CN214378453U - 一种具有NiOX保护层的MIS-HEMT器件 - Google Patents

一种具有NiOX保护层的MIS-HEMT器件 Download PDF

Info

Publication number
CN214378453U
CN214378453U CN201921308656.4U CN201921308656U CN214378453U CN 214378453 U CN214378453 U CN 214378453U CN 201921308656 U CN201921308656 U CN 201921308656U CN 214378453 U CN214378453 U CN 214378453U
Authority
CN
China
Prior art keywords
dielectric layer
nio
layer
drain electrode
mis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921308656.4U
Other languages
English (en)
Inventor
王洪
高升
周泉斌
廖碧艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Original Assignee
South China University of Technology SCUT
Zhongshan Institute of Modern Industrial Technology of South China University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Zhongshan Institute of Modern Industrial Technology of South China University of Technology filed Critical South China University of Technology SCUT
Priority to CN201921308656.4U priority Critical patent/CN214378453U/zh
Application granted granted Critical
Publication of CN214378453U publication Critical patent/CN214378453U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本实用新型公开了一种具有NiOX保护层的MIS‑HEMT器件,所述器件包括AlGaN/GaN外延,AlGaN/GaN外延上表面的两端分别连接源漏电极,源漏电极的上表面和AlGaN/GaN外延上表面连接源漏电极以外的区域从下到上依次沉积第一介质层和第二介质层,第二介质层的上表面连接栅电极,栅电极位于源漏电极之间,第一介质层为NiOX,第一介质层和第二介质层共同作为钝化层和栅介质层。采用NiOX/SiNX叠层结构同时作为器件的栅介质层与钝化层,利用电子束蒸发设备生长薄膜较PECVD设备减小了沉积损伤问题,改善了器件的表面态,器件的漏电、电流崩塌以及击穿电压性能都得到了优化。

Description

一种具有NiOX保护层的MIS-HEMT器件
技术领域
本实用新型涉及半导体领域AlGaN/GaNHEMT器件,特别涉及一种具有NiOX保护层的MIS-HEMT器件。
背景技术
GaN材料因具有高电子迁移率、低导通电阻、优异的散热能力以及高击穿等特性,广泛应用于高频功率放大器与高压功率开关等场合。然而由于势垒层AlGaN上存在较多的表面态缺陷,使得电流崩塌现象普遍存在于GaN MIS-HEMT器件中,致使器件的性能退化,可靠性降低。目前大众比较认可的解释是表面态的累积形成了“虚栅效应”,使得器件的性能得到恶化。传统的解决方法是在AlGaN上沉积一层SiNX来抑制表面态,虽然起到一定作用,但总体上效果不显著。由于采用PECVD沉积SiNX薄膜的沉积过程会对AlGaN表面造成一定的损伤,在一定程度上会引入新的表面态陷阱,因此许多学者倾向于使用低损伤沉积薄膜的设备,例如(cat-)CVD、ICP-CVD 和LPCVD;但是普遍存在的问题是需要更高的温度以及更长的时间来制备所得的薄膜,对于工业量产而言是不利的。
PECVD沉积薄膜过程中引入的表面态陷阱会增强栅极边缘漏极侧的电场,并在HEMT器件中带来更高的栅极漏电流;
电子束蒸发设备沉积金属薄膜在常温下进行,对AlGaN表面造成的损伤相对于PECVD而言是非常小的。
实用新型内容
为了解决现有技术中存在的问题,本实用新型的目的在于提供一种具有NiOX保护层的MIS-HEMT器件,采用NiOX/SiNX等叠层结构同时作为栅介质层与钝化层,减小了表面态陷阱,达到了减小器件漏电、极大程度抑制电流崩塌以及提高击穿电压的目的。
NiOX层的形成包括采用电子束蒸发设备沉积一层薄的金属Ni层以及后续的高温氧化过程;第二介质层采用PECVD 沉积获得。
本实用新型的目的至少通过如下技术方案之一实现的。
本实用新型提供了一种具有NiOX保护层的MIS-HEMT器件,所述器件包括AlGaN/GaN外延,AlGaN/GaN外延上表面的两端分别连接源漏电极,源漏电极上和AlGaN/GaN外延上表面连接源漏电极以外的区域从下到上依次沉积第一介质层和第二介质层,第二介质层的上表面连接栅电极,栅电极位于源漏电极之间,第一介质层为NiOX,第一介质层和第二介质层共同作为MIS-HEMT器件的钝化层和栅介质层。
优选地,第二介质层为SiNX、SiO2或者SiON。
优选地,第一介质层的厚度为6-18 nm。
优选地,第二介质层的厚度为5-10 nm。
优选地,第一介质层的厚度为15 nm。
优选地,第一介质层的厚度为12 nm。
优选地,第二介质层的厚度为7 nm。
本实用新型还提供了一种制备所述具有NiOX保护层的MIS-HEMT器件的方法,包括以下步骤:
(1)进行台面隔离以及欧姆接触在AlGaN/GaN外延的上表面制备源漏电极,在源漏电极上和AlGaN/GaN外延上表面连接源漏电极以外的区域沉积一层Ni金属,高温氧化处理,形成第一介质层NiOX
(2)在第一介质层NiOX上沉积第二介质层,最后进行栅电极的沉积。
优选地,步骤(1)中第一介质层由电子束蒸发Ni金属,然后在快速退火炉中高温氧化处理形成。
优选地,步骤(1)中Ni金属的沉积速率为0.02 - 0.05 nm/s,沉积的厚度为3 - 10nm。
优选地,步骤(1)中高温氧化处理在快速退火炉或炉管中进行。
优选地,步骤(1)中高温氧化处理时快速退火炉或炉管的腔体温度为300-400 ℃,氧气流量为50-100 sccm,高温氧化处理的时间为10-30 min,退火的升温速率为7-15 °C/s。
优选地,步骤(2)中第二介质层沉积的方法为等离子体增强化学的气相沉积法即PECVD。
本实用新型采用NiOX/SiNX叠层结构同时作为器件的栅介质层与钝化层,其中NiOX由电子束蒸发设备沉积金属Ni层,然后在退火炉或者炉管等设备中进行高温退火处理获得。区别于传统的栅介质层与钝化层,本实用新型中与AlGaN势垒层直接接触的薄膜由电子束蒸发设备获得,相对于PECVD,极大程度减小了沉积损伤,在器件漏电、电流崩塌以及击穿电压方面都得到了优化。
和现有技术相比,本实用新型具有以下有益效果和优点:
本实用新型采用NiOX/SiNX等叠层结构同时作为器件的栅介质层与钝化层,利用电子束蒸发设备生长薄膜较PECVD设备减小了沉积损伤问题,改善了器件的表面态,器件的漏电、电流崩塌以及击穿电压性能都得到了优化。
附图说明
图1为实施例的在完成欧姆接触后的器件结构示意图;
图2为实施例的形成第一介质层后的器件结构示意图;
图3为实施例的形成第二介质层后的器件结构示意图;
图4为实施例的在完成栅电极后的器件结构示意图;
图5为实施例提供的具有NiOX保护层的MIS-HEMT器件与传统的SiNX介质层制备的器件在漏极偏压为200 V应力下的电流崩塌示意图;
图6为实施例提供的具有NiOX保护层的MIS-HEMT器件与传统的SiNX介质层制备的器件的击穿电压对比图;
图中,1是AlGaN/GaN外延,2是源漏电极,3是第一介质层,4是第二介质层,5是栅电极。
具体实施方式
下面结合实施例,对本实用新型作进一步地详细说明,但本实用新型的实施方式不限于此。
实施例1
本实施例提供了一种具有NiOX保护层的MIS-HEMT器件,如图4所示,所述器件包括AlGaN/GaN外延1,AlGaN/GaN外延上表面的两端分别连接源漏电极2,源漏电极2上和AlGaN/GaN外延上表面连接源漏电极以外的区域从下到上依次沉积第一介质层3和第二介质层4,第二介质层4的上表面连接栅电极5,栅电极5位于源漏电极2之间,第一介质层3为NiOX,第一介质层3和第二介质层4共同作为MIS-HEMT器件的钝化层和栅介质层。第二介质层4为SiNX。第一介质层3的厚度为18 nm。第二介质层4的厚度为10 nm。
本实施例还提供了一种制备所述具有NiOX保护层的MIS-HEMT器件的方法,包括以下步骤:
(1)进行台面隔离以及欧姆接触在AlGaN/GaN外延1的上表面制备源漏电极2,如图1所示;利用电子束蒸发设备在源漏电极2的上表面和AlGaN/GaN外延1上表面连接源漏电极以外的区域沉积一层Ni金属,厚度为10nm,沉积速率为0.02nm/s,然后在快速退火炉中进行高温氧化处理,腔体温度为400℃,通入的氧气流量为50sccm,高温氧化处理的时间为20min,退火的升温速率为15°C/s,形成第一介质层NiOX,相应的结构示意图如图2所示;
(2)采用PECVD设备在第一介质层3上沉积第二介质层4,沉积温度为300 ℃,沉积厚度为10 nm,如图3所示;最后进行栅电极5的沉积,如图4所示。
图5为本实施例提供的具有NiOX保护层的MIS-HEMT器件与传统的SiNX介质层制备的器件,在漏极偏压为200 V下的电流崩塌示意图,其中图5中(a)为本实施例提供的具有NiOX保护层的MIS-HEMT器件在漏极偏压为200 V和无漏极偏压(Ref)两种情况下的电流崩塌示意图,图5中(b)为传统的SiNX介质层制备的器件在漏极偏压为200 V和无漏极偏压两种情况下的电流崩塌示意图,其中虚线为两种器件在漏极偏压为200 V应力下持续时间为10s对应的输出曲线,实线为两种器件在无漏极偏压的情况下对应的输出曲线,作为参考对照组;在漏极偏压为200 V,持续施加偏压应力时间为10s的条件下,从图5可知本实例的具有NiOX保护层的MIS-HEMT器件较传统器件,其电流崩塌量减小了90%,从32.7%减小到了5.4%;
图6为本实施例采用的具有NiOX保护层的MIS-HEMT器件与传统的SiNX介质层制备的器件的击穿电压对比图。其中虚线为本实施例的具有NiOX保护层的MIS-HEMT器件的击穿曲线,实线为传统的SiNX介质层制备的器件的击穿曲线;从图6可知本实例提供的具有NiOX保护层的MIS-HEMT器件较传统器件,其击穿电压提高了52.2%,从452 V提高到了688 V。
实施例2
本实施例提供了一种具有NiOX保护层的MIS-HEMT器件,如图4所示,所述器件包括AlGaN/GaN外延1,AlGaN/GaN外延上表面的两端分别连接源漏电极2,源漏电极2上和AlGaN/GaN外延上表面连接源漏电极以外的区域从下到上依次沉积第一介质层3和第二介质层4,第二介质层4的上表面连接栅电极5,栅电极5位于源漏电极2之间,第一介质层3为NiOX,第一介质层3和第二介质层4共同作为MIS-HEMT器件的钝化层和栅介质层。第二介质层4为SiO2。第一介质层3的厚度为15 nm。第二介质层4的厚度为7 nm。
本实施例还提供了一种制备所述具有NiOX保护层的MIS-HEMT器件的方法,包括以下步骤:
(1)进行台面隔离以及欧姆接触在AlGaN/GaN外延1的上表面制备源漏电极2,如图1所示;利用电子束蒸发设备在源漏电极2上和AlGaN/GaN外延1上表面连接源漏电极以外的区域沉积一层Ni金属,厚度为8 nm,沉积速率为0.02nm/s,然后在快速退火炉中进行高温氧化处理,腔体温度为400℃,通入的氧气流量为50sccm,高温氧化处理的时间为25min,退火的升温速率为15°C/s,形成第一介质层NiOX,相应的结构示意图如图2所示;
(2)采用PECVD设备在第一介质层3上沉积第二介质层4,沉积温度为300 ℃,沉积厚度为7 nm,如图3所示;最后进行栅电极5的沉积,如图4所示。
本实施例提供的具有NiOX保护层的MIS-HEMT器件的电流崩塌特性与击穿特性和实施例1类似,具体性能可参照实施例1中的附图5和附图6。
实施例3
本实施例提供了一种具有NiOX保护层的MIS-HEMT器件,如图4所示,所述器件包括AlGaN/GaN外延1,AlGaN/GaN外延上表面的两端分别连接源漏电极2,源漏电极2上和AlGaN/GaN外延上表面连接源漏电极以外的区域从下到上依次沉积第一介质层3和第二介质层4,第二介质层4的上表面连接栅电极5,栅电极5位于源漏电极2之间,第一介质层3为NiOX,第一介质层3和第二介质层4共同作为MIS-HEMT器件的钝化层和栅介质层。第二介质层4为SiON。第一介质层3的厚度为12 nm。第二介质层4的厚度为10 nm。
本实施例还提供了一种制备所述具有NiOX保护层的MIS-HEMT器件的方法,包括以下步骤:
(1)进行台面隔离以及欧姆接触在AlGaN/GaN外延1的上表面制备源漏电极2,如图1所示;利用电子束蒸发设备在源漏电极2上和AlGaN/GaN外延1上表面连接源漏电极以外的区域沉积一层Ni金属,厚度为6 nm,沉积速率为0.02nm/s,然后在快速退火炉中进行高温氧化处理,腔体温度为400℃,通入的氧气流量为50sccm,高温氧化处理的时间为30min,退火的升温速率为10°C/s,形成第一介质层NiOX,相应的结构示意图如图2所示;
(2)采用PECVD设备在第一介质层3上沉积第二介质层4,沉积温度为300 ℃,沉积厚度为10 nm,如图3所示;最后进行栅电极5的沉积,如图4所示。
本实施例提供的具有NiOX保护层的MIS-HEMT器件的电流崩塌特性与击穿特性和实施例1类似,具体性能可参照实施例1中的附图5和附图6。
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受所述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。

Claims (9)

1.一种具有NiOX保护层的MIS-HEMT器件,其特征在于,所述器件包括AlGaN/GaN外延,AlGaN/GaN外延上表面的两端分别连接源漏电极,源漏电极上和AlGaN/GaN外延上表面连接源漏电极以外的区域从下到上依次沉积有第一介质层和第二介质层,第二介质层的上表面连接栅电极,栅电极位于源漏电极之间,第一介质层为NiOX,第一介质层和第二介质层共同作为MIS-HEMT器件的钝化层和栅介质层。
2.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第二介质层为SiNX
3.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第二介质层为SiO2
4.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第二介质层为SiON。
5.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第一介质层的厚度为6-18nm。
6.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第一介质层的厚度为15nm。
7.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第一介质层的厚度为12nm。
8.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第二介质层的厚度为5-10nm。
9.根据权利要求1所述的具有NiOX保护层的MIS-HEMT器件,其特征在于,第二介质层的厚度为7nm。
CN201921308656.4U 2019-08-13 2019-08-13 一种具有NiOX保护层的MIS-HEMT器件 Active CN214378453U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921308656.4U CN214378453U (zh) 2019-08-13 2019-08-13 一种具有NiOX保护层的MIS-HEMT器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921308656.4U CN214378453U (zh) 2019-08-13 2019-08-13 一种具有NiOX保护层的MIS-HEMT器件

Publications (1)

Publication Number Publication Date
CN214378453U true CN214378453U (zh) 2021-10-08

Family

ID=77930472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921308656.4U Active CN214378453U (zh) 2019-08-13 2019-08-13 一种具有NiOX保护层的MIS-HEMT器件

Country Status (1)

Country Link
CN (1) CN214378453U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571267A (zh) * 2019-08-13 2019-12-13 中山市华南理工大学现代产业技术研究院 具有NiOX保护层的MIS-HEMT器件及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110571267A (zh) * 2019-08-13 2019-12-13 中山市华南理工大学现代产业技术研究院 具有NiOX保护层的MIS-HEMT器件及制备方法

Similar Documents

Publication Publication Date Title
WO2020221222A1 (zh) 一种高阈值电压常关型高电子迁移率晶体管及其制备方法
US10580879B2 (en) Enhancement-mode GaN-based HEMT device on Si substrate and manufacturing method thereof
JP7178121B2 (ja) 半導体デバイスの製造方法、及びその使用
CN106711212B (zh) 基于Si衬底AlGaN/GaN异质结基的增强型HEMT器件及其制造方法
CN112038408B (zh) 基于碳化硅衬底的垂直氮化铝金属氧化物半导体场效应晶体管及制备方法
WO2024041122A1 (zh) 高电子迁移率晶体管及其制备方法
CN107785435A (zh) 一种低导通电阻MIS凹槽栅GaN基晶体管及制备方法
CN108615756A (zh) 半导体器件
CN111081763B (zh) 一种场板下方具有蜂窝凹槽势垒层结构的常关型hemt器件及其制备方法
CN112599603A (zh) 基于纵向肖特基源隧穿结的准垂直场效应晶体管及方法
CN113823675A (zh) 一种具有新型源漏场板结构的hemt器件及制备方法
CN114899227A (zh) 一种增强型氮化镓基晶体管及其制备方法
CN210429824U (zh) 一种增强型AlN/AlGaN/GaN HEMT器件
CN214378453U (zh) 一种具有NiOX保护层的MIS-HEMT器件
WO2021189923A1 (zh) 具有多金属栅结构的hemt器件及其制备方法
CN101414636B (zh) 凹槽绝缘栅型源-漏复合场板高电子迁移率晶体管
CN217933804U (zh) 一种高阈值电压增强型hemt的结构
CN110571267A (zh) 具有NiOX保护层的MIS-HEMT器件及制备方法
CN209487514U (zh) 一种高质量栅界面的GaN MISFET器件
CN114725214A (zh) 一种多层钝化凹槽栅mis-hemt器件及其制备方法
CN112614890A (zh) 基于横向肖特基源隧穿结的全垂直场效应晶体管及方法
CN113611731A (zh) 一种GaN基增强型垂直HEMT器件及其制备方法
CN112614889A (zh) 基于纵向肖特基源隧穿结的全垂直场效应晶体管及方法
CN112614888A (zh) 基于横向肖特基源隧穿结的准垂直场效应晶体管及方法
CN212209500U (zh) 一种具有Ga2O3/Al2O3保护层的HEMT器件

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant