CS205096B2 - Device for cultivating the live cells and tissues - Google Patents

Device for cultivating the live cells and tissues Download PDF

Info

Publication number
CS205096B2
CS205096B2 CS777552A CS755277A CS205096B2 CS 205096 B2 CS205096 B2 CS 205096B2 CS 777552 A CS777552 A CS 777552A CS 755277 A CS755277 A CS 755277A CS 205096 B2 CS205096 B2 CS 205096B2
Authority
CS
Czechoslovakia
Prior art keywords
pulse
cells
tissues
coil
quot
Prior art date
Application number
CS777552A
Other languages
English (en)
Inventor
John P Ryaby
Arthur A Pilla
Original Assignee
Electro Biology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electro Biology Inc filed Critical Electro Biology Inc
Publication of CS205096B2 publication Critical patent/CS205096B2/cs

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)
  • Magnetic Treatment Devices (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

Vynález se týká zařízení pro ošetřování živých buněk a tkání, zejména kostních buněk a tkání, nechirurgickou cestou.
V poslední době bylo provedeno mnoho pokusů, jejichž úkolem bylo zjištění odezvy živých tkání na elektrické signály.
Byly provedeny pokusy s použitím stejnosměrného proudu, střídavého proudu a impulsních signálů jedné i obojí polarity. Byly zkoumány chirurgické způsoby s použitím implantovaných elektrod a nechíurgická technika používající elektrostatických a elektromagnetických polí. Mnoho z těchto dříve provedených prací je popsáno v Annuals of The New York Academy of Sciences, Vol. 233, 11. X. 1974 pod názvem „Mechanismus elektrického ovlivňování růstu v živých systémech“ (A. R. Liboff a R. A. Rlnaldi). Je též možno uvést článek autorů C. Andrew L. Bassett, Robert J. Pawluk a Arthur A. Pila o názvu „Zlepšení obnovy kostní tkáně indukčně vázanými elektromagnetickými poli“, který byl 3. V. 1974 zveřejněn v Science, Vol. 184, str. 575 až 577. V minulosti bylo provedeno mnoho pokusů zjistit odezvu živých tkání a/nebo buněk na elektrické signály, avšak klinické výsledky s použitím dosud známých technik nebyly výsledky jednoznačně úspěšné ani nebyly všeobecně přijaty klinickou pra2 xí. Tato skutečnost má několik příčin. Nebylo známo, že k dosažení příznivého terapeutického účinku na tkáně a/nebo buňky je třeba v jednotlivých specifických případech použít elektrických signálů s velmi specifickým obsahem informací. Ve většině z dosud známých technik se mimoto používá implantovaných elektrod, které jsou v důsledku nevyhnutelných elektrolytických efektů často více škodlivé, než aby vyvolávaly na ošetřovaném místě léčebný účinek. Buňky a/nebo tkáně . jsou mimoto vystaveny značně nerovnoměrnému rozložení proudu a napětí, čímž se snižuje schopnost buněk k odezvě na použitý signál. Toto značně nerovnoměrné rozložení proudu a napětí se projevuje i v případě kapacitně přiváděných signálů.
Účelem vynálezu je .konstrukce zařízení, které- je schopno generovat elektrické signály o vhodném časovém průběhu a amplitudě a zavádět tyto signály do ošetřovaných buněk a tkání nechirurgickým způsobem tak, aby bylo zajištěno rovnoměrné a . definované rozložení napětí v ošetřovaném místě, což při přibližně rovnoměrném rozložení elektrického měrného- odporu ošetřovaných buněk a tkání zajišťuje i přibližně .rovnoměrné rozložení proudu v těchto buňkách a tkáních. Účelem vynálezu je dále vylou205096 čit nepříznivé účinky elektrolytických dějů při použití . implantovaných elektrod.
, Podstata vynálezu ' zařízení pro ošetřování živých buněk a tkání, zejména kostních buněk a tkání, změnou elektrického a elektrochemického prostředí těchto buněk a tkání spočívá v tom, že zařízení sestává z nejméně jedné vysílací cívky připojené k výstupu prvního hradla, jehož první vstup je spojen s výstupem zdroje stejnosměrného napětí a jehož druhý vstup je spojen s výstupem prvního tvarovacího obvodu, jehož vstup je spojen s výstupem prvního zdroje impulsů.
Pro generování složitějších elektrických signálů je vhodné zařízení, ve kterém je mezi zdroj stejnosměrného napětí a vysílací cívku svým jedním vstupem a výstupem vřazeno druhé hradlo, jehož druhý vstup je spojen s výstupem druhého tvarovacího obvodu, jehož . vstup . je připojen k výstupu druhého' zdroje impulsů.
K vysílací cívce může být s výhodou připojen omezovači obvod, tvořený například diodou zapojenou paralelně k vysílací cívce, který potlačuje vliv indukČnosti vysílací cívky.
Vysílací cívka je s výhodou uspořádána ve vysílací hlavě, která je opatřena popruhy ' .. pro ' ' připevnění na ošetřované místo. V této vysílací hlavě mohou být současně uspořádány nejméně dvě vysílací cívky.
Rozměry okénka uvnitř závitů vinutí vysílací cívky jsou s výhodou nejméně rovny rozměrům ošetřovaného místa.
Nový a vyšší účinek zařízení podle vynálezu spočívá v tom, že zařízení umožňuje zavádět do ošetřovaných buněk a tkání nechirurgickou cestou signály, které mají výrazné ' terapeutické účinky. Indukované napětí ' a 'tímto napětím vyvolávaný proud jsou v ' ošetřovaných buňkách a tkáních rozloženy v podstatě rovnoměrně a odpadají problémy s negativními účinky elektrolytických dějů vznikajících při použití implantovaných elektrod.
Podstata vynálezu bude v dalším objasněna na neomezujících příkladech jeho provedení, které jsou popsány pomocí připojených výkresů, na nichž je znázorněno:
na ' obr. 1 vysílací hlava podle , vynálezu při ošetřování kostní tkáně, na 'obr. 2 perspektivní ' pohled na vysílací 'hlavu znázorněnou v obr. 1, na obr. 3 pohled na vysílací hlavu znázorněnou v obr. 2 zezadu, ve kterém je patrno umístění vysílací cívky, obr. 4 blokové schéma elektronické soustavy ' pro buzení vysílací cívky z obr. 3 kódem č. 1, na obr. 5 blokové schéma elektronické soustavy pro buzení vysílací cívky z obr.
kódem č. 2 na obr. 5a a 5b impulsní průběhy kódu č.
' a kódu č. 2, které jsou vhodné pro ošetřování buněk a tkání, na obr. 6 obměna průběhu záporné části impulsů kódu č. 2.
Na obr. 1 a 2 je znázorněna noha 10 osoby s frakturou 12 kosti. Vysílací hlava 14 je umístěna na pokožce nohy 10 a je na ošetřovaném místě upnuta pomocí popruhu 16 (spojeného s vysílací hlavou 14 spoji 16a), který může být opatřen na svém povrchu přilnavou hmotou 18, takže popruh 16 může být upnut kolem nohy 10 a vysílací hlavy 14 a udržovat polohu této vysílací hlavy 14 vůči noze 10. Vysílací hlava 14 může být opatřena vrstvou 20 '' pěnové hmoty, kterou je vysílací hlava 14 na noze 10 podložena a která umožňuje průchod vzduchu pod vysílací hlavou 14. Vysílací hlava 14 je na své vnitřní straně obvykle zakřivena tak, že odpovídá tvaru ošetřovaného orgánu.
Vysílací hlava 14 obsahuje vysílací cívku 22, která může mít jakýkoliv vhodný tvar. Z obr. 3 je patrné, že vysílací cívka 22 je obvykle pravoúhlá, takže uvnitř závitů vysílací cívky 22 vzniká „okénko“. Vysílací cívka '22 může být rovinná nebo může být obecně zakřivena tak, aby její tvar odpovídal zakřivení vysílací hlavy 14. Vysílací cívka 22 je opatřena kolíky 24 vyčnívajícími z vysílací hlavy 14, které slouží k připojení kabelu spojujícího vysílací cívku 22 s elektronickou soustavou, která bude podrobně popsána později. V kabelu může být vložena dioda 27 zapojená paralelně k vysílací cívce 22, jejíž účel bude také popsán později.
Vysílací hlava 14 je na ošetřovaném místě umístěna tak, že „okénko“ tvořené vysílací cívkou 22 je poblíž fraktury 12, to jest poblíž léčené tkáně. Vysílací cívka 22 je buzena, což bude podrobně vysvětleno později, a indukuje v ošetřované tkáni elektrický potenciál. Bylo zjištěno, že ve tkáni mají být indukovány specifické signály, kterých lze dosáhnout buzením vysílací cívky 22 obvody z obr. 4 nebo 5, které generují impulsní signály znázorněné na obr. 5a nebo 5b.
Na obr. 4 je znázorněno blokové schéma elektronické soustavy pro buzení vysílací cívky 22. K vysílací cívce 22 (nebo cívkám, což je ' možný případ, který bude popsán později) je přes první hradlo 32 připojen zdroj 30 stejnosměrného napětí. První hradlo 32 je řízeno prvním tvarovacím obvodem 36 a prvním zdrojem 34 impulsů, takže do vysílací cívky 22 je přiváděn impulsní signál sestávající z opakujících se impulsů elektrického napětí.
Z obr. 5a je patrno, že každý impuls se skládá z „kladné“ části Pl, po níž v důsledku elektrické energie nahroma-děaé ve vysílací cívce 22 následuje „záporná“ část P2. V soustavě podle obr. 4 může být použito omezovacího obvodu 38, který omezuje špičková napětí této záporné části P2 impulsu. Omezovači bbvod 88 může být tořřen jednou nebo více diodami, zapojenými paralelně k vysílací cívce 22, a může být s výhodou umístěn v kabelu. V obr. 1 je tento omezovači obvod 38 tvořen diodou 27.
Na obr. 5a jsou znázorněny signály ve vysílací cívce 22, a tudíž i signály indukované v ošetřované tkáni. Předpokládá se, že první hradlo 32 je v čase tl otevřeno vhodným signálem z prvního tvarovacího obvodu 36 (tvarovací obvod určující šířku impulsu), takže elektrické napětí na vysílací cívce 22 stoupne podél hrany 39 z přibližně nulového napětí na napětí označené v obr. 5a jako VI. Napětí na vysílací cívce 22 pak klesá podél hrany 40. Sklon této hrany 40 je určen L/R časovou konstantou soustavy z obr. 4, to jest indukčností vysílací cívky 22 a činným výstupním odporem soustavy včetně rozložených kapacit, indukčností a odporů. Pro ošetření mnoha tkání a buněk je účelné volit vlastnosti soustavy tak, aby hrana 40 impulsu byla pokud možno plochá, v důsledku čehož má signál přiváděný do vysílací cívky 22 téměř pravoúhlý průběh. V čase t2 je první hradlo 32 prvním tvarovacím obvodem 36 zablokováno. Před zablokováním prvního hradla 32 má signál na vysílací cívce 22 napětí V2, znázorněné na obr. 5a. Napětí na vysílací cívce 22 klesá z hodnoty V2 podél hrany 41 na napětí opačné polarity, označené na obr. 5a jako V3. Velikost napětí V3 opačné polarity může být omezovacím obvodem 38 omezena na poměrně malou hodnotu ve srovnání s hodnotou VI. Napětí signálu na vysílací cívce 22 pak z hodnoty V3 klesá na nulový nebo referenční potenciál, této úrovně konečně dosáhne v čase t3. Popsaný proces se opakuje až po určité době, kdy první zdroj 34 impulsů, určující rychlost opakování impulsů, vyšle do prvního tvarovacího obvodu 36 další impuls, v důsledku něhož první tvarovací obvod 36 generuje signál k opětnému otevření prvního hradla ’ 32.
První zdroj 34 impulsů a první tvarovací obvod 36 jsou s výhodou tvořeny monostabilními multivibrátory. Délka impulsů může být nastavena prvním tvarovacím obvodem 36, opakovači rychlost může být nastavena prvním zdrojem 34 impulsů. Zdroj 30 stejnosměrného napětí kromě toho v případě potřeby ' umožňuje měnit amplitudu impulsního signálu.
Při použití impulsního signálu kódu č. 2 se použije soustavy podobné -soustavě z obr.
4. Tato soustava, znázorněná na obr. 5, sestává z druhého tvarovacího obvodu 35, druhého zdroje 37 impulsů a druhého hradla 33, které určují délku série impulsů a opakovači rychlost sérií impulsů. Kromě toho tato soustava obsahuje první hradlo 32, první tvarovací obvod 36 a první zdroj 34 impulsů, popsané v souvislosti s obr. 4. Soustava z obr, 5 generuje signál, který je přiváděn do vysílací cívky (cívek) 22 a má průběh znázorněný na obr. 5b. Tato sousta- va se - od soustavy znázorněné na obr. 4 liší dále tím, že není použito omezovacího obvodu 38, což umožňuje vznik větších záporných částí impulsů, což je patrné na obr. 5b. Druhý tvarovací obvod 35 a druhý zdroj 37 impulsů určují počet impulsů v sérii a časový odstup mezi sériemi po sobě následujícími.
Bylo zjištěno, že signál na vysílací cívce 22, a tudíž i signál indukovaný v ošetřované tkáni mají vyhovovat určitým požadavkům. Tyto požadavky jsou určovány s ohledem na signály indukované v tkáni a/nebo v buňkách, které jsou ošetřovány. Tyto indukované signály mohou být v případě potřeby snímány pomocnou snímací cívkou (není znázorněna), která je umístěna ve vzdálenosti od - vysílací cívky 22 odpovídající vzdálenosti vysílací cívky 22 od ošetřované tkáně, což bude podrobně popsáno později. Bylo zjištěno, že signály pro účinné léčení živých tkání a buněk, zejména tvrdých tkání, jako je kostní tkáň, musí vyhovovat následujícím požadavkům.
V dalším popisu představují signály . znázorněné na obr. 5a a 5b impulsy elektrického napětí a souvisejícího proudu generované vysílací cívkou 22 a vnucované tkáním a/nebo buňkám. Při „nabuzení“ vysílací cívky 22 mají tyto impulsy jednu polaritu („kladná“ část impulsu v obr. 5a a 5b), při odbuzení vysílací cívky 22 mají tyto impulsy opačnou polaritu („záporná“ část impulsu v obr. 5a a 5b). Výrazy „kladný“ a .záporný“ je třeba považovat pouze za relativní, neboť je jich zde použito jen pro označení - částí impulsů o opačných polaritách vůči referenční napěťové úrovni.
Bylo zjištěno, že „kladná“ -část impulsů by měla být vůči „záporné“ části impulsů v určitém poměru, aby se dosáhlo příznivých změn chování živých tkání a buněk. Tohoto určitého vzájemného poměru se dosahuje použitím dvou různých signálů, jakož i kombinace těchto signálů.
V impulsním signálu kódu č. 1 (obr. 5a) se asymetrický impulsní průběh indukovaný v tkáni nebo buňkách střídavým nabuzením a odbuzením vysílací cívky 22 opakuje takovou frekvencí, že celková činná doba není menší než přibližně 2 % celkového času. Tento kmitočet je v kódu č. 1 obvykle v rozsahu přibližně 10 až 100 Hz s podílem pracovní doby v rozsahu 20 až 30 %. Vzájemné poměry „kladných“ a „záporných“ částí impulsů jsou při použití signálu kódu č. 1 následující: impulsní signál má mít určitý průběh, to jest každá „kladná“ část - impulsů má být složena nejméně ze tří hran, to jest hran 39, 40 a 41 z obr. 5a. Pro léčení tkání a buněk se jako nejvhodnější projevilo použití impulsního -signálu, jehož „kladné“ části mají přibližně pravoúhlý tvar. Může však být samozřejmě použito i jiných průběhu impulsů (jiných než špičky s dvěma hranami). Špičková amplituda poslední hrany 41 každé „klad205096 né“ části impulsu, to jest napětí V2 v obr. 5a, nemá být menší, než přibližně 25 % špičkové amplitudy první hrany 39 „kladné“ části impulsu, to jest napětí VI v obr. 5a.
Špičková amplituda „záporné“ části impulsu je na obr. 5a označena jako V3. Tato špičková amplituda by neměla být větší než přibližně 1/3 špičkové amplitudy „kladné“ části impulsu. Délka každé „kladné“ části impulsu (čas, který uplyne mezi body tl a t2 v obr. 5a) by neměla být větší než přibližně 1/9 délky následující „záporné“ části impulsu (čas, který uplyne mezi body t2 a t3 v obr. 5a). Protože se používá elektromagnetické vysílací cívky 22, je energie každé „kladné“ části impulsu rovna energii každé „záporné“ části impulsu, to jest plocha uzaveřná v obr. 5a „kladnou“ částí impulsů je rovna ploše uzavřené „zápornou“ částí impulsů. Při splnění tohoto požadavku je energie „záporné“ části impulsů rozložena v poměrně dlouhém časovém intervalu, takže průměrná amplituda této „záporné“ části impulsu je malá. Bylo zjištěno, že tato průměrná amplituda záporné části by neměla být větší než přibližně 1/6 průměrné amplitudy „kladné“ části impulsu.
Splněním těchto podmínek je zajištěno, že „kladné“ a „záporné“ části impulsů mají vhodné vzájemné kmitočtové a amplitudové poměry, takže se dosáhne příznivého ovlivnění chování tkání a buněk.
Dále bylo zjištěno, že impulsy musí vyhovovat následujícím dalším požadavkům. Průměrná amplituda „kladné“ části impulsu má být v rozsahu přibližně 0,0001 až 0,01 V na centimetr tkáně nebo buněk, což odpovídá proudu v rozsahu přibližně 0,1 až 10 μ na čtvereční centimetr léčené tkáně a/nebo buněk (vyplývá z obvyklého měrného odporu buněk a tkání). Bylo zjištěno,že vyšší nebo nižší napětí impulsů nemají léčebný účinek. Bylo také zjištěno, že trvání „kladné“ části impulsu (čas který uplyne mezi body tl a t2 v obr. 5a) by mělo být nejméně kolem 200 ^s. Jestliže je délka „kladné“ části impulsu menší než přibližně 200 μ$, nejsou tkáně a buňky dostatečně stimulovány к tomu, aby došlo к ovlivnění procesů. Z praktického hlediska by „kladná“ část impulsů neměla trvat déle než přibližně 1 ms. Bylo také zjištěno, že opakovači rychlost impulsů by měla být v případě kostní a jiných tvrdých tkání v rozsahu přibližně 65 až 75 Hz. Impulsní léčba s použitím signálů s těmito parametry je zvláště vhodná pro dosažení reprodukovatelných výsledků u tkání a buněk tohoto druhu. Opakovací rychlost však může být obecně v rozsahu mezi přibližně 10 až 100 Hz, což u tkání a buněk zajišťuje dobré výsledky.
Pro léčení poruch kostní tkáně, zejména pro léčení pseudarthrózy, se osvědčil signál č. 1. Optimální špičková amplituda indukované „kladné“ části impulsu je v roz6 sáhu přibližně 1 až 3 mV na centimetr léčené tkáně (1 až 3 μΑ na čtvereční centimetr léčené tkáně a/nebo buněk) při trvání „kladné“ části impulsu kolem 300 μ$, při trvání „záporné“ části impulsu kolem 3300 ^s, a při opakovači rychlosti impulsů kolem 72 Hz. V případě, že jsou splněny požadavky na průběh impulsů představují tyto údaje optimální průběh signálu. Celkové doby léčení mohou být různé. Dosud bylo zjištěno, že vhodná je impulsní léčba trvající nejméně 15 minut, která se provádí jednou nebo opakovaně po určitý počet dní. Signál kódu č. 1 je účelné aplikovat minimálně po dobu 8 hodin denně čtyři měsíce v obtížných případech a dva týdny v méně obtížných případech.
Při použití impulsního signálu kódu č. 2 (obr. 5b) je v tkáních nebo buňkách střídavým nabuzením a odbuzením vysílací cívky 22 indukován asymetrický impulsní průběh, který sestává ze sérií impulsů (skupin impulsů) o asymetrickém průběhu. Délka každé série asymetrických impulsů je taková, že série představuje nejméně přibližně % celkového času. Opakovači rychlost (četnost) sérií je obvykle v rozsahu 5 až 50 Hz.
Základní vzájemné poměry kmitočtu a amplitudy „kladných“ a „záporných“ částí impulsů uvnitř série impulsů jsou v kódu Č.
následující: každá „kladná“ část impulsu by se měla skládat nejméně ze tří částí, to je z hran 39“, 40“ a 41“, znázorněných v obr. 5b. I v případě tohoto kódu bylo shledáno, že z hlediska léčení tkání a buněk je zvláště vhodná „kladná“ část impulsu, která má přibližně pravoúhlý tvar. Je ovšem možno použít i jiných tvarů impulsů, s výjimkou jednoduchých špiček s dvěma hranami. Neivětší amplituda poslední hrany 41‘ každé „kladné“ části impulsu, to je napětí V2 v obr. 5b, by neměla být menší než přibližně 25 % největší amplitudy první hrany 39* „kladné“ části impulsu, to je napětí VI v obr. 5b.
Špičková „záporná“ amplituda je v obr. 5b označena jako V3. Tato „záporná“ špičková amplituda by neměla být více než čtyřicetinásobkem „kladné“ špičkové amplitudy (v tomto případě VI). Tento požadavek může být splněn použitím „záporných“ částí Impulsů s různými průběhy, například pravoúhlým, trapozoidálním s exponenciálním poklesem, zvonovltým nebo ve tvaru jednoduché šipčky s exponenciálním poklesem. Jednotlivé možné tvary jsou znázorněny průběhy a, b, c, d a na obr. 6.
Délka „kladné“ části impulsu (čas, který uplyne mezi body tl a t2 v obr. 5b) by měla být nejméně přibližně čtyřnásobkem délky následující „záporné“ části impulsu (čas, který uplyne mezi body t2 a t3 v obr. 5b). Protože se v zařízení používá elektromagnetické vysílací cívky 22, je energie každé „kladné“ části impulsu rovna ener205096 gii každé „záporné“ části impulsu, to jest plocha omezená v obr. 5b „kladnou“ částí impulsů je rovna ploše omezené „zápornou“ částí impulsů.
Opakovači rychlost impulsů uvnitř série impulsů kódu č. 2 [čas, který uplyne mezi body tl a t4) může být v rozsahu přibližně 2000 Hz až 10 000 Hz. Délka série impulsů v tomto kódu [čas, který uplyne mezi body tl a t5) by měla představovat přibližně nejméně 1 % času, který uplyne mezi body tl a t6.
Splnění uvedených požadavků zaručuje, že „kladné“ a „záporné“ části impulsů mají vhodné vlastnosti z hlediska kmitočtu a amplitudy a navzájem, takže se signálem o tomto průběhu dosáhne příznivého ovlivnění chování tkání a buněk.
Dále bylo zjištěno, že sled impulsů by měl vyhovovat následujícím dalším požadavkům. Průměrná amplituda „kladné“ špičky napětí by měla být v rozsahu přibližně 0,00001 až 0,01 V na centimetr tkání a buněk [to je přibližně 0,01 až 10 μΑ na čtvereční centimetr léčené tkáně a buněk).
Bylo zjištěno, že vyšší nebo nižší napětí impulsů nemají na tkáně a/nebo buňky příznivé účinky. Bylo také zjištěno, že délka každé „kladné“ části impulsu v sérii impulsů sledu impulsů (to je čas, který uplyne mezi body tl a t2 v obr. 5b) by měla být nejméně přibližně 1000 ^s. Bylo také zjištěno, že opakovači rychlost sérií impulsů · (celých skupin impulsů) by pro kostní a ostatní tvrdé tkáně měla být v rozsahu přibližně 5 až 15 Hz.
Trvání „záporné“ části impulsu v . sérii impulsů by nemělo být větší než přibližně 50 μδ a průměrná amplituda této „záporné“ části mipulsů by neměla být větší než přibližně 50 mV na centimetr léčené tkáně a buněk (přibližně 50 μΑ na čtvereční centimetr léčené tkáně buněk).
Pro léčení poruch kostní tkáně, zejména pro léčení pseudoartrózy a nezhojených zlomenin se, jak bylo zjištěno, nejlépe hodí impulsní signál, u něhož má indukovaná „kladná“ část impulsů špičkovou amplitudu v rozsahu přibližně 1 až 3 mV na centimetr léčené tkáně (to je 1 až 3μΑ na čtvereční centimetr léčené tkáně a buněk), délka každé „kladné“ části impulsů je kolem 200 us, délka každé „záporné“ části impulsů je kolem 30 ,«s, čas mezi body t3 a t4 v obr. 5b je 10 μδ, opakovači rychlost impulsů je kolem 4000 Hz, délka série impulsů je kolem 5 ms a opakovači rychlost sérií impulsů je kolem 10 Hz. Pokud jsou splněny uvedené požadavky, je kód č. 2 optimálním signálem pro léčení kostní tkáně.
Bylo také ověřeno, že lze použít jednotlivých asymetrických impulsů ze série impulsů kódu č. 2. Tyto impulsy s opakovači rychlostí obdobnou opakovači rychlosti impulsů ve sledu č. 1 mají rovněž příznivý vliv na růst a obnovu tkání. Léčení živých tkání a buněk uvedenými metodami, zejména tvrdých tkání, jako je kostní tkáň, prokázalo zvýšenou obnovu tkání, neboť u všech pacientů a pokusných zvířat bylo dosaženo v podstatě jednotných výsledků. Zvláště dobrých výsledků bylo dosaženo při léčení pseudartrózy, při kterém se dosáhlo spojení kostí, ačkoliv předchozí pokusy provádění jinými postupy byly neúspěšné a uvažovalo se o amputaci.
Praxe ukázala, že je vhodné použít co největších vysílacích cívek 22 a takové ' polohy vysílací cívky 22, aby léčené tkáně a buňky byly vystaveny dostatečné proudové hustotě. Jak je známo, časově proměnné magnetické pole indukuje časově proměnné elektrické pole, které je k magnetickému poli kolmé. Geometrie siločar magnetického pole tedy určuje geometrii indukovaného· elektrického pole. Protože se požaduje poměrně rovnoměrné indukované elektrické pole, měla by být geometrie siločar magnetického pole pokud možno rovnoměrná, čehož lze dosáhnout vysílací cívkou 22, jejíž rozměry jsou ve srovnání . s rozměry léčené oblasti· poměrně velké. V současné době není potvrzeno, že by bylo potřeba volit určitou vzájemnou orientaci siločar magnetického pole a léčené tkáně a buněk.
Bylo zjištěno, že rovnoměrnost indukovaného elektrického pole dosažitelná elektromagnetickým léčením je podstatná pro dosažení dobrých výsledků léčení, kterých se nedosáhlo při jiných metodách léčení, například při použití elektrostatických polí nebo vytvářením napěťového gradientu pomocí elektrod implantovaných do tkání nebo buněk. indukované elektrické pole vzniká ve vakuu stejně jako ve vodivé látce nebo v isolantu. Průběh siločar pole je · ve všech třech případech stejný (s odchylkou řádu procent), s výjimkou případů, kdy indukovaný proud je dostatečně velký k tomu, aby vytvářel protielektromotorickou sílu rušící siločáry magnetického pole. Tento případ nastane, jestliže má vodivá látka vysokou vodivost, například kov, a jestliže předmět je dostatečně rozměrný k tomu, aby · mohl zachytit větší počet siločar magnetického pole. Živé systémy, to jest tkáně a buňky, jsou mnohem horšími vodiči než· běžné kovy (přibližně o· 5 řádů). Geometrie magnetického pole je v důsledku této skutečnosti v tkáních a buňkách nezkreslena a · zůstává nezměněna při pokračujícím procesu růstu tkáně a buněk. Prokázalo se tedy, že napěťový gradient při nechirurgickém elektromagnetickém léčení je v tkáních a buňkách konstantní a nezávisí na stadiu léčení.
Této rovnoměrnosti indukovaného potenciálu není možno dosáhnout použitím implantovaných elektrod, elektrostatickou vazbou, transformátorem připojeným k elektrodám nebo implantovanými cívkami připojenými k elektrodám. Tyto způsoby lé205096 čení závisí ' na vodivosti, která se bude uvnitř tkání a/nebo buněk měnit, indukovaný napěťový gradient pak při změnách stavu tkání a buněk také nebude konstantní. Kromě toho jednotlivá místa léčených tkání a/nebo buněk mají v určitém čase rozdílné ' vodivosti, což vyvolává nerovnoměrné rozdělení napěťového gradientu v léčených tkáních a buňkách.
Je zřejmé, že nechirurgické magnetické ošetřování tkání a buněk podle vynálezu je z těchto· důvodů výhodnější než elektrické léčení · jinými způsoby.
Pro obvyklé fraktury kostí se osvědčily následující typické rozměry vysílací cívky 22: rozměry okének vysílacích cívek 22 50,8 milimetru X 70 mm (pro dospělého jedince] a · 50,8 mm X 30 mm (pro dítě).
Drát použitý pro vysílací cívky 22 má s výhodou průměr 2,64 mm, vzájemná isolace jednotlivých závitů je provedena lakem. Pro dospělého jsou vhodné vysílací cívky še 60 závity, pro dítě se 70 závity. Pro zásahy v ústní dutině je nutno rozměry vysílací cívky 22 volit přiměřeně menší.
Iridukčnost vysílací cívky 22 je vhodné volit v rozmezí 1 až 5000 μΗ, s výhodou v rozmezí přibližně 1000 až 3000 μΗ. Činný odpor cívky má být dostatečně nízký, to je 10~з až 10_1 Ω. V zájmu vybuzení dostateč ného napěťového gradientu v ošetřované tkáni a buňkách je třeba na vysílací cívky 22 přivádět signál o napětí v rozsahu přibližně 2 až 30 V. Čím menší je indukčnost vysílací cívky 22, tím strmější je hrana 40 v obr. 5 a 5a. Čím větší je indukčnost vysílací cívky 22, tím plošší nebo více pravoúhlý je tvar „kladné“ části impulsu.
Snímání indukovaného napětí se může provádět snímacími elektrodami, které jsou ve styku s ošetřovanou tkání a buňkami, nebo pomocí snímací cívky umístěné ve vzdálenosti od vysílací cívky 22 odpovídající vzdálenosti vysílací cívky 22 od léčené tkáně a buněk. Typickým příkladem použité snímací cívky je kruhová cívka o průměru 1,5 cm se 67 nebo 68 závity drátu. Napětí indukované v cívce je rozloženo po' délce vodiče, napětí indukované na centimetr délky vodiče snímací cívky je rovno napětí na centimetr ošetřované tkáně a buněk.
Při typickém způsobu léčení s použitím vysílací cívky 22 s okénkem 50,8 mm X 70 milimetrů a 60 závity vodiče o průměru 1,42 milimetru a s diodou 27 připojenou paralelně k vysílací cívce 22 se ve snímací cívce indukují následující napětí (přepočteno na mV na centimetr tkáně], napětí a časy . odpovídají průběhu z obr. 5a (v μβ).
indukované napětíVI maximum (u vysílací cívky)22 mm od čela vysílací cívky15 mm · od čela vysílací cívky6,0
V2 V3 tl—12 t2—13
17 3,7 300 4200
11,5 2,5 300 4200
4,2 1,0 300 4200
Využití impulsního elektromagnetického pole k ovlivňování kostní tkáně za různých okolností je nyní na pevné experimentální a klinické · základně. ' Dosažených výsledků bylo použito při úspěšném léčení vrozené a nabyté pseudartrózy · a · čerstvých fraktur u. pacientů. Byla také zvýšena rychlost hojení ' fraktur a zpětně ' působícího zánětu o kostice u zvířat. Dosahuje se také omezení ztrát kostní tkáně dlouhých kostí zřidnutím kostí v důsledku nepohyblivosti. Úspěchy dosažené zařízením podle vynálezu jsou založeny na objevu impulsních průběhů se specifickým vzájemným poměrem časů, kmitočtů a amplitudy.

Claims (7)

  1. pRedmEt vynalezu
    1. Zařízení pro ošetřování živých buněk a tkání, zejména kostních buněk a tkání, změnou elektrického a elektrochemického prostředí těchto buněk a tkání, vyznačující se tím, že sestává z nejméně jedné vysílací cívky (22) připojené k výstupu prvního hradla (32), jehož první vstup je spojen s výstupem zdroje (30) stejnosměrného napětí a jehož druhý vstup je spojen s výstupem prvního tvarovacího obvodu (36), jehož vstup je připojen k výstupu prvního zdroje (34) impulsů.
  2. 2. Zařízení podle bodu 1, vyznačující se tím, že mezi první hradlo (32) a vysílací cívku (22) je svým jedním vstupem a výstupem vřazeno druhé hradlo (33), jehož druhý vstup je spojen s výstupem druhého tvarovacího obvodu (35), jehož vstup je připojen k výstupu druhého zdroje (37) impulsů.
  3. 3. Zařízení podle bodu 1, vyznačující se tím, že k vysílací cívce (22) je připojen -omezovací obvod (38).
  4. 4. Zařízení podle bodů 1 a 3, vyznačující se tím, že omezovači obvod (38) je tvořen diodou (27) připojenou paralelně k vysílací cívce (22).
  5. 5. Zařízení podle bodu 1, vyznačující ' se tím, že vysílací cívka (22) je uspořádána ve vysílací hlavě (14), opatřené popruhy (16) pro připevnění vysílací hlavy (14) na ošetřované místo.
  6. 6. Zařízení podle bodu 1, vyznačující se tím, že ve vysílací hlavě (14) jsou uspořádány nejméně dvě vysílací cívky (22).
  7. 7. Zařízení podle bodu 1, vyznačující se tím, že rozměry okénka uvnitř závitů vinutí vysílací cívky - - (22) jsou nejméně rovny rozměrům ošetřovaného místa.
CS777552A 1976-11-17 1977-11-16 Device for cultivating the live cells and tissues CS205096B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/742,706 US4105017A (en) 1976-11-17 1976-11-17 Modification of the growth repair and maintenance behavior of living tissue and cells by a specific and selective change in electrical environment

Publications (1)

Publication Number Publication Date
CS205096B2 true CS205096B2 (en) 1981-04-30

Family

ID=24985884

Family Applications (1)

Application Number Title Priority Date Filing Date
CS777552A CS205096B2 (en) 1976-11-17 1977-11-16 Device for cultivating the live cells and tissues

Country Status (27)

Country Link
US (1) US4105017A (cs)
JP (1) JPS5363791A (cs)
AT (1) AT384169B (cs)
AU (1) AU509361B2 (cs)
BE (1) BE860745A (cs)
BG (1) BG30919A3 (cs)
BR (1) BR7707629A (cs)
CA (1) CA1092196A (cs)
CH (1) CH621942A5 (cs)
CS (1) CS205096B2 (cs)
DE (1) DE2748780C2 (cs)
DK (1) DK151687C (cs)
ES (2) ES464178A1 (cs)
FR (1) FR2371205A1 (cs)
GB (1) GB1596512A (cs)
HK (2) HK21682A (cs)
IE (1) IE46078B1 (cs)
IL (1) IL53346A (cs)
IT (1) IT1090781B (cs)
LU (1) LU78533A1 (cs)
MC (1) MC1191A1 (cs)
MX (1) MX147342A (cs)
NL (1) NL178482C (cs)
NO (1) NO773925L (cs)
PH (1) PH13304A (cs)
PL (1) PL202175A1 (cs)
SE (1) SE7712939L (cs)

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266532A (en) * 1976-11-17 1981-05-12 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4233965A (en) * 1978-01-16 1980-11-18 Cas Products, Inc. Method and apparatus for the therapeutic treatment of living tissue
EP0039163A1 (en) * 1980-04-17 1981-11-04 Electro-Biology, Inc Method and means for electromagnetic stimulation of a vegetative process
EP0039206B1 (en) * 1980-04-23 1984-10-10 Inoue-Japax Research Incorporated Magnetic treatment device
US4308868A (en) * 1980-05-27 1982-01-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Implantable electrical device
EP0126805B1 (en) * 1980-06-26 1988-08-17 Electro-Biology, Inc Electromagnetic body-treatment device
DE3071892D1 (en) * 1980-10-03 1987-02-26 Henning Rosengart Electromedical treatment apparatus
DE3279412D1 (en) * 1981-06-02 1989-03-09 Mehesz Corp A physical treatment for influencing biological activity
USD280341S (en) 1982-06-25 1985-08-27 Theratronics, Inc. Muscle stimulator
US4549547A (en) * 1982-07-27 1985-10-29 Trustees Of The University Of Pennsylvania Implantable bone growth stimulator
JPS5955260A (ja) * 1982-09-21 1984-03-30 橋本 健 電磁治療器
US4506673A (en) * 1982-10-18 1985-03-26 Rorer Group Inc. Therapeutic treatment within joint capsules of the body
US4535775A (en) * 1983-02-10 1985-08-20 Biolectron, Inc. Method for treatment of non-union bone fractures by non-invasive electrical stimulation
IT1159024B (it) * 1983-06-02 1987-02-25 Ruggero Cadossi Metodo e dispositivo per il trattamento di tessuti e cellule viventi mediante campi elettromagnetici pulsanti
US5058582A (en) * 1983-06-29 1991-10-22 Sheldon Thaler Apparatus for reactively applying electrical energy pulses to a living body
US4654574A (en) * 1983-06-29 1987-03-31 Sheldon Thaler Apparatus for reactively applying electrical energy pulses to a living body
JPS6024121A (ja) * 1983-07-16 1985-02-06 林原 健 動植物の生産性を向上させる方法
DE3332843A1 (de) 1983-09-12 1985-04-04 Broers, Dieter, 8079 Pfalzpaint Geraet zur behandlung von lebendem gewebe mit elektromagnetischen wellen zum zwecke der therapeutischen beeinflussung bei aufgetretenen erkrankungen
US4620543A (en) * 1984-06-15 1986-11-04 Richards Medical Company Enhanced fracture healing and muscle exercise through defined cycles of electric stimulation
EP0181053A3 (en) * 1984-09-12 1988-07-20 Irt, Inc. Pulse electro-magnetic field therapy device with auto biased circuit and method for use
US4674482A (en) * 1984-09-12 1987-06-23 Irt, Inc. Pulse electro-magnetic field therapy device with auto bias circuit
US4602638A (en) * 1984-10-03 1986-07-29 Eddie Adams Apparatus and method for invasive electrical stimulation of bone fractures
GB8601138D0 (en) * 1986-01-17 1986-02-19 Lyon R J Therapy device
AU610497B2 (en) * 1986-05-23 1991-05-23 Trustees Of The University Of Pennsylvania, The Portable electro-therapy system
US4757804A (en) * 1986-08-25 1988-07-19 Lti Biomedical, Inc. Device for electromagnetic treatment of living tissue
US5215642A (en) * 1986-10-27 1993-06-01 Life Resonances, Inc. Improved method and apparatus for regulating transmembrane ion movement
US5290409A (en) * 1986-10-27 1994-03-01 Life Resonances, Inc. Methods and apparatus for regulating transmembrane ion movement utilizing selective harmonic frequencies and simultaneous multiple ion regulation
US5106361A (en) * 1988-03-23 1992-04-21 Life Resonances, Inc. Method and apparatus for controlling the growth of non-osseous non-cartilaginous solid connective tissue
US5160591A (en) * 1986-10-27 1992-11-03 Life Resonances, Inc. Methods and apparatus for regulating transmembrane ion movement utilizing selective harmonic frequencies and simultaneous multiple ion regulation
US4932951A (en) * 1988-03-23 1990-06-12 Life Resonances, Inc. Method and apparatus for controlling tissue growth and an applied fluctuating magnetic field
US5067940A (en) * 1988-03-23 1991-11-26 Life Resonances, Inc. Method and apparatus for controlling the growth of cartilage
US5100373A (en) * 1989-01-09 1992-03-31 Life Resonances, Inc. Techniques for controlling osteoporosis using non-invasive magnetic fields
US5087336A (en) * 1989-01-09 1992-02-11 Life Resonances, Inc. Methods and apparatus for regulating transmembrane ion movement utilizing selective harmonic frequencies and simultaneous multiple ion regulation
US4818697A (en) * 1986-10-27 1989-04-04 Life Resonances, Inc. Techniques for enhancing the permeability of ions through membranes
JP2810665B2 (ja) * 1987-06-15 1998-10-15 松下電工株式会社 血行促進装置
US4846181A (en) * 1987-10-02 1989-07-11 Staodynamics, Inc. Soft tissue wound healing therapy utilizing pulsed electrical stimulation
US5269745A (en) * 1988-03-23 1993-12-14 Life Resonances, Inc. Method and apparatus for controlling tissue growth with an applied fluctuating magnetic field
US5123898A (en) * 1988-03-23 1992-06-23 Life Resonances, Inc. Method and apparatus for controlling tissue growth with an applied fluctuating magnetic field
US5038780A (en) * 1988-04-29 1991-08-13 The Biotronics Research Corp. Method and apparatus for capacitively regenerating tissue and bone
CA1334541C (en) * 1988-05-04 1995-02-21 Michael James Williams Brennan Treatment of sleep disorders and alleviating disruption of circadian rhythms
US5224922A (en) * 1988-05-19 1993-07-06 Kurtz Warren H Quasistatic biological cell and tissue modifier
US4993413A (en) * 1988-09-22 1991-02-19 The Research Foundation Of State University Of New York Method and apparatus for inducing a current and voltage in living tissue
US5267939A (en) * 1989-01-09 1993-12-07 Life Resonances, Inc. Techniques for controlling osteoporosis using non-invasive magnetic fields
CA2021506A1 (en) * 1989-08-17 1991-02-18 Abraham R. Liboff Electromagnetic treatment therapy for stroke victims
US5077934A (en) * 1989-09-22 1992-01-07 Life Resonances, Inc. Method and apparatus for controlling plant growth
US5045050A (en) * 1989-11-15 1991-09-03 Life Resonances Method and apparatus for the treatment of cancer
US5211622A (en) * 1989-11-15 1993-05-18 Life Resonances, Inc. Method and apparatus for the treatment of cancer
US5183456A (en) * 1989-11-15 1993-02-02 Life Resonances, Inc. Method and apparatus for the treatment of cancer
US5103806A (en) * 1990-07-31 1992-04-14 The Research Foundation Of State University Of New York Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue
US5544665A (en) 1991-01-17 1996-08-13 The Catholic University Of America Protection of living systems from adverse effects of electric, magnetic and electromagnetic fields
US5566685A (en) * 1991-01-17 1996-10-22 The Catholic University Of America Protection of living systems from adverse effects of electric, magnetic and electromagnetic fields
US5195940A (en) * 1991-06-20 1993-03-23 Iatromed, Inc. Method for increased production of growth factor in living tissue using an applied fluctuating magnetic field
US5565005A (en) * 1992-02-20 1996-10-15 Amei Technologies Inc. Implantable growth tissue stimulator and method operation
DE69228531T2 (de) * 1992-02-20 1999-07-29 Neomedics, Inc., Budd Lake, N.J. Implantierbarer Knochenwachstumsstimulator
KR100260785B1 (ko) * 1992-05-27 2000-07-01 존 에프.위플 전기장, 자기장 및 전자기장의 악영향으로부터의 생명체 보호장치
US5338286A (en) * 1992-12-08 1994-08-16 Electro-Biology, Inc. Electromagnetic bioresponse by selective spectral suppression in pulsed field stimulation
USD361555S (en) 1993-02-17 1995-08-22 Amei Technologies Inc. Combined programmer and monitor for an implantable tissue growth stimulator
US5524624A (en) * 1994-05-05 1996-06-11 Amei Technologies Inc. Apparatus and method for stimulating tissue growth with ultrasound
WO1996008207A1 (en) 1994-09-12 1996-03-21 The Catholic University Of America Protection of living systems from adverse effects of electric, magnetic and electromagnetic fields
US5547459A (en) * 1994-10-25 1996-08-20 Orthologic Corporation Ultrasonic bone-therapy apparatus and method
US6213934B1 (en) 1995-06-01 2001-04-10 Hyper3D Corp. Electromagnetic bone-assessment and treatment: apparatus and method
US5782763A (en) * 1995-06-01 1998-07-21 Cyberlogic Inc. Electromagnetic bone-assessment apparatus and method
US6042531A (en) 1995-06-19 2000-03-28 Holcomb; Robert R. Electromagnetic therapeutic treatment device and methods of using same
US5710536A (en) * 1996-02-14 1998-01-20 Electronic De-Scaling 2000, Inc. Adaptive coil wrap apparatus
US6552530B1 (en) 1997-10-14 2003-04-22 Hex Technology Holding Limited Super-toroidal electric and magnetic field generator/detector, and sample analyser and treatment apparatus using same
AU2976997A (en) * 1996-05-31 1998-01-05 Masayuki Matsuura Low frequency therapy method, low frequency therapy apparatus and low frequency therapy system
US7789841B2 (en) 1997-02-06 2010-09-07 Exogen, Inc. Method and apparatus for connective tissue treatment
US7108663B2 (en) 1997-02-06 2006-09-19 Exogen, Inc. Method and apparatus for cartilage growth stimulation
US5904659A (en) 1997-02-14 1999-05-18 Exogen, Inc. Ultrasonic treatment for wounds
US5968527A (en) * 1997-02-27 1999-10-19 Catholic University Of America, The Protection of living systems from the adverse effects of stress
US5951459A (en) 1997-08-29 1999-09-14 Orthosoft, L.L.C. Magnetic coil for pulsed electromagnetic field
US5997464A (en) 1997-08-29 1999-12-07 Orthosoft, L.L.C. Magnetic coil for pulsed electromagnetic field
AU755495B2 (en) 1997-09-10 2002-12-12 Gradient Technologies, Llc Method and apparatus for altering the charge distribution upon living membranes with functional stabilization of the membrane physical electrical integrity
EP0988091B1 (en) * 1998-01-15 2009-10-21 Regenesis Biomedical, Inc. Improved pulsed electromagnetic energy treatment apparatus
DE69933555T2 (de) 1998-05-06 2007-06-14 Exogen, Inc., Memphis Ultraschallbandagen
JP2002521082A (ja) 1998-07-21 2002-07-16 アコースティック・サイエンシズ・アソシエイツ 生物組織器官の合成構造的像形成及び容量推定
DE19846685A1 (de) * 1998-10-09 2000-04-13 Richard Markoll Elektromagnetische Stimulierung von Knorpelgewebe
US6231528B1 (en) 1999-01-15 2001-05-15 Jonathan J. Kaufman Ultrasonic and growth factor bone-therapy: apparatus and method
KR100803810B1 (ko) 1999-05-21 2008-02-14 엑조겐 인코포레이티드 초음파 및 전자기적으로 조직을 치료하는 장치
AU768759B2 (en) 1999-06-14 2004-01-08 Exogen, Inc. Method and kit for cavitation-induced tissue healing with low intensity ultrasound
US6620117B1 (en) 2000-01-20 2003-09-16 Connextech, L.L.C. Vibrational device for stimulating tissue and organs
US7465546B2 (en) * 2000-02-23 2008-12-16 The Trustees Of The University Of Pennsylvania Regulation of transforming growth factor-beta (TGF-β) gene expression in living cells via the application of specific and selective electric and electromagnetic fields
US7445619B2 (en) * 2000-08-18 2008-11-04 Map Technologies Llc Devices for electrosurgery
US20040167244A1 (en) * 2000-08-18 2004-08-26 Auge Wayne K. Methods and compositions for fusing bone during endoscopy procedures
US6547794B2 (en) 2000-08-18 2003-04-15 Auge', Ii Wayne K. Method for fusing bone during endoscopy procedures
US6902564B2 (en) * 2001-08-15 2005-06-07 Roy E. Morgan Methods and devices for electrosurgery
US7771422B2 (en) 2002-06-06 2010-08-10 Nuortho Surgical, Inc. Methods and devices for electrosurgery
US7819861B2 (en) * 2001-05-26 2010-10-26 Nuortho Surgical, Inc. Methods for electrosurgical electrolysis
CA2426903C (en) 2000-10-25 2011-12-06 Exogen, Inc. Transducer mounting assembly
US7553662B2 (en) * 2000-12-22 2009-06-30 Keele University Culturing tissue using magnetically generated mechanical stresses
US7066932B1 (en) 2001-05-26 2006-06-27 Map Technologies Llc Biologically enhanced irrigants
US7429248B1 (en) 2001-08-09 2008-09-30 Exogen, Inc. Method and apparatus for controlling acoustic modes in tissue healing applications
US8235979B2 (en) 2001-08-15 2012-08-07 Nuortho Surgical, Inc. Interfacing media manipulation with non-ablation radiofrequency energy system and method
US8591508B2 (en) * 2001-08-15 2013-11-26 Nuortho Surgical, Inc. Electrosurgical plenum
US8734441B2 (en) * 2001-08-15 2014-05-27 Nuortho Surgical, Inc. Interfacing media manipulation with non-ablation radiofrequency energy system and method
US20080287730A1 (en) * 2001-11-09 2008-11-20 Advatech Corporation Apparatus for Creating Therapeutic Charge Transfer in Tissue
US7288062B2 (en) * 2001-11-09 2007-10-30 Michael Spiegel Apparatus for creating therapeutic charge transfer in tissue
AU2002360540A1 (en) * 2001-12-04 2003-06-17 University Of Southern California Method for intracellular modifications within living cells using pulsed electric fields
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US7162303B2 (en) 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20070129761A1 (en) 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US20140018880A1 (en) 2002-04-08 2014-01-16 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US8175711B2 (en) 2002-04-08 2012-05-08 Ardian, Inc. Methods for treating a condition or disease associated with cardio-renal function
US7147647B2 (en) * 2002-04-26 2006-12-12 Medtronic, Inc. Sintered titanium tube for the management of spinal cord injury
US20080077192A1 (en) 2002-05-03 2008-03-27 Afferent Corporation System and method for neuro-stimulation
CA2484916A1 (en) 2002-05-03 2003-11-13 Afferent Corporation A method and apparatus for enhancing neurophysiologic performance
US7985191B2 (en) * 2002-11-08 2011-07-26 American Medical Innovations, L.L.C. Apparatus and methods for therapeutically treating damaged tissues, bone fractures, osteopenia, or osteoporosis
US6884227B2 (en) 2002-11-08 2005-04-26 Juvent, Inc. Apparatuses and methods for therapeutically treating damaged tissues, bone fractures, osteopenia, or osteoporosis
US7207954B2 (en) * 2002-11-08 2007-04-24 Juvent, Inc. Apparatus and methods for therapeutically treating damaged tissues, bone fractures, osteopenia, or osteoporosis
US6955642B1 (en) 2002-11-26 2005-10-18 Ebi, Lp Pulsed electromagnetic field stimulation method and apparatus with improved dosing
IL154184A0 (en) * 2003-01-29 2003-07-31 Univ Ramot Self powered osteogenesis and osseointegration promotion and maintenance device for endesseous implants
US20050049640A1 (en) * 2003-05-12 2005-03-03 Gurtner Geoffrey C. Electromagnetic fields increase in vitro and in vivo angiogenesis through endothelial release of FGF-2
JP4322080B2 (ja) * 2003-09-22 2009-08-26 タカタ株式会社 エアバッグ装置
US10350428B2 (en) 2014-11-04 2019-07-16 Endonovo Therapetics, Inc. Method and apparatus for electromagnetic treatment of living systems
US8961385B2 (en) 2003-12-05 2015-02-24 Ivivi Health Sciences, Llc Devices and method for treatment of degenerative joint diseases with electromagnetic fields
US9433797B2 (en) 2003-12-05 2016-09-06 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurodegenerative conditions
US9656096B2 (en) 2003-12-05 2017-05-23 Rio Grande Neurosciences, Inc. Method and apparatus for electromagnetic enhancement of biochemical signaling pathways for therapeutics and prophylaxis in plants, animals and humans
US9415233B2 (en) 2003-12-05 2016-08-16 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological pain
US9440089B2 (en) 2003-12-05 2016-09-13 Rio Grande Neurosciences, Inc. Apparatus and method for electromagnetic treatment of neurological injury or condition caused by a stroke
GB0329310D0 (en) * 2003-12-18 2004-01-21 Univ Keele Method
JP4477922B2 (ja) * 2004-03-31 2010-06-09 有限会社ソノポール 音波微細穴開け装置
NZ551316A (en) 2004-04-19 2008-03-28 Ivivi Technologies Inc Electromagnetic treatment apparatus and method
US20060030896A1 (en) * 2004-07-09 2006-02-09 Simon Bruce J Pulsed electromagnetic field method of treatment of degenerative disc disease
US7509165B2 (en) * 2004-08-12 2009-03-24 Avazzia, Inc. Biofeedback electronic stimulation device
US20060052655A1 (en) * 2004-09-07 2006-03-09 Myers Walter T Sr Method and apparatus for modulating the effect of electro magnetic fields on the human body
US7520849B1 (en) 2004-09-20 2009-04-21 Ebi, Lp Pulsed electromagnetic field method of treating soft tissue wounds
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
EP1867932B8 (en) * 2005-01-06 2011-03-30 Halton OY Automatic displacement ventilation system with heating mode
US20070088407A1 (en) * 2005-02-01 2007-04-19 Smith Timothy B Method and device for treating injuries
US20070021693A1 (en) * 2005-03-07 2007-01-25 Titi Trandafir Dynamic motion therapy apparatus having a treatment feedback indicator
US20070055185A1 (en) * 2005-03-07 2007-03-08 Juvent Inc. Dynamic motion therapy apparatus having a treatment feedback indicator
US20070043310A1 (en) * 2005-03-07 2007-02-22 Juvent Inc. Method and apparatus for monitoring patient compliance during dynamic motion therapy
US8603017B2 (en) * 2005-03-07 2013-12-10 American Medical Innovations, L.L.C. Vibrational therapy assembly for treating and preventing the onset of deep venous thrombosis
AU2006226886B2 (en) * 2005-03-24 2010-11-25 American Medical Innovations L.L.C. Apparatus and method for monitoring and controlling the transmissibility of mechanical vibration energy during dynamic motion therapy
US20080139979A1 (en) * 2005-07-18 2008-06-12 Juvent, Inc. Vibrational therapy assembly adapted for removably mounting to a bed
US20070055096A1 (en) * 2005-07-29 2007-03-08 Berry Cheryl J Sexual stimulation devices and toys with features for playing audio and/or video received from an external source
US7912541B2 (en) * 2005-08-12 2011-03-22 Avazzia, Inc. Biofeedback electronic stimulation device using light and magnetic energy
WO2007103414A2 (en) * 2006-03-09 2007-09-13 Juvent, Inc. Mechanical loading apparatus having a signal modulating assembly
US20080009776A1 (en) * 2006-03-24 2008-01-10 Juvent Inc. Apparatus and method for monitoring and controlling the transmissibility of mechanical vibration energy during dynamic motion therapy
EP2004282A4 (en) * 2006-04-07 2009-05-27 Global Energy Medicine Pty Ltd IN VIVO STIMULATION OF CELL MATERIAL
US8795210B2 (en) 2006-07-11 2014-08-05 American Medical Innovations, L.L.C. System and method for a low profile vibrating plate
US8439816B2 (en) * 2009-07-14 2013-05-14 Pulse, Llc Piezoelectric, micro-exercise apparatus and method
US8147395B2 (en) * 2006-11-28 2012-04-03 Gregory S. Anderson Bone-activity stimulation apparatus and method
MX2009011042A (es) * 2007-04-12 2010-07-05 Ivivi Technologies Inc Aparato para el tratamiento de campos electromagneticos y metodo para su uso.
US20090081752A1 (en) * 2007-09-24 2009-03-26 Dennis Robert G Bioreactor, kit and method of using same
US20090082610A1 (en) * 2007-09-24 2009-03-26 Wolf David A Osteo or tissue healing device, kit and method of using the same
DE102008039712A1 (de) * 2008-08-26 2010-03-04 Ullrich Und Augst Gmbh Verfahren zur Regulation biologischer Vorgänge mehrzelliger Organismen auf zellularer Ebene, vorzugsweise des menschlichen Organismus
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US9532827B2 (en) 2009-06-17 2017-01-03 Nuortho Surgical Inc. Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US11878181B2 (en) 2009-07-14 2024-01-23 Pulse, Llc Micro-coil wristband
US10507333B2 (en) 2009-07-14 2019-12-17 Pulse, Llc Immersive, flux-guided, micro-coil apparatus and method
US11191975B2 (en) 2009-07-14 2021-12-07 Pulse, Llc Micro-coil wristband
US9498639B2 (en) 2014-05-13 2016-11-22 Pulse, Llc Immersive, flux-guided, micro-coil apparatus and method
CA2813036A1 (en) 2010-10-01 2012-04-05 Ivivi Health Sciences, Llc Method and apparatus for electromagnetic treatment of head, cerebral and neural injury in animals and humans
TWI513451B (zh) 2010-10-25 2015-12-21 Medtronic Ardian Luxembourg 用於神經調節治療之估算及反饋的裝置、系統及方法
US9408658B2 (en) 2011-02-24 2016-08-09 Nuortho Surgical, Inc. System and method for a physiochemical scalpel to eliminate biologic tissue over-resection and induce tissue healing
US8343027B1 (en) * 2012-01-30 2013-01-01 Ivivi Health Sciences, Llc Methods and devices for providing electromagnetic treatment in the presence of a metal-containing implant
AU2013230781B2 (en) 2012-03-08 2015-12-03 Medtronic Af Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US9597018B2 (en) 2012-03-08 2017-03-21 Medtronic Ardian Luxembourg S.A.R.L. Biomarker sampling in the context of neuromodulation devices, systems, and methods
DE102012013534B3 (de) 2012-07-05 2013-09-19 Tobias Sokolowski Vorrichtung für repetitive Nervenstimulation zum Abbau von Fettgewebe mittels induktiver Magnetfelder
US20140110296A1 (en) 2012-10-19 2014-04-24 Medtronic Ardian Luxembourg S.A.R.L. Packaging for Catheter Treatment Devices and Associated Devices, Systems, and Methods
US9579142B1 (en) 2012-12-13 2017-02-28 Nuortho Surgical Inc. Multi-function RF-probe with dual electrode positioning
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
WO2015161063A1 (en) 2014-04-16 2015-10-22 Iviv Health Sciences, Llc A two-part pulsed electromagnetic field applicator for application of therapeutic energy
USD763453S1 (en) 2014-05-13 2016-08-09 Pulse, Llc Micro-coil array
USD762864S1 (en) 2014-05-13 2016-08-02 Pulse, Llc Micro-coil array
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11141219B1 (en) 2016-08-16 2021-10-12 BTL Healthcare Technologies, a.s. Self-operating belt
WO2018089795A1 (en) 2016-11-10 2018-05-17 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
DE102017011939A1 (de) 2017-12-22 2019-06-27 HE-Invent GmbH & Co. KG Funktionsmöbel
US12156689B2 (en) 2019-04-11 2024-12-03 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
ES2926904T3 (es) 2019-04-11 2022-10-31 Btl Medical Solutions A S Dispositivo para el tratamiento estético de estructuras biológicas mediante radiofrecuencia y energía magnética
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
WO2021224678A1 (en) 2020-05-04 2021-11-11 Btl Medical Technologies S.R.O. Device and method for unattended treatment of a patient
EP4415812A1 (en) 2021-10-13 2024-08-21 BTL Medical Solutions a.s. Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3055372A (en) * 1960-02-11 1962-09-25 Relaxacizor Inc Device for electrical treatment of bodily tissues
US3566877A (en) * 1968-01-05 1971-03-02 Luther B Smith Electrotherapeutic apparatus and treatment head and method for tuning said treatment head
DE1918299B2 (de) * 1969-04-10 1972-04-13 Kraus, Werner, Dipl.-Ing., 8000 München Schiene zur fuehrung und heilung frakturierter knochen
DE2116869C2 (en) * 1970-04-06 1987-07-23 Kraus, Werner, Dipl.-Ing., 8000 Muenchen, De Bone and biological tissue growth promotion appts. - uses flat coil for application of LF current from generator
CH551201A (de) * 1971-04-06 1974-07-15 Kraus Werner Geraet zur anregung und/oder beschleunigung der bildung von knochensubstanz.
US3893462A (en) * 1972-01-28 1975-07-08 Esb Inc Bioelectrochemical regenerator and stimulator devices and methods for applying electrical energy to cells and/or tissue in a living body
BE794566A (fr) * 1972-01-28 1973-07-26 Esb Inc Regenerateur et stimulateur bioelectrochimique et procedes d'application in vivo d'energie electrique a des cellules et des tissus.
FR2179728A1 (en) * 1972-04-12 1973-11-23 Nat Patent Dev Corp Electrical osteogenesis stimulator - esp for healing broken bones in vivo
DE2314573C2 (de) * 1973-03-23 1986-12-18 Werner Dipl.-Ing. 8000 München Kraus Gerät zur Förderung von Heilungsprozessen
US3911930A (en) * 1974-03-01 1975-10-14 Stimulation Tech Method and structure of preventing and treating ileus, and reducing acute pain by electrical pulse stimulation
DE2452851A1 (de) * 1974-11-07 1976-07-22 Oskar Dr Med Gleichmann Apparatur zur gesundheitsfoerdernden beeinflussung der zellen in menschlichen und tierischen organismen mittels elektromagnetischer impulse
US3952751A (en) * 1975-01-08 1976-04-27 W. Denis Kendall High-performance electrotherapeutic apparatus
FR2369850A1 (fr) * 1976-11-03 1978-06-02 Fragnet Jean Appareil d'emission magnetique et electromagnetique a usage medical
FR2370483A1 (fr) * 1976-11-16 1978-06-09 Dan Constantinescu Procede et dispositif de traitement electromagnetique athermique d'un ensemble de cellules vivantes

Also Published As

Publication number Publication date
BE860745A (fr) 1978-03-01
DK508177A (da) 1978-05-18
CH621942A5 (cs) 1981-03-13
IE46078L (en) 1978-05-17
ES473758A1 (es) 1979-05-01
JPS5363791A (en) 1978-06-07
AT384169B (de) 1987-10-12
BG30919A3 (en) 1981-09-15
FR2371205B1 (cs) 1982-10-08
IL53346A0 (en) 1978-01-31
PL202175A1 (pl) 1978-12-04
IE46078B1 (en) 1983-02-09
MX147342A (es) 1982-11-18
NL178482C (nl) 1986-04-01
US4105017A (en) 1978-08-08
ES464178A1 (es) 1979-01-01
NO773925L (no) 1978-05-19
DK151687B (da) 1987-12-28
MC1191A1 (fr) 1979-02-23
SE7712939L (sv) 1978-05-18
FR2371205A1 (fr) 1978-06-16
IT1090781B (it) 1985-06-26
NL7712694A (nl) 1978-05-19
DE2748780C2 (de) 1986-01-30
JPS568621B2 (cs) 1981-02-25
PH13304A (en) 1980-03-06
CA1092196A (en) 1980-12-23
BR7707629A (pt) 1978-06-20
AU3073877A (en) 1979-05-24
ATA788977A (de) 1987-03-15
DE2748780A1 (de) 1978-05-18
AU509361B2 (en) 1980-05-08
HK21682A (en) 1982-06-04
NL178482B (nl) 1985-11-01
DK151687C (da) 1988-06-13
HK21782A (en) 1982-06-04
IL53346A (en) 1980-05-30
GB1596512A (en) 1981-08-26
LU78533A1 (cs) 1978-03-20

Similar Documents

Publication Publication Date Title
CS205096B2 (en) Device for cultivating the live cells and tissues
US5170784A (en) Leadless magnetic cardiac pacemaker
US4993413A (en) Method and apparatus for inducing a current and voltage in living tissue
US4197851A (en) Apparatus for emitting high-frequency electromagnetic waves
US4315503A (en) Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4683873A (en) Method and device for treating living tissues and/or cells by means of pulsating electromagnetic fields
US6561968B1 (en) Method and an apparatus for stimulating/ modulating biochemical processes using pulsed electromagnetic fields
US4535775A (en) Method for treatment of non-union bone fractures by non-invasive electrical stimulation
US20100210893A1 (en) Apparatus and method for electromagnetic treatment of plant, animal, and human tissue, organs, cells, and molecules
US5014699A (en) Electromagnetic method and apparatus for healing living tissue
EP0042889A1 (en) Electromagnetic body-treatment device
JPH07143971A (ja) 神経細胞を磁気的に刺激する方法
SE440452B (sv) Anordning for cyklisk alstring av elektriska stimuleringspulser for stimulering av paraspinala muskler
GB1393702A (en) Electrical apparatus for promoting the growth of bone and other body tissues
Gleason et al. The effect of magnetic resonance imagers on implanted neurostimulators
EP1216076B1 (en) A method and an apparatus for stimulating/modulating biochemical processes using pulsed electromagnetic fields
EP0058564A1 (en) Improvements in or relating to electrotherapeutic apparatus
JPS60501795A (ja) 電気的な環境の特別かつ選択的な切換えによる生組織及び細胞の生長,修復,維持作用の調節方法
Kato et al. Bidirectional communication system for magnetic direct feeding FES
Barker The design of a clinical electromagnetic bone stimulator
JPH04276263A (ja) シールドされた電磁型トランスデューサ
ZA200605544B (en) Electromagnetic treatment apparatus and method
US20250177735A1 (en) Electric-field directed nerve regeneration
Al-Mutawaly et al. Magnetic nerve stimulation: Field focality and depth of penetration
JPS62259533A (ja) 土壌の殺菌方法