CN88101065A - 光学传感器 - Google Patents

光学传感器 Download PDF

Info

Publication number
CN88101065A
CN88101065A CN198888101065A CN88101065A CN88101065A CN 88101065 A CN88101065 A CN 88101065A CN 198888101065 A CN198888101065 A CN 198888101065A CN 88101065 A CN88101065 A CN 88101065A CN 88101065 A CN88101065 A CN 88101065A
Authority
CN
China
Prior art keywords
optical fiber
light
measured
parameter
detecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN198888101065A
Other languages
English (en)
Inventor
戈登·里斯·琼斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balfour Beatty PLC
Original Assignee
BICC PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BICC PLC filed Critical BICC PLC
Publication of CN88101065A publication Critical patent/CN88101065A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/243Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis
    • G01L1/245Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using means for applying force perpendicular to the fibre axis using microbending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/35374Particular layout of the fiber

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Gas-Insulated Switchgears (AREA)
  • Glass Compositions (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Optical Transform (AREA)
  • Measuring Fluid Pressure (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种光学传感器包括一光纤(1),一多色光源(2)和一检测器(3)。将光纤配置成使得待测参数的变化引起光纤移动而改变微弯曲量,因而改变了多色光不再约束在光纤内的部分。检测器(3)测出由光纤(1)传播的多个不同波长的多色光强度,以及一微处理机(6)按照待测参数解释检测器(3)的输出信号。

Description

本发明涉及光学传感器,特别是涉及那些待测定的参数影响沿光纤传播的光线的传感器。
众所周知,如果将光纤弯曲超过一定的量,沿光纤传播的其中一部分光线则会穿过光纤壁而损失。这种现象称为微弯曲,由于它会导致光信号的振幅不希望有的减小,而被认为是光学通信设备的一个缺点。
一种公知型式的装置利用微弯曲而形成光压传感器的基础。使单色光沿光纤传播,并且用例如电荷耦合器件的检测器来监测从光纤远端射出的光强度。光纤上的压力使光线通过弯曲而损失,来自电荷耦合器件的输出信号因而减小甚至消失。这样就可测出压力,这种器件可用来构成一种‘压力垫’(pressure    mat),每当将负载加到压力垫上,压力垫就会给出信号。
本发明的一个目的是提供这种型式的器件的替换物。
因此所提供的用于测量参数的装置包括多色光源;检测器;光纤以及分析装置,光纤适合于将从光源发出的多色光传播到检测器,光纤被配置成使得待测定参数的变化引起它移动而改变微弯曲量,因此改变了多光色不再约束在光纤内的部分。检测器适合于检测由光纤传播的多个不同波长的多色光强度。分析装置则用来按照待测定参数解释检测器的输出信号。
不同于前文所述的器件只测量光信号的振幅的先有技术的装置,根据本发明的装置获得了由光纤传播的光色的变化的指标。当光纤弯曲时,多色光信号的某些波长成分会穿过光纤壁逸出,而其他的波长成分将继 续被约束在光纤内。这样,利用微弯曲除了能改变由光纤传播的光强度外,还能改变光颜色。
方便起见,检测器适合于监测两个以上独立预定波长的入射光线的强度之比。在一种最佳的比较方案中,检测器至少包括第一和第二光响应元件,第一元件对于波长的响应率不同于第二元件的响应率,从这些光响应元件发出的信号被馈送到分析装置,分析装置根据来自光响应元件的信号计算出如色品图上两个以上参数表示的由光纤传播的多色光的颜色。在一种简便的布置中,采用了两个不同的光响应元件,各自具有其自己的波长响应特性。另一种方法则是一个或两个光响应元件含有彩色滤色镜,以赋予色响应特性,从而需要时容许采用两个相同的光响应元件。响应率相对于波长/强度曲线最好在至少一部分波长光谱重叠。
通过至少采用第一和第二光响应元件,不同于仅仅检测两个以上所选定波长(波长调制)的变化,而是借助估算一选定部分的光谱(色调制)整体的变化来确定光色的变化。因此从光色A(由波长/强度曲线A表示)到光色B(由波长/强度曲线B表示)的变化将能根据这两条曲线之间的面积计算出来。从而给出‘真实’光色的较完善的分析。波长调制之所以不够完善在于它是一种根据两个以上选定波长的曲线之间距离的计算。
名词‘多色光’本文中是指多波长的辐射,具体地是指既含有可见光又含有红外线的辐射。而本文中为方便理解起见所用的名词‘光色’决不是意味着只可以利用可见光。在该装置采用发射可见光谱以外辐射的光源的情况下,名词‘光色’指的是辐射的光谱分布。
为了方便起见配置了一个构件,由于待测定参数的变化使至少一部分光纤维靠在该构件上。在一种布置中,该构件是一个纵向延伸的测砧,光纤则毗邻该构件而配置。可以想象测砧具有不平坦的表面,用以当推压光纤与该表面接触时引起微弯曲。
方便起见,光纤包括循着测砧沿第一纵向延伸的第一部分,以及循着测砧沿相反纵向返回的第二部分。可以想象,光纤的第一部分和第二部分互相绞合在一起。另一种方法则是将光纤螺旋地绕在纵向延伸的测砧上。根据一种简便的布置,测砧呈圆柱形状。
方便起见配置了用以色调制那部分不再约束在光束内的多色光的装置,以及用以将色调制光反射到光纤内的装置。这将用来使多色光信号保持在可接受的高幅值,同时确保仍然由微弯曲改变光线的颜色特征。方便起见,色调制装置包括毗邻光纤的彩色滤色镜,以及反射装置包括在滤色镜远离光纤一面上所配置的反射表面。滤色镜方便起见形成一围绕光纤的套管。
本发明还在于一种利用前文所述的装置测量参数的方法。详细地说,测量参数的方法包括以下诸步骤:使多色光沿光纤传播;将光纤配置成使得待测参数的变化引起光纤移动而改变微弯曲量,因此使那部分不再约束在光纤内的多色光发生变化;检测由光纤传播的多种波长的多色光强度;以及按照待测参数解释被检测的多色光强度。
该方法方便起见包括监测两种以上独立波长的被检测光强度之比的步骤。另一方面,该方法包括用一检测器检测被传播多色光的步骤,该检测器至少由第一和第二光响应元件组成,第一元件对于波长的响应率不同于第二元件的响应率;根据第一和第二光响应元件的输出信号计算出如色品图上两个以上参数表示的,由光纤传播的多色光的颜色;以及按照待测参数解释传播的多色光的颜色。
现在就参照附图,仅仅通过实例进一步描述本发明,其中:
图1是根据本发明的压力传感器的示意图;
图2是表示光纤微弯曲的简图;
图3是根据本发明的压力传感器可供选择的实施例的局部示意图;
图4是根据本发明的压力传感器可供选择的实施例的示意图;
图5是根据本发明的装置另一个可供选择的实施例的示意图;
图6是根据本发明的装置还有一个可供选择的实施例的分解图;
图7是图5装置的局部示意图;以及
图8是根据本发明的温度传感器的示意图。
参照图1,所示的压力传感器包括将来自光源2的多色光传播到检测器3的光纤1。检测器包括两个光响应元件4和5,从这两个光响应元件发出的信号被传送到微处理机6进行分析。光纤1靠在测砧7上,测砧7的上表面复盖有如砂纸的不平坦的材料。正如参照图2进一步要说明的,当压力P加到光纤1时,不平坦的表面有助于引起微弯曲。
压力P使光纤1被迫成为如图2所示的曲线。至少含有波长分量λ1和λ2的多色光被约束在光纤内,一直到象光纤的曲率到达波长成分λ1被容许穿过光纤壁的邻界角这样的时候。波长成分λ2继续沿光纤1反射,但波长成分λ1却被损失,因而引起由此传播的光的颜色发生变化。
由光纤1传播的光线投射到光响应元件4和5上,产生两个不同的输出信号,微处理机6将这些信号进行分析。微处理机6根据来自光响应元件4和5的信号,按照色品图上的两个参数计算出被传播光的颜色。微处理机在检测到光色变化后,可以例如在显示装置(未示出)上给出已经测出压力P的指示。此外,当需要计算压力P的大小时,将参数与微处理机的唯读存储器中贮存的查阅表上的那些参数作比较,且得到对应的压力值。然后可以将压力的大小显示在显示装置上。
图3表示一种利用光纤1上、下方的测砧而便于引起微弯曲的布置。除了光纤下方的测砧7外,还有一个位于光纤上方的互补测砧20将压力P传递到该光纤上。压力P引起测砧20移动或挠曲,从而将光纤1靠在测砧7上,以增强微弯曲现象。
图4表示关于图1装置的一种变型,其中光纤1自身绕成回路,使得光源2和检测器3位于测砧7的同一侧。光纤1的向外和返回两半绞 合在一起,因此产生了交迭点8,进一步加强微弯曲现象。
图5表示一个传感器,其中测砧呈圆柱体9的形状,光纤1螺旋地绕在圆柱体9上。该圆柱体可以用例如具有较高热膨胀系数的铜材制成。圆柱体9温度的升高就会使它膨胀,在光纤1尤其是在交迭点8上施加一个相应的压力,这样,通过微弯曲将温度的变化转换成可由检测器3测出的光色的变化。
图5的装置可以适合于测量沿导线20流动的电流。在这种情况下,圆柱体是空心的,载流导线从其内穿过。圆柱体是用铁磁材料构成,使得圆柱体根据由流过导线20中的电流所产生的磁场强度而膨胀和收缩。如前文所述,任何膨胀都会在光纤1上施加一压力,引起微弯曲,这种微弯曲如同光色的变化一样可由检测器3测出。采用压电材料可以获得相类似的效应,压电材料由于导线20感应的电压而膨胀和收缩。
图6的传感器包括一个圆柱形测砧9,光纤1就绕在测砧9的周围。测砧和光纤则被一个由彩色玻璃滤色镜11所组成的套管10所包围,套管的外表面涂有银,以形成反射面12。圆柱体9膨胀时,微弯曲使光的某些波长成分从光纤1逸入套管10内,这可从图7中看得更清楚。由于微弯曲,波长成分λ1和λ2从光纤1逸出,而波长成份λ3继续在光纤1内被反射。波长成分λ2横过滤色镜传播,被涂银表面12反射,并且返回到光纤1内。但是滤色镜11的吸收特性却使得波长成分λ1衰减。因此继续沿光纤传播的光含有波长λ2和λ3,而光色因波长λ1被吸收而已经改变。这样,就将颜色特征赋予多色光,且使信号强度幅值的减小得以缓和。
图8表示一个温度传感器,其中光纤1形成回路,且夹在框架13的位置14和15上。温度升高使光纤膨胀,而随着光纤长度的增长,回路的半径也发生变化。这种回路半径的变化改变了微弯曲量,以及使由光纤1传播的光发生相应的颜色变化,这种光色变化可由检测器3测出。
响应参数的变化而在光纤中引起微弯曲的其他布置对于本领域的技术人员来说是很显然的。任何能够变换成微弯曲光色变化的参数都可用本发明的方法测量。

Claims (15)

1、用来测量参数的装置包括一光源(2);一检测器(3),以及适合于将从该光源发出的光传播到该检测器的一光纤(1);该光纤(1)被配置成使得该待测参数的变化引起该光纤移动而改变微弯曲量,其特征在于:该光源(2)是一多色光源,因此微弯曲改变了多色光不再约束在光纤(1)内的部分,该检测器(3)适合于检测由该光纤(1)传播的多个不同波长的多色光强度;以及所配置的分析装置(6)用来按照该待测参数解释该检测器(3)的输出信号。
2、根据权利要求1的装置,其特征在于:该检测器(3)适合于监测两个以上独立预定波长的入射光线的强度之比。
3、根据权利要求1的装置,其特征在于:该检测器(3)至少包括第一和第二光响应元件(4,5),该第一元件(4)对于波长的响应率不同于该第二元件(5)的响应率,来自所述光响应元件(4,5)的信号被馈送到分析装置(6),该分析装置(6)根据来自所述光响应元件(4,5)的信号计算出由该光纤(1)传播的该多色光的如同色品图上两个以上参数表示的颜色。
4、根据权利要求1至3中任一项的装置,其特征在于:配置有一构件(7),该光纤(1)的至少其中一部分因该待测参数的变化而被推靠在该构件(7)上。
5、根据权利要求4的装置,其特征在于:该构件为一纵向延伸的测砧(7),该光纤(1)毗邻该测砧(7)而配置。
6、根据权利要求5的装置,其特征在于:该光纤(1)包括沿第一纵向循着该测砧(7)延伸的第一部分,以及沿相反纵向循着该测砧(7)返回的第二部分。
7、根据权利要求6的装置,其特征在于:该光纤(1)的该第一和第二部分是彼此绞合在一起的。
8、根据权利要求5或6的装置,其特征在于:该光纤(1)是螺旋地绕在该纵向延伸的测砧上的。
9、根据权利要求8的装置,其特征在于:该测砧呈一圆柱体(9)的形状。
10、根据权利要求1至9任一项的装置,其特征在于:配置有用来色调制该色光不再约束在该光纤内的部分的装置(11),以及用来将该色调制光反射到该光纤(1)内的装置(12)。
11、根据权利要求10的装置,其特征在于:该色调制装置包括一毗邻该光纤的彩色滤色镜(11),和该反射装置包括配置在该滤色镜远离该光纤(1)那一面上的一反射面(12)。
12、根据权利要求11的装置,其特征在于:该彩色滤色镜(11)被形成为一围绕该光纤的套管(10)。
13、一种测量参数的方法,其特征在于包据以下诸步骤:使多色光沿一光纤(11)传播;将该光纤(1)配置成使得该待测参数的变化引起该光纤移动而改变微弯曲量,因而改变了该多色光不再约束在该光纤内的部分;检测由该光纤传播的多个不同波长的多色光强度;以及按照该待测参数解释所测得的该多色光强度。
14、一种根据权利要求13的方法,其特征在于监测两个以上独立波长的被检测的光强度之比的步骤。
15、一种根据权利要求13的方法,其特征在于以下诸步骤:用一至少包括第一和第二光响应元件(4,5)的检测器(3)检测被传播的多色光,该第一元件(4)对于波长的响应率不同第二元件(5)的响应率;根据所述第一和第二元件(4,5)的输出信号,计算出如同由色品图上两个以上参数表示的被传播多色光的颜色以及按照该待测参数解释被传播多色光的颜色。
CN198888101065A 1987-02-26 1988-02-26 光学传感器 Pending CN88101065A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8704540A GB8704540D0 (en) 1987-02-26 1987-02-26 Optical sensors
GB8704540 1987-02-26

Publications (1)

Publication Number Publication Date
CN88101065A true CN88101065A (zh) 1988-09-07

Family

ID=10612993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN198888101065A Pending CN88101065A (zh) 1987-02-26 1988-02-26 光学传感器

Country Status (8)

Country Link
US (1) US4880970A (zh)
EP (1) EP0288139B1 (zh)
KR (1) KR880010338A (zh)
CN (1) CN88101065A (zh)
AT (1) ATE92621T1 (zh)
AU (1) AU1217788A (zh)
DE (1) DE3882784T2 (zh)
GB (2) GB8704540D0 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1299389C (en) * 1986-10-30 1992-04-28 John W. Berthold Microbend fiber optic strain gauge
GB8723359D0 (en) * 1987-10-05 1987-11-11 Atomic Energy Authority Uk Sensor
AU2770189A (en) * 1988-01-06 1989-07-06 Unisearch Limited Use of optical fibre in pressure sensitive transducers
DE3902997C1 (zh) * 1989-02-02 1990-04-19 Felten & Guilleaume Energietechnik Ag, 5000 Koeln, De
EP0393956B1 (en) * 1989-04-19 1995-11-29 Bestquint Limited Optical fibre sensors
WO1991002221A1 (de) * 1989-08-10 1991-02-21 Thomas Richter Faseroptische sensorvorrichtung
DE3926457A1 (de) * 1989-08-10 1991-04-25 Buchholz Juergen Mess- oder ueberwachungsvorrichtung
GB2236388A (en) * 1989-09-21 1991-04-03 Bestquint Ltd Signal sensing in fibre optic sensor control systems
GB2238613A (en) * 1989-12-01 1991-06-05 R D P Electronics Limited Movement sensing process
DE4037077A1 (de) * 1990-11-22 1992-05-27 Hilti Ag Verfahren und einrichtung zur faseroptischen kraftmessung
GB2252402A (en) * 1990-12-14 1992-08-05 Al Mohanadi Abdul Latif Khalaf Fibre optic sensor
EP0490849B1 (en) * 1990-12-14 1995-11-02 Telefonaktiebolaget L M Ericsson An optical fibre cable for detecting a change in temperature
US5231681A (en) * 1990-12-14 1993-07-27 Telefonaktiebolaget Lm Ericsson Optical fibre cable for detecting a change in temperature
US5218197A (en) * 1991-05-20 1993-06-08 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for the non-invasive measurement of pressure inside pipes using a fiber optic interferometer sensor
WO1993004350A1 (en) * 1991-08-25 1993-03-04 Avco Corporation Optical fiber strain transducer having a radius of curvature equal to or less than a critical radius of curvature
CA2237377C (en) * 1992-04-10 2000-02-29 Norscan Instruments Ltd. Fiber optic cable monitoring system
DE4304545C2 (de) * 1993-02-11 1998-10-01 Felten & Guilleaume Energie Kabel mit Lichtwellenleitern
MD293G2 (ro) * 1995-05-15 1995-10-31 Victor Borisocev Debitmetru optoelectronic şi procedeu de fabricare a captorului său de diferenţă a presiunilor
DE19534260C2 (de) * 1995-09-15 2002-07-04 Friedrich Motzko Seilförmiger faseroptischer Belastungssensor
SE514745C2 (sv) * 1999-06-18 2001-04-09 Samba Sensors Ab Förfarande och anordning för böjkompensation vid intensitetsbaserade optiska mätsystem
US20090027659A1 (en) * 1999-06-18 2009-01-29 Sambra Sensors Ab Measuring system for measuring a physical parameter influencing a sensor element
CN1332830C (zh) 2001-10-16 2007-08-22 美国摩托产品股份有限公司 可缩回的车辆踏脚
US7687764B1 (en) * 2003-03-19 2010-03-30 Knapp Ronald H Fiber optic sensors for composite pressure tanks with micro bend pinch points
US7163221B2 (en) 2003-10-31 2007-01-16 89908, Inc. Retractable vehicle step with anti-strike/anti-pinch sensor system
DE102004035816B4 (de) * 2004-07-23 2008-07-03 Siemens Ag Kraftsensor
US11926286B2 (en) 2011-10-31 2024-03-12 Lund Motion Products, Inc. Retractable vehicle step
US9944231B2 (en) 2006-10-27 2018-04-17 Lund Motion Products, Inc. Retractable vehicle step
US9701249B2 (en) 2006-10-27 2017-07-11 Lund Motion Products, Inc. Retractable vehicle step
GB2518190B (en) * 2013-09-12 2018-06-06 Buddi Ltd Tag including a thermo-chromic optical fibre
US9156406B2 (en) 2013-09-27 2015-10-13 Lund, Inc. Modular rail and step system
JP6322483B2 (ja) * 2014-05-29 2018-05-09 オリンパス株式会社 曲率センサ、内視鏡装置
US9550458B2 (en) 2015-06-05 2017-01-24 Lund Motion Products, Inc. Retractable step and side bar assembly for raised vehicle
US9522634B1 (en) 2015-06-05 2016-12-20 Lund Motion Products, Inc. Horizontal retractable vehicle step
US10618472B2 (en) 2015-08-04 2020-04-14 T-Max (Hangzhou) Technology Co., Ltd. Vehicle and vehicle step apparatus with multiple drive motors
US10384614B1 (en) 2018-07-20 2019-08-20 T-Max (Hangzhou) Technology Co., Ltd. Vehicle, running board assembly and drive assembly for running board
US11198394B2 (en) 2018-07-20 2021-12-14 T-Max (Hangzhou) Technology Co., Ltd. Vehicle running board apparatus and retractable device thereof
CN110012061B (zh) 2019-02-20 2022-02-08 杭州天铭科技股份有限公司 车用装备的管理装置、车辆及服务器
WO2020177186A1 (zh) 2019-03-05 2020-09-10 杭州天铭科技股份有限公司 车用踏杠设备和车辆
WO2020181617A1 (zh) 2019-03-11 2020-09-17 杭州天铭科技股份有限公司 调节装置、调节器和减震器
US11584387B2 (en) 2019-09-16 2023-02-21 T-Max (Hangzhou) Technology Co., Ltd. Step apparatus for vehicle and vehicle
WO2021227616A1 (zh) 2020-05-11 2021-11-18 杭州天铭科技股份有限公司 一种车用踏板设备和车辆
WO2021227617A1 (zh) 2020-05-11 2021-11-18 杭州天铭科技股份有限公司 车用踏板设备和车辆
HU231440B1 (hu) * 2020-05-27 2023-10-28 Furukawa Electric Technológiai Intézet Kft. Szenzorrendszer és eljárás erő mérésére,valamint a szenzorrendszert tartalmazó lapos termék

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342907A (en) * 1977-12-12 1982-08-03 Pedro B. Macedo Optical sensing apparatus and method
US4358678A (en) * 1980-11-19 1982-11-09 Hersey Products, Inc. Fiber optic transducer and method
US4557552A (en) * 1981-11-19 1985-12-10 Board Of Trustees Of The Leland Stanford Junior University Microbend optical fiber tapped delay line
GB2125179B (en) * 1982-08-03 1986-08-06 Standard Telephones Cables Ltd Distributed sensors
GB2125572B (en) * 1982-08-03 1985-12-24 Standard Telephones Cables Ltd Optical fibre sensors
US4542291A (en) * 1982-09-29 1985-09-17 Vpl Research Inc. Optical flex sensor
GB2155621B (en) * 1984-03-06 1988-01-06 Standard Telephones Cables Ltd Optical fibre sensors
JPS60219503A (ja) * 1984-04-16 1985-11-02 Sumitomo Electric Ind Ltd 光フアイバセンサ−
IT1180071B (it) * 1984-06-05 1987-09-23 Cselt Centro Studi Lab Telecom Procedimento e apparecchiatura per la misura della lunghezza d'onda di taglio del primo modo d'ordine superiore in fibre ottiche
US4653906A (en) * 1984-08-13 1987-03-31 United Technologies Corporation Spatially resolving fiber-optic crosstalk strain sensor
US4727254A (en) * 1986-11-17 1988-02-23 General Motors Corporation Dual wavelength microbend sensor

Also Published As

Publication number Publication date
KR880010338A (ko) 1988-10-08
GB8804564D0 (en) 1988-03-30
AU1217788A (en) 1988-09-01
GB2201511A (en) 1988-09-01
GB2201511B (en) 1990-10-03
DE3882784T2 (de) 1993-11-11
EP0288139A3 (en) 1989-10-18
US4880970A (en) 1989-11-14
EP0288139A2 (en) 1988-10-26
GB8704540D0 (en) 1987-04-01
EP0288139B1 (en) 1993-08-04
DE3882784D1 (de) 1993-09-09
ATE92621T1 (de) 1993-08-15

Similar Documents

Publication Publication Date Title
CN88101065A (zh) 光学传感器
RU2205374C2 (ru) Волоконно-оптические датчики давления и система измерения давления, их включающая
US5202939A (en) Fabry-perot optical sensing device for measuring a physical parameter
US5760391A (en) Passive optical wavelength analyzer with a passive nonuniform optical grating
US5319435A (en) Method and apparatus for measuring the wavelength of spectrally narrow optical signals
US4761073A (en) Distributed, spatially resolving optical fiber strain gauge
US20080085080A1 (en) Fiber Optic Device for Measuring a Parameter of Interest
JPS6351243B2 (zh)
JPH067049B2 (ja) 分散的,離間的に解析する光ファイバひずみ計
CN88101477A (zh) 光学传感器
CN113532307B (zh) 基于Michelson光纤干涉仪的大范围应变传感器
CN107367240A (zh) 一种方形结构光纤光栅反向差动应变检测传感器件
Cockshott et al. Compensation of an optical fibre reflective sensor
KR910001840B1 (ko) 변위 탐지
Bhatia et al. Multiple strain state measurements using conventional and absolute optical fiber-based extrinsic Fabry-Perot interferometric strain sensors
JPH01219612A (ja) パラメータ測定装置とその方法
CN113959471A (zh) 一种少模光纤光栅多参量传感装置
JP3962125B2 (ja) 減衰全内反射測定装置
KR100368122B1 (ko) 반사대역폭이 외부 인가 스트레인에 따라 변하는 처핑된 광섬유 격자 센서 및 이를 이용한 스트레인 측정 장치
JPH0432336B2 (zh)
CN88101478A (zh) 光学传感器
CN109632714A (zh) 光纤锥型结构的飞秒直写fbg应变和折射率测量方法
WO2001007878A1 (en) Apparatus and methods for analysing electromagnetic radiation
Baptista et al. Measurement of angular rotation using a long period fiber grating in a self-referenced fiber optic intensity sensor
JPH11287670A (ja) 計測対象区間識別方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication