CN2760762Y - Gallium nitride-based light-emitting diode structure - Google Patents

Gallium nitride-based light-emitting diode structure Download PDF

Info

Publication number
CN2760762Y
CN2760762Y CNU2004200364438U CN200420036443U CN2760762Y CN 2760762 Y CN2760762 Y CN 2760762Y CN U2004200364438 U CNU2004200364438 U CN U2004200364438U CN 200420036443 U CN200420036443 U CN 200420036443U CN 2760762 Y CN2760762 Y CN 2760762Y
Authority
CN
China
Prior art keywords
layer
gallium nitride
light
type
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNU2004200364438U
Other languages
Chinese (zh)
Inventor
洪详竣
赖穆人
黄振斌
詹其峰
江振福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XUMING PHOTOELECTRICITY Inc
Original Assignee
Supernova Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supernova Optoelectronics Corp filed Critical Supernova Optoelectronics Corp
Priority to CNU2004200364438U priority Critical patent/CN2760762Y/en
Priority to DE202004012665U priority patent/DE202004012665U1/en
Priority to GB0419630A priority patent/GB2413008B8/en
Priority to FR0452048A priority patent/FR2868878B3/en
Application granted granted Critical
Publication of CN2760762Y publication Critical patent/CN2760762Y/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/819Bodies characterised by their shape, e.g. curved or truncated substrates
    • H10H20/82Roughened surfaces, e.g. at the interface between epitaxial layers

Landscapes

  • Led Devices (AREA)

Abstract

The utility model relates to a gallium nitride light-emitting diode structure, which comprises a substrate; a semiconductor stack layer connected to the upper part of the substrate and including an n-type GaN layer, a light emitting layer, and a p-type GaN layer from bottom to top; a roughened layer above the p-type GaN layer; a conductive transparent oxide layer located above the roughened layer and forming ohmic contact with the roughened layer; a first electrode electrically coupled to the n-type GaN layer in the semiconductor stack layer; and a second electrode electrically coupled to the conductive transparent oxide layer. The light-transmitting conductive oxide layer is formed on a gallium nitride contact layer with a surface roughened layer and serves as a window layer, the roughened layer serves as an ohmic contact layer with the light-transmitting conductive oxide layer, contact impedance and working voltage can be effectively reduced, the roughened layer interrupts a light guide effect, light extraction efficiency is improved, and external quantum efficiency is further improved.

Description

氮化镓系发光二极管结构Gallium nitride-based light-emitting diode structure

技术领域technical field

本实用新型涉及一种氮化镓系发光二极管结构,特别涉及一种具有较佳欧姆接触层的氮化镓系发光二极管结构。The utility model relates to a gallium nitride light emitting diode structure, in particular to a gallium nitride light emitting diode structure with a better ohmic contact layer.

背景技术Background technique

氮化镓系发光二极管装置的传统结构如图1所示,该传统发光二极管结构10包含一衬底11、一氮化镓缓冲层12、一n型氮化镓层13、一氮化铟镓发光层14、一p型氮化镓层15、一p型氮化镓接触层16(12至16的层膜在此称作外延结构)及一透明导电层(transparent conductive layer)17;此外,一p型金属电极18位于该透明导电层17之上,而一n型金属电极19则位于该n型氮化镓层13之上。The traditional structure of a gallium nitride-based light-emitting diode device is shown in Figure 1. The traditional light-emitting diode structure 10 includes a substrate 11, a gallium nitride buffer layer 12, an n-type gallium nitride layer 13, an indium gallium nitride Light emitting layer 14, a p-type gallium nitride layer 15, a p-type gallium nitride contact layer 16 (layers 12 to 16 are referred to as epitaxial structures) and a transparent conductive layer (transparent conductive layer) 17; in addition, A p-type metal electrode 18 is located on the transparent conductive layer 17 , and an n-type metal electrode 19 is located on the n-type GaN layer 13 .

根据公知技术所知,p型氮化镓欧姆接触层16的传导性相当低,电流容易被局限在该P型金属电极18之下。所以,为了将电流有效地分散以达到均匀发光,必须先将一透明导电层17制作于该p型氮化镓欧姆接触层16之上且布满整个发光区域,而为了提高透光性,此透明导电层17必须相当薄。其中,传统所用的透明导电层可由如镍/金所组成,但为了增加光的提取(lightextracting)效率,可于发光二极管表面形成粗糙化结构。此时,若使用薄的镍/金为透明导电层,其电流横向散布效果不均匀,特别容易有局部发光的现象产生且导致工作电压的上升(图4A与图4B所示的镍/金透光导电层与粗糙表面的组合与I-V曲线)。According to known technologies, the conductivity of the p-type GaN ohmic contact layer 16 is rather low, and the current is easily confined under the P-type metal electrode 18 . Therefore, in order to effectively disperse the current to achieve uniform light emission, a transparent conductive layer 17 must be formed on the p-type gallium nitride ohmic contact layer 16 and cover the entire light emitting area, and in order to improve the light transmittance, this The transparent conductive layer 17 must be relatively thin. Wherein, the traditionally used transparent conductive layer may be composed of nickel/gold, but in order to increase light extraction (light extraction) efficiency, a roughened structure may be formed on the surface of the LED. At this time, if thin nickel/gold is used as the transparent conductive layer, the effect of lateral current spreading is not uniform, and the phenomenon of partial luminescence is particularly prone to occur, which will lead to an increase in operating voltage (the nickel/gold transparent conductive layer shown in Figure 4A and Figure 4B Combination of photoconductive layer with rough surface and I-V curve).

公知的氧化铟锡(Indium Tin Oxide)简称为ITO,不但为一种能隙(Energybandgap)介于2.9~3.8电子伏特的高能隙材料,在可见光范围,其穿透率可达95%以上,且其为一种高传导率的n型高导电性的材料,此氧化铟锡(ITO)的折射系数介于1.7~2.2,根据斯涅耳定理(Snell’s law)及抗反射原理,由于多层氮化镓外延结构的折射系数(n=2.4)而封装用的树脂封盖材料的折射系数(n=1.5)的分布,若能加入一折射系数n~1.9的中间介质,于封装后则可减少光的反射进而增加光的提取(light extracting)效率,故此材料极适合用作发光二极管的窗口层。The well-known Indium Tin Oxide (Indium Tin Oxide) is called ITO for short. It is not only a high energy gap material with an energy bandgap between 2.9 and 3.8 electron volts, but also has a transmittance of over 95% in the visible light range. It is an n-type high-conductivity material with high conductivity. The refractive index of this indium tin oxide (ITO) is between 1.7 and 2.2. According to Snell's law and anti-reflection principles, due to the multilayer nitrogen The distribution of the refractive index (n=2.4) of the GaN epitaxial structure and the refractive index (n=1.5) of the resin capping material used for packaging, if an intermediate medium with a refractive index n ~ 1.9 can be added, it can be reduced after packaging. The reflection of light further increases the efficiency of light extraction, so this material is very suitable for use as a window layer of light-emitting diodes.

近年来,虽已有以氧化铟锡(ITO)作为透明导电层的技术被提出,如台湾专利公告号461126所述的氮化铟镓发光二极管,如图2所示,该二极管结构20具有一衬底21、一氮化镓缓冲层22、一n型氮化镓层23、一氮化铟镓有源层24、一p型氮化镓层25、一p型接触层26、一透明导电氧化层27、一p型电极28及一n型电极29;其中,虽然透明导电氧化层27为适于光出射的氧化铟锡,然而于该二极管结构中,其下方的p型接触层表面若为较平坦的镓极化(Ga-polarization)面,则不易与氧化铟锡形成良好的欧姆接触,故两者间的接触阻抗高且欧姆接触特性不佳,故发光二极管的工作电压也难以下降。In recent years, although the technology of using indium tin oxide (ITO) as a transparent conductive layer has been proposed, such as the indium gallium nitride light-emitting diode described in Taiwan Patent Publication No. 461126, as shown in FIG. 2 , the diode structure 20 has a Substrate 21, a gallium nitride buffer layer 22, an n-type gallium nitride layer 23, an indium gallium nitride active layer 24, a p-type gallium nitride layer 25, a p-type contact layer 26, a transparent conductive Oxide layer 27, a p-type electrode 28 and an n-type electrode 29; wherein, although the transparent conductive oxide layer 27 is indium tin oxide suitable for light emission, in this diode structure, the surface of the p-type contact layer below it is It is relatively flat Ga-polarization (Ga-polarization) surface, it is difficult to form a good ohmic contact with ITO, so the contact resistance between the two is high and the ohmic contact characteristics are not good, so the operating voltage of the light-emitting diode is difficult to drop .

鉴于上述欧姆接触特性不佳及工作电压高的缺点,一种提高氧化铟锡层与p型氮化镓系层间的欧姆接触特性的结构具有提出的必要。In view of the aforementioned disadvantages of poor ohmic contact characteristics and high operating voltage, it is necessary to propose a structure for improving the ohmic contact characteristics between the indium tin oxide layer and the p-type gallium nitride layer.

发明内容Contents of the invention

本实用新型为一种具较佳欧姆接触层的氮化镓系发光二极管结构,其中的主要目的为透光导电氧化层形成于一具有表面粗糙化层(textured layer)的氮化镓接触层上,并以该粗糙化层作为与该透光导电氧化层的欧姆接触层,该发光二极管结构包括有:一衬底;接于该一衬底的上方的一半导体堆栈层,由下而上包含一n型氮化镓系层、一发光层、一p型氮化镓系层;一粗糙化层,位于该p型氮化镓系层的上方;位于该粗糙化层上方的一导电透光氧化层,并与该粗糙化层形成欧姆接触;一第一电极,与该半导体堆栈层中的n型氮化镓系层电性耦合;及一第二电极,与该导电透光氧化层电性耦合。The utility model is a gallium nitride light-emitting diode structure with a better ohmic contact layer, wherein the main purpose is to form a light-transmitting conductive oxide layer on a gallium nitride contact layer with a textured layer , and use the roughened layer as an ohmic contact layer with the light-transmitting conductive oxide layer, the light-emitting diode structure includes: a substrate; a semiconductor stack layer connected to the top of the substrate, including from bottom to top An n-type GaN-based layer, a light-emitting layer, and a p-type GaN-based layer; a roughened layer located above the p-type GaN-based layer; a conductive light-transmitting layer located above the roughened layer oxide layer, and form an ohmic contact with the roughened layer; a first electrode, electrically coupled with the n-type gallium nitride layer in the semiconductor stack layer; and a second electrode, electrically coupled with the conductive light-transmitting oxide layer sexual coupling.

根据上述构想,该粗糙化层可为n型、p型掺杂或双掺杂型的氮化镓系层。According to the idea above, the roughened layer can be an n-type, p-type doped or double-doped GaN-based layer.

根据上述构想,该透光导电氧化物层可为一氧化铟、氧化锡或氧化铟锡。According to the above idea, the light-transmitting conductive oxide layer can be indium oxide, tin oxide or indium tin oxide.

根据上述构想,该发光层为一含铟组成的氮化镓系层。According to the above idea, the light-emitting layer is a GaN-based layer composed of indium.

根据上述构想,该粗糙化层为一氮极化表面层。According to the above idea, the roughened layer is a nitrogen polarized surface layer.

借此,能有效地降低接触阻抗及工作电压,同时以该粗糙化层中断光导效应,增加光提取效率,进而提高外部量子效率。Thereby, the contact resistance and working voltage can be effectively reduced, and at the same time, the roughened layer interrupts the photoconductive effect, increases the light extraction efficiency, and further improves the external quantum efficiency.

附图说明Description of drawings

图1为常用技术氮化镓系发光二极管结构示意图;Figure 1 is a schematic diagram of the structure of gallium nitride-based light-emitting diodes in common technology;

图2为常用技术氮化铟镓发光二极管结构示意图;Figure 2 is a schematic diagram of the structure of an indium gallium nitride light-emitting diode in common technology;

图3为本发明氮化镓系发光二极管结构示意图;Fig. 3 is a structural schematic diagram of a gallium nitride-based light-emitting diode of the present invention;

图4A所示为常用技术中镍/金透光导电层与粗糙表面的组合产生局部发光图;Figure 4A shows a partial luminescence diagram produced by the combination of a nickel/gold light-transmitting conductive layer and a rough surface in a common technique;

图4B所示为常用技术中镍/金透光导电层与粗糙表面的组合的I-V曲线图;Figure 4B shows the I-V curve diagram of the combination of nickel/gold light-transmitting conductive layer and rough surface in common technology;

图5A所示为本发明中氧化铟锡透光导电层与粗糙表面的组合无局部发光图;Fig. 5A shows the combination of indium tin oxide light-transmitting conductive layer and rough surface without partial luminescence in the present invention;

图5B所示为本发明中氧化铟锡透光导电层与粗糙表面的组合的I-V曲线图。FIG. 5B shows the I-V curve of the combination of the ITO light-transmitting conductive layer and the rough surface in the present invention.

其中,附图标记说明如下:Wherein, the reference signs are explained as follows:

10       发光二极管结构      11       衬底10 Light-emitting diode structure 11 Substrate

12       氮化镓缓冲层        13       n型氮化镓层12 GaN buffer layer 13 n-type GaN layer

14       氮化铟发光层        15       p型氮化镓层14 Indium nitride light-emitting layer 15 p-type gallium nitride layer

16       p型氮化镓接触层     17       透明导电层16 p-type gallium nitride contact layer 17 transparent conductive layer

18       p型金属电极         19       n型金属电极18 p-type metal electrode 19 n-type metal electrode

20       二极管结构          21       衬底20 Diode Structure 21 Substrate

22       氮化镓缓冲层        23       n型氮化嫁层22 GaN buffer layer 23 n-type nitride graft layer

24       氮化铟镓有源层      25       p型氮化镓层24 InGaN active layer 25 p-type GaN layer

26       p型接触层           27       透明导电氧化层26 p-type contact layer 27 transparent conductive oxide layer

28       p型电极             29       n型电极28 p-type electrode 29 n-type electrode

30       发光二极管          31       衬底30 Light Emitting Diode 31 Substrate

31’            缓冲层              32       n型氮化镓系层31’ Buffer layer 32 n-type gallium nitride layer

33       发光层              34       p型氮化镓系层33 luminescent layer 34 p-type gallium nitride layer

35       p型接触层           36       粗糙化层35 p-type contact layer 36 roughened layer

37       窗口层              38       第一电极37 Window layer 38 1st electrode

39       第二电极39 second electrode

具体实施方式Detailed ways

请参阅图3,其为本实用新型的一较佳氮化镓系发光二极管结构实施例。如图所示,本实用新型的氮化镓系发光二极管30结构为一衬底31、一n型氮化镓系层32、一发光层33、一p型氮化镓系层34、一p型接触层35、一粗糙化层(textured layer)36、一窗口层37、第一电极38以及第二电极39,其中衬底31上方还可包含一缓冲层31’。Please refer to FIG. 3 , which is a preferred embodiment of the GaN-based LED structure of the present invention. As shown in the figure, the GaN-based light-emitting diode 30 of the present invention has a structure of a substrate 31, an n-type GaN-based layer 32, a light-emitting layer 33, a p-type GaN-based layer 34, and a p-type GaN-based layer 34. Type contact layer 35, a textured layer 36, a window layer 37, a first electrode 38 and a second electrode 39, wherein a buffer layer 31' may also be included above the substrate 31.

其中本发明揭示的结构如一接于该衬底31上方的半导体堆栈层,包括由下而上的n型氮化镓系层32、发光层33、p型氮化镓系层34等,此外该粗糙化层36位于p型氮化镓系层34与p型接触层35的上方。而作为窗口层(window layer)37为位于该粗糙化层36上方的导电透光氧化层,与该粗糙化层形成欧姆接触。设置该第一电极38,其与该半导体堆栈层中的n型氮化镓系层电性耦合,而第二电极39则与该导电透光氧化层电性耦合。The structure disclosed in the present invention is a semiconductor stack layer connected above the substrate 31, including an n-type gallium nitride-based layer 32, a light-emitting layer 33, a p-type gallium nitride-based layer 34, etc. from bottom to top. In addition, the The roughened layer 36 is located above the p-type GaN-based layer 34 and the p-type contact layer 35 . The window layer (window layer) 37 is a conductive light-transmitting oxide layer located above the roughened layer 36, forming an ohmic contact with the roughened layer. The first electrode 38 is provided, which is electrically coupled with the n-type GaN-based layer in the semiconductor stack layer, and the second electrode 39 is electrically coupled with the conductive light-transmitting oxide layer.

该衬底31可为一蓝宝石、氧化镓、氧化锂镓、氧化锂铝、尖晶石、碳化硅、砷化镓或硅基材。该n型氮化镓系层32为一n型掺杂的氮化镓、氮化铝铟镓或氮化铟镓层。该p型氮化镓系层34为一p型掺杂的氮化镓、氮化铝铟镓或氮化铟镓层。该发光层33为一含铟的氮化物化合物半导体。该窗口层37为一导电透光氧化层,可为一氧化铟、氧化锡或氧化铟锡。The substrate 31 can be a sapphire, gallium oxide, lithium gallium oxide, lithium aluminum oxide, spinel, silicon carbide, gallium arsenide or silicon substrate. The n-type GaN-based layer 32 is an n-type doped GaN, AlInGaN or InGaN layer. The p-type GaN-based layer 34 is a p-type doped GaN, AlInGaN or InGaN layer. The light emitting layer 33 is a nitride compound semiconductor containing indium. The window layer 37 is a conductive light-transmitting oxide layer, which can be indium oxide, tin oxide or indium tin oxide.

于p型接触层35与窗口层37之间设置的该粗糙化层(textured layer)36的存在除了可增加光的提取(light extracting)效率及因粗糙面而光出射量大并中断光导效应外,其表面状态(surface state)于外延成长过程中可以刻意控制成一氮极化表面,其已描述于台湾专利申请案92136888中,借此降低窗口层37与该第二导电型氮化镓系层34间的接触电阻而成为一优异欧姆接触层,并降低该二极管的工作电压(如第图5A与图5B所示氧化铟锡透光导电层与织状表面的组合与I-V曲线)。The presence of the textured layer (textured layer) 36 disposed between the p-type contact layer 35 and the window layer 37 can not only increase the light extraction (light extracting) efficiency, but also cause a large amount of light output due to the rough surface and interrupt the light guiding effect. , its surface state (surface state) can be deliberately controlled into a nitrogen polarized surface during the epitaxial growth process, which has been described in Taiwan Patent Application No. 92136888, thereby reducing the window layer 37 and the second conductivity type GaN-based layer The contact resistance between 34 becomes an excellent ohmic contact layer and reduces the operating voltage of the diode (as shown in FIG. 5A and FIG. 5B the combination and I-V curve of the ITO light-transmitting conductive layer and the textured surface).

相对于图4A所示公知技术中因其电流横向散布效果不均匀,致使镍/金透光导电层与织状表面的组合产生第二电极周围电流散布不均匀的局部发光40现象,本实用新型如图5A所示,使用透光导电氧化层取代镍/金透光导电层并与织状表面组合,其第二电极周围没有产生局部发光的现象。此外,该粗糙化层36也可为n型、p型掺杂或双掺杂型的氮化镓系层。Compared with the known technology shown in FIG. 4A , because of the inhomogeneous current lateral distribution effect, the combination of the nickel/gold light-transmitting conductive layer and the woven surface produces a partial luminescence 40 phenomenon in which the current distribution around the second electrode is uneven, the utility model As shown in FIG. 5A , when the light-transmitting conductive oxide layer is used instead of the nickel/gold light-transmitting conductive layer and combined with the textured surface, there is no localized luminescence around the second electrode. In addition, the roughened layer 36 can also be an n-type, p-type doped or double-doped GaN-based layer.

以上所述实施例仅为本实用新型的较佳实施例,熟悉本领域的技术人员可于阅读过上述实施例的说明后推衍出各种不同实施例,但这些实施例皆属于本实用新型的范围内。The above-described embodiments are only preferred embodiments of the present utility model, and those skilled in the art can derive various embodiments after reading the description of the above-mentioned embodiments, but these embodiments all belong to the present utility model In the range.

Claims (5)

1. LED structure with gallium nitride system is characterized in that comprising:
One substrate;
The semiconductor stack layer is connected to the top of this substrate, from bottom to top comprises a n type gallium nitride series layer, a luminescent layer, a p type gallium nitride series layer;
One roughening layer is positioned at the top of this p type gallium nitride series layer;
One conduction printing opacity oxide layer is positioned at this roughening layer top, and forms ohmic contact with this roughening layer;
One first electrode is with the n type gallium nitride series layer electrical couplings in this semiconductor stack layer; And
One second electrode is with this conduction printing opacity oxide layer electrical couplings.
2. GaN series LED as claimed in claim 1 is characterized in that this roughening layer can be the n type, the p type mixes or the gallium nitride series layer of codope type.
3. GaN series LED as claimed in claim 1 is characterized in that this light transmitting conductive oxide layer can be an indium oxide, tin oxide or tin indium oxide.
4. GaN series LED as claimed in claim 1 is characterized in that this luminescent layer is one to contain the gallium nitride series layer of indium.
5. as claim 1 a described GaN series LED, it is characterized in that this roughening layer is a nitrogen polarized meter surface layer.
CNU2004200364438U 2004-04-08 2004-04-08 Gallium nitride-based light-emitting diode structure Expired - Lifetime CN2760762Y (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNU2004200364438U CN2760762Y (en) 2004-04-08 2004-04-08 Gallium nitride-based light-emitting diode structure
DE202004012665U DE202004012665U1 (en) 2004-04-08 2004-08-12 Light-emitting diode arrangement based on a gallium nitride semiconductor compound
GB0419630A GB2413008B8 (en) 2004-04-08 2004-09-03 GaN-based light-emitting diode structure
FR0452048A FR2868878B3 (en) 2004-04-08 2004-09-14 GaN-BASED LIGHT-EMITTING DIODE STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2004200364438U CN2760762Y (en) 2004-04-08 2004-04-08 Gallium nitride-based light-emitting diode structure

Publications (1)

Publication Number Publication Date
CN2760762Y true CN2760762Y (en) 2006-02-22

Family

ID=34171197

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2004200364438U Expired - Lifetime CN2760762Y (en) 2004-04-08 2004-04-08 Gallium nitride-based light-emitting diode structure

Country Status (4)

Country Link
CN (1) CN2760762Y (en)
DE (1) DE202004012665U1 (en)
FR (1) FR2868878B3 (en)
GB (1) GB2413008B8 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117871A (en) * 2009-12-31 2011-07-06 华新丽华股份有限公司 Method for increasing electric injection efficiency and light extraction efficiency of light-emitting device
CN101232068B (en) * 2007-01-25 2011-10-19 株式会社东芝 Semiconductor light emitting element
US8067780B2 (en) 2006-09-05 2011-11-29 Epistar Corporation Light emitting device and the manufacture method thereof
CN101150156B (en) * 2006-09-22 2012-05-30 晶元光电股份有限公司 Light emitting element and manufacturing method thereof
CN101685842B (en) * 2008-09-25 2012-12-05 晶元光电股份有限公司 Optoelectronic semiconductor device
US8513688B2 (en) 2009-12-02 2013-08-20 Walsin Lihwa Corporation Method for enhancing electrical injection efficiency and light extraction efficiency of light-emitting devices
CN103456858A (en) * 2012-05-28 2013-12-18 新世纪光电股份有限公司 Light emitting element and method for manufacturing the same
CN103594582A (en) * 2013-10-26 2014-02-19 溧阳市东大技术转移中心有限公司 High-light-emitting-efficiency vertical type light-emitting diode
CN104851947A (en) * 2015-04-21 2015-08-19 北京邮电大学 LED chip with surface roughening transmitting structure and manufacturing method thereof
CN105051916A (en) * 2012-07-31 2015-11-11 欧司朗光电半导体有限公司 Reflective contact layer system for an optoelectronic component and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102956781B (en) * 2011-08-31 2015-03-11 新世纪光电股份有限公司 Light emitting element and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869849A (en) * 1995-10-05 1999-02-09 Industry Technology Research Institute Light-emitting diodes with high illumination
US5789768A (en) * 1997-06-23 1998-08-04 Epistar Corporation Light emitting diode having transparent conductive oxide formed on the contact layer
US6207972B1 (en) * 1999-01-12 2001-03-27 Super Epitaxial Products, Inc. Light emitting diode with transparent window layer
DE19926958B4 (en) * 1999-06-14 2008-07-31 Osram Opto Semiconductors Gmbh GaAs (In, Al) P-type ZnO window layer light emission semiconductor diode

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8664686B2 (en) 2006-09-05 2014-03-04 Epistar Corporation Light emitting device and the manufacture method thereof
US8067780B2 (en) 2006-09-05 2011-11-29 Epistar Corporation Light emitting device and the manufacture method thereof
CN101150156B (en) * 2006-09-22 2012-05-30 晶元光电股份有限公司 Light emitting element and manufacturing method thereof
CN101232068B (en) * 2007-01-25 2011-10-19 株式会社东芝 Semiconductor light emitting element
CN101685842B (en) * 2008-09-25 2012-12-05 晶元光电股份有限公司 Optoelectronic semiconductor device
US8513688B2 (en) 2009-12-02 2013-08-20 Walsin Lihwa Corporation Method for enhancing electrical injection efficiency and light extraction efficiency of light-emitting devices
CN102117871A (en) * 2009-12-31 2011-07-06 华新丽华股份有限公司 Method for increasing electric injection efficiency and light extraction efficiency of light-emitting device
CN103456858A (en) * 2012-05-28 2013-12-18 新世纪光电股份有限公司 Light emitting element and method for manufacturing the same
CN103456858B (en) * 2012-05-28 2016-09-14 新世纪光电股份有限公司 Light emitting element and method for manufacturing the same
CN105051916A (en) * 2012-07-31 2015-11-11 欧司朗光电半导体有限公司 Reflective contact layer system for an optoelectronic component and method for producing same
CN105051916B (en) * 2012-07-31 2017-07-25 欧司朗光电半导体有限公司 Reflective contact layer system for optoelectronic devices and method for its production
CN103594582A (en) * 2013-10-26 2014-02-19 溧阳市东大技术转移中心有限公司 High-light-emitting-efficiency vertical type light-emitting diode
CN103594582B (en) * 2013-10-26 2016-04-27 溧阳市东大技术转移中心有限公司 A kind of vertical type light emitting diode of high light-emitting efficiency
CN104851947A (en) * 2015-04-21 2015-08-19 北京邮电大学 LED chip with surface roughening transmitting structure and manufacturing method thereof
CN104851947B (en) * 2015-04-21 2017-11-14 北京邮电大学 A kind of LED chip with surface roughening translucent construction and preparation method thereof

Also Published As

Publication number Publication date
DE202004012665U1 (en) 2005-02-03
FR2868878B3 (en) 2006-03-24
GB2413008B (en) 2006-06-28
GB2413008B8 (en) 2007-01-15
GB0419630D0 (en) 2004-10-06
FR2868878A3 (en) 2005-10-14
GB2413008A (en) 2005-10-12
GB2413008A8 (en) 2007-01-15

Similar Documents

Publication Publication Date Title
CN101026213B (en) Light emitting device and method of manufacturing the same
US20050236636A1 (en) GaN-based light-emitting diode structure
CN102074629A (en) Light emitting diode with sandwich-type current blocking structure
CN102881797B (en) Gallium nitride based light emitting diode with current expanding structure
CN101075656A (en) Nitride-based semiconductor light emitting diode
KR20050036737A (en) Nitride light emitting device
CN2760762Y (en) Gallium nitride-based light-emitting diode structure
US20060054898A1 (en) Light-emitting gallium nitride-based III-V group compound semiconductor device with high light extraction efficiency
CN114203868B (en) Deep ultraviolet chip with n-type low-resistance ohmic contact structure and preparation method thereof
CN108470809A (en) LED chip and preparation method thereof with transparency conducting layer composite membrane group
CN103996755B (en) A kind of preparation method of iii-nitride light emitting devices assembly
CN100380697C (en) Group III Nitride Light Emitting Devices
CN107919424B (en) Light emitting diode chip and manufacturing method thereof
JP2005117006A (en) Nitride light emitting device
CN108550669A (en) Nitride semiconductor structure and semiconductor light emitting element
CN103972342A (en) Nitride semiconductor structure and semiconductor light emitting element
CN106848029A (en) High-brightness light-emitting diode chip and manufacturing method thereof
US8461619B2 (en) Light emitting diode chip and method of manufacturing the same
CN201773861U (en) Gallium-nitride-based high-brightness light emitting diode provided with serrated pores on lateral face
CN100356593C (en) High-efficiency nitride-based light-emitting element
CN2738399Y (en) Structure of Gallium Nitride-Based Light-Emitting Diodes with High Light Extraction Efficiency
CN101494266A (en) Gallium nitride based light emitting diode
CN1753199A (en) Gallium Nitride-based Light Emitting Diodes
CN103346230A (en) Copper sulfide/oxide zinc radical composite transparent electrode light-emitting diode and preparation method thereof
CN100438090C (en) Light emitting element

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: XUMING PHOTOELECTRICITY INC.

Free format text: FORMER OWNER: JUXIN SCI-TECH CO., LTD.

Effective date: 20121219

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121219

Address after: Miaoli County, Taiwan, China

Patentee after: Xuming Photoelectricity Inc.

Address before: China Taiwan Taoyuan County

Patentee before: Juxin Sci-Tech Co., Ltd.

C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20140408

Granted publication date: 20060222