turbine Corporation | Power controller |
US6265785B1 (en) * | 1998-11-30 | 2001-07-24 | Zond Systems, Inc. | Non-volatile over speed control system for wind turbines |
US6285533B1 (en) | 1999-12-13 | 2001-09-04 | Kabushiki Kaisha Toshiba | Method of and apparatus for controlling the operation of variable speed gearing |
NO20001641L (no) | 2000-03-29 | 2001-10-01 | Abb Research Ltd | Vindkraftanlegg |
DE10033029B4 (de) | 2000-07-07 | 2004-03-18 | Wobben, Aloys, Dipl.-Ing. | Notstromversorgungseinrichtung |
PL206076B1 (pl) * | 2000-11-14 | 2010-06-30 | Aloys Wobben | Siłownia wiatrowa |
DE20020232U1 (de) | 2000-11-29 | 2002-01-17 | Siemens AG, 80333 München | Windkraftanlage mit Hilfsenergieeinrichtung zur Verstellung von Rotorblättern in einem Fehlerfall |
DE10105892A1 (de) * | 2001-02-09 | 2002-09-12 | Daimlerchrysler Rail Systems | Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage |
CZ299154B6 (cs) | 2001-04-20 | 2008-05-07 | Zpusob provozu zarízení vetrné elektrárny a zarízení vetrné elektrárny | |
DE10119624A1 (de) * | 2001-04-20 | 2002-11-21 | Aloys Wobben | Verfahren zum Betreiben einer Windenergieanlage |
US6921985B2 (en) | 2003-01-24 | 2005-07-26 | General Electric Company | Low voltage ride through for wind turbine generators |
-
2003
- 2003-01-24 US US10/350,452 patent/US6921985B2/en not_active Expired - Lifetime
-
2004
- 2004-01-23 CN CNB2004800050700A patent/CN100425827C/zh not_active Expired - Lifetime
- 2004-01-23 BR BR122015007892-0A patent/BR122015007892B1/pt active IP Right Grant
- 2004-01-23 DK DK04704812.9T patent/DK1590567T3/da active
- 2004-01-23 EP EP21200980.7A patent/EP3985248A1/en active Pending
- 2004-01-23 BR BRPI0406712-6A patent/BRPI0406712B1/pt active IP Right Grant
- 2004-01-23 WO PCT/US2004/001774 patent/WO2004067958A1/en active Application Filing
- 2004-01-23 CA CA2514264A patent/CA2514264C/en not_active Expired - Lifetime
- 2004-01-23 ES ES04704812.9T patent/ES2647012T3/es not_active Expired - Lifetime
- 2004-01-23 ES ES17178692T patent/ES2861798T3/es not_active Expired - Lifetime
- 2004-01-23 AU AU2004208135A patent/AU2004208135B2/en not_active Expired
- 2004-01-23 DK DK17178692.4T patent/DK3260698T3/da active
- 2004-01-23 CZ CZ2016-28A patent/CZ307397B6/cs unknown
- 2004-01-23 EP EP17178692.4A patent/EP3260698B1/en not_active Expired - Lifetime
- 2004-01-23 EP EP04704812.9A patent/EP1590567B1/en not_active Revoked
- 2004-01-23 EP EP17178696.5A patent/EP3260699A1/en not_active Withdrawn
- 2004-01-23 CZ CZ2005-478A patent/CZ307224B6/cs not_active IP Right Cessation
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101517228B (zh) * | 2006-09-14 | 2012-10-03 | 维斯塔斯风力系统有限公司 | 控制连接到市电网的风力涡轮机的方法、风力涡轮机与风电厂 |
CN101517229B (zh) * | 2006-09-14 | 2012-05-23 | 维斯塔斯风力系统有限公司 | 控制连接到市电网的风力涡轮机的方法、风力涡轮机与风电厂 |
CN101166010B (zh) * | 2006-10-20 | 2013-09-25 | 通用电气公司 | 用于操作电机的方法和设备 |
CN101796295B (zh) * | 2007-07-12 | 2012-11-28 | Mls电子系统有限责任公司 | 用于风轮机倾角控制系统的网损穿越的方法和设备 |
CN101446269B (zh) * | 2007-11-28 | 2012-12-05 | 通用电气公司 | 用于风力涡轮机的紧急变桨驱动单元 |
CN101809837B (zh) * | 2007-12-14 | 2013-10-16 | 三菱重工业株式会社 | 风力发电装置 |
CN102165187A (zh) * | 2008-04-15 | 2011-08-24 | 歌美飒创新技术公司 | 用于估计和控制风轮机效率的系统 |
CN102165187B (zh) * | 2008-04-15 | 2013-08-07 | 歌美飒创新技术公司 | 用于估计和控制风轮机效率的系统 |
CN101629553A (zh) * | 2008-07-16 | 2010-01-20 | 通用电气公司 | 发生网损时利用间距蓄电池功率启动风轮机/黑启动性能 |
CN101629553B (zh) * | 2008-07-16 | 2013-09-18 | 通用电气公司 | 一种风力发电设备以及使该风力发电设备在网损期间运行的方法 |
CN102301585A (zh) * | 2009-01-30 | 2011-12-28 | 德风公司 | 具有lvrt能力的风力涡轮机 |
CN102132486B (zh) * | 2009-02-20 | 2014-07-02 | 三菱重工业株式会社 | 风力发电装置 |
CN102132486A (zh) * | 2009-02-20 | 2011-07-20 | 三菱重工业株式会社 | 风力发电装置 |
CN101981310B (zh) * | 2009-06-05 | 2013-10-30 | 三菱重工业株式会社 | 风力发电装置及其控制方法、风力发电系统 |
CN102005716B (zh) * | 2009-08-31 | 2014-07-23 | 通用电气公司 | 功率单元及其过电压事件损害防止方法 |
CN102005716A (zh) * | 2009-08-31 | 2011-04-06 | 通用电气公司 | 用于能量转换器的线路侧短路器 |
CN102251925A (zh) * | 2009-09-04 | 2011-11-23 | 湘电风能有限公司 | 一种风力发电机组低电压运行的控制方法 |
CN102465832B (zh) * | 2010-11-17 | 2013-08-07 | 三一电气有限责任公司 | 低电压穿越的分布式供电系统及风力发电机组 |
CN102465832A (zh) * | 2010-11-17 | 2012-05-23 | 三一电气有限责任公司 | 低电压穿越的分布式供电系统及风力发电机组 |
Also Published As
Publication number | Publication date |
---|---|
CZ307397B6 (cs) | 2018-07-25 |
US6921985B2 (en) | 2005-07-26 |
EP3260699A1 (en) | 2017-12-27 |
EP3260698B1 (en) | 2021-01-13 |
US20040145188A1 (en) | 2004-07-29 |
CA2514264A1 (en) | 2004-08-12 |
ES2647012T3 (es) | 2017-12-18 |
BRPI0406712A (pt) | 2005-12-20 |
CZ2005478A3 (cs) | 2006-01-11 |
WO2004067958A1 (en) | 2004-08-12 |
ES2861798T3 (es) | 2021-10-06 |
AU2004208135B2 (en) | 2010-04-22 |
BRPI0406712B1 (pt) | 2021-07-06 |
DK1590567T3 (da) | 2017-11-27 |
CZ307224B6 (cs) | 2018-04-11 |
CN100425827C (zh) | 2008-10-15 |
EP3260698A1 (en) | 2017-12-27 |
EP1590567B1 (en) | 2017-10-04 |
BR122015007892B1 (pt) | 2021-03-02 |
EP1590567A1 (en) | 2005-11-02 |
AU2004208135A1 (en) | 2004-08-12 |
EP3985248A1 (en) | 2022-04-20 |
CA2514264C (en) | 2011-09-13 |
DK3260698T3 (da) | 2021-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100425827C (zh) | 具有低压克服控制器的风轮机发电机和控制风轮机组件的方法 | |
CN101299540B (zh) | 用于实现风力发电机组低电压穿越的装置 | |
CN102118037B (zh) | 与风力涡轮机电气控制和操作相关的系统和设备 | |
US9006927B2 (en) | Installation for producing electrical energy provided with means of energy storage and control method of such an installation | |
US8552577B2 (en) | Wind-power generation system with over-speed protection and method of operating the same | |
US20110142634A1 (en) | Overspeed protection system and method | |
US20130265806A1 (en) | Intelligent power control unit for low voltage ride through and its application | |
EP2311165A1 (en) | Low voltage ride through | |
WO2016000220A1 (en) | Overvoltage protection self-trigger circuit for double fed induction generator (dfig) wind power system | |
CN201953562U (zh) | 一种风力发电机变桨距控制系统 | |
DK201570555A1 (en) | System and method for improving reactive current response time in a wind turbine | |
WO2012134458A1 (en) | Dynamic braking and low voltage ride through | |
EP3617497B1 (en) | System and method for increasing mechanical inertia of wind turbine rotor to support grid during frequency event | |
CN102804592A (zh) | 风能设备的叶片调整系统的紧急调整装置 | |
WO2010109262A2 (en) | A redundant, supercapacitor, back-up power supply for wind turbine conversion and control systems | |
CN104716666A (zh) | 用于脱离线状电网的双馈感应发电机风力系统的控制策略 | |
CN109826750B (zh) | 风电变桨系统及其供电方法、供电装置及控制模块 | |
CN202749836U (zh) | 一种双馈风力发电系统的低压穿越装置 | |
CN116221023A (zh) | 用于操作风电场的方法和风电场 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20081015 |
|
CX01 | Expiry of patent term |