Způsob přípravy wolframových a wolframkarbidových filtrů k filtracím za vysokých teplot
Oblast techniky
Vynález se týká způsobu přípravy wolframových a wolframkarbidových filtrů určených k filtracím za vysokých teplot.
Dosavadní stav techniky
Kovové filtry a membrány jsou využívány od počátků rozvoje práškové metalurgie; lze zmínit např. anglický patent 25909 z roku 1909 na výrobu porézních předmětů.
Kovové filtry se vyrábějí převážně z prášků sférických tvarů připravených rozstřikováním taveniny kovů nebo jejich slitin. Vytříděné sférické prášky se slisují do požadovaných tvarů (desky, trubice aj.) a slinují hluboko pod teplotou tání, aby zůstala zachována co nejvyšší pórovitost. Jinou možností je slinutí prášků s příměsí další látky, která se po slinutí výrobku odstraní, např. rozpuštěním nebo vytavením, zatímco základní materiál zůstává v pevném stavu a vytváří porézní matrici.
Většina komerčních kovových filtrů je vyráběna z bronzu, nerez-ocelí, niklu, titanu, Inconelu a podobných slitin, přičemž žádný z dosud vyráběných kovových filtrů není určen k funkci nad teplotou 2000 °C.
Použití za vyšších teplot umožňující kovové filtry z látek, které mají nejvyšší bod tání, to je z wolframu s bodem tání 3420 °C, případně z karbidů wolframu, které mohou beze změny struktury být použity do teplot až 2500 °C. Doposud však nebyl znám uspokojivý způsob jejich přípravy. Tento nedostatek odstraňuje dále popsané řešení podle vynálezu.
Podstata vynálezu
Způsob přípravy wolframových nebo wolframkarbidových filtrů spočívá v tom, že práškový wolfram nebo karbid wolframu se sferoidizuje tak, že se přivádí do proudu plazmatu o teplotě od 25 000 do 30 000 K, za pomoci inertního plynu, s výhodou dusíku, jako nosného plynu a při rychlosti vstřikování nejvýše 24 kg za hodinu. Během doby interakce práškového materiálu s plazmatem dojde k roztavení jednotlivých zrn prášku a vlivem vysokého povrchového napětí ke vzniku sférických kapek, které jsou bezprostředně pohlcovány do kapalného dusíku, čímž dochází k zafixování dokonalého kulového/sferoidního tvaru a odpovídající vysokoteplotní krystalografické struktury. Získané sferoidní wolframové prášky jsou potom granulometricky roztříděny a použity k výrobě filtrů již známými metodami, tj. zhotovením porézního tvarového předlisku ajeho slinutím při teplotách 1750 až 1950 °C. Wolframkarbidové filtry se připravují z výchozího práškového WC, který se při interakci s plazmatem současně chemicky rozkládá na W2C a C, tento uhlík potom při průletu vzduchovou atmosférou vytváří ochrannou atmosféru CO, která zabrání následné nežádoucí oxidaci karbidu wolframu. Část W2C se dále rozkládá až na elementární wolfram. Produktem sferoidizace WC v plazmatu je pak homogenní směs, kdy každá jednotlivá sferoidní částice je tvořena slitinou W+W2C, v případě nedokonale provedené sferoidizace ještě zbytkovým WC.
Výhodou tohoto druhého postupu je vysoká tvrdost vytvořených kuliček homogenní dvoufázové směsi W+W2C, případně W+W2C+WC, která umožní při lisování předlisků docílit dokonalejšího rovnoměrného rozložení pórů, neboť při lisování předlisku nedochází k tak významné deformaci jednotlivých kuliček, jako v případě lisování filtrů z kuliček z měkčích materiálů.
- 1 CZ 304629 B6
Příklady provedení
Příklad 1
Práškový wolfram granulometrické třídy 40 až 63 pm byl v množství 20 kg/h pomocí nosného plynu dusíku o přetlaku 150 kPa vnášen do proudu vodou stabilizovaného plazmatu, generovaného v plazmatronu WSP s příkonem 160 kW. Ve vzdálenosti 50 cm od ústí trysky plazmatu byla umístěna sběrná nádoba s kapalným dusíkem, do které byly letící roztavené částice wolframu zachycovány. Získaný sferoidní wolframový prášek byl znovu vytříděn na sítech 36 až 40 pm a získaný podíl zpracován na wolframový filtr ve tvaru kruhové destičky. K vytvoření polotovaru byla použita válcová forma vnitřního průměru 15 a 25 mm, výška násypu před lisováním byla 3 až 5 mm. Sférické práškové částice byly před nasypáním do lisovací formy namočeny do pojivové suspenze 6 % akrylátu AC 112 v etanolu. Lisovací tlak byl 100 MPa. Výlisky byly slinovány v peci pod argonovou ochrannou atmosférou při teplotě 1750 °C. Získané filtry ve tvaru slinutých kruhových destiček byly testovány měřením permeability, mikrotvrdosti a modulu pružnosti. Distribuce pórů byla měřena Hg-porozimetrickou metodou, velikost průměru pórů byla 6500 až 6900 nm, celková pórovitost filtrů byla 40 až 45 obj. %.
Příklad 2
Karbid wolframu výchozí zrnitosti 20 až 40 pm byl v množství 24 kg/h pomocí nosného plynu dusíku o přetlaku 150 kPa vnášen do proudu vodou stabilizovaného plazmatu, generovaného v plazmatronu WSP s příkonem 160 kW. Ve vzdálenosti 60 cm od ústí trysky plazmatu byla umístěna sběrná nádoba s kapalným dusíkem, do které byly letící roztavené částice zachycovány. Získaný sferoidní prášek byl vytříděn na sítech a získány podíly -20 pm, 20 až 36 pm, +36 pm. Rentgenostruktumí analýzou bylo zjištěno, že prášky velikosti pod 20 pm obsahují 20 + 5 % W2C a 80 ± 3 % W, prášky velikosti 20 až 36 pm obsahují 40 ± 3 % W2C a 60 ± 3 % W, hrubozmná sferoidní grakce nad 36 pm obsahuje 60 ± 3 % W2C, 40 ± 3 % W a 1 až 5 % WC.
Filtry z prášků jednotlivých granulometrických tříd byly připraveny volným nasypáním do válcové matrice aparatury typu BELT vnitřního průměru 15 mm a po stlačení pístem zahřívány průchodem elektrického proudu na teplotu 1950 °C.
Získané filtry ve tvaru slinutých kruhových destiček byly testovány měřením permeability, mikrotvrdosti a modulu pružnosti. Pórovitost filtru připraveného z nejhrubší frakce (+36 pm) byla 8 obj. %.
Průmyslová využitelnost
Kovové filtry z wolframu a karbidu wolframu lze využít v metalurgii k filtraci kovů, slitin nebo dalších látek s bodem tání do 2500 °C. Dále je možno je impregnovat termoemisními materiály při výrobě výkonové elektrony nebo materiálů pro jadernou a fúzní energetiku.