CZ347997A3 - Způsob výroby sazí - Google Patents
Způsob výroby sazí Download PDFInfo
- Publication number
- CZ347997A3 CZ347997A3 CZ973479A CZ347997A CZ347997A3 CZ 347997 A3 CZ347997 A3 CZ 347997A3 CZ 973479 A CZ973479 A CZ 973479A CZ 347997 A CZ347997 A CZ 347997A CZ 347997 A3 CZ347997 A3 CZ 347997A3
- Authority
- CZ
- Czechia
- Prior art keywords
- carbon black
- steam
- feedstock
- flue gas
- surface area
- Prior art date
Links
- 239000006229 carbon black Substances 0.000 title claims abstract description 81
- 238000000034 method Methods 0.000 title claims abstract description 47
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 23
- 239000003546 flue gas Substances 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000007800 oxidant agent Substances 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 5
- 239000007924 injection Substances 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 2
- 235000019241 carbon black Nutrition 0.000 abstract description 75
- 239000000567 combustion gas Substances 0.000 abstract description 5
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 20
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 239000007858 starting material Substances 0.000 description 16
- 238000002485 combustion reaction Methods 0.000 description 13
- 239000000446 fuel Substances 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 11
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000004215 Carbon black (E152) Substances 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052740 iodine Inorganic materials 0.000 description 5
- 239000011630 iodine Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000197 pyrolysis Methods 0.000 description 4
- 239000004071 soot Substances 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 2
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- -1 ethylene, propylene, butylene Chemical group 0.000 description 2
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910001414 potassium ion Inorganic materials 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 239000012485 toluene extract Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
- C09C1/50—Furnace black ; Preparation thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Description
Způsob výroby sazí
Oblast techniky
Vynález se týká nového a zlepšeného pecního způsobu snadnější a stabilnější výroby sazí, majících nižší specifický povrchovou plochu a strukturní úrovně, které je možné vyrobit běžnými pecními způsoby výroby sazí. Saze, připravené způsobem podle vynálezu, jsou vhodné pro různé aplikace, které zahrnují například plniva, ztužovadla a barviva do kaučuků a umělých hmot.
Dosavadní stav techniky
U běžných pecních způsobů výroby sazí se kapalná uhlovodíková vstupní surovina pyrolyzuje proudem horkých primárních spalin generovaných ze směsi paliva a oxidantu, například předehřátého vzduchu, za vzniku odváděného proudu. Pyrolýza výchozí suroviny se ukončí ochlazením sazných produktů, které se separují a izolují z ochlazeného plynného proudu.
Specifický povrch sazí, vyráběných pecním způsobem, závisí obecně na rozkladné reakční teplotě, která se kontroluje teplotou primárního spalovacího plynu a množstvím zaváděné vstupní tekutiny.
Specifická povrchová plocha sazi se obecně snižuje s klesající reakční teplotou, která klesá společně s teplotou primárního spalovacího plynu a se zvyšujícím se množstvím zaváděné výchozí suroviny. Nicméně teplotu primárního spalování nelze snižovat bez omezení, • ·· · protože primární spalovací plyn dodává energii pro rozklad výchozí suroviny. U pecního způsob výroby sazí, majících takto nízkou specifickou plochu, se tedy používá zvýšené množství zaváděné výchozí suroviny. Toto zvýšení zaváděné výchozí suroviny způsobuje přilnutí sazí k vnitřním stěnám reaktoru, které je indikováno nízkou světelnou transmitací odbarvení toluenu, a toto přilnutí vyžaduje vypnutí reaktoru za účelem jeho vyčištění.
Pokud se množství zaváděné výchozí suroviny zvýší, potom se zvýší množství sazného produktu vyrobeného na jednotkový objem reaktoru a upřednostněná tvorba koksu povede ke zvýšení tvorby drti tvořící nečistotu, což znamená zhoršené kvality sazí. Tento problém lze řešit tak, že se reakční zóna rozšíří, ale rozšíření reakční zóny s sebou přináší zase nový problém, kterým je akumulace sazí, vznikajících v důsledku poklesu rychlosti odcházejícího plynu, v reaktoru. S tímto řešením je rovněž spojena zvýšená spotřeba energie.
Průměr primární velikosti částic sazí zpravidla závisí na reakční teplotě. Čím vyšší je reakční teplota, tím menší je průměr primární velikosti vznikajících sazí. Čím vyšší je struktura sazí, tím nižší je specifická plocha sazí při dané velikosti částic. To znamená, že nízká struktura sazí má vyšší specifickou povrchovou plochu při dané velikosti částic než vysoká struktura sazí.
Omezení vývoje struktury sazí se dosáhlo u konvenčních způsobů zavedením alkalických kovů do reaktoru, ale tato metoda zpravidla způsobuje zvýšení specifické povrchové plochy spolu se snížením • · ···· · ·· ·· ···· ·· · ···· ·· · • · · · ···· • · f · · ······ • · · · · · ·· ·· *· ·♦· ···· ·· · struktury, protože průměr primární částice zůstává zpravidla konstantní. Z výše uvedeného tedy vyplývá, že vyrábět saze, mající nízkou strukturu a současně nízkou specifickou povrchovou plochu, dosavadními konvenčními pecními způsoby je náročné.
Zmíněné
US 5,190,739, výroby sazi, problémy se který poskytuje majících při snaží řešit zajímavé návrhy dané celkové patent způsobu úrovni spalování, jak povrchovou plochu způsobu přípravy zaváděné výchozí nízkou strukturu, tak nízkou specifickou zajímavý návrh daném množství a které poskytují sazí, majících při suroviny jak nízkou strukturu, tak nízkou specifickou povrchovou zahrnuje přidání pomocného pomocného uhlovodíku, majícího vodíku : uhlíku, nebo samotného vodíku.
plochu. Tento návrh uhlovodíku, například vysoký molární poměr
Technologie, týkající se zavedení vody nebo páry do pecních sazných reaktorů, jsou popsány v patentech US 4,283,378 a US 4,631,180. Technologie, týkající se zavádění vody nebo páry, které představují zlepšený způsob výroby sazí na bázi pecního způsobu, jsou popsány například v japonské patentové přihlášce Sho 54-7634, japonském patentu Sho 56-24455 a Hei 3-128974. Nicméně všechny tyto vynálezy se zpravidla týkají výroby sazí, majících vyšší specifické povrchové plochy než saze, vyráběné podobnými způsoby v nepřítomnosti páry. Takže cíle těchto vynálezů se podstatně liší od cílů předloženého vynálezu, týkajícího se výroby sazí majících nižší specifické povrchové plochy než saze, vyráběné podobným způsobem v nepřítomnosti páry.
Jak již bylo uvedeno, cílem vynálezu je vyvinout zlepšený pecní způsob výroby sazi, který by produkoval saze, které mají nízkou specifickou povrchovou plochu a nízkou strukturu a které je obtížné vyrobit běžným pecním způsobem, snadněji a stabilněji.
Podstata vynálezu
Výše zmíněného cíle a dalších výhod lze dosáhnout zlepšeným pecním způsobem výroby sazí, který je charakteristický tím, že omezuje jak specifickou povrchovou plochu, tak vývoj struktury zavedením páry v místě zavádění výchozí suroviny nebo v blízkosti tohoto místa. Pecní způsob výroby sazí podle vynálezu zahrnuje zavedení uhlovodíkové výchozí suroviny, výhodně v kapalné formě, do proudu horkých primárních spalin, pyrolýzu a ochlazení, přičemž se zavede do proudu spalin v místě vstřikování uhlovodíkové výchozí suroviny do proudu spalin nebo v jeho blízkosti, takže poměr L/D (jak je dále definován) se pohybuje v rozmezí od 0 do méně než 1,0.
Stručný popis obrázků
Obrázek 1 znázorňuje průřez částí jednoho typu pecního sazného reaktoru, který lze použít k provádění způsobu podle vynálezu.
Vynález se stane zřejmějším po prostudování následujícího podrobného popisu doplněného odkazy k
• · · · · ·
doprovodnému obrázku 1, který znázorňuje jeden typ pecního sazného reaktoru, jenž lze použit při provádění způsobu podle vynálezu.
Obrázek 1 znázorňuje sazný reaktor mající spalovací zónu jL, ve které reagují palivo ze sondy 2 a oxidační činidlo, například vzduch, cirkulující v prostoru 3_, za vzniku proudu horkých spalin. Mezi spaliny vhodné pro uvedení do styku s proudem oxidačního činidla ve spalovací zóně 1_ pro generování spalin lze zařadit libovolný spalitelný plyn, například parní nebo kapalný proud zemního plynu, vodíku, oxidu uhelnatého, methanu, acetylenu, alkoholu nebo kerosenu. Nicméně je zpravidla výhodné použít paliva, majícího vysoký obsah složek obsahujících uhlík, zejména se jedná o uhlovodíky. Poměr vzduchu a zemního plynu, použitý pro výrobu sazí podle vynálezu, se může výhodně pohybovat přibližně v rozmezí od 10:1 do 100:1. Za účelem usnadnění generace spalin lze proud oxidačních činidel předehřát.
Směr proudění horkých spalin je znázorněn na obrázku pomocí šipky. Proud horkých spalin se dopravuje ze zóny ý do přechodové zóny 20, která má průměr „D. Kapalná uhlovodíková výchozí surovina se zavádí do zóny 20 v bodu £. Vhodnou výchozí surovinou pro použití v rámci vynálezu jsou uhlovodíkové výchozí suroviny poskytující saze, které jsou za reakčnich podmínek snadno těkavé a kterými jsou nenasycené uhlovodíky, například acetylen; olefiny, například ethylen, propylen, butylen; aromatické uhlovodíky, například benzen, toluen a xylen; určité nasycené uhlovodíky; a další uhlovodíky, například keroseny, naftaleny, terpeny, ethylenové asfalty, aromatické cyklické suroviny apod.. Zpravidla se výchozí surovina, poskytující saze, vstřikuje ve formě množiny proudů, které pronikají do vnitřních oblastí proudu horkých spalin, čímž se má zajistit vysoká míra směšování a tření horkých spalin, výchozí suroviny poskytující saze, rychlý a úplný rozklad výchozí suroviny a její převedení na saze.
Pára se zavádí v bodu 6 zóny 20, který je na obrázku 1 znázorněn až za bodem 4_ vstřikování výchozí suroviny, poskytující saze. „L označuje vzdálenost od bodu 4_ k bodu _6. Pokud se výchozí surovina a pára zavádějí ve stejném místě, potom L = 0 a tedy i L/D =0. I když se u způsobu znázorněného na obrázku 1 bod zavádění páry nachází za bodem zavádění výchozí suroviny, může se podle vynálezu tento bod nacházet rovněž před bodem zavádění výchozí suroviny nebo ve stejném místě, jako výchozí surovina za předpokladu, že se rozmezí L/D bude pohybovat od 0 do méně než 1,0. Výhodně se bod zavádění páry nachází před bodem zavádění výchozí suroviny.
Po zavedení výchozí suroviny a páry se výsledný odtokový proud dopravuje do zóny 30. Chlazení 5, umístěné v zóně 30, vstřikuje do této zóny kapalinu, například vodu, s cílem ukončit reakci v okamžiku, kdy se vytvoří saze, mající požadované vlastnosti. Oblast chlazení _5 lze určit libovolným, v daném oboru známým, způsobem, určujícím polohy chlazení pro ukončení pyrolýzy. Jedním způsobem určení této polohy chlazení pro ukončení pyrolýzy je určení místa, ve kterém dosahuje toluenová extrakce sazí přijatelné hodnoty. Toluenový extrakt lze měřit pomocí ASTM zkušební metody D 1618-83 „Sazné extrakty - Odbarvení toluenem.
SI je vzdálenost od místa zaváděni paliva sondou 2_ k místu zavádění výchozí suroviny, t j. k bodu 4_. S2 představuje vzdálenost od místa zavádění výchozí suroviny, tj . od bodu _4 k místu chlazeni 5. S3 představuje vzdálenost od místa chlazení 5 do konce zóny 30.
Po ochlazení směsi horkých spalin a výchozí suroviny, poskytující saze, projdou ochlazené plyny do libovolného konvenčního chladícího a separačního prostředku, ve kterém dojde k izolaci sazí. Separace sazí z proudu plynů se snadno realizuje za použití běžných prostředků, například pomoci precipitátoru, cyklonového separátoru nebo vakuového filtru. Za tuto separaci lze zařadit peletizaci, například v peletizátoru, který pracuje mokrým způsobem.
Jak již bylo uvedeno výše, v první sekci (SI) spalovací zóny _1, se generují horké primární spaliny směšováním a uvedením paliva ze sondy 2_ do reakce s oxidačním činidlem, například předehřátým vzduchem, v prostoru 3. V druhé zóně (S2) , sousedící s první zónou, dochází postupně k pyrolýze výchozí suroviny, tvorbě prekurzoru sazí a růstu primárních částic sazí a posléze k zavádění kapalné uhlovodíkové výchozí suroviny do proudu primárních spalin. Konečně, ve třetí zóně (S3) , se odtékající proud ochladí chladícím médiem vystřikovaným z chlazení 5, například vodou, což ukončí reakci produkce sazí.
Zjistilo se, že pára zaváděná v bodě 6, který se nachází v místě zavádění výchozí látky nebo v jeho blízkosti, může omezit jak specifickou povrchovou plochu, tak vývoj struktury vzniklých sazí. Konkrétněji se zjistilo, že poloha zaváděni páry je důležitá pro omezeni specifické povrchové plochy a vývoje struktury sazi a takto vyrobené sazné produkty máji nižší povrchové plochy a strukturu než saze, které se vyrábí podobným způsobem bez zavádění páry.
Při provádění způsobu podle vynálezu musí být vzdálenost (L) , představující vzdálenost od místa zavádění výchozí suroviny k místu zavádění páry po směru proudění spalin nebo proti směru proudění spalin, menší, než průměr (D) ústí, kterým se výchozí surovina přivádí, takže L/D se bude pohybovat v rozmezí od 0 do méně než 1,0.
Průměr ústí, do kterého se přívodní surovina zavádí, se u pecního sazného produktu zpravidla přizpůsobuje tak, aby optimálně vyhovoval vnitřnímu faktoru, který je vlastní jednotlivým reaktorům. Bez ohledu na tvar reaktoru, bylo ve všech případech zavádění páry, ve kterých se poměr L/D pohyboval v rozmezí od 0 do méně než 1,0, dosaženo stejných výsledků.
Pokud je množství zaváděné páry menší než 1 hm. % zaváděné výchozí suroviny, potom je vliv zavedení páry na omezení specifické povrchové plochy a struktury sazí pouze malý. Stupeň omezení specifické povrchové plochy a vývoje struktury sazí je v podstatě úměrný zvýšení koncentrace zaváděné páry. Pokud se zavede extrémně vysoké množství páry, potom se omezí tvorba sazí jako taková v důsledku vážné překážky, kterou je pro tvorbu sazného prekurzoru přebytečná pára. Při současně probíhající produkci sazí je náročné zavést do proudu spalin vyšší množství spalin než 15 hm. % zaváděné
výchozí suroviny. Takže při provádění výhodného provedení způsobu podle vynálezu se do proudu spalin zavádí množství páry, představující 1 až 15 hm. % množství zaváděné výchozí suroviny.
V následujících příkladech se použily pro stanovení analytických a fyzikálních vlastností sazí následující testovací postupy.
Jako míra specifické povrchové plochy a struktury sazí v každém konkrétním a kontrolním zde popsaném příkladu byla použita data, získaná pomocí následujících zkušebních postupů.
Specifická povrchová plocha se stanoví na dusíkové absorpce: vychází z testovací
BET (N2SA) . Ta se stanoví pomocí zkušební ASTM D3037 pro příklad I a příklad II.
zaklade metody metody číslo:
Jodové absorpční JIS K-6221 pro příklad ASTM D1510.
DBP (dibutylftalátové) stanoví pomocí JIS K-6221 ASTM D3493 pro příklad II.
to se stanoví pomocí
I a pro příklad II za použití absorpční číslo: to se pro příklad I a pomocí
DBP absorpční číslo za stlačení: se určí potom, co se saze čtyřikrát lisovaly při zatížení 165,36 MPa. Toto číslo se určilo za použití zkušební metody ASTM D3493 pro příklad I.
Účinnost a výhody vynálezu dále ilustrují následující příklady.
• » · · · · • · · · · ·
Příklady provedení vynálezu
Příklad I
Tento příklad ilustruje způsob podle vynálezu, ve kterém je L/D větší než 0 a menší než 1,0 v porovnání se způsoby, které nezahrnují zavádění páry.
Pokusy se prováděly v reaktoru znázorněném na obrázku 1. Délka první zóny (Sl) reaktoru je 3 000 mm, délka druhé zóny (S2) je 1 500 mm a průměr ústí (D) , kterým se zavádí výchozí surovina, je 200 mm. Základní vlastnosti použitého paliva a výchozí suroviny jsou shrnuty v tabulce 1. Jak v případě testovaného způsobu, tak v případě kontrolního způsobu se do výchozí suroviny přidal vodný roztok draselného iontu, jehož úkolem je kontrolovat strukturu.
Tabulka 1
Použité palivo a výchozí surovina | ||
Palivo | Výchozí surovina | |
Typ | Kapalný uhlovodík | |
Hustota(15°C)[g/cm3] | 0,970 | 1,057 |
Viskozita(50°C) [c St] | 5 | 15 |
C-atom [hm. %] | 89,8 | 91,1 |
H-atom [hm. %] | 10,1 | 8,6 |
Celkové spalní teplo [kcal/kg] | 9920 | 11230 |
Údaje, získané na základě aktuálních příkladů, jsou uvedeny v tabulce 2 a údaje, získané na základě kontrolních příkladů, jsou uvedeny v tabulce 3.
Specifická povrchová jejich struktuře.
hodnotu specifické způsobem, pecním provozního omezení procesů musí povrchová minimální plocha sazí je
Tabulky rovněž obsahují povrchové plochy sazí které bylo použitého dosaženo reaktoru.
minimální závislá na nejnižší vyrobených v důsledku
U pecních specifická tedy existovat plocha, odpovídající specifická povrchová plocha bude dále dané struktuře. Tato označována jako „mezní specifická povrchová plocha. Hodnota této mezní specifické povrchové plochy se bude lišit v závislosti na různých tvarech reaktoru. V případě reaktoru použitého pro konkrétní testovaný a kontrolní příklad se mezní specifická povrchová plocha vypočte za použití následující rovnice (1):
[Mezní specifická povrchová plocha] = 78,5 - 0,748 x [EBP po stlačení]
Rovnice (1) která bere v úvahu dusíkovou povrchovou plochu (DBP po stlačení) a provozní podmínky.
• · · · • · • · · ·
Tabulka 2
Aktuální příklady | 1 | 2 | 3 | 4 | 5 | 6 | |
Průtok spalovacího vzduchu | (Nm3/hod) | 3530 | 3530 | 3530 | 3530 | 3530 | 3530 |
Průtok paliva | (kg/hod) | 80 | 80 | 80 | 80 | 80 | 80 |
Průtok výchozí suroviny | (kg/hod) | 1800 | 1770 | 1800 | 1870 | 1620 | 1590 |
Průtok draslíku | (g/hod) | 0 | 128 | 0 | 9 | 9 | 15 |
Poloha zavádění výchozí suroviny a páry | |||||||
Vzdálenost od polohy (L) | (mm) | 30 | 30 | 30 | 30 | 150 | 150 |
(L)/(D) | 0,15 | 0,15 | 0, 15 | 0, 15 | 0,75 | 0,75 | |
Průtok zaváděné páry | (kg/hod) | 30 | 50 | 70 | 50 | 85 | 200 |
Pára/Výchozí surovina | (hni. %) | 1,7 | 2,8 | 3,9 | 2,7 | 5,2 | 12, 6 |
Dusíková spec, povrch, plocha | (m2/g) | 22,3 | 22,5 | 19,1 | 18,0 | 26,1 | 29,8 |
Jodové adsorpční číslo | (mg/g) | 22, 6 | 18,2 | 17,1 | 11,5 | 25, 6 | 32,8 |
DBP absorpční číslo | (cm3/100g) | 100,6 | 60,4 | 79, 0 | 89,2 | 84,3 | 81,2 |
DBP po stlačení | (cm3/100g) | 71,7 | 56,2 | 60,5 | 65,7 | 63, 9 | 64, 6 |
Mezní povrchová specifická | (m2/g) | 24,9 | 36,5 | 33,2 | 29,4 | 30,7 | 30,2 |
plocha | |||||||
Index mezní specifické povrchové plochy | (m2/g) | -2,6 | -14,0 | -14,1 | -11,4 | -4,6 | -0,4 |
• ·· ·
Tabulka 3
Aktuální příklady | CE 1 | CE 2 | CE 3 | |
Průtok spalovacího vzduchu | (Nm3/hod) | 3530 | 3170 | 3170 |
Průtok paliva | (kg/hod) | 80 | 70 | 70 |
Průtok výchozí suroviny | (kg/hod) | 1870 | 1760 | 1800 |
Průtok draslíku | (g/hod) | 27 | 3408 | 12150 |
Poloha zavádění výchozí suroviny a páry | ||||
Vzdálenost od polohy (L) | (mm) | NA | NA | NA |
(L)/(D) | NA | NA | NA | |
Průtok zaváděné páry | (kg/hod) | 0 | 0 | 0 |
Pára/Výchozí surovina | (hm. %) | 0 | 0 | 0 |
Dusíková spec, povrch, plocha | (m2/g) | 26,5 | 40,6 | 44,2 |
Jodové adsorpčni číslo | (mg/g) | 22, 9 | 38,2 | 36,7 |
DBP absorpční číslo | (cm3/100g) | 106,5 | 78,3 | 76, 0 |
DBP po stlačení | (cm3/100g) | 73,7 | 67,8 | 67,0 |
Mezní povrchová specifická plocha | (m2/g) | 23,4 | 27,8 | 28,4 |
Index mezní specifické povrchové plochy | (m2/g) | 3,1 | 12,8 | 15,8 |
ΝΑ = neaplikovatelné
Tabulky ukazuji, že v případě kontrolních příkladů je rozdíl mezi dusíkovou specifickou povrchovou plochou a mezní specifickou povrchovou plochou kladný, protože mezní specifická povrchová plocha je možnou minimální hodnotou specifické povrchové plochy pro běžné pecní saze, což rovněž znamená, že čím jsou provozní podmínky reaktoru bližší mezní hodnotě provozních podmínek reaktoru, tím je absolutní hodnota diference menší. Potom je diference definována jako index mezní specifické povrchové plochy pomocí následující rovnice (2) :
[Irxtex rrezni specifické povrchové plochy] = [Dusíková specifická povrchová plocha] - [Mezní specifická povrchová plocha]
Rovnice (2)
Pokud se mezní specifická povrchová plocha a index mezní specifické povrchové plochy aktuálních příkladů vypočte pomocí rovnic (1) a (2), potom budou mít všechny specifické povrchové plochy záporné hodnoty. To znamená, že zavedení páry umožňuje získat saze, mající nižší hodnoty specifické povrchové plochy než je hodnota mezní specifické povrchové plochy daného reaktoru. Z těchto údajů je tedy zřejmé, že vynález je velmi efektivní, pokud jde o produkci sazí majících nízkou specifickou povrchovou plochu.
Vzhledem k tomu, že u aktuálních příkladů, absolutní hodnota indexu mezní specifické povrchové plochy přímo demonstruje vliv zavádění páry na omezení specifické povrchové plochy, je prokázáno, například pokud jde o aktuální příklady, že zavedení přibližně 3 % páry může omezit specifickou povrchovou plochu přibližně alespoň o 14 m2/g nebo ještě více.
Při použití způsobu podle vynálezu, jak ukazuje aktuální příklad 4 v tabulce 2, je možné vyrobit saze, mající specifickou povrchovou plochu stejně nízkou jako termické saze, jejichž výroba běžnými pecními způsoby je problematická. Kromě toho tyto saze mají vyšší strukturu než termické saze a vlastnosti, které nelze nalézt u běžných pecních sazí.
·· ···· · ·· ·· ···· • · · · · · · · · · • · · · · · · · • · · · · ······ ···· ·· · · ·· ·· ··· ···· ·· ·
Příklad II
Tento přiklad ilustruje způsob podle vynálezu, ve kterém je poměr L/D roven 0, v porovnání se způsoby, které nezahrnují zavádění páry.
Pokusy se prováděly na typu reaktoru typickém pro běžné způsoby výroby sazí, jehož konfigurace byla podobná konfiguraci reaktoru znázorněnému na obrázku 1. Průměr ústí (D) , kterým se zaváděla přívodní surovina, byl 50,8 milimetrů (mm). Výchozí surovina se zaváděla pomoci tři hrotů s průměrem 0,838 mm, umístěných v otvorech pravidelně rozmístěných po vnějším obvodu ústí. V bězích, ve kterých se zaváděla pára se tato pára zaváděla pomocí prstencových plášťů, obklopujících každý hrot pro vstřikování výchozí látky. Nicméně, jak bude uvedeno, toto je pouze experiment a nepředstavuje omezení pro způsoby, použitelné pro zavádění páry.
Odtok se ochladil pomocí chlazení umístěného
5,44 metrů od místa vstřikování výchozí suroviny.
Základní vlastnosti použitého paliva a výchozí látky jsou shrnuty v tabulce 4. Jak v případě aktuálního příkladu, tak v případě kontrolního příkladu se do výchozí suroviny přidal vodný roztok draselného iontu, jehož úkolem je kontrolovat strukturu.
Tabulka 4
Použité palivo a výchozí surovina | ||
Palivo | Výchozí surovina | |
Typ | Zemní plyn | Kapalný uhlovodík |
Hustota(15°C)[g/cm3] | 0,583 | 1,105 |
Viskozita(50°C) [c St] | Není dostupná | 130,0 (odhad) |
C-atom [hm. %] | 73,1 | 90, 6 |
H-atom [hm. %] | 23,8 | 7,5 |
Celkové spalné teplo [kcal/kg] | 12800 | 9700 |
Výsledky experimentálních běhů jsou shrnuty v tabulce 5, která obsahuje dva běhy příkladného způsobu podle vynálezu, ve kterém L/D = 0; a jeden kontrolní běh bez zavádění páry.
Tabulka 5
Příklady | CE 1 | CE 2 | CE 3 | |
Průtok spalovacího vzduchu | (Nm3/hod) | 375 | 375 | 375 |
Předehřátí spalovacího vzduchu | •c | 482 | 482 | 482 |
Průtok paliva | (kg/hod) | 12,2 | 12,2 | 12,2 |
Průtok výchozí suroviny | (kg/hod) | 115,7 | 115,7 | 115,7 |
Primární spalovaní | % | 250 | 250 | 250 |
Celkové spalování | % | 28 | 28 | 28 |
Poloha zavádění výchozí suroviny a páry | ||||
Vzdálenost od polohy (L) | (mm) | 0 | 0 | 0 |
(L)/(D) | 0 | 0 | 0 | |
Průtok zaváděné páry | (kg/hod) | 0 | 4,5 | 13,5 |
Pára/Výchozí surovina | (hm. %) | 0 | 3,9 | 11,7 |
Dusíková spec, povrch, plocha | (m2/g) | 74,9 | 55, 663,3 | 57,3 |
Jodové adsorpční číslo | (mg/g) | 77,7 | 62,3 | |
DBP absorpční číslo | (cm3/100g) |
Jak ukazuje tabulka 5, zavedení páry způsobem podle vynálezu, ve kterém L/D = 0, má za následek výrobu sazí, majících sníženou povrchovou plochu a redukovanou strukturu. Redukci povrchové plochy ukazují příkladné běhy 7 a 8 způsobu podle vynálezu, ve kterých se vyrobily saze, mající sníženou dusíkovou povrchovou plochu a jodové adsorpční číslo v porovnání s kontrolním během 4 (CE4), ve kterém nedošlo k zavádění páry. Redukci struktury ukazují příkladné běhy 7 a 8 způsobu podle vynálezu, ve kterých se vyrobily saze mající snížené DBP absorpční číslo v porovnání s kontrolním během 4 (CE4), ve kterém nedošlo k zavádění páry.
Jak ukazuje tabulka 5, porovnáním výsledků získaných v příkladných bězích 7 a 8 způsobu podle
vynálezu, zvýšeni rychlosti zavádění páry vede k většímu zmenšení povrchové plochy a struktury.
Konečně je třeba uvést, že výše popsané příklady provedení vynálezu mají pouze ilustrativní charakter a nikterak neomezují rozsah vynálezu, který je jednoznačně vymezen přiloženými patentovými nároky.
Claims (6)
1. Způsob výroby sazi v sazném pecním reaktoru, vyznačený tím, že zahrnuje:
generování proudu spalin uvedením spalin do reakce s oxidačním činidlem;
zavedení výchozí suroviny poskytující saze do proudu spalin v místě nacházejícím se v zóně reaktoru, majícím průměr D;
zavedení páry do proudu spalin v dalším místě nacházejícím se ve vzdálenosti L od místa zavádění výchozí suroviny, takže poměr L/D se pohybuje v rozmezí od 0 do méně než 1,0;
umožnění reakce výchozí suroviny, páry a proudu spalin za vzniku sazí; a ochlazení, separování a izolování sazí.
2. Způsob podle nároku 1, vyznačený tím, že se množství páry pohybuje v rozmezí od
1 hm. % do 15 hm. % výchozí suroviny.
3. Způsob podle nároku 1, vyznačený tím, že L/D = 0.
4 .
tím,
5.
tím, výchozí
6. tím, výchozí
Způsob podle že L/D = 0.
Způsob podle že se pára nároku 2, nároku 1, vstřikuj e látky, myšleno ve směru před y z n místem vstřikování proudění spalin.
Způsob podle nároku 2, vyznačený že se pára vstřikuje před místem vstřikování látky, myšleno ve směru proudění spalin.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1995/005104 WO1996034918A1 (en) | 1995-05-04 | 1995-05-04 | Method for producing carbon black |
CA002220047A CA2220047A1 (en) | 1995-05-04 | 1995-05-04 | Method for producing carbon black |
HU9801418A HUT77871A (hu) | 1995-05-04 | 1995-05-04 | Eljárás korom előállítására |
Publications (2)
Publication Number | Publication Date |
---|---|
CZ347997A3 true CZ347997A3 (cs) | 1998-04-15 |
CZ291549B6 CZ291549B6 (cs) | 2003-04-16 |
Family
ID=27170515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CZ19973479A CZ291549B6 (cs) | 1995-05-04 | 1995-05-04 | Způsob výroby sazí |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0824572A4 (cs) |
AU (1) | AU708989B2 (cs) |
CA (1) | CA2220047A1 (cs) |
CZ (1) | CZ291549B6 (cs) |
HU (1) | HUT77871A (cs) |
WO (1) | WO1996034918A1 (cs) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2131766C1 (ru) * | 1998-04-07 | 1999-06-20 | Открытое акционерное общество "Ярославский технический углерод" | Реактор для получения сажи |
DE10318527A1 (de) * | 2003-04-24 | 2004-11-18 | Degussa Ag | Verfahren zur Herstellung von Furnaceruß |
US7829057B2 (en) * | 2004-05-04 | 2010-11-09 | Cabot Corporation | Carbon black and multi-stage process for making same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1217034A (en) * | 1967-04-21 | 1970-12-23 | Continental Carbon Co | Process and apparatus for making carbon black |
US3988478A (en) * | 1974-02-22 | 1976-10-26 | Cities Service Company | Carbon black |
JPS513392A (ja) * | 1974-06-24 | 1976-01-12 | Cities Service Co | Kaabonburatsukuoyobi sonoseizoho |
US4283378A (en) * | 1979-08-01 | 1981-08-11 | Cabot Corporation | Production of high surface area carbon blacks |
JPS6173773A (ja) * | 1984-09-18 | 1986-04-15 | Mitsubishi Chem Ind Ltd | カ−ボンブラツクの製造方法 |
DE3580634D1 (de) * | 1984-09-21 | 1991-01-03 | Mitsubishi Chem Ind | Verfahren zur herstellung von russ. |
JP2832734B2 (ja) * | 1989-10-16 | 1998-12-09 | 三菱化学株式会社 | カーボンブラックの製造方法 |
-
1995
- 1995-05-04 WO PCT/US1995/005104 patent/WO1996034918A1/en not_active Application Discontinuation
- 1995-05-04 AU AU24487/95A patent/AU708989B2/en not_active Ceased
- 1995-05-04 CZ CZ19973479A patent/CZ291549B6/cs not_active IP Right Cessation
- 1995-05-04 EP EP95918853A patent/EP0824572A4/en not_active Withdrawn
- 1995-05-04 HU HU9801418A patent/HUT77871A/hu unknown
- 1995-05-04 CA CA002220047A patent/CA2220047A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO1996034918A1 (en) | 1996-11-07 |
AU2448795A (en) | 1996-11-21 |
AU708989B2 (en) | 1999-08-19 |
CA2220047A1 (en) | 1996-11-07 |
HUT77871A (hu) | 1998-09-28 |
EP0824572A4 (en) | 1999-07-28 |
EP0824572A1 (en) | 1998-02-25 |
CZ291549B6 (cs) | 2003-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960010308B1 (ko) | 카본 블랙의 제조 방법 | |
JP5775106B2 (ja) | カーボンブラック製品の製造法 | |
US5236992A (en) | Carbon blacks and their use in rubber applications | |
KR100316500B1 (ko) | 카본블랙의제조방법 | |
US3490869A (en) | Vortex reactor for carbon black manufacture | |
US4879104A (en) | Process for producing carbon black | |
US20070104636A1 (en) | Carbon black and multi-stage process for making same | |
US4755371A (en) | Method for producing carbon black | |
NZ200535A (en) | Production of furnace carbon vlacks | |
CS199269B2 (en) | Process for manufacturing furnace black with high structural parametrs | |
US6548036B2 (en) | Method for producing carbon black | |
EP1783178A1 (en) | Carbon black and multi-stage process for making same | |
US3460911A (en) | Apparatus for producing carbon black | |
US3355247A (en) | Production of high structure furnace carbon black | |
CZ347997A3 (cs) | Způsob výroby sazí | |
US20040013599A1 (en) | Carbon blacks and uses thereof | |
NL8403907A (nl) | Werkwijze voor het bereiden van roeten, alsmede produkten, geheel of ten dele bestaande uit met deze werkwijze verkregen roeten. | |
SU1171491A1 (ru) | Способ получени полуактивной сажи |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD00 | Pending as of 2000-06-30 in czech republic | ||
MM4A | Patent lapsed due to non-payment of fee |
Effective date: 20040504 |