CN2741191Y - 高量子效率的影像传感器 - Google Patents

高量子效率的影像传感器 Download PDF

Info

Publication number
CN2741191Y
CN2741191Y CNU2004200930002U CN200420093000U CN2741191Y CN 2741191 Y CN2741191 Y CN 2741191Y CN U2004200930002 U CNU2004200930002 U CN U2004200930002U CN 200420093000 U CN200420093000 U CN 200420093000U CN 2741191 Y CN2741191 Y CN 2741191Y
Authority
CN
China
Prior art keywords
dielectric layer
light sensitive
substrate
image sensor
sensitive diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNU2004200930002U
Other languages
English (en)
Inventor
杨敦年
伍寿国
钱河清
曾建贤
林政贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Application granted granted Critical
Publication of CN2741191Y publication Critical patent/CN2741191Y/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

本实用新型提供一种高量子效率的影像传感器,其感光二极管是设置于感光区,且设置于用以定义有源区的浅沟槽隔离结构的底部水平线下方,在感光二极管的表面上依序设置第一介电层和内层介电层,其中第一介电层与感光二极管接触,内层介电层的折射系数小于第一介电层的折射系数,第一介电层的折射系数小于感光二极管的折射系数。

Description

高量子效率的影像传感器
技术领域
本实用新型是有关于一种影像传感器(image sensor),且特别是有关于一种高量子效率(quantum efficiency,QE)的影像传感器。
背景技术
感光二极管(photodiode)影像传感器是目前常见的一种影像感测组件。典型的感光二极管影像传感器至少包括一个重置晶体管(reset transistor)以及一个二极管所形成的光感测区。
感光二极管主要是利用半导体硅基底中的PN接合面,将入射光的强度转换为光电流。基本上,将多个感光二极管设置成感光二极管数组,即可以作为感测组件,例如金氧半影像感测组件(CMOS image sensor)。
以N掺杂区/P型基底所构成的二极管做为感光区为例,感光二极管影像传感器在操作时是在重置晶体管的栅极施加一电压,使重置晶体管开启后,对N掺杂区/P型基底的二极管接面电容充电。当充电到一高电位之后,关掉重置晶体管,使N掺杂区/P型基底的二极管产生逆偏而形成空乏区。当入射光照在此PN二极管感光区时,产生的电子电洞对(electron-hole pairs)会被空乏区的电场分开,使电子往N掺杂区移动,而使N掺杂区的电位降低,而电洞则会往P型基底流走。
传统的感光二极管的结构如图1所示,图中的二极管是由具有P型掺杂的基底PSUB和高浓度的N+掺杂区16构成而形成PN接面,图式中N+掺杂区16与虚线间的区域20为空乏区。N+掺杂区16为晶体管的源极/漏极区。然而,随着组件尺寸的缩小,衍生出集成电路组件的电阻增加的问题,因此必须藉由自动对准金属硅化物制程(self-aligned silicide process,salicideprocess)于源极/漏极16和栅极14表面形成一层金属硅化物层来降低组件的片电阻。但是金属硅化物不是透光性的材质,因此图1所示的感光二极管的结构并不适合用自动对准金属硅化物制程。
目前,设置于浅沟槽隔离结构STI下方的NW/PSUB型感光二极管为广泛使用的感光二极管,如图2所示,除了其结构可与自动对准金属硅化物制程相整合,以于源极/漏极26和栅极24表面形成金属硅化物层28,另外的原因为其具有低暗电流(dark current)和高量子效率的优点。
然而,当入射光40经由内层介电层ILD经浅沟槽隔离结构STI进入二极管后,由于内层介电层ILD和浅沟槽隔离结构STI的材质通常为氧化硅SiO2,其与N井区NW所处的硅材质(Si)之间的折射系数(refractive index)差异甚大,折射系数比SiO2/Si为1.4/3.3,因此入射光40在SiO2/Si界面会有较大的反射速率(reflection rate)。使得感光二极管的光响应(photo-response)及量子效率受到严重的影响。
此外,对于将无边界接触窗制程应用至影像传感器,以藉由氮化硅(SiN)或氮氧化硅(SiON)终止层30的使用,来缩紧设计规则增加电路密度,使形成于内层介电层ILD中的接触窗插塞32的制程裕度增加的情况而言,会使感光二极管的光响应的问题更为严重。如图3所示(图中与图2相同的组件是沿用相同的标号,另外图中的接触窗插塞32是以连接源极/漏极26和第一层金属层M1为例),由于感光二极管区的迭层结构为终止层30/浅沟槽隔离结构STI/硅基材(即P型基底PSUB),即SiON/SiO2/Si的迭层结构,亦即高折射系数/低折射系数/高折射系数的材料层的迭层,如此将使入射光40发生破坏性干涉(destructive interference),尤其是对短波长的可见光(其接近浅沟槽隔离结构STI的深度)更为严重。
发明内容
有鉴于此,本实用新型的目的在于提供一种可与自动对准金属硅化物制程兼容,且可避免入射光发生反射及破坏性干涉而影响感光二极管的光响应的影像传感器的结构。
本实用新型的另一目的在于提供一种可与自动对准金属硅化物制程和无边界接触窗制程兼容,且具有高量子效率的影像传感器的结构。
本实用新型提供一种高量子效率的影像传感器,其结构如下所述。将浅沟槽隔离结构设置于基底中,用以定义有源区,其中此基底至少包含有源区和感光区。将一感光二极管设置于感光区,且设置于浅沟槽隔离结构的底部水平线下方。将一第一介电层设置于感光二极管表面,且与感光二极管接触。将一内层介电层设置于第一介电层上,其中内层介电层的折射系数小于第一介电层的折射系数,第一介电层的折射系数小于感光二极管的折射系数。
本实用新型并提供一种高量子效率的影像传感器,其结构如下所述。将一沟槽设置于基底中的感光区,并将一感光二极管设置于感光区,且设置于沟槽的底部水平线下方。将一第一介电层设置于感光二极管表面,且与感光二极管接触。将一内层介电层设置于第一介电层上,其中第一介电层的折射系数介于内层介电层的折射系数与感光二极管的折射系数之间。
本实用新型将入射光经过的材质层的折射系数设计为依序递增,意即,使入射光依序经过低折射系数的内层介电层/中折射系数的介电层(即停止层)/高折射系数的材料层(感光二极管本身),以抑制界面的反射,进而改善感光二极管的光响应。
附图说明
图1是绘示传统的无自动对准硅化物制程的影像传感器的剖面图。
图2是绘示传统与自动对准金属硅化物制程兼容,且感光二极管设置于浅沟槽隔离结构下方的影像传感器的剖面图。
图3是绘示传统与自动对准金属硅化物制程及无边界接触窗制程相容,且感光二极管设置于浅沟槽隔离结构下方的影像传感器的剖面图。
图4是绘示根据本实用新型一第一实施例的一种影像传感器的剖面图。
图5为本实用新型与传统的感光二极管的量子效率(QE)对波长的关系图。
图6A至图6C为一系列的剖面图,其说明本实用新型一较佳实施例的一种与互补式金氧半晶体管制程和无边界接触窗制程兼容的影像传感器的制造流程。
符号说明:
PSUB:P型基底
16:N+掺杂区(源极/漏极)
20、216:空乏区
14:栅极
STI:浅沟槽隔离结构
26、206:源极/漏极
24:栅极
28、208:金属硅化物层
ILD:内层介电层
40、220:入射光
30:终止层
32:接触窗插塞
M1:第一层金属层
NW:N井区
T:晶体管
214:介电层
510:图4所示的感光二极管的量子效率曲线
520:图2所示的传统感光二极管的量子效率曲线
530:图3所示的传统感光二极管的量子效率曲线
AA:有源区
SA:感光区
PW:P井区
202:栅极介电层
204:栅极电极
212:光阻层
具体实施方式
为让本实用新型的上述目的、特征及优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下:
由于入射光经SiO2/Si界面会有较大的反射速率,而且经SiON/SiO2/Si界面也会因材质特性为高折射系数/低折射系数/高折射系数而使入射光发生破坏性干涉,为了避免这些问题,因此本实用新型是在低折射系数的材料层和高折射系数的材料层之间导入折射系数介于中间的材料层,并使入射光会依序经过低折射系数的材料层/中折射系数的材料层/高折射系数的材料层,藉以抑制界面的反射,以改善感光二极管的光响应。
以下将详细说明本实用新型的一种影像传感器的结构,并将详细说明该影像传感器的其中一种制造方法。
影像传感器的结构
以下将配合图4说明本实用新型一较佳实施例的影像传感器的结构。图中的标号意义与后述的图6C同。
本实用新型的感光二极管是设置于浅沟槽隔离结构STI的底部水平线下方,且为由P型基底PSUB及设置于其中的N井区NW所构成,在此情况下与感光二极管相连接的晶体管T为NMOS晶体管。亦可由N型基底及设置于其中的P井区构成,在此情况下与感光二极管相连接的晶体管T为PMOS晶体管。在此实施例中是以前者为例做说明。感光二极管的N井区NW会与晶体管T的源极/漏极区206连接。
感光二极管的上方包括介电层214和内层介电层ILD,其中,内层介电层ILD的折射系数小于介电层214的折射系数,介电层214的折射系数小于感光二极管的折射系数。因此,内层介电层ILD的材质例如为氧化硅,介电层214的材质例如为氮氧化硅(SiON)或氮化硅(SiN)。
在P型基底PSUB及N井区NW之间会形成空乏区216,当适当偏压施加至感光二极管时,入射光220依序经过低折射系数的材料层(即ILD)/中折射系数的材料层(即214)/高折射系数的材料层(即设置于硅基材中的N井区NW),会引发光电流(photocurrent)。由于入射光220所经过的材质的折射系数是依序增加,故可以抑制界面的反射,以改善感光二极管的光响应。
图5为将本实用新型的实施例的量子效率(QE)的曲线图并与传统的感光二极管结构相比较。曲线510为图4所示的感光二极管的量子效率,曲线520为图2所示的传统感光二极管的量子效率,曲线530为图3所示的传统感光二极管的量子效率。由图中可见,本实用新型所提供的感光二极管的量子效率比传统的感光二极管的量子效率好。
以波长550nm为例,本实用新型所提供的感光二极管的量子效率约为83%,图2所示的传统感光二极管的量子效率约为65%,图3所示的传统感光二极管的量子效率约为46%。与图2所示的传统感光二极管相较,本实用新型的结构的量子效率约提高了80%。与图3所示的传统感光二极管相较,本实用新型的结构的量子效率约提高了近30%。
影像传感器的制造方法
以下将配合图6A至图6C说明本实用新型的一种影像传感器的结构的制造方法。并说明该结构如何利用与互补式金氧半晶体管制程(CMOS process)和无边界接触窗制程(borderless contact process,BLC process)兼容的制程进行制造。
首先请参照图6A,提供一P型基底PSUB,其材质例如为掺杂P型掺质的半导体硅基材,之后于P型基底PSUB中形成浅沟槽隔离结构STI,用以大致定义有源区AA及感光区SA。
上述的浅沟槽隔离结构STI的形成方法可以是任何传统的制程,在此并不做限制。以下举一例子说明,首先于P型基底PSUB上依序形成图案化的垫氧化层和掩膜层(未绘示),接着进行微影蚀刻制程,以将上述垫氧化层和掩膜层中的图案转移至下方的P型基底PSUB中,以于P型基底PSUB中形成沟槽。之后于沟槽中填入绝缘材质,例如是氧化硅材质,以形成浅沟槽隔离结构STI。之后移除垫氧化层和掩膜层。
接着,于P型基底PSUB中依序形成P井区PW和N井区NW,其形成方法例如是分别以光阻为掩膜,进行离子植入,之后将光阻剥除,并经回火后而成。
接着,于有源区AA形成晶体管T,此晶体管T包括栅极介电层202、栅极电极204和一对源极/漏极区206,其中此对源极/漏极区206之一是与感光二极管(由N井区NW和P型基底PSUB所构成)连接,其形成顺序大致如下所述。于P型基底PSUB表面形成栅极绝缘层202,材质例如是利用热氧化法形成的氧化硅。接着于栅极绝缘层202上形成复晶硅层204,且此复晶硅层204包括栅极电极及用以连接不同有源区间的栅极电极的导线。之后,于栅极电极204(为方便说明,在此栅极电极延用与复晶硅层相同的标号)两侧的P型基底PSUB中形成N型掺杂的源极/漏极区206。
接着,进行自动对金属硅化物制程(self-aligned silicide process,salicide process),以于源极/漏极区206表面形成一层金属硅化物层208,此时,若栅极电极204为复晶硅材质,则在栅极电极204的表面亦会同时形成一层金属硅化物层208。此金属硅化物层208的形成方法例如是于整个基底表面沉积一层会与硅反应形成金属硅化物的金属,例如钛、钴等,之后进行回火,使沉积的金属与其下方的硅材质(例如源极/漏极区206和栅极电极204表面)反应形成金属硅化物,之后再移除未反应的金属。
接着请参照图6B,于已形成金属硅化物层208的整个基底上形成一层光阻层212,此光阻层212暴露出感光区SA。之后,以此光阻层212为蚀刻掩膜,对感光区SA的浅沟槽隔离结构STI进行蚀刻,至大致暴露出N井区NW的表面,以形成沟槽210。
接着请参照图6C,移除光阻层212,其方法例如是氧电浆灰化。并至少于感光二极管(由N井区NW和P型基底PSUB所构成)上顺应性形成介电层214,在此图中是以形成覆盖整个基底的介电层214为例,此介电层214的形成方法为化学气相沉积法。之后,于介电层214上形成一层内层介电层ILD。其中,内层介电层ILD的折射系数小于介电层214的折射系数,介电层214的折射系数小于感光二极管的折射系数。因此,内层介电层ILD的材质例如为氧化硅,介电层214的材质例如为氮氧化硅(SiON)或氮化硅(SiN)。
本实用新型将入射光经过的材质层的折射系数设计为依序递增,意即,使入射光依序经过低折射系数的内层介电层/中折射系数的介电层(即停止层)/高折射系数的材料层(感光二极管本身),以抑制界面的反射,进而改善感光二极管的光响应。
虽然本实用新型已以较佳实施例揭露如上,然其并非用以限定本实用新型,任何熟习此技艺者,在不脱离本实用新型的精神和范围内,当可作些许的更动与润饰,因此本实用新型的保护范围当视所附的权利要求范围所界定者为准。

Claims (13)

1.一种高量子效率的影像传感器,其特征在于,包括:
一基底,该基底具有一感光区和一有源区;
一浅沟槽隔离结构,设置于该基底中,用以定义该有源区;
一感光二极管,设置于该感光区,且设置于该浅沟槽隔离结构的底部水平线下方;
一第一介电层,设置于该感光二极管表面,且与该感光二极管接触;以及
一内层介电层,设置于该第一介电层上,其中该内层介电层的折射系数小于该第一介电层的折射系数,该第一介电层的折射系数小于该感光二极管的折射系数。
2.根据权利要求1所述的高量子效率的影像传感器,其特征在于,更包括一晶体管,设置该有源区,该晶体管包括一栅极介电层、一栅极电极和一对源极/漏极区,其中该对源极/漏极区之一与该感光二极管连接。
3.根据权利要求1所述的高量子效率的影像传感器,其特征在于,该第一介电层的材质为氮化硅或氮氧化硅。
4.根据权利要求3所述的高量子效率的影像传感器,其特征在于,该内层介电层的材质为氧化硅。
5.根据权利要求1所述的高量子效率的影像传感器,其特征在于,该感光二极管是由将一N井区设置于该基底中所构成,且该基底为P型基底。
6.根据权利要求1所述的高量子效率的影像传感器,其特征在于,该感光二极管是由将一P井区设置于该基底中所构成,且该基底为N型基底。
7.一种高量子效率的影像传感器,其特征在于,包括:
一基底,该基底具有一感光区和一有源区;
一沟槽,设置于该基底中的该感光区;
一感光二极管,设置于该感光区,且设置于该沟槽的底部水平线下方;
一第一介电层,设置于该感光二极管表面,且与该感光二极管接触;以及
一内层介电层,设置于该第一介电层上,其中该第一介电层的折射系数介于该内层介电层的折射系数与该感光二极管的折射系数之间。
8.根据权利要求7所述的高量子效率的影像传感器,其特征在于,该内层介电层的折射系数小于该第一介电层的折射系数,该第一介电层的折射系数小于该感光二极管的折射系数。
9.根据权利要求7所述的高量子效率的影像传感器,其特征在于,更包括一晶体管,设置该有源区,该晶体管包括一栅极介电层、一栅极电极和一对源极/漏极区,其中该对源极/漏极区之一与该感光二极管连接。
10.根据权利要求7所述的高量子效率的影像传感器,其特征在于,该第一介电层的材质为氮化硅或氮氧化硅。
11.根据权利要求10所述的高量子效率的影像传感器,其特征在于,该内层介电层的材质为氧化硅。
12.根据权利要求7所述的高量子效率的影像传感器,其特征在于,该感光二极管是由将一N井区设置于该基底中所构成,且该基底为P型基底。
13.根据权利要求7所述的高量子效率的影像传感器,其特征在于,该感光二极管是由将一P井区设置于该基底中所构成,且该基底为N型基底。
CNU2004200930002U 2003-09-24 2004-09-23 高量子效率的影像传感器 Expired - Lifetime CN2741191Y (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/669,516 US7038232B2 (en) 2003-09-24 2003-09-24 Quantum efficiency enhancement for CMOS imaging sensor with borderless contact
US10/669,516 2003-09-24

Publications (1)

Publication Number Publication Date
CN2741191Y true CN2741191Y (zh) 2005-11-16

Family

ID=34313721

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100783525A Active CN100369260C (zh) 2003-09-24 2004-09-23 高量子效率的影像传感器及其制造方法
CNU2004200930002U Expired - Lifetime CN2741191Y (zh) 2003-09-24 2004-09-23 高量子效率的影像传感器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004100783525A Active CN100369260C (zh) 2003-09-24 2004-09-23 高量子效率的影像传感器及其制造方法

Country Status (3)

Country Link
US (2) US7038232B2 (zh)
CN (2) CN100369260C (zh)
TW (1) TWI297105B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369260C (zh) * 2003-09-24 2008-02-13 台湾积体电路制造股份有限公司 高量子效率的影像传感器及其制造方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232697B2 (en) * 2003-12-23 2007-06-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having enhanced photo sensitivity and method for manufacture thereof
KR100611766B1 (ko) * 2004-08-24 2006-08-10 삼성에스디아이 주식회사 박막트랜지스터 제조 방법
US7208783B2 (en) * 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
US7799654B2 (en) * 2005-08-31 2010-09-21 Taiwan Semiconductor Manufacturing Company, Ltd. Reduced refractive index and extinction coefficient layer for enhanced photosensitivity
TWI270213B (en) * 2005-09-30 2007-01-01 Au Optronics Corp Low temperature poly-silicon thin film transistor display and method of fabricated the same
US7323378B2 (en) * 2005-10-20 2008-01-29 Pixart Imaging Inc. Method for fabricating CMOS image sensor
US8110787B1 (en) 2006-08-23 2012-02-07 ON Semiconductor Trading, Ltd Image sensor with a reflective waveguide
US8067292B2 (en) 2008-01-23 2011-11-29 Macronix International Co., Ltd. Isolation structure, non-volatile memory having the same, and method of fabricating the same
DE102009031114B4 (de) * 2009-06-30 2011-07-07 Globalfoundries Dresden Module One LLC & CO. KG, 01109 Halbleiterelement, das in einem kristallinen Substratmaterial hergestellt ist und ein eingebettetes in-situ n-dotiertes Halbleitermaterial aufweist, und Verfahren zur Herstellung desselben
JP2013069958A (ja) * 2011-09-26 2013-04-18 Sony Corp 撮像素子、撮像装置、並びに、製造装置および方法
TWI593290B (zh) 2015-07-30 2017-07-21 力晶科技股份有限公司 影像感測器
JP6711573B2 (ja) * 2015-08-10 2020-06-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子
TWI608600B (zh) 2016-08-04 2017-12-11 力晶科技股份有限公司 影像感測器及其製作方法
DE102017110129B4 (de) 2017-05-10 2020-07-09 Basler Ag Verbesserung eines Pixelqualitätswertes
US10515993B2 (en) 2018-05-17 2019-12-24 Hi Llc Stacked photodetector assemblies
US10340408B1 (en) 2018-05-17 2019-07-02 Hi Llc Non-invasive wearable brain interface systems including a headgear and a plurality of self-contained photodetector units configured to removably attach to the headgear
US10158038B1 (en) 2018-05-17 2018-12-18 Hi Llc Fast-gated photodetector architectures comprising dual voltage sources with a switch configuration
US10420498B1 (en) 2018-06-20 2019-09-24 Hi Llc Spatial and temporal-based diffusive correlation spectroscopy systems and methods
US11213206B2 (en) 2018-07-17 2022-01-04 Hi Llc Non-invasive measurement systems with single-photon counting camera
US11006876B2 (en) 2018-12-21 2021-05-18 Hi Llc Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method
CN113795737A (zh) 2019-05-06 2021-12-14 Hi有限责任公司 用于时间相关的单光子计数的光电探测器架构
US11081611B2 (en) 2019-05-21 2021-08-03 Hi Llc Photodetector architectures for efficient fast-gating comprising a control system controlling a current drawn by an array of photodetectors with a single photon avalanche diode
AU2020287839A1 (en) 2019-06-06 2021-12-02 Hi Llc Photodetector systems with low-power time-to-digital converter architectures
US11771362B2 (en) 2020-02-21 2023-10-03 Hi Llc Integrated detector assemblies for a wearable module of an optical measurement system
US11950879B2 (en) 2020-02-21 2024-04-09 Hi Llc Estimation of source-detector separation in an optical measurement system
US11969259B2 (en) 2020-02-21 2024-04-30 Hi Llc Detector assemblies for a wearable module of an optical measurement system and including spring-loaded light-receiving members
WO2021167877A1 (en) 2020-02-21 2021-08-26 Hi Llc Multimodal wearable measurement systems and methods
WO2021167876A1 (en) 2020-02-21 2021-08-26 Hi Llc Methods and systems for initiating and conducting a customized computer-enabled brain research study
US11630310B2 (en) 2020-02-21 2023-04-18 Hi Llc Wearable devices and wearable assemblies with adjustable positioning for use in an optical measurement system
US11096620B1 (en) 2020-02-21 2021-08-24 Hi Llc Wearable module assemblies for an optical measurement system
US11187575B2 (en) 2020-03-20 2021-11-30 Hi Llc High density optical measurement systems with minimal number of light sources
US11903676B2 (en) 2020-03-20 2024-02-20 Hi Llc Photodetector calibration of an optical measurement system
US11864867B2 (en) 2020-03-20 2024-01-09 Hi Llc Control circuit for a light source in an optical measurement system by applying voltage with a first polarity to start an emission of a light pulse and applying voltage with a second polarity to stop the emission of the light pulse
US11245404B2 (en) 2020-03-20 2022-02-08 Hi Llc Phase lock loop circuit based signal generation in an optical measurement system
US11877825B2 (en) 2020-03-20 2024-01-23 Hi Llc Device enumeration in an optical measurement system
US11645483B2 (en) 2020-03-20 2023-05-09 Hi Llc Phase lock loop circuit based adjustment of a measurement time window in an optical measurement system
US11857348B2 (en) 2020-03-20 2024-01-02 Hi Llc Techniques for determining a timing uncertainty of a component of an optical measurement system
US11607132B2 (en) 2020-03-20 2023-03-21 Hi Llc Temporal resolution control for temporal point spread function generation in an optical measurement system
US11819311B2 (en) 2020-03-20 2023-11-21 Hi Llc Maintaining consistent photodetector sensitivity in an optical measurement system
US20230154960A1 (en) * 2021-11-18 2023-05-18 Omnivision Technologies, Inc. Dark-current inhibiting image sensor and method

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073125A (en) * 1958-12-03 1963-01-15 Pearlson Engineering Company I Drydock
US4329082A (en) * 1980-05-22 1982-05-11 Gillis Michael E Shiplift apparatus
US4509446A (en) * 1982-12-21 1985-04-09 Marine Concepts, Inc. Drydocking device having a moment resisting arrangement
US4641596A (en) * 1985-06-03 1987-02-10 Reprogle Layton J Boat dock and lift
IT1226088B (it) * 1988-09-27 1990-12-10 Marinestar Nautica Di Tana Gui Sistema di alaggio e varo per sollevamento di imbarcazioni
US5051027A (en) * 1989-12-15 1991-09-24 Horton George F Boat lift
US5099778A (en) * 1990-02-27 1992-03-31 Palen Richard L Craft lift
US5378082A (en) * 1990-03-27 1995-01-03 Hiller; Manfred Ship lifting installation
US5655850A (en) * 1994-02-28 1997-08-12 Armada Group, Inc. Floating dock and boat lift
US5772360A (en) * 1997-05-19 1998-06-30 Wood, Ii; Donald M. Topless watercraft lifting apparatus with a differential gearing system
US5915877A (en) * 1997-06-04 1999-06-29 Quality Boat Lift, Inc. Positive drive boat lift
US6040592A (en) * 1997-06-12 2000-03-21 Intel Corporation Well to substrate photodiode for use in a CMOS sensor on a salicide process
US5988941A (en) * 1997-10-14 1999-11-23 Quality Boat Lifts, Inc. Boat lift cable lock apparatus
US6457904B2 (en) * 1998-01-06 2002-10-01 Richard B. Bishop Boat lift apparatus
US6174106B1 (en) * 1998-12-04 2001-01-16 Richard B. Bishop Boat lift apparatus
US20050013663A1 (en) * 1998-05-22 2005-01-20 Ipo L.L.C. Floating lift for watercraft with inflatable pontoons
US6130422A (en) * 1998-06-29 2000-10-10 Intel Corporation Embedded dielectric film for quantum efficiency enhancement in a CMOS imaging device
US6406987B1 (en) * 1998-09-08 2002-06-18 Taiwan Semiconductor Manufacturing Company Method for making borderless contacts to active device regions and overlaying shallow trench isolation regions
TW408435B (en) * 1998-12-31 2000-10-11 Taiwan Semiconductor Mfg Self aligned process and structure capable of increasing the yield of borderless contact window
US6230639B1 (en) * 1999-06-01 2001-05-15 Quality Boat Lifts, Inc. Single motor boat lift having horizontally and longitudinally driven cables
TW466780B (en) * 2000-03-17 2001-12-01 Taiwan Semiconductor Mfg Method to accurately control the manufacturing of high performance photodiode
CN1322014A (zh) * 2000-04-29 2001-11-14 双汉科技股份有限公司 光二极管互补金属氧化物半导体图像传感器的制造方法
US6408776B1 (en) * 2000-06-01 2002-06-25 Quality Boat Lifts, Inc. Synchronously driven, multiple cable boat lift
US6611037B1 (en) * 2000-08-28 2003-08-26 Micron Technology, Inc. Multi-trench region for accumulation of photo-generated charge in a CMOS imager
US6494155B2 (en) * 2001-01-03 2002-12-17 Randolph P. Gibson Three piling boat lift
US6554533B2 (en) * 2001-04-12 2003-04-29 Byron L. Godbersen Hydraulic boat hoist
US6709197B1 (en) * 2001-06-20 2004-03-23 Quality Boat Lifts, Inc. Large capacity boat lift
US6470816B1 (en) * 2001-10-18 2002-10-29 William Golden Watercraft lift assembly
US6695533B1 (en) * 2002-02-08 2004-02-24 Stephen P. Bulmann Boat hoist hydraulic lift device
US6484655B1 (en) * 2002-04-17 2002-11-26 Randolph P. Gibson Synchronous cable transmission system for boat lifts
US6946352B2 (en) * 2003-07-24 2005-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS image sensor device and method
US6846129B1 (en) * 2003-08-28 2005-01-25 Harvey Wilder Edson Boatlift and movable canopy assembly
US7038232B2 (en) * 2003-09-24 2006-05-02 Taiwan Semiconductor Manufacturing Co., Ltd. Quantum efficiency enhancement for CMOS imaging sensor with borderless contact
US6918345B2 (en) * 2003-10-27 2005-07-19 William Golden Watercraft lifts and cable tie-off device for watercraft lifts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100369260C (zh) * 2003-09-24 2008-02-13 台湾积体电路制造股份有限公司 高量子效率的影像传感器及其制造方法

Also Published As

Publication number Publication date
US20050062118A1 (en) 2005-03-24
US7038232B2 (en) 2006-05-02
TW200512548A (en) 2005-04-01
CN100369260C (zh) 2008-02-13
TWI297105B (en) 2008-05-21
US7507596B2 (en) 2009-03-24
US20060148119A1 (en) 2006-07-06
CN1607674A (zh) 2005-04-20

Similar Documents

Publication Publication Date Title
CN2741191Y (zh) 高量子效率的影像传感器
US8987751B2 (en) Photodiode device based on wide bandgap material layer and back-side illumination (BSI) CMOS image sensor and solar cell including the photodiode device
TWI517368B (zh) 背側照射型互補式金氧半導體影像感測器的製造方法
US8629486B2 (en) CMOS image sensor having anti-absorption layer
US7592196B2 (en) Method for fabricating a CMOS image sensor
CN1716627A (zh) 图像传感器及其制造方法
CN1822379A (zh) 具有放大的光检测区域的图像传感器及其制造方法
KR20070019452A (ko) 이미지 센서 및 그 제조 방법
CN1819234A (zh) Cmos图像传感器及其制造方法
CN1992313A (zh) 图像传感器及其制造方法
CN1885551A (zh) 半导体集成电路器件及其制备方法
US7642117B2 (en) CMOS image sensor
US7560674B2 (en) CMOS image sensor and method for manufacturing the same
CN1917175A (zh) Cmos图像传感器及其制造方法
CN1738064A (zh) 光感测器及其制造方法
CN1658396A (zh) 半导体器件及制造半导体器件的方法
US11817469B2 (en) Light absorbing layer to enhance P-type diffusion for DTI in image sensors
CN1230921C (zh) 一种感光二极管的光感测区的制作方法及其结构
KR101009091B1 (ko) 누화현상을 감소시킨 시모스 이미지센서 및 그 제조방법
US20080157145A1 (en) Method of fabricating image sensor
KR20050118903A (ko) 이미지 센서 및 그 형성 방법
CN1622344A (zh) 光电二级管及其制造方法
CN1941389A (zh) Cmos图像传感器及其制造方法
CN112133716B (zh) 一种图像传感器结构
KR20010061355A (ko) 씨모스 이미지센서 제조방법

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Effective date of abandoning: 20080213

AV01 Patent right actively abandoned

Effective date of abandoning: 20080213

C25 Abandonment of patent right or utility model to avoid double patenting