CZ291549B6 - Způsob výroby sazí - Google Patents
Způsob výroby sazí Download PDFInfo
- Publication number
- CZ291549B6 CZ291549B6 CZ19973479A CZ347997A CZ291549B6 CZ 291549 B6 CZ291549 B6 CZ 291549B6 CZ 19973479 A CZ19973479 A CZ 19973479A CZ 347997 A CZ347997 A CZ 347997A CZ 291549 B6 CZ291549 B6 CZ 291549B6
- Authority
- CZ
- Czechia
- Prior art keywords
- carbon black
- steam
- feedstock
- flue gas
- gas stream
- Prior art date
Links
- 239000006229 carbon black Substances 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 230000007704 transition Effects 0.000 claims abstract description 16
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 26
- 239000003546 flue gas Substances 0.000 claims description 25
- 239000000446 fuel Substances 0.000 claims description 17
- 238000001816 cooling Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000004071 soot Substances 0.000 claims description 8
- 239000007800 oxidant agent Substances 0.000 claims description 7
- 241000872198 Serjania polyphylla Species 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 abstract description 13
- 239000000567 combustion gas Substances 0.000 abstract description 6
- 235000019241 carbon black Nutrition 0.000 description 77
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229960002380 dibutyl phthalate Drugs 0.000 description 12
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 10
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000010998 test method Methods 0.000 description 7
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000000197 pyrolysis Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- -1 ethylene, propylene, butylene Chemical group 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 239000012485 toluene extract Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
- C09C1/50—Furnace black ; Preparation thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Zp sob v²roby saz maj c ch menÜ m rn² povrch a strukturu, p°i jeho prov d n se p ra zav d do proudu spalin v m st (6) zav d n p ry, kter se nach z ve vzd lenosti L od m sta (4) zav d n p° vodn ch surovin do proudu spalin, tak e pom r L/D se pohybuje v rozmez do 0 do m n ne 1,0, p°i em D je pr m r p°echodov komory (20) reaktoru v m st (4) zav d n p° vodn suroviny a mno stv zav d n p ry je takov , e se reakc p° vodn suroviny poskytuj c saze, p ry a proudu spalin vyr b j saze s m rn²m povrchem menÜ m ne maj saze vyr b n za stejn²ch podm nek, ale za absence p ry.\
Description
Způsob výroby sazí
Oblast techniky
Vynález se týká nového a zlepšeného pecního způsobu snadnější a stabilnější výroby sazí majících nižší měrný povrch a strukturní úrovně, které je možné vyrobit běžnými pecními způsoby výroby sazí. Saze připravené způsobem podle vynálezu jsou vhodné pro různé aplikace, které zahrnují například plniva, ztužovadla a barviva do kaučuků a umělých hmot.
Dosavadní stav techniky
U běžných pecních způsobů výroby sazí se kapalná uhlovodíková vstupní surovina pyrolyzuje proudem horkých primárních spalin generovaných ze směsi paliva aoxidantu, například předehřátého vzduchu, za vzniku odváděného proudu. Pyrolýza přívodní suroviny se ukončí ochlazením sazných produktů, které se separují a izolují z ochlazeného plynného proudu.
Měrný povrch sazí, vyráběných pecním způsobem, závisí obecně na rozkladné reakční teplotě, která se kontroluje teplotou primárního spalovacího plynu a množstvím zaváděné vstupní tekutiny.
Měrný povrch sazí se obecně snižuje s klesající reakční teplotou, která klesá společně s teplotou primárního spalovacího plynu a se zvyšujícím se množstvím zaváděné přívodní suroviny. Nicméně teplotu primárního spalování nelze snižovat bez omezení, protože primární spalovací plyn dodává energii pro rozklad přívodní suroviny. U pecního způsobu výroby sazí, majících takto nízký měrný povrch, se tedy používá zvýšené množství zaváděné přívodní suroviny. Toto zvýšení zaváděné přívodní suroviny způsobuje přilnutí sazí k vnitřním stěnám reaktoru, které je indikováno nízkou světelnou transmitací odbarvení toluenu, a toto přilnutí vyžaduje vypnutí reaktoru za účelem jeho vyčištění.
Pokud se množství zaváděné přívodní suroviny zvýší, potom se zvýší množství sazného produktu vyrobeného na jednotkový objem reaktoru a upřednostněná tvorba koksu povede ke zvýšení tvorby drti tvořící nečistotu, což znamená zhoršení kvality sazí. Tento problém lze řešit tak, že se reakční zóna rozšíří, ale rozšíření reakční zóny s sebou přináší zase nový problém, kterým je akumulace sazí vznikajících v důsledku poklesu rychlosti odcházejícího plynu v reaktoru. S tímto řešením je rovněž spojena zvýšená spotřeba energie.
Průměr primární velikosti částic sazí zpravidla závisí na reakční teplotě. Čím vyšší je reakční teplota, tím menší je průměr primární velikosti vznikajících sazí. Čím vyšší je struktura sazí, tím nižší je měrný povrch sazí při dané velikosti částic. To znamená, že nízká struktura sazí má vyšší měrný povrch při dané velikosti částic než vysoká struktura sazí.
Omezení vývoje struktury sazí se dosáhlo u konvenčních způsobů zavedením alkalických kovů do reaktoru, ale tato metoda zpravidla způsobuje zvýšení měrného povrchu spolu se snížením struktury, protože průměr primární částice zůstává zpravidla konstantní. Z výše uvedeného tedy vyplývá, že vyrábět saze mající nízkou strukturu a současně nízký měrný povrch dosavadními konvenčními pecními způsoby je náročné.
Zmíněné problémy se snaží řešit patent US 5 190 739, který poskytuje zajímavé návrhy způsobu výroby sazí, majících při dané celkové úrovni spalování jak nízkou strukturu, tak nízký měrný povrch a které poskytují zajímavý návrh způsobu přípravy sazí majících při daném množství zaváděné přívodní suroviny jak nízkou strukturu, tak nízký měrný povrch. Tento návrh zahrnuje přidání pomocného uhlovodíku, například pomocného uhlovodíku, majícího vysoký molámí poměr vodíku k uhlíku, nebo samotného vodíku.
Technologie týkající se zavedení vody nebo páry do pecních sazných reaktorů jsou popsány v patentech US 4 283 378 a US 4 631 180. Technologie týkající se zavádění vody nebo páry, které představují zlepšený způsob výroby sazí na bázi pecního způsobu, jsou popsány například v japonské patentové přihlášce Sho 54-7634, japonském patentu Sho 56-24455 aHei 3-128974. Nicméně všechny tyto vynálezy se zpravidla týkají výroby sazí majících vyšší měrný povrch než saze vyráběné podobnými způsoby v nepřítomnosti páry. Takže cíle těchto vynálezů se podstatně liší od cílů předloženého vynálezu týkajícího se výroby sazí majících nižší měrný povrch než' saze vyráběné podobným způsobem v nepřítomnosti páry.
Jak již bylo uvedeno, cílem vynálezu je vyvinout zlepšený pecní způsob výroby sazí, který by produkoval saze, které mají nízký měrný povrch a nízkou strukturu a které je obtížné vyrobit běžným pecním způsobem, snadněji a stabilněji.
Podstata vynálezu
Výše zmíněného cíle a dalších výhod lze dosáhnout zlepšeným pecním způsobem výroby sazí, který je charakteristický tím, že omezuje jak měrný povrch, tak vývoj struktury zavedením páry v místě zavádění přívodní suroviny nebo v blízkosti tohoto místa. Pecní způsob výroby sazí podle vynálezu zahrnuje generování proudu spalin uvedením paliva do reakce s oxidačním činidlem; zavedení přívodní suroviny poskytující saze do proudu spalin v místě, které se nachází v přechodové komoře reaktoru mající průměr D, přičemž tato přechodová komora zahrnuje první zónu a druhou zónu; zavedení páry do proudu spalin v místě, které se nachází rovněž v přechodové komoře, a to ve vzdálenosti L od místa zavádění přívodní suroviny; umožnění reakce přívodní suroviny, páry a proudu spalin za vzniku sazí v reakční komoře; a ochlazení, separaci a izolaci sazí, přičemž uvedený způsob je charakteristický tím, že se poměr L/D pohybuje v rozmezí od 0 do méně než 1,0 a množství zaváděné páry je takové, že reakce přívodní suroviny poskytující saze, pátý a proudu spalin poskytuje saze s měrným povrchem menším než mají saze vyráběné za stejných podmínek, ale za absence páry.
Stručný popis obrázků
Obrázek 1 znázorňuje průřez částí jednoho typu pecního sazného reaktoru, který lze použít k provádění způsobu podle vynálezu.
Vynález se stane zřejmějším po prostudování následujícího podrobného popisu doplněného odkazy k doprovodnému obrázku 1, který znázorňuje jeden typ pecního sazného reaktoru, jenž lze použít při provádění způsobu podle vynálezu.
Obrázek 1 znázorňuje sazný reaktor mající spalovací komoru 1. ve které reagují palivo ze sondy 2 a oxidační činidlo, například vzduch, které cirkuluje v prostoru 3 za vzniku horkého proudu spalin. Mezi paliva, vhodná pro uvedení do styku s proudem oxidačního činidla ve spalovací komoře 1 pro generování spalin, lze zařadit libovolný spalitelný plyn, například parní nebo kapalný proud zemního plynu, vodíku, oxidu uhelnatého, methanu, acetylenu, alkoholu nebo kerosenu. Nicméně je zpravidla výhodné použít paliva, která mají vysoký obsah složek obsahujících uhlík, zejména se jedná o uhlovodíky. Poměr vzduchu a zemního plynu, použitý pro výrobu sazí podle vynálezu, se může výhodně pohybovat přibližně v rozmezí od 10:1 do 100:1. Generování spalin lze usnadnit předehřevem proudu oxidačních činidel.
-2CZ 291549 B6
Směr proudění horkého proudu spalin je znázorněn na obrázku pomocí šipky. Horký proud spalin se dopravuje ze spalovací komory 1 do ústí neboli přechodové komory 20, která má průměr D přechodové komory. Kapalná uhlovodíková přívodní surovina se zavádí do přechodové komory 20 v místě zavádění přívodní suroviny (u konkrétního provedení znázorněného na obr. 1 je toto místo zavádění přívodní suroviny označeno vztahovou značkou 4). Vhodnou přívodní surovinou pro použití v rámci vynálezu jsou uhlovodíkové přívodní suroviny poskytující saze, které jsou za reakčních podmínek snadno těkavé a kterými jsou nenasycené uhlovodíky, například acetylen; olefíny, například ethylen, propylen, butylen; aromatické uhlovodíky, například benzen, toluen a xylen; určité nasycené uhlovodíky; a další uhlovodíky, například keroseny, naftaleny, terpeny, ethylenové asfalty, aromatické cyklické suroviny apod. Zpravidla se přívodní surovina poskytující saze vstřikuje ve formě množiny proudů, které pronikají do vnitřních oblastí proudu horkých spalin, čímž se zajistí vysoká míra směšování a tření horkých spalin a přívodní suroviny poskytující saze, rychlý a úplný rozklad přívodní suroviny a její převedení na saze.
Pára se do přechodové komory 20 zavádí v místě zavádění páry (u konkrétního provedení znázorněného na obr. 1 je toto místo zavádění přívodní suroviny označeno vztahovou značkou 6), které je na obrázku 1 znázorněno až za místem 4 zavádění přívodní suroviny poskytující saze. Vzdálenost L označuje vzdálenost od místa 4 zavádění přívodní suroviny k místu 6 zavádění páry. Pokud se přívodní surovina a pára zavádějí ve stejném místě, potom L = 0, a tedy i L/D = 0. I když se u způsobu znázorněného na obrázku 1 místo 6 zavádění páry nachází za místem 4 zavádění přívodní suroviny, může se podle vynálezu toto místo nacházet rovněž před místem zavádění přívodní suroviny nebo ve stejném místě, jako místo zavádění přívodní suroviny za předpokladu, že se rozmezí L/D bude pohybovat od 0 do méně než 1,0. Výhodně se bod zavádění páry nachází před bodem zavádění přívodní suroviny.
Po zavedení přívodní suroviny a páry se výsledný odtokový proud dopravuje do reakční komory 30. Chlazení 5 umístěné v reakční komoře 30 vstřikuje do této komory kapalinu, například vodu, s cílem ukončit reakci v okamžiku, kdy se vytvoří saze, mající požadované vlastnosti. Oblast chlazení 5 lze určit libovolným v daném oboru známým způsobem, určujícím polohy chlazení pro ukončení pyrolýzy. Jedním způsobem určení této polohy chlazení pro ukončení pyrolýzy je určení místa, ve kterém dosahuje toluenová extrakce sazí přijatelné hodnoty. Toluenový extrakt lze měřit pomocí ASTM zkušební metody D 1618-83 Sazné extrakty - Odbarvení toluenem.
Vzdálenost S1 představuje vzdálenost od místa zavádění paliva sondou 2 k místu zavádění přívodní suroviny, tj. k místu 4 zavádění přívodní suroviny. Vzdálenost S2 představuje vzdálenost od místa zavádění přívodní suroviny, tj. od místa 4, k místu chlazení 5. Vzdálenost S3 představuje vzdálenost od místa chlazení 5 do konce reakční komory 30.
Po ochlazení horké směsi spalin a přívodní suroviny poskytující saze projdou ochlazené plyny do libovolného konvenčního chladicího a separačního prostředku, ve kterém dojde k izolaci sazí. Separace sazí z proudu plynů se snadno realizuje za použití běžných prostředků, například pomocí precipitátoru, cyklonového separátoru nebo vakuového filtru. Za tuto separaci lze zařadit peletizaci, například v peletizátoru, který pracuje mokrým způsobem.
Jak již bylo uvedeno výše, ve spalovací komoře 1 ležící v první sekci (definované vzdáleností Sl) se generují horké primární spaliny směšováním a uvedením paliva ze sondy 2 do reakce s oxidačním činidlem, například předehřátým vzduchem, v prostoru 3 pro cirkulaci vzduchu. Ve druhé sekci (definované vzdáleností S2), sousedící s první sekcí, dochází postupně, po zavádění kapalné uhlovodíkové přívodní suroviny do proudu primárních spalin, k pyrolýze přívodní suroviny, tvorbě prekurzoru sazí a růstu primárních částic sazí. Konečně, ve třetí sekci (definované vzdáleností S3), se odtékající proud ochladí chladicím médiem vystřikovaným zchlazení 5, například vodou, což ukončí reakci produkující saze.
-3 CZ 291549 B6
Zjistilo se, že pára zaváděná v místě 6 zavádění páry, které se nachází v místě 4 zavádění přívodní suroviny nebo v jeho blízkosti, může omezit jak měrný povrch, tak vývoj struktury vzniklých sazí. Konkrétněji se zjistilo, že poloha zavádění páry je důležitá pro omezení měrného povrchu a vývoje struktury sazí a takto vyrobené sazné produkty mají menší měrný povrch a strukturu než saze, které se vyrábí podobným způsobem bez zavádění páry.
Při provádění způsobu podle vynálezu musí být vzdálenost L, představující vzdálenost od místa zavádění přívodní suroviny k místu zavádění páry po směru proudění spalin nebo proti směru proudění spalin, menší, než průměr D přechodové komory 20. kam se přivádí přívodní surovina, takže L/D se bude pohybovat v rozmezí od 0 do méně než 1,0.
Průměr přechodové komory 20, do které se přívodní surovina zavádí, se u pecního sazného reaktoru zpravidla přizpůsobuje tak, aby optimálně vyhovoval vnitřnímu faktoru, který je vlastní jednotlivým reaktorům. Bez ohledu na tvar reaktoru bylo ve všech případech zavádění páry, ve kterých se poměr L/D pohyboval v rozmezí od 0 do méně než 1,0, dosaženo stejných výsledků.
Pokud je množství zaváděné páry menší než 1 % hmotn. zaváděné přívodní suroviny, potom je vliv zavedení páry na omezení měrného povrchu a struktury sazí relativně malý. Stupeň redukce měrného povrchu a vývoje struktury sazí je v podstatě úměrný zvýšení koncentrace zaváděné páry. Pokud se zavede extrémně vysoké množství páry, potom se omezí tvorba sazí jako taková, v důsledku vážné překážky, kterou je pro tvorbu sazného prekurzoru přebytečná pára. Při současně probíhající produkci sazí je náročné zavést do proudu spalin vyšší množství spalin než 15 % hmotn. zaváděné přívodní suroviny. Takže při provádění výhodného provedení způsobu podle vynálezu se do proudu spalin zavádí množství páry, představující 1 % hmotn. až 15 % hmotn. zaváděné přívodní suroviny.
V následujících příkladech byly pro stanovení analytických a fyzikálních vlastností sazí použity následující testovací postupy.
Jako míra měrného povrchu a struktury sazí v každém zde popsaném konkrétním testovaném a kontrolním příkladu byla použita data získaná pomocí následujících zkušebních postupů.
Měrný povrch se stanovil na základě dusíkové absorpce: vychází z testovací metody BET (N2SA). Ta se stanoví pomocí zkušební metody ASTM D3037 pro příklad I a příklad Π.
Jodové absorpční číslo se stanoví pomocí JIS K-6221 pro příklad I a pro příklad Π za použití ASTMD1510.
DBP (dibutylfitalátové) absorpční číslo se stanoví pomocí JIS K-6221 pro příklad I a pomocí ASTM D3493 pro příklad Π.
DBP absorpční číslo za stlačení se určilo potom, co se saze čtyřikrát lisovaly při zatížení 165,36 MPa.
DBP absorpční číslo se určilo za použití zkušební metody ASTM D3493 pro příklad I.
Účinnost a výhody vynálezu dále ilustrují následující příklady.
-4CZ 291549 B6
Příklady provedení vynálezu
Přikladl
Tento příklad srovnává způsob podle vynálezu, ve kterém je L/D větší než 0 a menší než 1,0, se způsoby, které nezahrnují zavádění páry.
Pokusy se prováděly v reaktoru znázorněném na obrázku 1. Délka první sekce (vzdálenost Sl) reaktoru je 3000 mm, délka druhé sekce (vzdálenost S2) je 1500 mm a průměr D přechodové komory neboli ústí, kterou se zavádí přívodní surovina, je 200 mm. Základní vlastnosti použitého paliva a přívodní suroviny jsou shrnuty v tabulce 1. Jak v případě testovaného způsobu, tak v případě kontrolního způsobu se do přívodní suroviny přidal vodný roztok draselného iontu, jehož úkolem je kontrolovat strukturu.
Tabulka 1
‘oužité palivo a přívodní surovina | ||
Palivo | Přívodní surovina | |
Typ | Kapalný uhlovodík | |
Hustota (15 °C) [g/cm3] | 0,970 | 1,057 |
Viskozita (50 °C) [m2/s] | 5.10-6 | 15.10-6 |
C-atom [% hmotn. ] | 89,8 | 91,1 |
H-atom [% hmotn. ] | 10,1 | 8,6 |
Celkové spalné teplo [kcal/kg] | 9920 | 11 230 |
Údaje, získané na základě aktuálních příkladů, jsou uvedeny v tabulce 2 a údaje, získané na základě kontrolních příkladů, jsou uvedeny v tabulce 3.
Měrný povrch sazí je závislý na struktuře sazí. Tabulky rovněž obsahují nejnižší hodnotu měrného povrchu sazí vyrobených pecním způsobem, kterého bylo dosaženo v důsledku provozního omezení použitého reaktoru. U pecních procesů musí tedy existovat minimální měrný povrch odpovídající dané struktuře. Tento minimální měrný povrch bude dále označován jako „mezní měrný povrch“. Hodnota tohoto mezního měrného povrchu se bude lišit v závislosti na různých tvarech reaktoru. V případě reaktoru použitého pro konkrétní testovaný a kontrolní příklad se mezní měrný povrch vypočte za použití následující rovnice (1):
[mezní měrný povrch] = 78,5 - 0,748 x [DBP po stlačení] rovnice (1), která bere v úvahu dusíkový měrný povrch. DBP po stlačení a provozní podmínky.
Tabulka 2
Aktuální příklady | 1 | 2 | 3 | 4 | 5 | 6 | |
Průtok spalovacího vzduchu | (Nm3/h) | 3530 | 3530 | 3530 | 3530 | 3530 | 3530 |
Průtok paliva | (kg/h) | 80 | 80 | 80 | 80 | 80 | 80 |
Průtok přívodní suroviny | (kg/h) | 1800 | 1770 | 1800 | 1870 | 1620 | 1590 |
Průtok draslíku | (g/h) | 0 | 128 | 0 | 9 | 9 | 15 |
Poloha zavádění pří | vodní su | roviny a | páiy | ||||
Vzdálenost od polohy (L) | (mm) | 30 | 30 | 30 | 30 | 150 | 150 |
(L)/(D) | 0,15 | 0,15 | 0,15 | 0,15 | 0,75 | 0,75 | |
Průtok zaváděné páry | (kg/h) | 30 | 50 | 70 | 50 | 85 | 200 |
Pára/Přívodní surovina | (% hmotn.) | 1,7 | 2,8 | 3,9 | 2,7 | 5,2 | 12,6 |
Dusíkové měrný povrch | (m2/g) | 22,3 | 22,5 | 19,1 | 18,0 | 26,1 | 29,8 |
Jodové absorpční číslo | (mg/g) | 22,6 | 18,2 | 17,1 | 11,5 | 25,6 | 32,8 |
DBP absorpční číslo | (cm3/100 g) | 100,6 | 60,4 | 79,0 | 89,2 | 84,3 | 81,2 |
DBP po stlačení | (cm3/100 g) | 71,7 | 56,2 | 60,5 | 65,7 | 63,9 | 64,6 |
Mezní měrný povrch Index mezního měrného povrchu | (m2/g) (m2/g) | 24,9 -2,6 | 36,5 -14,0 | 33,2 -14,1 | 29,4 -11,4 | 30,7 -4,6 | 30,2 -0,4 |
Tabulka 3
Aktuální příklady | CE 1 | CE2 | CE3 | |
Průtok spalovacího vzduchu | (Nm3/h) | 3530 | 3170 | 3170 |
Průtok paliva | (kg/h) | 80 | 70 | 70 |
Průtok přívodní suroviny | (kg/h) | 1870 | 1760 | 1800 |
Průtok draslíku | (g/h) | 27 | 3408 | 12150 |
Poloha zavádění přívodní suroviny a páry | ||||
Vzdálenost od polohy (L) | (mm) | NA | NA | NA |
(L)/(D) | NA | NA | NA | |
Průtok zaváděné páry | (kg/h) | 0 | 0 | 0 |
Pára/Přívodní surovina | (% hmotn.) | 0 | 0 | 0 |
Dusíkový měrný povrch | (m2/g) | 26,5 | 40,6 | 44,2 |
Jodové adsorpční číslo | (mg/g) | 22,9 | 38,2 | 36,7 |
DBP absorpční číslo | (cm3/100 g) | 106,5 | 78,3 | 76,0 |
DBP po stlačení | (cm3/100 g) | 73,7 | 67,8 | 67,0 |
Mezní měrný povrch | (m2/g) | 23,4 | 27,8 | 28,4 |
Index mezního měrného povrchu | (m2/g) | 3,1 | 12,8 | 15,8 |
NA = neaplikovatelné
Tabulky ukazují, že v případě kontrolních příkladů je rozdíl mezi dusíkovým měrným povrchem a mezním měrným povrchem kladný, protože mezní měrný povrch je možnou minimální hodnotou měrného povrchu pro běžné pecní saze, což rovněž znamená, že čím jsou provozní podmínky reaktoru bližší mezní hodnotě provozních podmínek reaktoru, tím je absolutní hodnota diference menší. Potom je diference definována jako index mezního měrného povrchu pomocí následující 15 rovnice (2):
[index mezního měrného povrchu] = [dusíkový měrný povrch] - [mezní měrný povrch] rovnice (2).
-6CZ 291549 B6
Pokud se mezní měrný povrch a index mezního měrného povrchu aktuálních příkladů vypočte pomocí rovnic (1) a (2), potom budou mít všechny měrné povrchy záporné hodnoty. To znamená, že zavedení páry umožňuje získat saze mající nižší hodnoty měrného povrchu než je hodnota mezního měrného povrchu daného reaktoru. Z těchto údajů je tedy zřejmé, že vynález je velmi efektivní, pokud jde o produkci sazí s nízkým měrným povrchem.
Vzhledem k tomu, že u uskutečněných příkladů demonstruje absolutní hodnota indexu mezního měrného povrchu přímý vliv zavádění páry na omezení měrného povrchu, je prokázáno, například v uskutečněných příkladech, že zavedení přibližně 3 % hmotn. páry může omezit měrný povrch přibližně alespoň o 14 m2/g nebo ještě více.
Při použití způsobu podle vynálezu, jak ukazuje aktuální příklad 4 v tabulce 2, je možné vyrobit saze, jejichž hodnota měrného povrchu je stejně nízká jako hodnota měrného povrchu termických sazí, jejichž výroba běžnými pecními způsoby je problematická. Tyto saze jsou navíc strukturovanější než termické saze a mají vlastnosti, které nelze nalézt u běžných pecních sazí.
Příklad Π
Tento příklad porovnává způsob podle vynálezu, ve kterém je poměr L/D roven 0, se způsoby, které nezahrnují zavádění páry.
Pokusy se prováděly na typu reaktoru, který je typický pro běžnou výrobu sazí a jehož konfigurace byla podobná konfiguraci reaktoru znázorněného na obrázku 1. V místě zavádění přívodní suroviny byl průměr D přechodové komory neboli ústí 50,8 mm. Přívodní surovina se zaváděla pomocí tří hrotů s průměrem 0,838 mm umístěných v otvorech pravidelně rozmístěných po vnějším obvodu ústí. V bězích, ve kterých se zaváděla pára, se tato pára zaváděla pomocí prstencových plášťů, obklopujících každý hrot pro vstřikování přívodní látky. Nicméně, jak bude poznamenáno, toto je pouze experimentální řešení a nepředstavuje omezení pro způsoby použitelné pro zavádění páry.
Odtok se ochladil pomocí chlazení umístěného 5,44 m od místa vstřikování přívodní suroviny.
Základní vlastnosti použitého paliva a přívodní suroviny jsou shrnuty v tabulce 4. Jak v případě aktuálního příkladu, tak v případě kontrolního příkladu se do přívodní suroviny přidal vodný roztok draselného iontu, jehož úkolem je kontrolovat strukturu.
Tabulka 4
Použité palivo a přívodní surovina | ||
Palivo | Přívodní surovina | |
Typ | Zemní plyn | Kapalný uhlovodík |
Hustota (15 °C) [g/cm3] | 0,583 | 1,105 |
Viskozita (50 °C) [m2/s] | Není dostupná | 1,3.10-4 (odhad) |
C-atom [% hmotn. ] | 73,1 | 90,6 |
H-atom [% hmotn. ] | 23,8 | 7,5 |
Celkové spalné teplo [kcal/kg] | 12 800 | 97900 |
Výsledky experimentálních běhů jsou shrnuty v tabulce 5, která obsahuje dva běhy příkladného způsobu podle vynálezu, ve kterém L/D = 0; a jeden kontrolní běh bez zavádění páry.
Tabulka 5
Příklady | CE 1 | CE2 | CE3 | |
Průtok spalovacího vzduchu | (Nm3/h) | 375 | 375 | 375 |
Předehřátí spalovacího vzduchu | °C | 482 | 482 | 482 |
Průtok paliva | (kg/h) | 12,2 | 12,2 | 12,2 |
Průtok přívodní suroviny | (kg/h) | 115,7 | 115,7 | 115,7 |
Primární spalovaní | % | 250 | 250 | 250 |
Celkové spalování | % | 28 | 28 | 28 |
Poloha zavádění přívodní suroviny a páry | ||||
Vzdálenost od polohy (L) | (mm) | 0 | 0 | 0 |
(L)/(D) | 0 | 0 | 0 | |
Průtok zaváděné páry | (kg/h) | 0 | 4,5 | 13,5 |
Pára/Přívodní surovina | (% hmotn.) | 0 | 3,9 | 11,7 |
Dusíkový měrný povrch | (nAg) | 74,9 | 55,663,3 | 57,3 |
Jodové adsorpční číslo | (mg/g) | 77,7 | 62,3 | |
DBP absorpční číslo | (cm2/100 g) |
Jak ukazuje tabulka 5, zavedení páry způsobem podle vynálezu, ve kterém L/D = 0, má za následek výrobu sazí majících redukovaný měrný povrch a redukovanou strukturu. Redukci měrného povrchu ukazují příkladné běhy 7 a 8 způsobu podle vynálezu, ve kterých se vyrobily saze, mající redukovaný dusíkový měrný povrch a jodové adsorpční číslo v porovnání s kontrolním během 4 (CE4), ve kterém nedošlo k zavádění páry. Redukci struktury ukazují příkladné běhy 7 a 8 způsobu podle vynálezu, ve kterých se vyrobily saze mající snížené DBP absorpční číslo v porovnání s kontrolním během 4 (CE4), ve kterém nedošlo k zavádění páiy.
Jak ukazuje tabulka 5, porovnáním výsledků získaných v příkladných bězích 7 a 8 způsobu podle vynálezu, vede zvýšení rychlosti zavádění páry k výraznější redukci měrného povrchu a struktury.
Konečně je třeba uvést, že výše popsané příklady provedení vynálezu mají pouze ilustrativní charakter a nikterak neomezují rozsah vynálezu, který je jednoznačně vymezen přiloženými patentovými nároky.
PATENTOVÉ NÁROKY
Claims (6)
1. Způsob výroby sazí s malým měrným povrchem v sazném pecním reaktoru, který zahrnuje generování proudu spalin uvedením paliva do reakce s oxidačním činidlem; zavedení přívodní suroviny poskytující saze do proudu spalin v místě zavádění přívodní suroviny nacházejícím se v přechodové komoře (20) reaktoru mající průměr D a zavedení páry do proudu spalin v místě zavádění páry nacházejícím se rovněž v přechodové komoře (20), a to ve vzdálenosti L od místa zavádění přívodní suroviny; umožnění reakce přívodní suroviny, páry a proudu spalin za vzniku sazí v reakční komoře (30); a ochlazení, separaci a izolaci sazí, vyznačený tím, že se poměr L/D pohybuje v rozmezí od 0 do méně než 1,0 a množství zaváděné páry je takové, že reakce přívodní suroviny poskytující saze, páry a proudu spalin poskytuje saze směrným povrchem menším než mají saze vyráběné za stejných podmínek, ale za absence páry.
-8CZ 291549 B6
2. Způsob podle nároku 1, vyznačený tím, že se přívodní surovina poskytující saze zavádí do proudu spalin v místě zavádění přívodní suroviny, které se nachází v první zóně přechodové komory (20), a pára se zavádí do proudu spalin v místě zavádění páry, které se nachází ve druhé zóně přechodové komory (20).
3. Způsob podle nároku 1 nebo 2, vyznačený tím, že se množství zaváděné páry pohybuje v rozmezí od 1 % hmotn. do 15 % hmotn. přívodní suroviny.
4. Způsob podle nároků 1 až 3, vyznačený t í m , že poměr L/D = 0.
5. Způsob podle kteréhokoliv z nároků laž 4, vyznačený tím, že průměr D přechodové komory je konstantní.
6. Způsob podle kteréhokoliv z nároků 1 až 5, vyznačený tím, že se pára zavádí před místem zavádění přívodní suroviny, uvažováno ve směru proudění spalin.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1995/005104 WO1996034918A1 (en) | 1995-05-04 | 1995-05-04 | Method for producing carbon black |
CA002220047A CA2220047A1 (en) | 1995-05-04 | 1995-05-04 | Method for producing carbon black |
HU9801418A HUT77871A (hu) | 1995-05-04 | 1995-05-04 | Eljárás korom előállítására |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ347997A3 CZ347997A3 (cs) | 1998-04-15 |
CZ291549B6 true CZ291549B6 (cs) | 2003-04-16 |
Family
ID=27170515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ19973479A CZ291549B6 (cs) | 1995-05-04 | 1995-05-04 | Způsob výroby sazí |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0824572A4 (cs) |
AU (1) | AU708989B2 (cs) |
CA (1) | CA2220047A1 (cs) |
CZ (1) | CZ291549B6 (cs) |
HU (1) | HUT77871A (cs) |
WO (1) | WO1996034918A1 (cs) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2131766C1 (ru) * | 1998-04-07 | 1999-06-20 | Открытое акционерное общество "Ярославский технический углерод" | Реактор для получения сажи |
DE10318527A1 (de) * | 2003-04-24 | 2004-11-18 | Degussa Ag | Verfahren zur Herstellung von Furnaceruß |
US7829057B2 (en) * | 2004-05-04 | 2010-11-09 | Cabot Corporation | Carbon black and multi-stage process for making same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1217034A (en) * | 1967-04-21 | 1970-12-23 | Continental Carbon Co | Process and apparatus for making carbon black |
US3988478A (en) * | 1974-02-22 | 1976-10-26 | Cities Service Company | Carbon black |
JPS513392A (ja) * | 1974-06-24 | 1976-01-12 | Cities Service Co | Kaabonburatsukuoyobi sonoseizoho |
US4283378A (en) * | 1979-08-01 | 1981-08-11 | Cabot Corporation | Production of high surface area carbon blacks |
JPS6173773A (ja) * | 1984-09-18 | 1986-04-15 | Mitsubishi Chem Ind Ltd | カ−ボンブラツクの製造方法 |
DE3580634D1 (de) * | 1984-09-21 | 1991-01-03 | Mitsubishi Chem Ind | Verfahren zur herstellung von russ. |
JP2832734B2 (ja) * | 1989-10-16 | 1998-12-09 | 三菱化学株式会社 | カーボンブラックの製造方法 |
-
1995
- 1995-05-04 WO PCT/US1995/005104 patent/WO1996034918A1/en not_active Application Discontinuation
- 1995-05-04 AU AU24487/95A patent/AU708989B2/en not_active Ceased
- 1995-05-04 CZ CZ19973479A patent/CZ291549B6/cs not_active IP Right Cessation
- 1995-05-04 EP EP95918853A patent/EP0824572A4/en not_active Withdrawn
- 1995-05-04 HU HU9801418A patent/HUT77871A/hu unknown
- 1995-05-04 CA CA002220047A patent/CA2220047A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO1996034918A1 (en) | 1996-11-07 |
AU2448795A (en) | 1996-11-21 |
AU708989B2 (en) | 1999-08-19 |
CZ347997A3 (cs) | 1998-04-15 |
CA2220047A1 (en) | 1996-11-07 |
HUT77871A (hu) | 1998-09-28 |
EP0824572A4 (en) | 1999-07-28 |
EP0824572A1 (en) | 1998-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100214916B1 (ko) | 폐타이어로부터의 카본블랙제조방법 및 그 제조장치 | |
KR100316500B1 (ko) | 카본블랙의제조방법 | |
EP1188801B1 (en) | Device and method for converting carbon containing feedstock into carbon containing materials, having a defined structure | |
JP5775106B2 (ja) | カーボンブラック製品の製造法 | |
KR960010308B1 (ko) | 카본 블랙의 제조 방법 | |
US4799937A (en) | Method and apparatus for gasifying carbonaceous material | |
AU2002213938A1 (en) | Device and method for converting carbon containing feedstock into carbon containing materials, having a defined nanostructure | |
NZ200535A (en) | Production of furnace carbon vlacks | |
US20070104636A1 (en) | Carbon black and multi-stage process for making same | |
US6548036B2 (en) | Method for producing carbon black | |
US3876392A (en) | Transfer line burner using gas of low oxygen content | |
KR970001931B1 (ko) | 카본 블랙(carbon black)의 제조 방법 | |
KR20010052727A (ko) | 카본 블랙의 제조 방법 및 장치 | |
KR0181521B1 (ko) | 카본 블랙 생산 방법 | |
EP1783178A1 (en) | Carbon black and multi-stage process for making same | |
CZ291549B6 (cs) | Způsob výroby sazí | |
KR930008202B1 (ko) | 카본블랙의 제조방법 | |
US3342556A (en) | Method and apparatus for manufacturing carbon black | |
TW202509155A (zh) | 碳黑之製造方法及碳黑製造用反應爐 | |
CS195774B1 (cs) | Zpftsnb výroby sazí |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD00 | Pending as of 2000-06-30 in czech republic | ||
MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20040504 |