CN102132486A - 风力发电装置 - Google Patents

风力发电装置 Download PDF

Info

Publication number
CN102132486A
CN102132486A CN2009801328148A CN200980132814A CN102132486A CN 102132486 A CN102132486 A CN 102132486A CN 2009801328148 A CN2009801328148 A CN 2009801328148A CN 200980132814 A CN200980132814 A CN 200980132814A CN 102132486 A CN102132486 A CN 102132486A
Authority
CN
China
Prior art keywords
current
voltage
circuit breaker
generator
subsidiary engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801328148A
Other languages
English (en)
Other versions
CN102132486B (zh
Inventor
有永真司
若狭强志
松下崇俊
柴田昌明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of CN102132486A publication Critical patent/CN102132486A/zh
Application granted granted Critical
Publication of CN102132486B publication Critical patent/CN102132486B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/007Control circuits for doubly fed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/107Purpose of the control system to cope with emergencies
    • F05B2270/1071Purpose of the control system to cope with emergencies in particular sudden load loss
    • F05B2270/10711Purpose of the control system to cope with emergencies in particular sudden load loss applying a low voltage ride through method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/30Staggered disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本发明的目的在于提供即使在系统产生故障时也能够继续进行辅机的运转的风力发电装置。提供一种风力发电装置,具备在连接辅机(25)和电力系统(13)的电力线上设置的辅机断路器(40),辅机断路器(40)允许在低电压现象中流过的电流,且具有不超过辅机(25)所具备的电动机的容许电流的范围的耐电流性能。

Description

风力发电装置
技术领域
本发明涉及风力发电装置。
背景技术
在风车连接的电力系统中若发生故障则系统电压会在瞬间降低。该情况下,在电力系统侧断开发生了故障的系统,再仅复原健全的系统。该期间最长3秒左右。
系统电压降低时,在风车中发生以下的现象。
1)发电机输出瞬时降低,产生超速。
2)在发电机中过渡性地流过大电流。
3)在辅机的电动机中也过渡性地流过大电流。
对于这种现象,为了使风车安全运转,例如提出有非专利文献1、非专利文献2所公开的技术。
例如在非专利文献1中,公开了为了抑制超速的产生而利用叶片的桨距控制的方案(参照非专利文献1的180页第6行、及181页的第14行)。
此外,非专利文献1中公开了如下技术:为了避免过渡性地向发电机转子绕组流过大电流而使控制转子电流的转换器损伤的可能性,使转换器暂时停止。具体而言,公开了在向发电机转子绕组流过规定值以上的电流时使转换器的开关为关的技术。此外,在非专利文献1中公开了如下技术:在产生上述现象时,通过使转子绕组短路,而进行与通常的感应发电机相同的动作,失去转换器的控制能力。
此外,在非专利文献2中,公开了在电压降低时从不间断电源装置(UPS:Uninterruptible Power Supply)向驱动电路等供给电源的事项。
非专利文献1:Vladislav Akhmatov,“Variable-speed Wind Turbines with Doubly-fed Induction Generators Part II:Power system Stability”,Wind Engineering Vol.26,No.3,2002,pp.171-188
非专利文献2:Eric M.Sisa,“Power Outages And Power Dip Ride-Through”,IEEE Annual Texile,Fiber and Film Industry Conference,1995,pp.37-43
但是在上述非专利文献1及2中未提示系统电压降低时的具体的应对方法。此外,也没有考虑辅机的使用。
发明内容
本发明的目的在于,提供在系统产生故障时也能够继续进行辅机的运转的风力发电装置。
本发明提供一种风力发电装置,具有发电机、在连接所述发电机和电力系统的电力线上设置的主断路器、及在连接辅机和该电力系统的电力线上设置的辅机断路器,所述辅机断路器具有允许在低电压现象中流过的电流且不超过所述辅机具备的电动机的容许电流的范围的耐电流性能,所述主断路器具有比所述辅机断路器的耐电流性能优良且不超过所述发电机的容许电流的范围的耐电流性能。
根据本发明,辅机断路器具有能经受低电压现象产生的电压的下降所引起的过电流的产生的耐电流性能,此外,主断路器具有比辅机断路器优良的耐电流性能。因此,即使产生低电压现象,任一个断路器均不会解列,而能够维持电力系统和辅机断路器的连接状态及电力系统和发电机的连接状态。由此,即使在产生低电压现象时,也能够维持辅机的运转。
所谓主断路器的耐电流性能比辅机断路器的耐电流性能优良,是指例如主断路器的电流容许值设定得大于辅机断路器的电流容许值。
上述风力发电装置可以具备多个叶片和控制所述多个叶片的桨距角的叶片控制部,所述叶片控制部在被供给可动作的驱动电力的期间,进行所述叶片的桨距角控制。
根据该构成,只要对叶片控制部供给可动作的驱动电力,就能够进行叶片控制部执行的叶片的桨距角控制,因此,不管低电压现象是否产生,都继续进行根据相同控制逻辑的叶片的桨距角控制。由此,不需要在产生和不产生低电压现象的情况下切换控制内容,能够实现控制的简化。
上述风力发电装置可以具备将所述发电机转子的输出从三相交流电力变换成直流电力的转换器、将从所述转换器输出的直流电力变换成三相交流电力的逆变器、及控制所述转换器及所述逆变器的控制部,所述控制部监视所述发电机的转子电流或由所述转换器转换来的直流电压,在该转子电流或所述直流电压超过既定的电流阈值或电压阈值时,停止所述转换器及所述逆变器的动作。
这样,对于转换器及逆变器,不管辅机、电力系统的状态,根据发电机的转子电流或由所述转换器转换来的直流电压的状态而决定动作的停止。该控制是一直以来一般进行的控制。因此,不需要为了低电压现象而追加新的功能或设定新的判断基准,能够直接使用通常的控制。
根据本发明,可取得即使在系统产生故障时也能够继续进行辅机的运转的效果。
附图说明
图1是表示本发明的一实施方式的风力发电装置的整体构成的框图。
图2是表示发电机及其周边的构成的一例的框图。
图3是表示LVRT中要求的电压降低模式的一例的图。
图4是表示通过模拟对图3所示的电压降低模式发生时的发电机的输出电压进行解析时的解析结果的图。
图5是表示通过模拟对图3所示的电压降低模式发生时的发电机的输出电流进行解析时的解析结果的图。
图6是以与额定电流之比表示图3所示的发电机的输出电流、进而放大时间轴而表示的图。
图7是表示本发明的一实施方式的辅机断路器及发电机的电动机的容许电流的关系的一例的图。
标号说明
1 风力发电装置
5 发电机
13 电力系统
14 有源整流器
15 DC总线
16 逆变器
17 AC-DC-AC转换器
19 主控制部
21 转换器驱动控制部
22 叶片控制部
24 变压器
25 辅机
27 保安电路(Crowbar Circuit)
30 主断路器
40 辅机断路器
具体实施方式
以下对于本发明的风力发电装置的一实施方式,参照附图进行说明。
图1是表示本实施方式的风力发电装置的整体构成的框图。风力发电装置1如图1所示,具备塔架2、及在塔架2的上端设置的机舱3。机舱3可在偏航方向上旋转,通过机舱旋转机构4朝向期望的方向。在机舱3上搭载有发电机5和齿轮6。发电机5的转子经由齿轮6与风车转子7接合。
风车转子7具备叶片8和支撑叶片8的轮毂9。叶片8设置成其桨距角可变。轮毂9中收容有驱动叶片8的液压缸、向液压缸供给液压的伺服阀。通过伺服阀的开度控制向液压缸供给的液压,由此将叶片8控制成期望的桨距角。
在机舱3上还设有风速风向计10。风速风向计10测定风速和风向。机舱3响应通过风速风向计10测定出的风速和风向而旋转。
图2是表示发电机5及其周边的构成的一例的框图。本实施方式的发电机5构成为发电机5产生的电力能够从定子绕组及转子绕组两者向电力系统13输出。具体而言,发电机5中,其定子绕组与电力系统13连接,转子绕组经由AC-DC-AC转换器17与电力系统13连接。
AC-DC-AC转换器17由有源整流器(转换器)14、DC总线15、及逆变器16构成,将从转子绕组接受的交流电力变换成与电力系统13的频率相适应的交流电力。有源整流器14将在转子绕组产生的交流电力变换成直流电力,将该直流电力向DC总线15输出。逆变器16将从DC总线15接受的直流电力变换成与电力系统1三相同的频率的交流电力,并输出该交流电力。
AC-DC-AC转换器17还具有将从电力系统13接受的交流电力变换成与转子绕组的频率相适应的交流电力的功能,也用于根据风力发电装置1的运转状况激励转子绕组。该情况下,逆变器16将交流电力变换成直流电力,并将该直流电力向DC总线15输出。有源整流器14将从DC总线15接受的直流电力变换成与转子绕组的频率相适应的交流电力,将该交流电力向发电机5的转子绕组供给。
此外,在转子绕组上连接有用于有源整流器14的过电流保护的保安电路27。保安电路27在流过转子绕组的电流或DC总线15的电压超过既定的阈值时动作,经由电阻使转子绕组短路。此外,也可以不经由电阻而直接使转子绕组短路。由此使转子绕组的电流衰减,使过电流不流向有源整流器14。
此外,在将发电机5连接到电力系统13的电力线上设有用于计测发电机5的输出电压V和输出电流I的电压/电流传感器(省略图示)。该电压/电流传感器的计测值被给予转换器驱动控制部(控制部)21。
转换器驱动控制部21为了控制响应有效电力指令P*、无效电力指令Q*而输出的有效电力P和无效电力Q,而控制有源整流器14的功率晶体管的通断。具体而言,转换器驱动控制部21根据由电压/电流传感器测定出的输出电压V及输出电流I而计算出有效电力P和无效电力Q。进而转换器驱动控制部21响应有效电力P和有效电力指令P*之差、及无效电力Q和无效电力指令Q*之差而进行PWM控制并生成PWM信号,将生成的PWM信号向有源整流器14供给。由此,控制有效电力P和无效电力Q。
转换器驱动控制部21监视发电机转子电流及直流母线电压,在它们的值超过预先设定的阈值时,使保安电路25动作,并使有源整流器14及逆变器16的开关为关。该控制是一般进行的控制。这样,不是根据系统电压的状况使保安电路25等动作,而根据上述发电机转子电流及直流母线电压的状况而切换控制内容,因此不需要因低电压现象而追加新的功能或设定新的判断基准。
叶片控制部22响应从主控制部19发送来的桨距指令β*,控制叶片8的桨距角β。叶片8的桨距角β被控制成与桨距指令β*一致。
叶片控制部22在被供给可动作的驱动电力的期间,以使叶片8的桨距角β与桨距指令β*一致的方式进行控制。因此,即使在产生后述的低电压现象的情况下,也能够继续进行桨距角控制。由此,不需要在产生和不产生低电压现象的情况下切换控制内容,能够实现控制的简化。此外,在产生低电压现象的期间也通过继续进行通常的桨距角控制来避免产生超速。
此外,在电力线上,在上述电压/电流传感器下流侧连接有变压器24。该变压器24将经由电力线从电力系统13接受的交流电力降压而向风力发电装置1所具备的多个辅机25供给。作为辅机25,例如可举出用于控制叶片8的桨距角β的泵电动机、风扇电动机等作为一例。此外,也可以从由变压器24生成的交流电力进一步使用AC/DC转换器(省略图示)而变换成直流电力,作为主控制部19、转换器驱动控制部21、叶片控制部22的驱动电力进行供给。
本实施方式中,在连接各辅机25和电力系统13的电力线上分别设有辅机断路器40。另外,取代该构成,例如也可以对于多个辅机25设置1个辅机断路器40,也可以对于全部的辅机25设置1个辅机断路器40。
此外,在连接发电机5和电力系统13的电力线上设有主断路器30。具体而言,主断路器30设置在风车具有的全部构成要素中最靠近电力系统13的位置。
上述主断路器30、辅机断路器40例如配置于在塔架2的下方配置的连接盘(省略图示)中。
接着,参照附图对于作为本发明的特征部分的上述主断路器30及辅机断路器40的耐电流性能进行说明。
辅机断路器40具有允许低电压现象中流过的电流且不超过辅机25所具备的电动机的容许电流的范围的耐电流性能。
主断路器30具有优于辅机断路器40的耐电流性能且不超过发电机5的容许电流的范围的耐电流性能。
所谓“低电压现象”,是指例如在百ms以上且不足数百ms的范围上电压变为0V且从电压的下降直到复原需要数秒的现象。作为该低电压现象,例如可举出LVRT中要求的电压降低模式作为一例。
图3中表示LVRT中要求的电压降低模式的一例。在图3所示的电压降低模式中,首先,系统电压Vgrid瞬时地下降至0V,该状态被维持150ms,然后电压缓缓恢复,在距电压的瞬时降低时点约4s处系统电压Vgrid恢复。像这样系统电压Vgrid产生了变化的情况下,对发电机5的输出电压V及输出电流I如何变化进行了模拟解析。
其结果如图4及图5所示。图4表示发电机5的输出电压V的变化,图5表示发电机5的输出电流I的变化。发现图4所示的发电机5的输出电压V与图3所示的系统电压Vgrid大致相同的变化。图5所示的发电机5的输出电流I伴随系统电压Vgrid的瞬时降低,瞬间流过过电流,然后,以跨过额定电流的方式变动,从系统电压Vgrid恢复起约数百ms后稳定下来。
图6是以与额定电流之比表示图5所示的发电机5的输出电流I、进而是放大时间轴(横轴)而表示的图。图6中,由于每隔1/60s计算发电机5的输出电流I的有效值,因此电流值被表示成台阶状。如图6所示可知,在图3所示的电压降低模式的低电压现象发生时,最大5.5倍左右的电流在1/60秒期间流过。
因此,为了应对图3所示的电压降低模式,辅机断路器40需要具有即使在流过至少相对于额定为5.5倍的过电流时也不解列的程度的耐电流性能。
另外,图3所示的低电压现象的电压降低模式只是一例,辅机断路器40需要具有例如完全克服基于LVRT要求的电压降低模式的耐电压性能。
接着,图7中表示辅机断路器及辅机的电动机的容许电流的关系的一例。图7中,横轴表示辅机的电动机电流相对于额定电流的倍率,纵轴表示容许时间(秒)。
如图7所示,辅机断路器40的最大容许电流与电动机的容许电流相比被设定得较低,且与低电压发生时的电动机过渡电流相比被设定得较高。
此外,虽然未图示,但主断路器的耐电流特性被设定得比发电机的容许电流小且比辅机断路器40高。
图7中的低电压发生时的电动机过渡电流例如可以表示进行了上述过渡解析后的结果,此外,也可以不进行上述过渡解析而通过计算发电机电动机的三相短路时的电流来求出。
如以上所说明,根据本实施方式的风力发电装置1,辅机断路器40及主断路器30具有能经受低电压现象产生的电压的下降而引起的过电流的产生的耐电流性能,因此即使产生低电压现象也不解列,能够维持电力系统13和各辅机25的连接、及电力系统13和发电机5的连接状态。由此,即使在产生低电压现象的期间也能够使辅机25正常地运转。即,具有在产生低电压现象的期间不需要使辅机类开闭的优点。
而且,对于转换器驱动控制部21及叶片控制部22也是,在低电压现象产生的期间继续进行通常的控制,因此不会为了低电压现象而准备新的控制逻辑,能够通过与现有技术同样的构成而进行叶片8的桨距角控制、AC-DC-AC转换器17的控制。

Claims (3)

1.一种风力发电装置,具备:
发电机;
在连接所述发电机和电力系统的电力线上设置的主断路器;及
在连接辅机和该电力系统的电力线上设置的辅机断路器,
所述辅机断路器具有允许在低电压现象中流过的电流且不超过所述辅机具备的电动机的容许电流的范围的耐电流性能,
所述主断路器具有比所述辅机断路器的耐电流性能优良且不超过所述发电机的容许电流的范围的耐电流性能。
2.根据权利要求1所述的风力发电装置,具备:
多个叶片;及
控制所述多个叶片的桨距角的叶片控制部,
所述叶片控制部在被供给可动作的驱动电力的期间进行所述叶片的桨距角控制。
3.根据权利要求1或2所述的风力发电装置,具备:
将所述发电机转子的输出从三相交流电力变换成直流电力的转换器;
将从所述转换器输出的直流电力变换成三相交流电力的逆变器;
控制所述转换器及所述逆变器的控制部,
所述控制部监视所述发电机的转子电流或由所述转换器转换来的直流电压,在该转子电流或所述直流电压超过预先设定的电流阈值或电压阈值时,停止所述转换器及所述逆变器的动作。
CN200980132814.8A 2009-02-20 2009-02-20 风力发电装置 Expired - Fee Related CN102132486B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053014 WO2010095240A1 (ja) 2009-02-20 2009-02-20 風力発電装置

Publications (2)

Publication Number Publication Date
CN102132486A true CN102132486A (zh) 2011-07-20
CN102132486B CN102132486B (zh) 2014-07-02

Family

ID=42633541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980132814.8A Expired - Fee Related CN102132486B (zh) 2009-02-20 2009-02-20 风力发电装置

Country Status (9)

Country Link
US (1) US8796872B2 (zh)
EP (1) EP2400653A4 (zh)
JP (1) JP5276709B2 (zh)
KR (1) KR101247886B1 (zh)
CN (1) CN102132486B (zh)
AU (1) AU2009340724A1 (zh)
BR (1) BRPI0917313A2 (zh)
CA (1) CA2733100A1 (zh)
WO (1) WO2010095240A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2553788B1 (en) * 2010-03-31 2016-12-28 Vestas Wind Systems A/S Method of operating a wind turbine, wind turbine, wind turbine controlling system, and processing system
JP5942393B2 (ja) * 2011-11-18 2016-06-29 株式会社日立製作所 回転電機システムまたは風力発電システム。
KR101390306B1 (ko) * 2012-03-14 2014-04-29 삼성중공업 주식회사 풍력 발전기
DE102012006259A1 (de) * 2012-03-29 2013-10-02 Repower Systems Se Chopperverstärkter Umrichter für Windenergieanlagen
US20130270823A1 (en) * 2012-04-17 2013-10-17 Clipper Windpower, Llc Method for Enhancing Low Voltage Ride Through Capability on a Wind Turbine
US8669669B1 (en) * 2012-09-13 2014-03-11 General Electric Company Voltage control in a doubly-fed induction generator wind turbine system
US9677540B2 (en) 2012-11-29 2017-06-13 General Electric Company System and method for providing yaw backup to a wind farm
JP6037803B2 (ja) * 2012-11-30 2016-12-07 三菱重工業株式会社 風車及びその制御方法並びに風力発電システム
US10107260B2 (en) * 2015-11-19 2018-10-23 General Electric Company Wind turbine auxiliary circuit control
ES2688089A1 (es) * 2017-04-28 2018-10-30 Gamesa Innovation & Tecnology S.L. Método de control para una planta eólica, y planta eólica asociada
US11698053B2 (en) * 2020-12-02 2023-07-11 General Electric Renovables Espana, S.L. System and method for controlling a wind turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266910A (en) * 1975-12-01 1977-06-02 Hitachi Ltd Magnetic exciting device of synchronous generator
JPH0928032A (ja) * 1995-07-13 1997-01-28 Toshiba Eng Co Ltd 可変速揚水発電システムの運転装置
JP2002044859A (ja) * 2000-07-24 2002-02-08 Mitsubishi Electric Corp 発電機の過励磁防止装置
CN1754042A (zh) * 2003-01-24 2006-03-29 通用电气公司 具有低压克服控制器的风轮机发电机和控制风轮机组件的方法
CN101034855A (zh) * 2006-03-10 2007-09-12 株式会社日立制作所 二次励磁发电系统用电力变换装置
US20080157529A1 (en) * 2006-12-29 2008-07-03 Ingeteam, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5132230B1 (zh) * 1970-11-20 1976-09-11
US4310771A (en) * 1979-05-10 1982-01-12 Beckwith Electric Co., Inc. Method for transferring power in a synchronous mode to a motor bus
DE3247439A1 (de) * 1982-12-22 1984-07-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Digitalelektronischer ueberstromausloeser
US5095221A (en) * 1989-11-03 1992-03-10 Westinghouse Electric Corp. Gas turbine control system having partial hood control
DE10133881A1 (de) * 2001-07-12 2003-01-30 Siemens Ag Schutzanordnung und Schutzverfahren für eine Strombahn
SE0303574D0 (sv) * 2003-12-23 2003-12-23 Abb Research Ltd Elictric power network
JP4269941B2 (ja) * 2004-01-08 2009-05-27 株式会社日立製作所 風力発電装置およびその制御方法
US7423412B2 (en) * 2006-01-31 2008-09-09 General Electric Company Method, apparatus and computer program product for injecting current
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7541784B2 (en) * 2006-05-26 2009-06-02 Endurance Wind Power Dual voltage switching in power generation
US7576443B2 (en) * 2006-12-15 2009-08-18 General Electric Company Method and apparatus for generating electric power
EP2123908A4 (en) * 2006-12-22 2012-03-14 Wind To Power System S L ASYNCHRONOUS GENERATOR WITH DOUBLE SUPPLY
JP5198791B2 (ja) 2007-05-07 2013-05-15 株式会社日立製作所 風力発電システム及びその制御方法及びこれを用いた風力発電所
JP2008306776A (ja) * 2007-06-05 2008-12-18 Hitachi Ltd 風力発電システムおよびその制御方法
US8222758B2 (en) * 2007-12-14 2012-07-17 Mitsubishi Heavy Industries, Ltd. Wind turbine generator
US8093741B2 (en) * 2010-10-29 2012-01-10 General Electric Company Method and system for providing increased turbine output for doubly fed induction generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266910A (en) * 1975-12-01 1977-06-02 Hitachi Ltd Magnetic exciting device of synchronous generator
JPH0928032A (ja) * 1995-07-13 1997-01-28 Toshiba Eng Co Ltd 可変速揚水発電システムの運転装置
JP2002044859A (ja) * 2000-07-24 2002-02-08 Mitsubishi Electric Corp 発電機の過励磁防止装置
CN1754042A (zh) * 2003-01-24 2006-03-29 通用电气公司 具有低压克服控制器的风轮机发电机和控制风轮机组件的方法
CN101034855A (zh) * 2006-03-10 2007-09-12 株式会社日立制作所 二次励磁发电系统用电力变换装置
US20080157529A1 (en) * 2006-12-29 2008-07-03 Ingeteam, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid

Also Published As

Publication number Publication date
CA2733100A1 (en) 2010-08-26
US8796872B2 (en) 2014-08-05
KR101247886B1 (ko) 2013-03-26
EP2400653A1 (en) 2011-12-28
JP5276709B2 (ja) 2013-08-28
KR20110031499A (ko) 2011-03-28
JPWO2010095240A1 (ja) 2012-08-16
WO2010095240A1 (ja) 2010-08-26
AU2009340724A1 (en) 2010-08-26
CN102132486B (zh) 2014-07-02
US20110193345A1 (en) 2011-08-11
EP2400653A4 (en) 2015-09-30
BRPI0917313A2 (pt) 2015-11-17

Similar Documents

Publication Publication Date Title
CN102132486B (zh) 风力发电装置
Sun et al. Transient stability of DFIG wind turbines at an external short‐circuit fault
CN101809837B (zh) 风力发电装置
Chen Issues of connecting wind farms into power systems
Sun et al. Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault
Feltes et al. High voltage ride-through of DFIG-based wind turbines
US20150311696A1 (en) System and method for protecting electrical machines
Popat et al. Fault ride-through capability of cascaded current-source converter-based offshore wind farm
CN104205618B (zh) 故障情况下风力涡轮发电机的转矩控制
Okedu et al. Improvement of fault ride through capability of wind farms using DFIG considering SDBR
CN102983587A (zh) 具有超速保护的风力发电系统及其操作方法
Banham-Hall et al. Towards large-scale direct drive wind turbines with permanent magnet generators and full converters
CN201953562U (zh) 一种风力发电机变桨距控制系统
CN102222973B (zh) 用于大型风力发电机组变桨控制器的直流电源装置
CN104505859A (zh) 水电站孤网运行联动并网发电时调速器的使用方法
TW201031817A (en) Wind driven power generating device
CN104979848A (zh) 一种变流器系统及双馈式风力发电机组停机方法
CN110912179A (zh) 双馈风电机组的容错控制方法、双馈风电机组及双馈电机
Liu et al. Fault ride-through and grid support of permanent magnet synchronous generator-based wind farms with HVAC and VSC-HVDC transmission systems
Blasco-Gimenez et al. HVDC connection of off-shore wind farms based on synchronous generators
Radhakrishnan et al. Analysis on Dg's connection in a developed model of Doubly fed wind energy system
Singh et al. Improvement of wind turbine DFIG using Fault Ride through capability
CN116221022A (zh) 用于操作风电场的方法和风电场
BENIUGĂ et al. GRID FAULT OUTCOME ON ASSESSING DOUBLY-FED INDUCTION GENERATOR WIND TURBINE VOLTAGE RECOVERY OUTPUT
BENIUGĂ et al. GRID FAULT OUTCOME ON ASSESSING DFIG WIND TURBINE VOLTAGE RECOVERY OUTPUT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140702

Termination date: 20150220

EXPY Termination of patent right or utility model